
A High Throughput Parallel Hash Table Accelerator
on HBM-enabled FPGAs

Yang Yang, Sanmukh R. Kuppannagari and Viktor K. Prasanna
Department of Electrical and Computer Engineering

University of Southern California
Email: {yyang172, kuppanna, prasanna}@usc.edu

Abstract—Hash table is a key component in a number of
AI algorithms such as Graph Convolutional Neural Networks,
Approximate Nearest Neighbor Search, Bag-of-Words based Text
Mining algorithms, etc. Efficient implementation of hash tables
is needed for a wide range of AI applications. High bandwidth
memory (HBM), which provides significantly higher memory
bandwidth than traditional DDR, has recently gained popularity.
In this work, we propose a high throughput parallel hash table
targeting HBM-enabled FPGAs. Our design is tailored for HBM
architecture, allowing flexible and balanced mapping between
processing engines and HBM channels at design time given query
distribution and hash table properties (key/value length, collision
handling, and hash table size). We further develop a novel data
organization and query flow which enable our accelerator to
scale up to 16 processing engines (PEs). The proposed design
supports parallel search, insert, and delete queries. Experimental
results demonstrate that our hash table accelerator can achieve
up to 3575 million operations per second (MOPS) for search-
only queries and up to 1470 MOPS for 50%/50% distributed
search/update queries on HBM-enabled FPGAs. It achieves better
throughput than the state-of-the-art GPU and FPGA designs by
up to 3.5× and 3.2× respectively.

I. INTRODUCTION

Hash table is a data structure which enables efficient data
access and storage for sparse data. It has been adopted to
accelerate several emerging AI applications such as graph
machine learning, deep learning, data mining, etc. [1]–[5].
For instance, in [5], Chen et al. show that locality sensitive
hashing can be used to reduce the amount of neural network
computations by selecting a subset of neurons to be activated
based on input samples. Graph Convolution Neural Network
uses hash tables in the graph sampling operation to determine
whether the currently sampled vertex or edge exists in the
sampled set [4].

FPGAs have gained a lot of attention due to their immense
flexibility and high energy efficiency [6]. The vast compute
capability offered by the state-of-the-art FPGAs require large
memory bandwidth to supply data to the processing elements.
High-bandwidth memory (HBM) has been deployed by lead-
ing FPGA vendors to overcome this challenge [7], [8]. Latest
HBM-enabled FPGAs can provide up to 512 GB/s bandwidth
and 16 GB capacity, which makes them an attractive choice
for accelerating data intensive applications.

However, it is non-trivial to efficiently utilize the high
bandwidth offered by HBM. Certain unique features of HBM
architecture such as the presence of many pseudo-channels

and access to limited memory space by each pseudo-channel
(Section III-B) can have undesirable performance implications.
Naive approach of partitioning hash table across all the chan-
nels may require a complex and expensive crossbar between
the processing logic and the HBM channels, which is not a
scalable solution. On the other hand, creating as many hash
table copies as the HBM channels could lead to a simpler
design, but it may adversely hurt performance due to the inter-
PE communication overheads.

In this paper, we design a parallel hash table accelerator
tailored specifically for HBM-enabled FPGAs. It can process p
concurrent queries (p ≥ 1) per cycle. The proposed accelerator
assigns dedicated processing engine (PE) and hash table copy
to one or more adjacent HBM channels. This avoids complex
memory interface between the PEs and the HBM. The flexible
architecture enables balanced designs given query distribution,
key/value length, collision handling, and hash table size. We
further develop novel data organization and query flow tech-
nique targeting HBM that can scale our accelerator up to 16
PEs. Our design implements a dynamic hash table that allows
any mixture of search, insert and delete queries. It supports
parallel collision handling, thus query time complexity of O(1)
is achieved. The hash table is stored in HBM, allowing it
to scale to millions of entries. Our hash table supports the
semantics of relaxed consistency to improve performance [9].
The main contributions of this work are:

• We design and implement a parallel hash table accelerator
tailored for HBM-enabled FPGAs.

