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a b s t r a c t

Over the last decade, numerical solutions of Quantum Chromodynamics (QCD) using
the technique of lattice QCD have developed to a point where they are beginning to
connect fundamental aspects of nuclear physics to the underlying degrees of freedom of
the Standard Model. In this review, the progress of lattice QCD studies of nuclear matrix
elements of electroweak currents and beyond-Standard-Model operators is summarized,
and connections with effective field theories and nuclear models are outlined.

Lattice QCD calculations of nuclear matrix elements can provide guidance for low-
energy nuclear reactions in astrophysics, dark matter direct detection experiments, and
experimental searches for violations of the symmetries of the Standard Model, including
searches for additional CP violation in the hadronic and leptonic sectors, baryon-
number violation, and lepton-number or flavor violation. Similarly, important inputs to
neutrino experiments seeking to determine the neutrino-mass hierarchy and oscillation
parameters, as well as other electroweak and beyond-Standard-Model processes can be
determined. The phenomenological implications of existing studies of electroweak and
beyond-Standard-Model matrix elements in light nuclear systems are discussed, and
future prospects for the field toward precision studies of these matrix elements are
outlined.
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1. Introduction

Establishing reliable predictive capabilities for the properties and reactions of nuclei from the Standard Model (SM)
1–5], which describes the strong and electroweak interactions in nature, is a defining challenge that bridges nuclear
nd particle physics [6,7]. Nuclear interactions play an essential role in the evolution of the universe, and strong and
lectroweak effects conspire in key nuclear processes, such as in those that govern the nuclear reactions in the first
inutes after the big bang [8,9], in reactions that power stars like the Sun [10], and in supernova and other extreme
strophysical environments [11–13]. Understanding these reactions has been a long-standing challenge for nuclear
hysics as they are often difficult to probe in the laboratory. Quantitative control of nuclear structure and reactions
ased in the SM is also essential to constraining beyond-Standard-Model (BSM) physics scenarios from experimental
earches. In particular, nuclear targets are ubiquitous in intensity-frontier experiments [14] from laboratory searches for
ark matter candidates such as weakly interacting massive particles [15–17], to searches for violations of fundamental
ymmetries of the SM [18,19], to long-baseline neutrino experiments aiming to constrain the neutrino-mass hierarchy
nd oscillation parameters [20,21]. For such experiments, there are compelling reasons to determine the relevant nuclear
atrix elements from the SM with complete uncertainty quantification; without controlled SM expectations, new physics
annot be effectively constrained. The key challenge in reliably determining electroweak matrix elements in nuclear
ystems is computing the effects of the strong interactions, described by Quantum Chromodynamics (QCD), that bind the
undamental constituents together, first into protons and neutrons, and then into nuclei. The only known systematically-
mprovable first-principles approach to this challenge is via the numerical technique of lattice QCD (LQCD). During the
ast decades, LQCD [22–24] has become established as a reliable and controlled method of computing many hadronic
uantities in the low-energy, low-density regime of QCD [25–28]. Progress in, and prospects for, the application of LQCD
o electroweak and BSM processes in nuclei are the subjects of this review.

Since nuclei are intricate systems with multiple physically-important scales, constraining their strong-interaction
ynamics is a significant theoretical challenge. Nevertheless, the exact and approximate symmetries of QCD constrain
he form of nuclear interactions and instill a hierarchy in the size of their contributions. Predictions for low-energy
uclear structure and processes can be made using phenomenological nuclear forces and effective field theories (EFTs)
ased on this hierarchy. Within their regimes of validity, these approaches, and the extensive suite of nuclear many-body
2



Z. Davoudi, W. Detmold, P. Shanahan et al. Physics Reports 900 (2021) 1–74

t
q
o
h
G
i
a
i
s
b
s
o

a
b
a
f
q
s
t
c
m

f
g
c
n
a
s
c
c

[
w
|

a
T

echniques that implement them, can be tuned to reproduce a subset of experimental constraints and predict related
uantities (for recent reviews see, for example, Refs. [29–33]). Building on many theoretical and computational advances
ver the last decade, a particularly sophisticated application of this approach recently demonstrated that calculations using
igher-order chiral potentials including multi-nucleon correlations and currents can achieve an accurate description of
amow–Teller decay matrix elements in medium-mass nuclei [34,35]. To address processes for which experimental data
s limited or absent, or to extend calculations beyond the regimes of validity of EFT approaches, where operator hierarchies
re less clear and where many-body effects conspire, constraints directly from LQCD are expected to play an increasingly
mportant role. In recent years, the first LQCD studies of nuclear structure have been performed [36–41], albeit with
ignificant uncertainties. Achieving reliable LQCD calculations of nuclear matrix elements will enhance the connection
etween the SM and low-energy nuclear physics and promises to provide a unified SM foundation for computing nuclear
tructure and processes. This program, which is at the heart of the nuclear-physics mission [42–47], is in synergy with the
ngoing program of constraining and understanding nuclear physics through phenomenology, EFTs, and nuclear models.
In the last decade, the predictive capabilities of LQCD have been revolutionized through the development of new

