Appears at IEEE HPEC 2020

Accelerator Design and Performance Modeling for
Homomorphic Encrypted CNN Inference

Tian Ye
Department of Computer Science
University of Southern California

Los Angeles, USA
tye69227 @usc.edu

Abstract—The rapid advent of cloud computing has brought
with it concerns on data security and privacy. Fully Homo-
morphic Encryption (FHE) is a technique for enabling data
security that allows arbitrary computations to be performed
directly on encrypted data. In particular, FHE can be used with
convolutional neural networks (CNN) to perform inference as
a service on homomorphic encrypted input data. However, the
high computational demands of FHE inference require a careful
understanding of the tradeoffs between various parameters such
as security level, hardware resources and performance. In this
paper, we propose a parameterized accelerator for homomorphic
encrypted CNN inference. We first develop parallel algorithms to
implement CNN operations via FHE primitives. We then develop
a parameterized model to evaluate the performance of our CNN
design. The model accepts inputs in terms of available hardware
resources and security parameters and outputs performance
estimates. As an illustration, for a typical image classification
task on CIFAR-10 dataset with a seven-layer CNN model, we
show that a batch of 4K encrypted images can be classified within
1 second on a device operating at 2 GHz clock rate with 16K
MACs, 64 MB on-chip memory and 256 GB/s external memory
bandwidth.

Index Terms—Homomorphic Encryption, Neural Network,
Cloud Computing, ASIC and FPGA

I. INTRODUCTION

Cloud computing provides users with various kinds of ser-
vices that are easy to deploy and scale without too much effort.
For example, in order to perform neural network inference,
users can send their input data to a cloud server that holds a
pretrained neural network and provides inference as a service,
without building and training the model themselves. However,
data security becomes a critical concern when uploaded data or
results returned from the cloud are sensitive and confidential.
Although the data can be encrypted while being transferred
between client and server by underlying network protocols,
they are still vulnerable because they must be decrypted on
the cloud before computations are performed. Even if users
trust the cloud provider not to misuse their data intentionally,
it is still possible that the cloud provider may fail to defend
the server from being hacked.

Fully Homomorphic Encryption (FHE) [1] offers a good
solution to this problem. FHE allows computations to be
directly performed on encrypted data without revealing the
original plaintext. In a cloud computing scenario, users encode

Rajgopal Kannan
US Army Research Lab
Los Angeles, USA
rajgopal.kannan.civ@mail.mil

Viktor K. Prasanna
Department of Electrical Engineering
University of Southern California
Los Angeles, USA
prasanna@usc.edu

and encrypt their data locally before sending the ciphertext to
the cloud server. The cloud provider performs computations
on ciphertext where all the intermediate and final results are
encrypted. The user then decrypts the results received from
the cloud server. As long as the user keeps her secret keys
private, it is impossible for others to understand the messages
in the entire process even if the data are leaked or the server
is hacked. Cloud computing with FHE does not require users
to trust the cloud provider. The only assumption is that the
cloud provider always performs computations correctly.

FHE is computationally demanding and requires a lot of
hardware resources because high degree polynomials are used
to achieve desired security level. It is necessary to accelerate
such services with ASIC or FPGA. Recently, in [2], implemen-
tations on FPGAs for basic homomorphic encrypted operations
that exploit the parallelism of those operations have been
proposed. However, they do not design an overall architecture
for a specific application such as CNN inference.

In this paper, we propose an accelerator for CNN inference
based on FHE. We first propose a design for basic primitives
of the RNS variant of CKKS [3], a homomorphic encryption
scheme. We train the CNN model [4] where the inference is
compatible with FHE operations and propose a parameterized
design for inference on a seven-layer CNN model for an image
classification task on CIFAR-10 dataset. We also show a model
of hardware resource requirements that can be used to estimate
the performance of our design. For parameters in terms of
security level and hardware (e.g., clock rate), our model can
be used to evaluate the trade-offs and map our design to a
target device.