• To reduce the inter-PE communication overheads and im-
prove throughput, the proposed accelerator allows flexible
mapping between processing engines and HBM channels
at design time.

• We develop novel data organization and query flow tech-
nique specifically targeting HBM architecture to improve
throughput and scalability.

• Our hash table supports all common hash table queries,
search, insert, and delete and can scale up to 16 pipelines.

• We perform detailed experiments using a wide range of
key/value length, hash table size, and query distribution
on an HBM-enabled FPGA. Results show that our hash
table can sustain a throughput of up to 3575 MOPS for
search-only queries and up to 1470 MOPS for 50%/50%



distributed search/update1 queries.

II. RELATED WORK

Istvan et al. [10] proposed a pipelined hash table archi-
tecture for Memcached applications which can sustain 10
Gbps throughput. Cho et al. [11] used bloom filter to reduce
unnecessary memory accesses. Tong et al. [12] developed a
hash table targeting networking applications that achieves up
to 85 Gbps throughput. In [13], the authors developed an
architecture that stores keys on-chip and values on DRAM
thereby requiring DRAM access when there is a match. All
the above works focus on improving the performance of
a single processing pipeline. The high bandwidth of HBM
cannot be saturated by a single processing pipeline, hence,
these techniques cannot be trivially ported to HBM. Pontarelli
et al. [14] presented an FPGA-based Cuckoo hash table with
multiple parallel pipelines with each pipeline responsible for a
single cuckoo function. The scalability of the design is limited
by the number of cuckoo functions which is typically very
small. Moreover, queries using the same function at the same
time are serialized, thus significantly reducing the throughput.

In [9] the authors developed a parallel hash table using on-
chip SRAMs of FPGA. For p pipelines, they make p copies of
the hash table to maximize throughput. However, the design
can support only small hash tables (< 200 K entries in most
recent FPGAs) and only search and insert queries. Moreover,
their replication is query distribution agnostic and when ported
to HBM leads to reduced throughput (Section IV). Our work
addresses these limitations as follows: (i) Using HBM for hash
table dramatically increases the size of the tables that can be
supported, (ii) we support all hash table query types — search,
insert, and delete, (iii) we perform detailed experimental
analysis to show that naively increasing hash table copies may
adversely hurt throughput.

III. HASH TABLE ON FPGA
A. Hash Table Semantics and Supported Queries

A hash table uses one or more hash functions to map
keys into an array of entries, from which the desired value
can be read and/or updated [15]. Our design implements the
standard closed addressing hash table. For collision resolution,
we implement the separate chaining method. Every hash table
entry has multiple slots, each of which can store one key-
value pair. The number of slots is pre-determined at design
time. If number of key-value pairs that are mapped to one
entry exceeds the number of slots, our design raises an abort
error. Our hash table accelerator supports the same relaxed
consistency proposed by [9]. The key observation is that by
not using complicated forwarding units for address conflict
handling, inconsistency in hash table may occur. However, the
maximum number of such erroneous queries is bounded. More
details on the consistency model can be found in [9]. The hash
table queries supported by our accelerator and their semantics
are defined below.

1In this paper, we use hash table update to include both insert and delete
queries.

• SEARCH (k): Return {k, v} ∈ S or ∅. Retrieve the value
associated with the input key if the key exists in the hash
table, or empty if not found.

• INSERT (k, v): S ← (S − {k, ∗}) ∪ {k, v}. Insert a new
key-value pair to the hash table if the key does not exist
or replace the previously inserted value for this key with
a new value.

• DELETE (k, v): S ← S − {k, v}. Delete the key and
value from the hash table if they exist.

Parallel Hash Table is an implementation of hash tables
that allows concurrent accesses. Instead of operating on one
key at a time, each query can take a set of keys and perform
hash table operations at the same time.

