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Abstract—DRAM technology has developed rapidly in recent years. Several
industrial solutions offer 3D packaging of DRAM and some are envisioning the
integration of CPU and DRAM on the same die. These solutions allow higher
density and better performance and also lower power consumption in DRAM
designs. However, accurate simulation tools have not kept up with DRAM
technology, especially for the modeling of 3D DRAMS. In this letter we present a
cycle-accurate, validated DRAM simulator, and DRAMsim3, which offers the best
simulation performance and feature sets among existing cycle-accurate DRAM
simulators. DRAMsim3 is also the first DRAM simulator to offer runtime thermal
modeling alongside with performance modeling.

Index Terms—DRAM, cycle-accurate, simulation, 3D-modeling, thermal modeling
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1 INTRODUCTION

DRAM technology has emerged through out the years led by indus-
try efforts. Other than the already widely used DDR4 introduced in
2012, GDDR5 and GDDR5X was developed to serve graphic appli-
cations with tremendous memory bandwidth increase. On the
embedded market, LPDDR3 and LPDDR4 were introduced to meet
the low power consumption demands. The most interesting of all,
in the high-end market, is the stacked DRAM technology. By stack-
ing DRAM dies and connecting them with TSVs, supported and
controlled by a bottom logic layer, these DRAMs can achieve very
high density and better performance per package than planar
DRAMs. The most representative stacked DRAM technologies now-
adays are Hybrid Memory Cube (HMC) and High Bandwidth
Memory (HBM). The former utilizes high speed SERDES interface
to hide the internal details of DRAM while the latter doesn’t impose
the logic die standard but only defines how the DRAM dies should
operate. All these new DRAM technologies comes with new fea-
tures that potentially boost the performance of a DRAM and lower
the power consumption. For example, DDR4 introduced bankgroup
architecture; GDDR5/GDDR5x has doubled/quadrupled the data
transfer rate with the introduction of a seperate clock domain;
LPDDRx devices are tuned to consume much less power with fea-
tures such as bank-level refresh; High Bandwidth Memory has
dual-issue command interface on 8 128-bit buses; Hybrid Memory
Cube radically changes the interface and adds more channels to a
single package (up to 32).

Additionally, stacked DRAMSs propose new challenges in ther-
mal design and modeling. Traditional planar DRAM dies have less
concerns in thermal issues, and DRAM protocols enforce con-
straints on DRAM timings that may prevent thermal issues. How-
ever, in stacked DRAM, thermal modeling becomes a more serious
issue because DRAM dies in the middle are more difficult to cool
down, and as a result, overheated DRAM die may cause data loss or
security issues. Current public DRAM simulators are not capable of
modeling 3D DRAM thermal characteristics as well as timings.
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To address these issues, we developed DRAMSsim3, a successor
to DRAMSIm?2 [14]. DRAMsim3 is fully capable of simulating and
modeling almost all modern DRAM protocols along with many of
their unique features (seen in Table 1). It also has a thermal modeling
component that can model thermal status of DRAM dies on the fly.

2 SIMULATOR DESIGN & CAPABILITY

In this section we introduce the design and features of DRAMsim3
as well as how we bridge the architecture simulation with thermal
modeling.

2.1 Simulator Design and Features

We build the simulator in a modular way that it not only supports
almost every major DRAM technologies existing today, but it also
supports a variety of features that come along with these technolo-
gies. The idea is to first build a generic parameterized DRAM bank
model which takes DRAM timing and organization inputs, such as
number of rows and columns, the values of tCK, CL, tRCD, etc.
Then we build DRAM controllers that initialize banks and bank-
groups according to which DRAM protocol it is simulating, and
enable controller features that are only available on such DRAM
protocol. For example, dual-command issue is only enabled when
simulating an HBM system while t32AW enforcement is only
enabled when simulating a GDDRS5 system. On top of the control-
ler models, we build the system-level interfaces to interact with
a CPU simulator or a trace frontend. This interface can also be
extended to add additional functionality, and we add a cycle-
accurate crossbar and arbitration logic specifically for HMC to
faithfully simulate its internals.

This parameterized simulator design allows us to add basic sup-
port for new protocols as simple as adding a text configuration file
without compiling the code. It also enables us to customize protocol-
specific features modularly without affecting other protocols. In our
code repository, we ship more than 80 configuration files for various
DRAM protocols.