The contributions of this work are:

e We design hardware modules for basic primitives of the
RNS variant of CKKS [3], an approximate homomorphic
encryption scheme. Supported primitives are homomor-
phic addition, scaling and multiplication that includes
number-theoretic transform (NTT), relinearization and
rescaling operation. Each module contains configurable
number of small circuit units to process high-degree
polynomials in parallel.

o We propose an accelerator design for a seven-layer CNN
model for an image classification task on CIFAR-10
dataset [5] using the basic primitives of CKKS. For map-

ping various CNN layers, the parallelism and hardware
optimization are explored to address the challenges of the
huge encrypted data size and limited on-chip storage.

e We propose a model to predict the performance and
estimate the requirements on hardware resources, e.g.,
required number of MACs, on-chip storage and external
memory bandwidth, in terms of the parameters of the
design, e.g., dimensions of the convolutional layers, clock
rate of target device and number of small units in each
module for the basic primitives.

e« We provide an analysis of our design for a sample
image classification task. We show that a batch of 4096
encrypted images from CIFAR-10 can be classified within
1 second on an accelerator operating at 2 GHz with 16K
MACs, 64 MB on-chip memory and 256 GB/s external
memory bandwidth.

II. BACKGROUND
A. Homomorphic Encryption

Homomorphic encryption provides a practical way for
privacy-preserving computations, which was first proposed
by [1] using lattice-based cryptography. More homomorphic
encryption schemes have been proposed recently, including
BGV [6], LTV [7], BFV [8] [9], BLLN [10] and CKKS [11].
A scheme is called fully homomorphic encryption (FHE) if
arbitrary circuits of addition and multiplication can be con-
structed with the scheme. However, homomorphic encryption
schemes introduce a small noise term to the ciphertext, which
grows quickly as computations, especially multiplications, are
performed. The original message will be corrupted when
the noise is larger than a limit. This leads to a limitation
on the maximum depth of circuits that can be constructed
depending on configurated parameters of a homomorphic
encryption scheme. In order to support arbitrary levels of
circuits, whenever the noise is too large, a bootstrapping
operation must be called to decrypt and then encrypt the
ciphertext in a homomorphic way, which resets the noise into
a small one. Due to the high complexity of bootstrapping
operations, practical implementations either try to reduce its
frequency [12], or simply not implement it when the depth
of computation for a specific application is known so that
parameters can be configured to ensure the noise not to exceed
the limit.

In this work, we select the CKKS scheme, which is an
approximate homomorphic encryption scheme that perfectly
represents real number arithmetic on integer polynomial rings.
Before starting encryption, users need to encode multiple
original values into a polynomial as plaintext such that com-
putations are performed in a SIMD style.

We choose the RNS variant of CKKS [3]. The main
components of the scheme are defined as follows. Denote
R = Z[X]/(XY 4+ 1) where N is a power of 2. Then R is
a ring for polynomials with maximum degree N — 1. Denote
R, = R/qR as a ring where coefficients of all polynomi-
als are integers modulo q. The scheme defines L moduli
qo,q1,---,qr,—1- Each of them has approximately the same

TABLE 1
CNN MODEL FOR CLASSIFICATION ON CIFAR-10
[Layer | Description |
Input 3 channel images of size 32x32
Convl 32 kernels of size 3x3, stride 1
Activation square function
Pooll average pooling, size 2x2, stride 2
Conv2 64 kernels of size 3x3, stride 1
Activation square function
Pool2 average pooling, size 2x2, stride 2
Conv3 128 kernel of size 3x3, stride 1
Activation square function
Pool3 average pooling, size 2x2, stride 2
FC 2048 inputs, 10 outputs

size. A ciphertext ct is defined as L pairs of polynomials, i.e.,
ct = (ct©, ct®, .., ct==D), where ct® = (¢, (V) € R,
fori=0,1,....,L — 1.

CKKS scheme supports additions and multiplications. Ad-
dition of two ciphertexts is simply coefficient-wise addition of
all corresponding pairs of polynomials. Multiplication between
ciphertexts is much more expensive because multiplication
between a pair of polynomials generates three polynomials. It
requires a relinearization operation to reduce the three poly-
nomials into two that contain the same message. A rescaling
operation is also necessary to divide the generated coefficients
by a constant so that the values will not grow explosively. To
reduce the complexity of multiplication of two (/N —1)-degree
polynomials, we first apply number-theoretic transform (NTT)
to the polynomials, which reduces the complexity from O(N?)
into O(N log N). Due to the limited space of this paper, we
refer the readers to the original paper [3] for more details
about the multiplication algorithm as well as encryption and
decryption.