B. Target Platform - FPGA + HBM2

High-bandwidth memory (HBM) vertically stacks multiple
DRAM dies and connects them using through-silicon vias
(TSVs) [16]. Each stack of HBM2 (2nd generation of HBM)
can have up to 8 DRAM dies (channels). Each memory
channel has a memory controller (MC), and is further divided
into two pseudo-channels (PCs). Each PC has a dedicated
HBM physical interface, which is used to send/receive memory
request/response. The peak bandwidth that can be achieved
from an HBM2 stack is 256 GB/s [8]. On the application
side, a configurable number of ports (typically up to 16 for
each HBM stack) can be enabled to access HBM memory
simultaneously. A switch fabric is required to route memory
access from the application to each PC. Leading FPGA
vendors offer a switch fabric as a drop-in solution to ease the
design complexity. For instance, Xilinx has opted to provide
a hard switch fabric to enable access to the full HBM address
space from any port on the application side [7]. However, the
application bandwidth to access non-local PCs is limited by
the lateral connections of the switch fabric. On the other hand,
Intel FPGAs provide a soft AXI switch fabric to access HBM.
The mapping between the application ports and the PC ports
is one-to-one [8].

C. Accelerator Design

Our goal is to develop a high-throughput hash table with p
Processing Engines (PEs) on HBM-enabled FPGAs. Each PE
can process all the supported queries concurrently. The phys-
ical architecture of HBM and the limitations of switch fabric
aforementioned makes it non-trivial to port existing techniques
such as partitioning [14] or replication [9]. To address these
challenges, our accelerator allows a flexible connection from
each PE to one or more adjacent HBM channels. This architec-
ture choice avoids complex and expensive PE-HBM memory
interface. It can also reduce inter-PE communication overheads
at design time given query distribution, key/value length, and
hash table size.

1) Data Organization and Query Flow: To fully utilize
the HBM bandwidth, we divide the HBM PCs into multiple
groups, and each PE is connected to a group of PCs. The
number of PCs that is assigned to each PE is an architecture
parameter that can be decided at design time. The multi-PE



design allows the accelerator to improve HBM bandwidth uti-
lization. We further store a copy of the entire hash table to each
group of PCs. Hash table entries are evenly distributed among
the PCs within each group. To enable hash table updates that
are performed by a PE are properly propagated globally, a
ring interconnect is used for inter-PE communication. Figure 1
shows an example of our proposed hash table data organization
with 4 PEs (hash table copies). Each PE is connected to 2
HBM channels (4 PCs), where one hash table copy is stored.

PE 0 PE 1 PE 2 PE 3

Fig. 1. Hash Table Accelerator Architecture with 4 PEs.

Our hash table accelerator supports search, insert, and delete
queries defined in Section III-A. The query flow of our hash
table, i.e., mapping of search, insert, and delete operations to
our parallel architecture, is described below:

HBM

PE0 PE1 PE2 PE3

HBM

PE0 PE1 PE2 PE3

(a) (b)

Fig. 2. Query dataflow. Colored arrows show how queries flow through the
proposed accelerator. (a) Search query flow: PE0 and PE2 process 2 concurrent
queries. (b) Insert and delete query flow: PE0 and PE3 process 2 concurrent
queries.

Search: A search query, received by a PE, goes through its
Request Pipeline which issues HBM read to fetch the hash
table entry. Note that one entry can have multiple hash table
slots. The input key is checked against the keys in all the slots
(if they are valid), and if there is a match, the value is returned
to the application through Response Pipeline. Request Pipeline
and Response Pipeline are described in the next subsection. As
shown in Figure 2(a), search queries are handled within a PE
completely.

Insert/Delete: An insert/delete query first checks the exis-
tence of the key and then modifies it. Thus this query starts
with an HBM read operation. After that, p HBM writes to
the local and remote hash table copies are required, where
p equals to the number of PEs. The write operation updates
the key-value pair in the hash table according to the query
type and the matching result. A ring interconnect is used to
propagate updates from local PE to remote PE. Figure 2(b)
depicts the data flow of insert/delete queries initiated by PE0
and PE3.