DRAMsim3 uses Micron’s DRAM power model [12] to calculate
the power consumption on the fly, or it can generate a command
trace that can be used as inputs for DRAMPower [3]. While there
are no public power profiles for some of the DRAM protocols, we
try our best to create power profiles for these protocols based on
published literature. The power data can be fed into an plugable
thermal model running side-by-side or standalone, we will further
demonstrate it in Section 2.2.

The software architecture of the simulator is shown in Fig. 1 and
the new features are listed in Table 1.

DRAMSsim3 can be integrated into popular CPU simulators or
simulation frameworks such as SST [13], ZSim [15] and Gemb5 [1]
as their memory backend simulator. We will open-source the code
repository as soon as this paper publishes, along with the glue
code to work with above stated simulators.

2.2 Bridging Architecture and Thermal Modeling
Traditional HotSpot based DRAM thermal modeling tools such as
[8] usually require one or several power traces generated before-
hand. This causes a dilemma: we need to generate a lot of power
traces which may be redundant; otherwise when a management is
triggered, the existing power trace may not accurately reflect the
tuned behavior. Our simulator solves this dilemma by embedding
thermal simulation into performance simulation.

Fine-grained thermal simulation can be time consuming due to
the amount of calculations need to be done, therefore we offer the
freedom to adjust the granularity in both spatial and temporal
domains so that the user can choose accordingly and balance the
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TABLE 1
Improved and Unique Features of DRAMsim3

Improved Features
(vs previous DRAMsim)

Unique Features
(vs all other DRAM simulators)

Bankgroup timings
Self-refresh timings
(GDDR5) t32AW
(GDDR5X) QDR mode
Bank-level refresh
Flexible address mapping

Performance & Thermal Co-simulation
DDR4 Verilog Validation
Cycle-accurate HMC logic simulation
HBM Dual command issue

simulation speed versus accuracy. For spatial granularity, each
DRAM die is divided into smaller grids that in reality would corre-
spond to DRAM subarrays (shown as Fig. 2c). By default it’s
512 x 512 cells but users can also use larger grid to speed up simu-
lation with less accuracy. For temporal granularity, the transient
thermal calculation is done once per epoch, and the epoch length
can be configured as an arbitrary number of DRAM cycles.

During each thermal epoch, the thermal module needs to know
A) how much energy is consumed on that die, and B) what is the
energy distribution (in physical location). We use Micron’s DDR
power model to calculate power and given the time in cycles we
can calculate energy. The energy can be broken down into per-
command energy (e.g., activation, precharge, read and write) and
background energy. We assign those per-command energy only to
those locations that the command concerns, for instance, we only
distribute the activation energy to wherever the activated row is on
the die. Then we distribute the background energy across the
whole die evenly.

To know exactly the location to map the per-command energy,
the physical layout of the DRAM circuit needs be known. Unfortu-
nately, most of the DRAM circuit designs and layouts are proprietary
information that is not publicly available. According to the reverse-
engineered results shown in a recent research [7], DRAM manufac-
turers obfuscate DRAM cell locations by remapping the address bits.
i.e. the DRAM address sent by the controller is remapped internally
in the DRAM circuitry and as a result, the row and column in the con-
troller’s view may end up in a different physical row and column on
the DRAM die. For example, if, like [7] discovered, the column
address sent by controller is internally decoded as:

Clo...03020100 d Clo..‘CL;CzClCUCg

where C; is the ¢th bit of column address, the controller’s view
of columns 8, 9 and 10 would actually be physical columns 1, 3,
and 5. Note that this rearranging is transparent to DRAM controller
and works independently from the address mapping that control-
ler has to perform.

To accurately model this, we implement a location mapping
function which allows users to input any arbitrary address bits
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Fig. 1. Software architecture of DRAMsim3.
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Fig. 2. lllustration of (a) the 3D DRAM, (b) memory module with 2D DRAM devices
and (c) layers constituting one DRAM die.

location remapping schemes. e.g., If an DRAM part has 4 bank
address bits, 15 row address bits, and 10 column address bits, t he
total number of allowed location mapping schemes is (4 + 15+
10)! &~ 8.84%0. Therefore while we provide a default mapping
scheme, the users can always change the mapping scheme to meet
a specific circuit design.