nd improved algorithms and the growth of computing resources [48]. The mass of the proton has been recovered with
etter than percent-level precision, including both QCD and Quantum Electrodynamics (QED) interactions [49]. Moreover,
spects of nucleon structure from the decomposition of its spin, mass, and momentum [50–52], to its electromagnetic form
actors [53–57] and pressure distributions [58], to its scalar, axial, and tensor charges [59–70], have been studied with
uantified uncertainties. Indeed, the Flavor Lattice Averaging Group (FLAG) review [71], historically dedicated to providing
ummaries of LQCD results relating to flavor physics in the meson sector, now includes select properties of the nucleon. At
he same time, there has been significant progress in LQCD studies of thermodynamics [72,73], of the physics of hadrons
ontaining heavy quarks [74–80], and in constraining the SM contributions to the anomalous magnetic moment of the
uon [81–87].
Conceptually, the strong-interaction physics of nuclei is no more complicated to compute in the lattice field theory

ramework than that of the proton; protons and nuclei emerge in the same way from the dynamics of the quarks and
luons encoded by QCD. In practice, however, nuclear LQCD calculations suffer from increased computational complexity
ompared to those for the proton, and also experience sampling noise that grows exponentially with the size of the
uclear system under study [88–93]. Furthermore, the QCD coupling and quark masses of the SM are such that there are
number of fine-tunings and emergent symmetries that manifest in the dynamics and structure of nuclei, such as Wigner’s
ymmetry [94,95], beyond those explicit in the SM Lagrangian. Reproducing these intricate features requires precision
alculations. For these reasons, despite more than a decade of progress and development, the era of fully-controlled LQCD
alculations of the structure and interactions of nuclei is only just beginning.
The first LQCD studies of systems with baryon number greater than one were attempted more than 25 years ago

96–99]. In the 2000s, refined techniques with which to study two-baryon systems were developed [90,100–103], nuclei
ere studied in quenched QCD [102], and calculations of the H-dibaryon (a spin and isospin singlet with strangeness

S| = 2) [90,104–106] were the first to clearly identify QCD bound states in such systems. These calculations were
ll undertaken at unphysical values of the quark masses in order to reduce the computational resource requirements.
hese investigations were followed by further studies of states in the 1S0, 3S1, and coupled 3S1-3D1 two-nucleon channels

[107–113], and extended to states in higher partial waves [114]. Simultaneously, methods based on the construc-
tion of non-relativistic Bethe–Salpeter wavefunctions and potentials were developed to access scattering information
[101,115–121]. There have been extractions of three-hadron forces based on LQCD calculations in both the meson
[122–125] and baryon sectors [91,108,126–128]. Calculations of systems up to atomic number A = 5 have been performed
over the past decade with a range of unphysically-large values of the quark masses [108,109,111]. These LQCD studies
of light nuclei have been used to constrain nuclear EFTs, allowing constraints on larger nuclei and on the quark-mass
dependence of nuclear forces and bindings [42,92,127–132]. While ongoing efforts aim to obtain results at the physical
values of the quark masses [133], importantly, the ability to undertake LQCD calculations with unphysical quark masses
may also provide phenomenologically-important results [134–141]. For example, an essential ingredient to ab initio
nuclear many-body studies of the Hoyle state (the first 0+ excitation of 12C) is the rate of the change of the two-nucleon
scattering lengths with respect to the quark masses near their physical values [130,131,140,141]. While this rate cannot be
determined from experiment, it could be from LQCD, and sufficiently precise LQCD determinations would provide insight
into expected fine-tunings in the reactions that produce carbon and oxygen in nature, and in the placement of the Hoyle
state in the vicinity of the 8Be + α resonance [130].