2) Processing Engine (PE) Design: Our hash table accel-
erator consists of an array of homogeneous PEs. Each PE can
receive input queries independently. Figure 3 shows the mi-
croarchitecture design of each processing engine. Inside a PE,
two pipelines work concurrently. Request Pipeline processes
incoming queries and issues HBM read requests; Response
Pipeline handles the HBM read responses and performs hash

table updates (HBM writes). Between the two pipelines, our
accelerator uses Pending Request Queue and Response Queue
to increase PE’s HBM read latency tolerance.

Request pipeline is a 3-stage pipeline (Figure 3). The first
stage reads an incoming query from the Input Command
Queue, and calculates hash table index for the incoming
key. We use the Class H3 [17] hashing, which has been
demonstrated to be effective on distributing keys randomly
among hash table entries. The second stage receives the hash
table index, along with query command and value to be
inserted (for insert queries), and performs resource allocation
— checking availability in Pending Request and Response
Queues. Pending Request Queue is a per pseudo-channel
structure that stores outstanding HBM reads. In the last stage
of the Request Pipeline, an HBM read request with size equals
to one hash table entry is issued to the proper HBM pseudo-
channel based on the calculated hash table index. We issue to
read the entire entry instead of one slot at a time to improve
HBM efficiency and collision handling overhead.

PE
Input

Cmd

Queue

DRAM

Response

Buffer

DRAM

Response

Buffer

DRAM

Response

Buffer

PC0

Response

Queue

Remote

PE

Queue

Request

Pipeline

Hash

Calculation

Resource

Allocation

Cmd

Issue

Response

Pipeline

Response 

Processor

Insert / Delete

Issue

Cmd

Fetch

Pending

Request

Buffer

Pending

Request

Buffer

Pending

Request

Buffer

PC0 

Pending

Request

Queue

DRAM WriteDRAM Read

DRAM Read

Response

From West

Neighbor

To East

Neighbor

Hash Table

Response

Hash Table

Input

Fig. 3. Processing engine microarchitecture.

Each pseudo-channel is connected to a separate PC Re-
sponse Queue to store HBM data responses. When the re-
sponse for an HBM read request arrives, the response data
is written to the corresponding PC Response Queue. In the
meantime, it also sets the valid bit such that the transaction
becomes eligible to be processed by the Response Pipeline.
We use AXI protocol to enforce in-order response, therefore
the ordering between Pending Request Queue and Response
Queue for the same pseudo-channel is always in sync. This
simplifies the arbitration logic because we can use FIFO
instead of reorder buffers for the Pending Request Queues and
Response Queues. The Remote PE Queue is used to store the
hash table insert/delete queries from remote PEs. Each entry
in the Remote PE Queue has information on the destination
PE ID, hash table index, slot ID for the key-value pair, and
also the key-value pair to be updated.

Response Pipeline is also a 3-stage pipeline. The first
stage performs round-robin arbitration between each Pending
Request Queue and Remote PE Queue. Once it has a winner,
it signals the corresponding queue to pop the entry, and stores
the entry in a pipeline register. The second stage, Response



Processor, handles hashing collisions and initiates inter-PE
communication. The core component in this stage is a parallel
result resolution and collision handling unit, as illustrated in
Figure 4. This component determines the slot position (slot
id) to be operated on for a given query. Each hash table entry
has a fixed number of slots that are stored in continuous
memory locations. This enables the Response Processor to
be able to check key-value pairs in multiple slots in parallel.
For search, this component detects and generates a matching
flag to indicate that the query key exists in the hash table.
It also populates the value register with the data from HBM.
For insert/delete, it further initiates inter-PE communication
by creating an insert/delete packet and presenting the packet
to the ring interconnect. Collision handling is performed by
finding the first available slot of a given entry. Lastly, the
third stage of Response Pipeline issues HBM write command
to update the local hash table content.