2.3 Thermal Models

Given that our functional model can simulate a variety of DRAM
protocols including both stacked or planar designs, the thermal
models differentiate for each case in order to achieve more accu-
racy. For 3D DRAMs (e.g.,, HMCs, HBMs) as illustrated in Fig. 2a,
the temperature of each stacked die is estimated. For 2D DRAMs,
however, a memory module comprises several DRAM devices
which are separated from each other in distance (Fig. 2b), devices
in a rank operate in sync with each other and consumes same
amount of power, hence we assume devices in a rank share the
same thermal condition and they are independent when calculat-
ing the temperature. Therefore, DRAMsim3 only estimates the
temperature for a single DRAM device per rank. We assume each
DRAM die (or DRAM device) comprises three layers: active layer,
metal layer and dielectric layer. The power is generated from the
active layer and is dissipated to the ambient through a silicon sub-
strate (as illustrated in Fig. 2c). We assume other surfaces of the
device is adiabatic. In the following, we will introduce the thermal
modeling method in detail.

2.3.1 Transient Model

We follow the energy balance method [2] to model the temperature. In
this technique, the dies are divided into small volume elements
(called thermal grids) as illustrated in Fig. 2c. Then each thermal grid
ismodeled as a nodal point and the heat conduction in the DRAM cir-
cuit is modeled as shown in Fig. 3. Each pair of adjacent nodal points
is connected with a thermal resistor (R,.1, Rj;) which indicates a heat
conduction path between the two nodes. The thermal resistance is
calculated according to the material’s thermal conductivity (k) and
the geometrical dimension of the related thermal grids. As shown in
Fig. 3, Rll(;f = %—&-%. Ryt is calculated similarly. For the
node that connects to the ambient, the corresponding resistance is
calculated as R, = kJAAZX/i - Besides the thermal resistor, each nodal
point is connected with a thermal capacitor (C) which represents the
ability of the thermal grid to store the thermal energy. Given the spe-
cific heat capacity (C},) of the material of a thermal grid, the related
capacitance is calculated as C' = pC}, x AXAY AZ (where pis the den-
sity of the material within the thermal grid). For each thermal grid on
the active layer, there is a heat source (¢;) connected to the nodal point.
gs represents the heat generation rate within the thermal grid and
is calculated based on the power dissipated in that grid. Given
the above information, we can estimate the temperature of a node,
which represents the average temperature within the corresponding
thermal grid.

Suppose there are totally N thermal grids. Let P € RY and

T € RY represent the power and temperature for all grids, respec-
tively; G € RM*V represents the matrix of thermal conductance
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Fig. 3. lllustration of the thermal model.

which is calculated using the thermal resistance; C € RV*Y is a
diagonal matrix with each element in the diagonal representing the
thermal capacitance of the grid. Then the temperature at time ¢ can
be calculated by solving the following equation:

dT
T+P=C—. 1
GT + Cdt 1

In practice, the transient temperature profile is calculated every
power sampling epoch which is defined by the user. At the end of
each epoch, we estimate the average power profile (i.e. P) during
this epoch. This P, together with the temperature at the end of pre-
vious epoch (T%-1), is used to calculate the current temperature
(T;). In DRAMsim3, we use explicit method [2] to get the solution.
This method subdivides the epoch into small time steps (At) and
calculates the temperature for each At iteratively. T is calculated
at the last time step. In order to guarantee the convergence, this
method requires the time step to be small enough:

077

X

At < Vi=0,1,2,...,N— 1. )

In our simulator, users can specify the thermal parameters
(including the thermal conductivity, thermal capacitance efc. ), the
dimension of each layer in the DRAM, the size of a thermal grid
and the length of a power sampling epoch. Given the above infor-
mation, G and C will be fixed. Therefore, we only need to calculate
G, C and At (i.e. the proper time step) for one time at the beginning
of the simulation.

2.3.2 Steady State Model

At the end of simulation, DRAMsim3 also estimates the steady-state
temperature profile using the average power profile during the
period of simulation. The steady-state thermal model only contains
the resistors, hence Equation (1) is reduced to:

GT + P =0. 3)

Note that Equation (3) is a linear equation set and G is a sparse matrix
[2]. This equation is solved using SuperLU [5], which provides a
library to solve large sparse linear equations.