With LQCD studies of nuclei progressing, the first attempts to investigate nuclear structure directly from the dynamics
of quarks and gluons have also been made, complementing the existing body of experimental data, phenomenological
modeling, and EFT analyses. The isovector magnetic moments [36,37,142] and magnetic polarizabilities [143] of nuclei
up to A = 4 have been computed at larger-than-physical quark masses, and gluonic aspects of nuclear structure have
been investigated [144]. Furthermore, the simplest nuclear reactions, such as slow neutron capture (np → dγ ) [37] and
pp fusion (pp → de+ν) [38], have been computed from a combination of LQCD and EFT. The Gamow–Teller contributions
to triton β decay [38] and the couplings of A ≤ 3 nuclei to scalar and tensor currents [41] have also been investigated.
Finally, studies of the neutrinoful (2νββ) and neutrinoless (0νββ) double-β decay processes have begun [39,40,145–149].
Since the focus of this review article is the current status of, and future prospects for, the determination of nuclear matrix
3
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lements of electroweak and BSM currents using LQCD, and their connection to few- and many-body studies in nuclear
hysics, the impressive progress of the last decade in constraining single-hadron matrix elements will not be reviewed.1
As the field of nuclear LQCD continues to develop, the level of insight that it provides will grow. With calculations

t the physical values of the quark masses, and with full control of lattice discretization and finite-volume effects, the
ext generations of LQCD studies of electroweak and BSM nuclear matrix elements will impact many key areas of nuclear
hysics. Beyond electroweak and BSM matrix elements, LQCD is also expected to quantitatively elucidate the QCD origin
f important aspects of nuclear structure such as the EMC effect [150], i.e., the difference between the parton distributions
f a nucleus and those of the constituent nucleons. While LQCD calculations of nuclei are now benefiting from petascale
igh-performance computing resources for the first time, sustained exascale computing and beyond will be required
o achieve some of the goals of the field with the precision and accuracy required to maximally impact nuclear and
igh-energy physics [43,45,151].

. Lattice QCD for nuclear physics

This section provides an overview of LQCD and the challenges associated with applying this approach to nuclear
ystems, along with a brief description of recent theoretical and numerical developments in studies of nuclei. The impact
f QCD-based constraints on nuclear matrix elements using LQCD can be expanded through a matching program in which
henomenological models or low-energy EFTs of nuclear interactions, and nuclear responses to SM and BSM probes, are
onstrained systematically. These provide the starting point for extensions to systems not directly accessible to LQCD. An
utline of this matching program, and a status report on studies of nuclei with LQCD, are also provided in this section.

.1. Lattice QCD

QCD can be defined as the continuum limit of a discretized lattice gauge theory. This formulation provides both an
ltraviolet regulator of the continuum field theory that is valid non-perturbatively, and a numerical method for evaluating
he functional integrals which define physical observables.2 The Euclidean QCD partition function is

Z =

∫
DAµDq̄Dq e−S(E)QCD , (1)

where

S(E)QCD =

∫
d4xLQCD (2)

is the QCD action, and

LQCD =

∑
f∈{u,d,s...}

q̄f
[
Dµγµ + mf

]
qf +

1
2g2

s
Tr[GµνGµν] (3)

is the Euclidean QCD Lagrangian density. Here gs is the gauge coupling defining αs = g2
s /(4π ), qf denotes the fermion field

epresenting quarks of flavors f with corresponding quark masses mf , and γµ are the Dirac matrices. Dµ is the covariant
erivative which acts on the quark fields as

Dµqf (x) = ∂µqf (x) + iAµ(x)qf (x), (4)

here Aµ(x) = T aAa
µ(x) is the gauge field (encoding the gluon degrees of freedom), with T a

= λa/2, where the λa are the
generators in the fundamental representation of SU(3) (i.e., the Gell-Mann matrices acting in color space). The gluon

ield-strength tensor is defined in terms of the gluon field as

Gµν(x) = Ga
µν(x) T

a
= ∂µAν(x) − ∂νAµ(x) + i

[
Aµ(x), Aν(x)

]
. (5)

n Eq. (1), the fermionic integration measure implicitly includes a product of integrations over each fermion flavor,
.g., Dq =

∏
f Dqf .

The QCD Lagrangian possesses an important symmetry in the limit of massless quarks, mf → 0, namely that it is
nvariant under independent rotations of the left- and right-handed components of the quark fields. Defining the multiplet
= {qu, qd, qs}T , and the left- and right-handed quark-field components qLf =

1
2 (1 − γ5)qf and qRf =

1
2 (1 + γ5)qf , the QCD

action is invariant under the global rotations qL → ULqL and qR → URqR, where UL,R are independent SU(3)f matrices
cting in flavor space. This chiral symmetry, however, is broken spontaneously, resulting in the emergence of massless
oldstone bosons. While quarks are not massless in nature, the up- and down-quark masses are small compared to the
CD scale. Consequently, the SU(2)f chiral symmetry remains an approximate symmetry in the light-quark sector, and