Response Processor

Value (for search)

Key Value V Key Value

Slot 0 Slot s

V

MUX

Collision 

Resolution 

Logic

(Match Flag, Slot ID)

Key Hash Index

HBM Datapath

Control

Fig. 4. Parallel result resolution and collision handling.

3) Inter-PE Communication: We design an uni-directional
1D ring interconnect (Figure 1) for inter-PE communication.
We use a ring interconnect as it can easily scale to multiple PEs
without complex routing logic. Each PE is a stop in the ring
interconnect. A packet originates at a source PE and contains
information on destination PE ID, hash table index, query type,
key, value, and slot ID. It enters the ring interconnect from
the second stage of the Response Pipeline of the source PE.
The packet is then routed to neighbor PE along the direction
of the interconnect and stored in Remote PE Queue at each
stop. Once it reaches the destination PE, the forwarding stops.
Since the arbitration in the Response Pipeline is round-robin,
it guarantees forward progress of each Remote PE Queue that
connects to the ring interconnect. It is worth noting that more
PEs enable more parallelism, but they also incur significant
HBM bandwidth overheads due to inter-PE communication
from insert and delete queries.

IV. EXPERIMENTAL RESULTS

A. Experimental Methodology

We evaluate our hash table accelerator using Intel Stratix
10 MX 2100 FPGA [8]. The FPGA is equipped with two
8GB HBM2 stacks. Each HBM stack has 16 pseudo-channels
and can provide up to 256 GB/s bandwidth. Intel Quartus
Prime 19.3 is used for synthesis, place-and-route, and system
integration. We conduct detailed analysis on the scalability,
performance, and resource utilization of the proposed accel-
erator. We run experiments with different number of PEs (p),
key/value length (k/v), slots per entry (s), search to total query

ratio (r), memory efficiency (eff ), as well as hash table size.
Key and value of each query are generated randomly. Traffic
is injected into each PE independently as long as there is no
back-pressure from the memory. We perform post place-and-
route simulations to measure the execution time for processing
all the queries and use it to calculate the throughput.

To evaluate the performance and scalability of our accel-
erator under different system load conditions, we employ a
fixed latency/bandwidth memory model. The memory model is
configured to have 32 ports, which matches the total number of
PCs with 2 HBM stacks. Since the minimum frequency of user
logic clock is one quarter of the HBM2 interface frequency
(fhbm) in Stratix 10 MX 2100 [18], we adjust the memory
model frequency based on accelerator’s post place-and-route
max frequency. Hence, peak bandwidth of each memory port
is set to 2 (DDR) × 64 bits (data width) × f hbm. An eff
knob is created in the memory model to reflect the efficiency
factor of HBM memory. [19], [20] report less than 200 ns
HBM access latency. Although it is based on Xilinx FPGA,
the underlying memory technology is the same. However, in
practice HBM latency is not fixed, we design our accelerator
to have enough buffering to accommodate potential variable
latency. Simply assuming 200 ns latency may lead to overly
optimistic design, therefore we use 300 ns HBM latency in
our experiments (unless otherwise specified) to allow some
margin. We use million operations per second (MOPS) as the
throughput metric.

B. Results

1) Throughput Evaluation: We evaluate the achieved
throughput by varying p, s, r, and eff. We conduct two sets
of experiments: (i) We fix s and explore the effect of eff from
40% to 70%. This range is selected based on existing studies
in [20], [21] and, (ii) we fix eff and explore the effect of s.
The hash table size is fixed at 1 M and the key/value length
(k/v) are both 4 bytes. In both sets of experiments, we also
sweep r from 30% to 100%. In total, 8 configurations are
implemented. The design runs from 221.4 MHz (p=16, s=8)
to 231.8 MHz (p=2, s=4) with an average of 225.2 MHz.