In Section III, we will describe hardware design of a ho-
momorphic addition module and multiplication module. Note
that there is a sub-module for NTT as well as inverse NTT
(INTT) inside the multiplication module. We will also describe
a homomorphic scaling module which performs multiplication
between a scalar integer and a ciphertext.

B. CNN Model and Encoding Scheme

To illustrate the accelerator design, we use the modules
for basic homomorphic encrypted operations in an image
classification task on the CIFAR-10 dataset.

As the homomorphic encrypted scheme only supports ad-
dition and multiplication, some components of CNN are not
directly compatible, e.g., batch normalization, softmax, and
non-polynomial activation functions. Some previous works [4]
proposed adapted CNN that is compatible with homomorphic
operations. Specifically, the activation function is replaced by
the square function f(z) = 2z? and only average pooling
is used in pooling layers. Besides, no bias are included in
convolutional layers and fully connected layers. We use their
CNN model to classify the CIFAR-10 dataset. The architecture
of the CNN model is shown in Table I.

We assume that the adapted CNN model is trained with
CIFAR-10. All weights in the model are scalar values and not

encrypted. Before doing inference, a batch of N input images
of size 32 x 32 are encoded into plaintext polynomials using
the method proposed by [13]. Pixels with the same coordinate
from all the IV images are assembled into a vector. There are
in total 32 x 32 vectors of length N. Each vector is mapped
into a plaintext polynomial of degree N — 1 using Chinese
Remainder Theorem. Then, all the plaintext polynomials are
encrypted into ciphertexts.

C. Parameter Selection

In the homomorphic encryption scheme, the values of
N and @Q = HiL=1 q; are related to the level of security.
Typically, N = 2'2, 213 or 214, When N is less than 212,
the encryption scheme does not have sufficient security level.
When N is greater than 24, the polynomials are huge and thus
the complexity of computation is prohibitively high. In our
analysis, we select N = 212, We further let Q) be 300 bits to
maintain an acceptable security level according to the standard
for homomorphic encryption [14]. Let each g; have 30 bits so
that we can use 32-bit MACs to handle basic computations
easily on hardware platforms. From the selected values of @)
and ¢;, we can derive L = 10.

III. DESIGNS FOR BASIC PRIMITIVES

In this section, we describe designs for basic primitives
of homomorphic operations, including addition, scaling and
multiplication. In our design, all coefficients of polynomials
have a word size of 32 bits. We assume the computing units
(MACs) of the target device are 32 bits where a single MAC
can perform 32-bit multiplication in one clock cycle.

A. Homomorphic Addition and Scaling

The module for homomorphic addition primitive includes
n addition units, each of which takes two coefficients as
input, and outputs their sum modulo p;. Here p; is one of
the L moduli. As the sum of two coefficients is less than
2p;, the modulo operation requires at most one subtraction.
In the addition module, we allocate two registers to contain
n4 coefficients from two polynomials respectively. In each
cycle, 2n 4 coefficients are loaded from on-chip memory into
the two registers. The coefficients are then fed into the n 4
addition units as input. In order to fully utilize all addition
units, we enable double buffering to the registers so that data
can be loaded and consumed simultaneously. Outputs of the
addition units are saved into another pair of registers and then
sent to on-chip memory.

The design for homomorphic scaling primitive is similar
to the one for addition operations, except that ng. scaling
units replace n 4 addition units. Note that a modulo operation
is required in the scaling unit, which is quite efficient to
implement on hardware using Barrett’s algorithm [15] when
the modulus is a known constant integer.

B. Homomoprhic Multiplication

Homomorphic multiplication is a long procedure with mul-
tiple steps, and we refer the readers to CKKS paper for details

about the theoretical procedure. In this section, we focus on the
design of a hardware module for homomorphic multiplication.
Since the CNN inference contains multiplications only for the
square function in the activation layer, we can just focus on
the special case where two inputs of a multiplication operation
are identical.