1 The 2019 FLAG report [71] provides a recent compilation of many results in the single-hadron sector.
2 There are a number of excellent textbooks on lattice field theory [25–28,152]. Lecture notes on computational strategies for LQCD can be found

in Ref. [153], and previous reviews of LQCD techniques for nuclei can be found in Refs. [42,92,93,154,155].
4
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g

Fig. 1. A two-dimensional slice of the four-dimensional spacetime lattice. Uµ(x) denotes the gauge link from the lattice site x to the site (x + aµ̂),
where the subscript µ indexes the coordinate direction. Pµν (y) denotes the 1 × 1 plaquette beginning at y and proceeding counter-clockwise around
the 1 × 1 loop (see Eq. (9)), and qf (z) denotes a quark field of flavor f at the lattice site z.

the corresponding pseudo-Goldstone bosons, namely the pions, remain light compared to other hadrons. The mass of
the strange quark, while less than the chiral-symmetry-breaking scale, is large enough that SU(3)f breaking effects in
low-energy quantities are not negligible.

Physical quantities in QCD can be calculated from expectation values of operators O that depend on the quark and
luon fields:

⟨O⟩ =
1
Z

∫
DAµDq̄Dq O[Aµ, q̄, q] e

−S(E)QCD . (6)

A rigorous definition of these correlation functions, and of the partition function in Eq. (1), requires regularization and
renormalization. A spacetime lattice Λ4 = {xµ = anµ|nµ ∈ Z}, discretized in units of the dimensionful lattice spacing
a, provides a regulator which is valid even when the coupling is large. Physical results can be obtained in the limit
when the discretization scale vanishes. In this formulation, the gauge field is most naturally implemented through SU(3)
group-valued variables

Uµ(x) = exp

(
i
∫ x+aµ̂

x
dx′Aµ(x′)

)
(7)

that are parallel transporters associated with the links between neighboring sites of the lattice (see Fig. 1).
In the lattice formulation, multiple actions can be defined that lead to the same QCD action in the continuum limit.

One example for the gauge-field degrees of freedom is the Wilson lattice action [22], defined as

Sg (U) = β
∑
x,µ<ν

(
1 −

1
3
Re
[
Tr
[
Pµν(x)

]])
, (8)

where the coupling β is related to the bare gauge coupling as β = 6/g2
s , and the plaquettes Pµν(x) are the products of

the links on the elementary 1 × 1 closed paths of the lattice, i.e.,

Pµν(x) = Uµ(x)Uν(x + aµ̂)U†
µ(x + aν̂)U†

ν (x), (9)

where µ̂(ν̂) is a unit vector in the µ(ν) direction. The naive continuum limit of this action, obtained by Taylor expanding
the plaquettes around unity, is the continuum gauge action in Eq. (3), with deviations at nonzero lattice spacing
that are O(a2). Alternative discretizations that contain larger loops, with coefficients appropriately tuned, can achieve
smaller discretization errors and provide faster convergence to the continuum limit. The systematic computation of these
coefficients is known as the Symanzik improvement program [156–158], which in the case of SU(3) gauge theory has
been implemented both perturbatively [159,160] and non-perturbatively [161,162].

Defining a lattice action for quarks (fermions) is a challenging problem due to the fermion doubling problem: in a naive
discretization of the fermion term in Eq. (3), each fermion field exhibits 2d massless modes, where d is the spacetime
dimension [22]. The doubler modes, i.e. the additional light fermion degrees of freedom, can be removed with different
formulations of lattice fermions. Commonly used formulations are described below.

• The Wilson fermion formulation [22] adds an irrelevant dimension-five operator, q̄fD2qf , to the action, giving masses
to the 2d

− 1 doubler modes that scale inversely with the lattice spacing, a. Consequently, as the continuum limit
5
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is approached, the doublers are removed from the low-energy spectrum, leaving only one light fermion. However,
the additional dimension-five operator, known as the Wilson term, explicitly breaks chiral symmetry and introduces
lattice artifacts that scale linearly with the lattice spacing. Following the Symanzik improvement program, the Wilson
action can be improved by adding an additional dimension-five quark bilinear operator, OSW =

1
2i q̄f [γ

µ, γ ν]Gµνqf ,
known as the Sheikholeslami–Wohlert (clover) term [163], with a coefficient, CSW. As with improved gauge actions,
this coefficient can be tuned so that the leading lattice artifacts, which scale as O (a), are removed [161];

• Twisted-mass fermions [164] are a variant of Wilson fermions in which lattice-spacing artifacts are reduced to O(a2).
In this formulation, the Wilson term and the physical quark-mass term are rotated by a relative twist angle in flavor
chiral space. This rotation results in an isospin-breaking twisted mass term: iµQ̄γ5τ 3Q , where the field Q describes
a flavor doublet (e.g., combining u and d, or s and c quark flavors), τ i are the Pauli matrices in flavor space, and µ
is the twisted-mass parameter. A disadvantage of this approach is that it introduces isospin-breaking effects, e.g., a
splitting between charged and neutral pions, even when the light quarks are degenerate;