2.8.3 Thermal Model Validation

The proposed thermal model is validated against the Finite Element
Method (FEM) results. We use ANSYS to perform the FEM simula-
tion. Our thermal model targets generic 3D ICs, where the die model
can be either a processor die or a DRAM die, and the model works
the same way for both. So it is reasonable to use either a processor
die or a DRAM die to validate the model. The processor layer has
much higher power density and variation, which is better for vali-
dating the model. Therefore, we use the thermal model to estimate
the temperature for a multi-core processor die for our validation.
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Fig. 4. (a) The original power profile, (b) the transient result for for the peak
temperature, (c) the temperature profile at 1s calculated using our thermal model and
(d) the temperature profile at 1s calculated using the FEM method.

The power profile of the multi-core processor is generated based on
[11] and is illustrated in Fig. 4a (Total power equals to 18W). This
processor die contains three layers as illustrated in Fig. 2c. The simu-
lation is taken for 1.6s. Before 1s, the processor power stays constant
as shown in Fig. 4a. After 1s, the processor power is reduced by
75 percent. Fig. 4b shows the transient peak temperature using our
model and the FEM simulation. Fig. 4c and 4d represent the temper-
ature profile at 1s acquired using our model and the FEM method,
respectively. According to the figure, the result of our model accu-
rately matches the FEM result.

3 EVALUATION

3.1 Simulator Validation

Other than the thermal model validation described in Section 2.3.3,
we also validated our DRAM timings against Micron Verilog mod-
els. We take a similar approach as [14], that is, feeding request traces
into DRAMsim3, output DRAM command traces and convert them
into the format that fits into Micron’s Verilog workbench. We ran
the Verilog workbench through ModelSim Verilog Simulator and
no DRAM timing errors were produced. We not only validated
DDR3 model as previous works did, but also validated DDR4 model
as well. DRAMsim3 is the first DRAM simulator to be validated by
both models to our knowledge. While we only have DDR3 and
DDR4 Verilog validation, the DRAM timing enforcement imple-
mentation is paramerized and universal to all DRAM protocols,
assuring that DRAM timing constraints are enforced correctly for
other DRAM protocols as well. We also use DRAMsim3 to conduct
a thorough memory characterization study of various memory pro-
tocols, the results can be found in [10].

3.2 Comparison With Existing DRAM Simulators

We compare DRAMsim3 with existing DRAM simulators includ-
ing DRAMSIm?2 [14], ramulator [9], USIMM [4] and DrSim [6].
These are open sourced DRAM simulators that can run as stand-
alone packages with trace inputs, making it viable for us to conduct
a fair and reproducible comparison.

Each simulator is compiled by clang-6.0 with O3 optimizations
on their latest publicly released source code (except for USIMM
where we use officially distributed binary). We use randomly gen-
erated memory request traces for all these simulators, the requests
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Fig. 5. Simulation time (left) and simulated cycles (right) comparisons for 10 million
random & stream requests on various DRAM simulators.

are exactly the same for each simulator while only the trace format
is adjusted to work with each specific simulator. The read to write
request ratio is 2:1. Since DDR3 is the only protocol all tested simu-
lators support, we run each simulator with a single channel, dual
rank DDR3-1600 configuration that have exact same DRAM struc-
tures and timing parameters. We also made sure each simulator
has comparable system parameters such as queue depth. Note that
the thermal model of DRAMsima3 is disabled in this comparison.

We time the host simulation time of each simulator to finish
processing 10 million requests from the trace to demonstrate simu-
lation performance. We also examine how many simulated cycles
it takes for each simulator to finish these requests, as an indicator
for simulator scheduling efficiency.

The results are shown in Fig. 5. In terms of simulation speed,
DRAMSsim3 offers the best simulation performance among the con-
testants: it is on average 20 percent percent faster than DRAMSim?2,
the next fast DRAM simulator, and more than twice faster than
the other simulators in both random and stream request patterns.
When it comes to simulation throughput, also shown in Fig. 5,
DRAMSsim3 is on par with other simulators as well, indicating that
the scheduler and controller design is just as efficient as the other
simulators. Like our Verilog validation procedures, we also provide
detailed guideline, source code and scripts needed to reproduce
these results.

4 CONCLUSION

In this paper we present DRAMsim3, a fast, validated, thermal-
capable DRAM simulator. We introduced the architectural and ther-
mal modeling capabilities of DRAMsim3. Through the evaluations
we demonstrated the validation of the simulator, and showcased
the simulation performance of DRAMsim3 with uncompromising
simulator design.
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