As is mentioned in Section II-A, modules for NTT and
INTT are critical phases for homomorphic multiplication that
reduce its complexity. An NTT module for a (N — 1)-degree
polynomial includes log N stages where each stage updates
N coefficients. Let ny denote the number of NTT units in
the module, each of which updates two coefficients at a time.
The module contains a butterfly network to feed inputs into
correct NTT units. Three groups of parallel on-chip memory
are required in the NTT module for the coefficients of the
input polynomial, the pre-computed twiddle factors, and the
coefficients of the transformed polynomial as output. The
inverse NTT (INTT) module has a similar design as the NTT
module, except that INTT units replace NTT units and the
butterfly network is reversed. Note that a previous work [2]
proposed the architecture for the NTT module on two specific
types of FPGAs. However, our version is parameterized for
general devices.

A summary of the integrated pipeline for homomorphic
multiplication is shown in Table II, which contains stages
including NTT, INTT, homomorphic addition and scaling.
Besides, there are stages for coefficient-wise multiplication,
denoted as “mult”, that is similar to homomorphic scaling
except that both inputs are coefficients. We assume that all
polynomials have been transformed into NTT form before be-
ing loaded to the accelerator so that there are fewer occurrence
of NTT/INTT transformations.

TABLE 11
PIPELINE STAGES FOR MULTIPLICATION

[Stage [# of units (N = 2'2) [# of polynomials to output
Multl NMull = SN Act 3
INTTI N1 = 6nact I
Scalel NScl = NAct 1
Addl NA1L = NAct 1
Mod1 NModl = NAct 1
NTTI N1 = Onace I
Mult2 Nafule = 4N Act 4
INTT2 N2 = 24n A 7
Scale2 NSe2 = 2N Act 2
Add2 nA2 = 2N Act 2
Mod2 NMod2 = 2N Act 2

SubMultl NSm1 = 2N Act 2
NTT2 N2 = 12N act 2
Add3 NA3 = 2N Act 2
Add4 nAgs = 2N Act 2
Scale3 NSe3 = 2N Act 2

Each stage of the pipeline has multiple computation units
and the number of units is shown in the second column in
Table II. In order to fully utilize all modules as well as balance
the workload of every stage, we need to compute the relation-
ship between the numbers of units for each pair of adjacent
stages. For example, let nas1 be the number of units of
Mult] stage which is coefficient-wise multiplication, and nj;

be the number of units of INTT] stage. According to the al-
gorithm, whenever Mult]l generates three polynomials, INTT!
needs to consume one polynomial. Then ideally we require
3N/nMull = NlOgN/QTL[l, i.e., npn = IOgN . nMull/G-
The configurations for all stages are tuned in the similar way
to balance the throughput. For N = 2'2, we can determine
the numbers of units for all stages as shown in the second
column of Table II. Here na.; is a configurable parameter.
The multiplication module can be scaled by increasing the
value of n gq¢.

Double buffered on-chip memory are allocated after each
stage in the pipeline as the output of the current stage and
the input of the following stages. For example, there is on-
chip memory storing two polynomials at the output side of
INTTI stage. During every N log N/2nj; cycles, the INTT
stage outputs one polynomial and stores it into the on-chip
memory, which is then read by the following stage starting
from the next cycle.

Now we have described modules for implementing basic
primitives with homomorphically encrypted data. Using these
modules, one can execute arbitrary applications based on the
CKKS scheme. In the next section, we describe an integrated
design for CNN inference using these modules.

IV. MAPPING OF CNN LAYERS

The huge size of the ciphertext poses a critical challenge
in implementing homomorphic encrypted CNNs, for example,
~ 0.29 MB, for a single ciphertext in a typical scenario
(N =2'2, L =10 and log p; = 30). Thus, given limited on-
chip storage capacity, the majority of ciphertexts, including
the initial inputs, final outputs and the results of intermedi-
ate layers must be stored in external memory. This makes
external communication bandwidth a limiting factor. Only
active ciphertexts that are the inputs or outputs of currently
ongoing computations can be temporarily saved on chip. In
comparison, since weights are scalar values (not polynomials),
the size of the CNN model is not large and we can keep the
weights of the entire CNN model on-chip. Existing techniques
to optimize CNN inference do not work due to limited on-
chip ciphertext, thus our approach is to reduce data traffic and
exploit parallelism during CNN inference.