• Kogut–Susskind (staggered) fermions [165] constitute another way to remove some of the doublers and reinterpret
the remaining degrees of freedom as four degenerate flavors. This approach is implemented by distributing the
four components of each Dirac spinor to different lattice sites. This formulation preserves a U(1) chiral symmetry,
resulting in lattice artifacts that scale as O(a2). The remnant U(1) chiral symmetry is spontaneously broken, resulting
in a single Goldstone boson that is massless in the chiral limit. The remaining 2d

− 1 pions have masses that scale
as O(a2) and become massless only in the continuum. However, because QCD has two light flavors, Kogut–Susskind
fermions introduce complications in describing the low-energy spectrum of QCD, requiring the square root of the
fermion determinant (see below) to be taken. Nevertheless, an extensive program of calculations based on rooted
staggered fermions has been pursued, see for example Ref. [166];

• Finally, domain-wall fermion [167–169] and overlap fermion [170,171] actions both preserve a lattice version of
chiral symmetry that is valid at finite lattice spacing (they approximately or exactly satisfy the Ginsparg–Wilson
relation [172] γ5D+Dγ5 = a Dγ5D) and do not involve doubler modes.3 Domain-wall fermions introduce a fictitious
fifth dimension, −L5 < x5 < L5, with physical degrees of freedom localized to x5 = 0, and in their numerical
implementation [168,176,177] induce chiral symmetry breaking that vanishes for infinite L5. Such formulations are
significantly more expensive computationally than the other fermion discretizations discussed above.

egardless of the chosen fermion formulation, the lattice fermion action is of the form

Sf (q̄, q,U) = a4
∑
x,y

q̄f (x)Df [U](x, y)qf (y), (10)

here the Dirac operator Df [U] acting on the fermion field is a sparse matrix4 that depends on the specific action, on the
auge field U , and on the quark mass mf . As an explicit example, the Wilson fermion action is given by

SWilson
f (q̄, q,U) = −

a3

2

∑
x,µ

q̄f (x)
[
(1 − γµ)Uµ(x)qf (x + aµ̂) + (1 + γµ)U†

µ(x − aµ̂)qf (x − aµ̂)
]

+ a4
(
4
a

+ mf

)∑
x

q̄f (x)qf (x), (11)

nd the corresponding Wilson Dirac operator Df [U] can be read off by comparing Eqs. (10) and (11).
The lattice partition function in the case of two degenerate light-quark flavors, ℓ = {u, d}, and a strange quark, which

is a good approximation to the low-energy physics of QCD, is

Z =

∫ ∏
µ,x

dUµ(x)
∏
x,f

dq̄f dqf e−Sg (U)−
∑

f Sf (q̄f ,qf ,U)

=

∫ ∏
µ,x

dUµ(x) Det
(
Dℓ[U]

†Dℓ[U]
)
Det (Ds[U]) e−Sg (U) . (12)

he integration over the Grassmann-valued quark fields has been performed analytically in the second equality. Note that,
hile the quark matrix Dℓ[U] represents one flavor, since the Wilson Dirac operator is γ5-Hermitian, Det

(
Dℓ[U]

†Dℓ[U]
)

=

Det
(
Dℓ[U]

†
)
Det (Dℓ[U]) = Det (Dℓ[U])Det (Dℓ[U]) represents two mass-degenerate fermion flavors. Correlation func-

tions, Eq. (6), after integrating out the quarks, are similarly given by

⟨O⟩ =
1
Z

∫ ∏
µ,x

dUµ(x) O[D−1
f [U],U] Det

(
Dℓ[U]

†Dℓ[U]
)
Det (Ds[U]) e−Sg (U) , (13)

3 Several other fermion actions, such as the fixed-point action [173], or the chirally-improved action [174,175], have been explored that
approximately satisfy the Ginsparg–Wilson relation.
4 In certain cases, such as with overlap fermions, the matrix is not sparse but has sparse-like properties, i.e., the matrix–vector multiplication is

a computationally-inexpensive operation.
6
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here the field-dependent operators O may depend on the inverse of the Dirac operator for each flavor f = {u, d, s}, and
n the gauge field. The strange quark can be numerically implemented as Det

(
Ds[U]