Figure 5 shows the results. From each sub-figure, we
observe that HBM can be saturated with 8 or more PEs. When
this happens, read heavy (larger r) query distribution benefits
from large number of PEs. However, as query distribution be-
comes write heavy, lesser PEs could perform better, especially
when the memory efficiency is low. Inter-PE communication
overheads are the main reason causing the throughput drop
with more PEs. For instance, with 16 PEs running in parallel,
the design can easily oversubscribe the HBM. When r=1.0,
all the HBM traffic is generated from the Request Pipeline.
However, when r=0.7, 30% of the queries from each PE need
to be sent to all the other PEs for inter-PE communication,
which consume a lot of HBM bandwidth. As HBM is already
saturated, the inter-PE communication becomes an overhead
that reduces the throughput significantly. In contrast, from
r=0.7 to r=0.5/0.3, the inter-PE communication overhead does
not change as sharply as the previous case (r form 1.0 to 0.7),



therefore the throughput drop is less severe. When using 8
PEs, the available bandwidth per PE is doubled compared to
16 PEs design (4 PCs vs 2 PCs), which provides more margin
for inter-PE communication overheads. When comparing sub-
figures in the same row, we observe that increasing s reduces
throughput whenever the accelerator is limited by HBM band-
width. This is due to the fact that bytes to be processed for
each query are proportional to the number of slots per entry.

In summary, our designs can run at high frequency with up
to 16 PEs, proving the scalability of our accelerator. Figure 5
shows clearly that increasing hash table copies as many as
possible may adversely hurt throughput due to the inter-PE
communication overheads. We obtained balanced designs by
considering query distribution, key/value length, slots per entry
and hash table size.

r

Fig. 5. Achieved throughput with 1 M hash table size, k/v = 4B/4B. Varying
p, s, r, and eff.

2) Latency Evaluation: Depending on the access pattern,
DRAM access may take different number of clock cycles. We
run experiments to evaluate the latency impact on our design
with various k/v length. We fix the hash table size to 1 M,
configure the accelerator to have 8 PEs, 4 slots per entry, and
search ratio of 50%. The eff factor is set to 60%. We configure
the memory latency to be 300 ns, 450 ns, and 600 ns, which
is higher than the latency reported in [19], [20]. As shown in
Figure 6(a), our design can tolerate the latency increase in most
of the cases. There is a slight performance drop in 4B/4B case.
For cases with k/v greater than 4B/4B, the throughput is not
impacted. This is because in those cases each transaction reads
more bytes, and can saturate memory bandwidth with lesser
number of outstanding transactions. If the expected latency

is too high, one may consider further increase the size of
Pending Request Queue and Response Queue, as they are the
structures that store outstanding requests. It is set to 128 deep
in the proposed accelerator according to calculations based on
Little’s Law [22].

(a) (b)

Fig. 6. (a) Achieved throughput with 1 M hash table size, 8 PEs, 4 slots per
entry. Varying k/v and memory latency. (b) Achieved throughput with 8 PEs,
4 slots per entry. Varying k/v and hash table size.

3) Hash Table Size Evaluation: Figure 6(b) shows the
performance of our accelerator for various number of hash
table sizes. We configure the accelerator to have 8 PEs, 4
slots per entry, and search ratio of 50%. The eff factor is set
to 60%. We run experiments using 1 M, 16 M, and 64 M hash
table size and different k/v length. Increasing the hash table
size doesn’t affect the performance significantly. In our design,
only hash index bit-width changes with hash table size. The
increase in bit-width follows logarithmic growth which only
slightly increases the complexity of hashing unit. As a result,
our design demonstrates good scalability with hash table size.
Further, since our accelerator implements closed addressing,
separate chaining hash table, load factor does not influence the
throughput of our hash table.

4) Resource Utilization: Since the hash table is completely
stored in HBM, our design does not require a lot of FPGA
resources. For 16 PEs, the resource consumption is: ALM <
8%, M20K memory < 1% and no DSP usage. Slots per entry
(s), k/v length, and hash table size have little impact on FPGA
resource consumption.