It is a frequent workflow in the CNN model to apply a
convolutional layer, followed by an activation layer and a
pooling layer. Therefore, we design a pipeline to process three
layers on the target device. The pipeline can be reused in a
CNN inference task. For example, we can reuse the pipeline
three times during an inference on the model for CIFAR-10.
Besides, we also need a shorter pipeline for fully connected
layer to generate the final output.

A. Convolutional Layer

We consider a convolutional layer with input dimensions
(fin,n,n), filter dimensions (fin, fout, f, f) and output di-
mensions (fout,n’,n’). Here fi, (resp. fou:) is the number
channels for the input (resp. output). The size of the input

image (resp. output) is n X n (resp. n’ x n’). The size of the
filter kernel is denoted as f x f.

Before being sent to computation modules for the convo-
lutional layer, input images or intermediate feature maps are
stored in external DRAMs. Due to the restricted resources
of on-chip memory and prohibitively large size of ciphertext,
only very limited number of pixels can be held on chip. It is
impossible to hold all necessary inputs at a time in order to
compute even a single pixel of all the output channels, which
requires (f2fi, + fout) pixels to be on chip. It turns out that
the same input pixels must be fetched from external memory to
on-chip memory multiple times. Therefore, a proper fetching
policy is important to the performance as well as the traffic
between the device and external memory. Here we propose
two fetching policies:

1) Fetch a f x f block from one input channel at a time
and use it to compute k partial output pixels. With this
policy, the convolutional layer requires on-chip memory
to store (f2 + k) pixels. The total data traffic between
external memory and on-chip memory during the entire
convolution is f2 fi,, fousn'?/k pixels.

2) Fetch a (f+s)x (f+s) block from one input channel at
a time and use it to compute 4k partial pixels. Although
more on-chip memory is required to store (f + s)% +4k
pixels, the total data traffic during the entire convolution
is reduced to (f + 5)2 fin fourn'?/4k pixels.

As is shown above, the two fetching policies lead to a trade-
off between on-chip memory resources and external traffic.
However, an advantage of the second policy is that the outputs
of convolution are 2 x 2 pixels, which is exactly the window
size of the pooling layers in our target CNN model. Thus, the
outputs of the convolution layer can be directly fed into the
pooling layer without being stored into extra on-chip memory.
Of course, there could be more policies, e.g., fetching larger
blocks at a time, but the required on-chip memory resources
would be prohibitively huge.

After data are fetched from external memory to on-chip
memory, we use a scaling module and an addition module
to perform convolution. To form an efficient pipeline for the
convolutional layer, all scaling and addition units are further
divided into fine-grained pipelines so that they generate output
every clock cycle. Denote ncoyn, as the number of units in the
scaling module. To balance the throughput, the number of units
in the addition module is also nceny. If the second fetching
policy is taken, in order to generate k-many 2 X 2 pixels
as output of convolution, the scaling and addition module
need to generate 4f;, f2k pixels. Denote the clock frequency
of the device as F. Assume double buffering is used so
that data are fetched from external memory continuously and
computation modules are fully utilized. Then the duration
of this process is Toony = 8finf2kNL/n0mw cycles and
the lower bound of the bandwidth from external memory is
Noony(f + 8)2Flog p/4kf2, where log p denotes the number
of bits for every coefficient.

At the output side of the convolutional layer, on-chip
memory is used to store 4k pixels as the output of convolution

as well as the input of the following activation layer.

B. Activation Layer

In our CNN model, the squaring function f(z) = 22 is used
as the activation function. Then we can simply use the design
for homomorphic multiplication as the activation layer.

To better utilize the computing resources, the number of
units in the convolutional layer and the activation layer should
be tuned. Whenever the convolutional layer generates one
pixel as output, it processes fi,f2 input pixels. All filters in
our seven-layer CNN are of size f = 3. However, the three
convolutional layers have quite different f;,,, which are 3, 32
and 64, respectively. When allocating computing resources, we
should focus on the case for f;, = 64, where the convolutional
layer is the bottleneck, to ensure a good performance. It
takes T4,y = 4kLN/nac cycles for the activation layer to
finish processing 4k pixels. Then we require Tcony > Tacts
i.e., Nact > Noonv/2finf?. The reason why na. is greater
than ncone/2finf? is that the activation layer becomes the
bottleneck when f;,, is 3 or 32. By doing so, we can better
utilize available resources.