†Ds[U]
)1/2, although specific single-

flavor algorithms exist [178–180]. The main numerical task faced in LQCD calculations is the computation of Eq. (13),
which is challenging because the integral over the gauge field is of extremely large dimensionality. Given that QCD has
a fundamental length scale of ∼ 1 fm, calculations must be performed in lattice volumes that have a physical size much
larger than this in order to control finite-volume effects, and with lattice spacings much smaller than ∼ 1 fm in order to
be close enough to the continuum limit for a continuum extrapolation to be reliable. To satisfy these constraints, state-
of-the-art calculations target lattice volumes as large as (L/a)3 × (T/a)>∼ 1283

× 256, where L and T are the spatial and
temporal extents of the lattice, respectively, with lattice spacing a ∼ 0.05 fm. Accounting for the color and spin degrees
of freedom, such calculations involve O(1010) degrees of freedom and challenge today’s computational limits.

Given the dimensionality, the only practical approach to the integration in Eq. (13) is using a Monte Carlo method. The
combination of the quark determinant and the gauge action,

P(U) =
1
Z

Det
(
Dℓ(U)†Dℓ(U)

)
DetDs(U)e−Sg (U) , (14)

s a non-negative definite quantity, in the cases relevant to this review, that can be interpreted as a probability measure,
nd hence importance sampling can be employed. While there are many variants, the basic algorithm is to produce Ncfg
auge-field configurations {Ui} according to the probability distribution P(U) using Markov Chain Monte Carlo algorithms
uch as hybrid Monte Carlo [181], and then to evaluate

⟨O⟩ = lim
Ncfg→∞

1
Ncfg

Ncfg∑
i=1

O[D−1
[Ui],Ui], (15)

here the evaluation of the right-hand side involves the computation of quark propagators D−1
[U] on each of the

configurations. At finite Ncfg, the estimate of ⟨O⟩ by Eq. (15) is approximate, with a statistical uncertainty that decreases
as O(1/

√
Ncfg) as Ncfg becomes large.

Both for the generation of gauge-field configurations, and for the evaluation of the quark propagators needed in Eq. (15),
the linear system of equations

D†
f (U)Df (U)χ = φ (16)

must be solved. Historically, the vast majority of the resources used in LQCD calculations has been devoted to the solution
of this linear system. Direct approaches are impractical for matrices of the sizes relevant for LQCD calculations, however
since the Dirac operator is a sparse matrix, iterative solvers such as conjugate gradient can be used. The efficiency of
conjugate gradient and other Krylov-space based solvers is governed by the condition number of the Dirac matrix (the
ratio of largest to smallest eigenvalues), which is inversely proportional to the quark mass. Since the physical quark masses
for the up and down quarks are quite small, the condition number is large. For quark-line disconnected diagrams, in which
quarks propagate to and from the same point, the necessary ‘‘all-to-all’’ quark propagators from every lattice site to every
other site are typically computed stochastically [182–186]. The introduction of multi-grid methods in LQCD [187,188]
in the last decade significantly reduced the computational cost of solving Eq. (16), especially for light quark masses. In
addition, specialized computing architectures, such as graphics processing units [189,190], have greatly extended the
range of computations that are currently possible. For nuclear-physics calculations in particular, other steps such as
computing the required quark contractions, as discussed in the following sections, increase the computational resource
requirements significantly.

2.1.1. Correlation functions
A common example of the correlation function defined in Eq. (6) is the two-point correlation function at zero spatial

omentum, defined by5

Ch
2pt(t) = a3

∑
x⃗

Ch
2pt(x, x0) , (17)

here x = (x⃗, t) and x0 = (x⃗0, 0) (the correlation function is independent of x⃗0 due to translational invariance), and

Ch
2pt(x, x0) ≡ ⟨χh(x)χ̄h(x0)⟩ =

1
Z

∫
DqDq̄DU χh(x)χ̄h(x0) e−SQCD[q̄,q,U]. (18)

ere, the interpolating operators, χ̄h(x0) and χh(x), are composite operators constructed from quark and gluon fields that
reate and annihilate states with quantum numbers specified by h. The compound labels h identify the states, including
heir momentum, angular momentum/irreducible cubic-group representation, isospin, and flavor; the label h may also
bsorb spatial dependence of the interpolating operators if it is not specified explicitly. The interpolating operators are

5 Throughout this review, Ch (t) and Ch (x, x ) will be distinguished by their arguments.
2pt 2pt 0
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efined for the special case where they have fixed x4 positions separated by Euclidean time t , and SQCD denotes the sum
f lattice gauge and fermion actions. Calculations of two-point correlation functions enable the spectrum of states with
he given quantum numbers to be extracted. Assuming an infinite temporal extent, insertion of a complete set of energy
igenstates leads to