TABLE I
THROUGHPUT (MOPS) COMPARISON WITH GPU DESIGN

Search Ratio (r) [23] Our Design
100% search, 0% update 937 1837
80% search, 20% update approx. 525 1837
60% search, 40% update approx. 490 1750
0% search, 100% update approx. 420 816

C. Comparison with Prior Work

We compare our design with the state-of-the-art imple-
mentations on GPU [23] and FPGA [9]. Our hash table is
configured to use 1 M hash table size, 4 slots per entry, 4B/4B
k/v length. This is the closest configuration we find to make
a fair comparison. We use 8 PEs design to compare against
their work, unless otherwise specified. To be conservative, we
choose 50% eff factor (256 GB/s HBM bandwidth), which is
the random pattern efficiency reported in [21].

1) Comparison with GPU Design: In [23], the design is
implemented on NVIDIA Tesla K40c GPU — 2880 CUDA
cores operating at 745 MHz (boosted up to 876 MHz) with 288



TABLE II
THROUGHPUT (MOPS) COMPARISON WITH FPGA DESIGN

Hash Table Size [9] Our Design (r=0.5) Speedup
50 K 1628 1470 0.9x

100 K 840 1470 1.7x
200 K 447 1470 3.2x
1 M n/a 1470 n/a

GB/s off-chip memory bandwidth. Their insert operation does
not ensure uniqueness among the keys. Customized APIs have
to be used to ensure consistency. Table I shows the comparison
results. We compare with the peak achieved throughput on
GPU. It is important to note that, unlike our accelerator, their
throughput varies widely based on the load factor. Our design
achieves better throughput than the GPU implementation with
speedup of 1.9×, 3.4×, 3.5×, 1.9× for distributions with
100% search, 80% search, 60% search, 0% search respectively.

2) Comparison with FPGA Design: Yang et al have re-
cently proposed a parallel hash table using FPGA on-chip
SRAM [9] which achieves high throughput by using as many
hash table copies as possible. Here we perform an empirical
comparison. Table II shows the results using the same FPGA
in [9]. When hash table size is small, [9] performs marginally
better, because of the higher on-chip SRAM bandwidth. As
hash table size increases, their design achieves less throughput
or even becomes infeasible due to the limitation of SRAM
capacity. In contrast, the proposed accelerator uses flexible PE-
HBM mapping to reduce inter-PE communication overheads
while can support large hash table with millions of entries.

V. CONCLUSION

In this work, we proposed a high throughput parallel hash
table accelerator on HBM-enabled FPGAs. It can be used to
target a variety of applications in graph analytics, machine
learning, and data mining. Our accelerator allows flexible map-
ping between processing engines (PEs) and HBM channels to
balance the throughput at design time. We further developed
novel data organization and query flow technique to scale our
accelerator to 16 PEs. We performed detailed experimental
analysis on the performance of the proposed design by varying
number of PEs, key/value length, slots per entry, hash table
size, and query distribution. Our evaluation shows that our
accelerator can achieve up to 3575 MOPS for search-only
queries and up to 1470 MOPS for 50%/50% distributed
search/update queries on an HBM-enabled FPGA. Compared
with the state-of-the-art designs on GPU and FPGA, the
proposed accelerator achieves up to 3.5× and 3.2× speedup
in throughput respectively.

ACKNOWLEDGMENT

We would like to thank anonymous reviewers for their
valuable feedback. This work is partially supported by Intel
Strategic Research Alliance and by the National Science
Foundation under grant OAC-1911229.

REFERENCES

[1] C. Boulis and M. Ostendorf, “Text classification by augmenting the
bag-of-words representation with redundancy-compensated bigrams,” in
Proc. of the International Workshop in Feature Selection in Data Mining.
Citeseer, 2005, pp. 9–16.

[2] S. Vijayanarasimhan and J. Yagnik, “Large-scale classification in neural
networks using hashing,” Aug. 14 2018, uS Patent 10,049,305.