C. Pooling Layer

As the homomorphic encryption is not order-preserving,
it is infeasible to use pooling layers based on comparison
approaches, e.g., max pooling. A practical option is average
pooling. In our target CNN, the pooling filter is 2 x 2 with
stride 2, i.e., y = (21 + 22 + 23 + 24)/4, where y is a pixel in
the output of the pooling layer and 21, 29, 23 and z4 are inputs
within the same pooling filter. We can simplify the pooling
operation as y = zj + 22 + 23 + 24, since the outputs are
scaled by the same factor and the classification results are not
affected. As is mentioned in Section IV-A, when the second
fetching policy is selected in the convolutional layer, the output
of convolution and activation is several 2 x 2 pixels. Then
the pooling layer simply accumulates every four input pixels
without any other dependency.

Denote np,,; as the number of units in the addition module
for the pooling layer. It takes Tpoo; = 8KLN/npoy to finish
additions on 4k pixels. Let Tyt = Tpoo to make it fully
utilized. Then we have npy,o = 2n4.. The output of the
pooling layer is exported to external memory and then waits
for the next iteration of convolution, activation and pooling.
In Tp,o cycles, k pixels should be exported. Thus, the output
bandwidth is at least np, F' logp/4.

D. Fully Connected Layer

In our design, fully connected layer is a standalone work-
flow from the other CNN layers at the end of inference. The
layer includes a scaling stage and an addition stage with the
same number of scaling units and addition units. Let np¢
denote the number of units in each stage. In the CNN for
CIFAR-10, the fully connected layer reads 2048 pixels as
input and the total amount of scaling and addition is 20480.
Therefore its latency is 20480LN/npc cycles, and the input
bandwidth is npc F log p.

V. MODEL FOR RESOURCES AND PERFORMANCE
ESTIMATION

Previously, we described a modular pipelined design of a
typical CNN workflow using basic homomorphic primitives
along with a brief analysis of the hardware requirements and
performance of each module. In this section, we provide an
overall model to estimate the resource requirements for the
entire design and predict the performance of CIFAR-10 infer-
ence with a deep CNN model in terms of the variables shown
in Table III. Note that the proposed parallel computations
have been carefully organized and it can be mapped to the
accelerator so the memory accesses do not lead to pipeline
stalls. This leads to fully pipelined implementations where
the memory access latencies do not lead to any performance
degradation.

A. Performance Prediction

Assume that the pretrained seven-layer CNN model is stored
in the cloud. The CNN model is public where the weights are
scalar integer values that are not encrypted. In contrast, the
input is private to the user and should be encrypted. The input
is a piece of 32 x 32 x 3 ciphertexts encoded from a batch of
N = 2'2 images from CIFAR-10 using the method described
in Section II. As is shown in Table I, an inference with the
seven-layer network includes three iterations of convolution,
activation and pooling, and one iteration of fully connected
layer. We predict the performance for each iteration separately.

For the iterations of convolution, activation and pooling,
the bottleneck is either the activation layer or the convo-
lutional layer. When the bottleneck is the activation layer,
as is mentioned in Section IV, it takes LN/na. cycles
for the activation layer to output one pixel. Then it takes
W @D2f9) IN/nae cycles for an activation layer to gen-
erate 7/(7)2 féju)t pixels. Here the superscript j means that
the parameter is for the j-th iteration where 7 = 1,2 or
3. Considering the large number of pixels to be processed,
we can ignore the time it takes for the first pixel to go
through the three layers. Therefore, it takes approximately
Ti(j) = n'D2 f9) LN /n e cycles to complete one iteration.
When the bottleneck is the convolutional layer which performs
addition on n/()2) £U) £(1)2 pixels in this iteration, it takes
approximately T5(j) = 20/ £ f50) FD2LN/ncony cycles
to complete the iteration, ignoring the small initial latency to
complete processing the first pixel. Therefore, the latency for
the j-th iteration is T'(j) = max{T1(j),T2(j)}

As for the fully connected layer, which takes m = 2048
pixels as input and generates 10 pixels for 10 classes as output,
its total latency is Tro = 20mLN/npc cycles.