Ch
2pt(t) = a3

∑
n

∑
x⃗

⟨0|χh(x)|n⟩⟨n|χ̄h(x0)|0⟩

= V
∑
n

|Zh
n |

2
e−Ehn t , (19)

here V = L3 is the dimensionful spatial lattice volume, Zh
n = ⟨n|χ̄h(0)|0⟩ is an ‘‘overlap factor’’ accounting for the overlap

f the interpolating operator onto the specified energy eigenstate, and Eh
n is the energy of the nth zero-momentum energy

igenstate with the quantum numbers h. Finite-volume states are normalized to unity throughout. To extract the spectral
nformation, effective-mass functions that asymptote to the lowest energy eigenstate at large t can be constructed as

Mh
j (t) =

1
ja

ln

[
Ch
2pt(t)

Ch
2pt(t + ja)

]
t→∞
−→ Eh

0 , (20)

here j ∈ Z ̸= 0 is typically chosen to be in the range 1–3.
The computation of correlation functions relevant to the study of nuclei is a particularly challenging problem. Monte

arlo evaluations of correlation functions of multi-baryon systems converge slowly to the exact result, requiring large
tatistics before useful precision is obtained (see Section 2.3). In addition, systems with the quantum numbers of many
ucleons and hyperons are complex many-body systems with complicated spectra, and this complexity manifests at the
uark level. In particular, after performing Grassmann integrals over the quark fields to express the correlation function
n terms of quark propagators, Sf (x, y) = ⟨qf (x)q̄f (y)⟩ (suppressing spin and color indices, as well as dependence on
he gauge field U), the number of quark contractions required to construct systems for large atomic numbers naively
rows factorially, scaling as nu!nd!ns!, where nu,d,s are the numbers of up, down, and strange quarks required to construct
he quantum numbers of the state in question. In many cases, however, the large number of quark contractions can be
ignificantly reduced by utilizing symmetries.
Quark-level nuclear interpolating operators can be constructed in a similar way to quark-model wavefunctions for

aryons [191]. As shown in Ref. [192], and first used in large-scale LQCD calculations earlier in Ref. [108], after performing
ymmetry reductions, a quark-level nuclear interpolating operator with atomic number A containing nq = 3A quarks6 has
he form

χ̄h(t) =

Nw∑
k=1

w̃
(a1,a2,...,anq ),k
h

∑
i⃗

ϵ i1 i2...inq q̄(ai1 )q̄(ai2 ) . . . q̄(ainq ) , (21)

here Nw is the total number of reduced weights w̃, i⃗ represents the nq-plet (i1, i2, . . . , inq ), and ϵ
i1 i2...inq is a totally anti-

ymmetric tensor of rank nq with ϵ1234···nq = 1. The ai are compound indices which combine the color, spinor, flavor, and
patial7 indices of the quark fields, and the nq-plet a⃗ = (a1, a2, . . . , anq ) is an ordered list of indices that represents a class
f terms in Eq. (21) that are permutations of each other. The index k on the weights w̃

(a1,a2,...,anq ),k
h enumerates the number

f classes that w̃h decomposes into; for details see Ref. [192]. The reduction of the number of non-trivial weights into
lasses occurs primarily due to the Grassmannian nature of the quark field, resulting in the explicit anti-symmetrization
f the interpolating operator and the choice of simple spatial wavefunctions. For example, using a single-site spatial
avefunction, the number of terms contained in the simplest interpolating operators for the proton, deuteron, 3He, and
He, are Nw = 9, 21, 9, and 1, respectively.
In order to compute the reduced weights for a given set of quantum numbers, h, an efficient approach is to begin by

onstructing baryon-level interpolating operators from which the quark interpolating operators can then be derived. For
nucleus of atomic number A, an interpolating operator can be expressed as

χ̄h(t) =

Mw∑
k=1

W̃ (b1,b2···bA),k
h

∑
i⃗

ϵ i1,i2,...,iA B̄(bi1 )B̄(bi2 ) · · · B̄(biA ) , (22)

here Mw is the number of hadronic reduced weights W̃ (b1,b2···bA),k
h , B̄(bi) are baryon interpolating operators, and the

i are compound indices that include parity, angular momentum, flavor, and spatial indices. For simplicity, as well as
fficiency of implementation of the resulting nuclear interpolating operators, one can use a baryon interpolating operator

6 Interpolating operators may also contain explicit gluon fields and additional quark–antiquark pairs.
7 Because calculations are performed on a lattice, the spatial degrees of freedom are finite and countable, and as a result an integer index can

be used to describe them. Here, the quark fields are assumed to be evaluated at the same time, t .
8