[3] J. D. Holt and S. M. Chung, “Mining association rules in text databases
using multipass with inverted hashing and pruning,” in 14th IEEE Inter-
national Conference on Tools with Artificial Intelligence, 2002.(ICTAI
2002). Proceedings. IEEE, 2002, pp. 49–56.

[4] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Accurate,
efficient and scalable graph embedding,” in 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2019,
pp. 462–471.

[5] B. Chen, T. Medini, and A. Shrivastava, “Slide: In defense of smart
algorithms over hardware acceleration for large-scale deep learning
systems,” in Proceedings of the 3rd MLSys Conference (MLSys), 2020.

[6] S. R. Kuppannagari, R. Chen, A. Sanny, S. G. Singapura, G. P. C. Tran,
S. Zhou, Y. Hu, S. P. Crago, and V. K. Prasanna, “Energy performance of
fpgas on perfect suite kernels,” in 2014 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2014, pp. 1–6.

[7] Xilinx, “Xilinx UltraScale+ HBM FPGAs,”
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-
plus-hbm.html.

[8] Intel, “Stratix 10 MX FPGAs,” https://www.intel.com/content/www/us/
en/products/programmable/sip/stratix-10-mx.html.

[9] Y. Yang, S. Kuppannagari, A. Srivastava, R. Kannan, and V. Prasanna,
“Fasthash: Fpga-based high throughput parallel hash table,” in Proceed-
ings of the 35th International Supercomputing Conference (ISC-HPC),
2020.

[10] Z. István, G. Alonso, M. Blott, and K. Vissers, “A flexible hash table
design for 10gbps key-value stores on fpgas,” in 2013 23rd International
Conference on Field programmable Logic and Applications, 2013, pp.
1–8.

[11] J. M. Cho and K. Choi, “An fpga implementation of high-throughput
key-value store using bloom filter,” in Technical Papers of 2014 Inter-
national Symposium on VLSI Design, Automation and Test, 2014, pp.
1–4.

[12] D. Tong, S. Zhou, and V. K. Prasanna, “High-throughput online hash
table on fpga,” in 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, 2015, pp. 105–112.

[13] Wei Liang, Wenbo Yin, Ping Kang, and Lingli Wang, “Memory efficient
and high performance key-value store on fpga using cuckoo hashing,”
in 2016 26th International Conference on Field Programmable Logic
and Applications (FPL), 2016, pp. 1–4.

[14] S. Pontarelli, P. Reviriego, and J. A. Maestro, “Parallel d-pipeline:
A cuckoo hashing implementation for increased throughput,” IEEE
Transactions on Computers, vol. 65, no. 1, pp. 326–331, 2016.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[16] H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, and K. Kim, “Hbm
(high bandwidth memory) dram technology and architecture,” in 2017
IEEE International Memory Workshop (IMW), 2017, pp. 1–4.

[17] J. L. Carter and M. N. Wegman, “Universal classes of hash functions
(extended abstract),” in Proceedings of the Ninth Annual ACM Sympo-
sium on Theory of Computing, ser. STOC ’77. New York, NY, USA:
ACM, 1977, pp. 106–112.

[18] Intel, “High bandwidth memory (hbm2) interface intel fpga ip user
guide,”
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/ug/ug-20031.pdf.

[19] Xilinx, “Xilinx axi high bandwidth memory controller v1.0,” 2019.
[20] Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai: Benchmarking

high bandwidth memory on fpgas,” in 2020 IEEE 28th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2020, pp. 111–119.

[21] D. Kehlet, O. Tan, and L. Landis, “Intel stratix 10 mx fpgas revolution-
izing system memory bandwidth,” FCCM Workshop on Inte FPGA New
Technology Showcase: Chiplets, High-Bandwidth memory, and eASICS,
2019.

[22] J. L. Gustafson, Little’s Law. Boston, MA: Springer US, 2011, pp.
1038–1041.

[23] S. Ashkiani, M. Farach-Colton, and J. D. Owens, “A dynamic hash
table for the gpu,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2018, pp. 419–429.