In conclusion, for an inference with the seven-layer CNN,
the total latency is T'=T(1) + T(2) + T'(3) + Trc cycles.

B. Resource Estimation

Based on our design, we further estimate the requirements
of hardware resources for the seven-layer CNN inference in
terms of external memory bandwidth, computing units (MACs)

TABLE III
SUMMARY OF VARIABLES

’ Class ‘ Variable Definition
L # of moduli
CKKS N # of coefficients in a polynomial
logp Size of a coefficient
fi(f;), fgf)i # of input/output channels for the j-th convolutional layer
CNN n@) /@ Size of input/output for the j-th convolutional layer
F@ @ Size of filter/stride for the j-th convolutional layer
Design k # of channels to compute for a single fetching in conv. layers
NConuvs MActs MPools NEC Factors of # of units for CNN layers
TABLE IV TABLE V

SIZE OF DATA FOR VARIOUS PARAMETERS
[N Jlogp | L [Single Ciphertext Size [Input Size]

212 30 10 150 KB 450 MB
213 30 10 300 KB 900 MB
214 30 10 600 KB 1800 MB

and on-chip storage. Table IV illustrates the size of a single
ciphertext and the total size of the input for various sets
of parameters. It shows that a ciphertext is so large that
we must save most of the input as well as the output of
the intermediate layers into the external memory. Therefore,
the on-chip memory and the external memory bandwidth are
critical to the design for achieving high performance.

External memory bandwidth: For the convolutional lay-
ers, data is fetched from the external memory before convo-
Iution. Assume the second data fetching policy described in
Section IV-A is selected. During the time when the convo-
lutional layer performs 42k additions, i.e., 8 f2kLN/ncony
cycles, the device needs to fetch (f + s)? pixels, i.e.,
2(f + s)2LNlogp bits, from the external memory. Then
the external memory traffic for fetching data should be at
least noony(f + 8)2Flogp/4kf?. The outputs are exported
whenever the pooling layer performs addition on 4 pixels, so
the memory traffic for exporting data is at least in Pool F'log p.
Then the total externl memory traffic for the iteration is
Neony(f + 8)?Flogp/4k f% + inpoo F log p. Similarly, the
traffic for the fully connected layer is npcF'logp. Since the
layers are computed sequentially, the actual external memory
traffic is the larger of these.

On-chip memory: In our design, most of the on-chip
memory is allocated to the convolutional layer. As is men-
tioned in Section IV-A, we need on-chip memory to store
(f + s)? + 4k pixels when the second data fetching policy is
employed. Here f is the size of the filter, s is the stride, and &
is the number of output channels computed at a time. Because
the memory should be double buffered, the size of memory
for this is ((f + s)? + 4k) x 2L N logp bits. For the seven-
layer CNN model, f = 3 and s = 1, where k is a parameter
that affects both the on-chip memory and the external memory
bandwidth. In the pipeline of the activation and pooling layer,
64+ 8L polynomials need to be stored in the on-chip memory
between the pipeline stages. As the fully connected layer
requires very little on-chip storage, it can reuse the memory in
the convolutional layer. Therefore, the total on-chip memory
needed is at least (4(f + s)?L + 16kL +8L + 64) N log p bits.

MACs: We assume that a MAC can perform 32-bit integer

REQUIRED MACS FOR A SINGLE CIRCUIT UNIT
[Circuit Unit [Required MACs |

Addition Unit 4
Scaling Unit 8
Multiplication Unit 8
NTT Unit 12
INTT Unit 12
Modulo Unit 7

arithmetic, e.g., addition, subtraction and multiplication, in one
cycle. Table V shows the number of MACs in each kind of
unit. According to Table II which shows the number of units
in every module, we derive that the activation layer requires
753n 4.+ MACs. Similarly, we need 12n¢on, MACs for the
convolutional layer, 4np,,; MACs for the pooling layer and
12nrpc MACs for the fully connected layer. Therefore, our
design requires in total 7531 ¢t + 12ncony + 4N Pool + 12nFc
MAC:s.

As an illustration, we can now estimate the predicted perfor-
mance and the hardware requirements for an inference on the
seven-layer CNN for N = 2!2. We assume the target device
operates at ' = 2 GHz. A possible set of parameters are
Nact = 2, NConw = 1152, npoo; = 4,npc = 10 and k = 16.
Then the design requires 15466 MACs. The required external
bandwidth is 247.5 GB/s. The required on-chip memory is 49
MB. With this set of parameters, the latency of the inference
on 4K encrypted images is 0.755 second.

VI. CONCLUSION

In this work, we designed a parameterized accelerator for
homomorphic encrypted CNN inference. The accelerator is
based on basic modules for homomorphic encrypted primi-
tives. For an image classification task on CIFAR-10 dataset
with a seven-layer CNN, we developed a model to predict the
performance and estimate the hardware resource requirements.

Homomorphic encryption offers a solution for privacy-
preserving computation, but is computationally demanding.
As FPGAs and ASICs provide fine-grained parallelism, they
are promising devices for accelerated homomorphic encrypted
libraries to be deployed in the cloud. We believe our design
of the accelerator as well as the model of performance and
resources estimation will provide a guidance for implementing
accelerated secure applications. In the future, we will further
optimize the design and look into the opportunity of mapping
existing optimization techniques for normal CNN inference,
e.g., [16] [17], into the encrypted space.

ACKNOWLEDGEMENT

This work was supported by the U.S National Science Foun-
dation (NSF) under grants OAC-1911229 and CCF-1919289.

[1]

[3]

[4]

[5]
[6]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-First Annual ACM Symposium on Theory
of Computing, ser. STOC ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 169-178. [Online]. Available:
https://doi.org/10.1145/1536414.1536440

M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1295-1309.
[Online]. Available: https://doi.org/10.1145/3373376.3378523

J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full rns
variant of approximate homomorphic encryption,” in Selected Areas in
Cryptography — SAC 2018, C. Cid and M. J. Jacobson Jr., Eds. Cham:
Springer International Publishing, 2019, pp. 347-368.

A. A. Badawi, J. Chao, J. Lin, C. F. Mun, J. J. Sim, B. H. M. Tan,
X. Nan, K. M. M. Aung, and V. R. Chandrasekhar, “The alexnet
moment for homomorphic encryption: Henn, the first homomorphic cnn
on encrypted data with gpus,” 2018.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully
homomorphic encryption without bootstrapping,” in Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference,
ser. ITCS ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 309-325. [Online]. Available:
https://doi.org/10.1145/2090236.2090262

A. Lépez-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in Proceedings of the Forty-Fourth Annual ACM Symposium on Theory
of Computing, ser. STOC ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 1219-1234. [Online]. Available:
https://doi.org/10.1145/2213977.2214086

J. Fan and F. Vercauteren, “Somewhat practical fully homomor-
phic encryption,” Cryptology ePrint Archive, Report 2012/144, 2012,
https://eprint.iacr.org/2012/144.

Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical gapsvp,” Cryptology ePrint Archive, Report 2012/078,
2012, https://eprint.iacr.org/2012/078.

J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security for
a ring-based fully homomorphic encryption scheme,” Cryptology ePrint
Archive, Report 2013/075, 2013, https://eprint.iacr.org/2013/075.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Advances in Cryptology —
ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds. = Cham: Springer
International Publishing, 2017, pp. 409-437.

T. Rondeau, “Data protection in virtual environments (dprive),” Mar
2020.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proceedings of the 33rd Inter-
national Conference on International Conference on Machine Learning
- Volume 48, ser. ICML’16. JMLR.org, 2016, p. 201-210.

M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein,
K. Lauter, S. Lokam, D. Moody, T. Morrison et al., “Security of
homomorphic encryption,” HomomorphicEncryption. org, Redmond WA,
Tech. Rep, 2017.

P. Barrett, “Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor,” in Proceed-
ings on Advances in Cryptology—CRYPTO ’86. Berlin, Heidelberg:
Springer-Verlag, 1987, p. 311-323.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 161-170.
[Online]. Available: https://doi.org/10.1145/2684746.2689060

[17] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture

for energy-efficient dataflow for convolutional neural networks,” in
Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA *16. IEEE Press, 2016, p. 367-379. [Online].
Available: https://doi.org/10.1109/ISCA.2016.40