Z. Davoudi, W. Detmold, P. Shanahan et al. Physics Reports 900 (2021) 1–74

s
l
c
i

w
p
t
p
d
b
a
b
i
c
a
t
t
b
q

w
r
q
T
b

m
s
s
e
a
T
A
i
c
o
t

2

t
i
O

F
b
o

elected so that it has large overlap with the single-baryon ground state, but is comprised of a small number of quark-
evel terms. By substituting single-baryon interpolating operators in Eq. (22), the reduced weights needed for Eq. (21)
an be computed. Since nucleons are effective degrees of freedom for low-energy nuclear physics, one may expect that
nterpolating operators that are derived starting from Eq. (22) will have large overlap with nuclear ground states.

A standard choice for single-baryon interpolating operators is

B̄(b) =

NB(b)∑
k=1

w̃
(a1,a2,a3),k
b

∑
i⃗

ϵ i1,i2,i3 q̄(ai1 )q̄(ai2 )q̄(ai3 ) , (23)

here NB(b) is the number of terms in the interpolating operator. An example set of weights, w̃(a1,a2,a3),k
b , has been

resented in Ref. [193] (the color factors necessary for this formulation are not included in Ref. [193] but can be added
rivially). Note that the weights also encode the spatial structure of the interpolating operators; a simple choice is to
roject the single-hadron interpolating operators onto a plane wave [103,194]. However, this results in weights that are
ense in the spatial indices and hence produces a large number of terms in Eq. (21). If such interpolating operators are used
oth as creation and annihilation operators, evaluation of Eq. (18) requires computation of a large number of terms, scaling
s the spatial volume squared. Nevertheless, in meson–meson and multi-meson spectroscopy, such wavefunctions have
een used [195–198]. For multi-meson systems, special contraction methods were required [196,197,199] to efficiently
ncorporate the large number of terms. For multi-nucleon systems, one can simplify the problem by considering quark
reation interpolating operators (sources) that have simple spatial wavefunctions with degrees of freedom restricted to
few spatial points. In this way, using plane-wave projection for the hadronic interpolating operators used to construct
he annihilation operator (sink), one can construct an efficient contraction algorithm for the nuclear correlation function
hat scales only linearly in the spatial lattice volume. This efficient algorithm proceeds via the construction of baryon
uilding blocks. Using the quark propagator from a single source point, x0 = (x⃗0, 0), one can construct baryon blocks with
uantum numbers b and momentum p⃗ as:

Ba1,a2,a3
b (p⃗, t; x0) =

∑
x⃗

eip⃗·x⃗
NB(b)∑
k=1

w̃
(c1,c2,c3),k
b

∑
i⃗

ϵ i1,i2,i3 [S(ci1 , x; a1, x0)

× S(ci2 , x; a2, x0)S(ci3 , x; a3, x0)
]
, (24)

here S(c, x; a, x0) is the quark propagator from a source at x0 = (x⃗0, 0) to a sink at x = (x⃗, t) and ci and ai are the
emaining combined spin-color-flavor indices.8 The baryon block corresponds to the propagation of a particular three-
uark configuration from the source to the sink where it is annihilated by the prescribed baryon interpolating operator.
he baryon is projected to definite momentum p⃗ allowing the total momentum of multi-hadron systems to be controlled
y combining blocks of given momenta.
With the baryon blocks described above, correlation functions with interpolating operators describing products of

omentum-projected baryons at the sink, and interpolating operators describing local products of 3A quark fields at the
ource, can be computed efficiently. Their evaluation is accomplished by iterating over all combinations of source and
ink interpolating operator terms and connecting the source and sink with the appropriate sets of quark propagators. For
ach pair of terms in the source and sink interpolating operators, the product of all hadronic blocks and weights present
t the sink is computed by selecting from each block the components dictated by the local source interpolating operator.
his selection must occur in all possible ways while keeping track of the sign changes arising from fermion exchanges.
detailed description of the process is given in Ref. [192], and a diagrammatic illustration of the procedure is presented

n Fig. 2. This procedure has been used to perform the contractions needed for the large class of interpolating operators
onsidered in the study of the spectrum of nuclei and hypernuclei up to A = 5 in Ref. [108]. In particular, a set of mutually
rthonormal interpolating operators has been constructed [192] to generate the hadronic reduced weights and perform
he single-baryon substitution in terms of quark fields. Similar approaches are discussed in Refs. [200,201].

.1.2. Nuclear matrix elements
Many physical quantities of interest in nuclear physics, such as charges, form factors, electroweak transition ampli-

udes, and moments of parton distributions, are defined in terms of matrix elements of local quark-bilinear operators
n nuclear states. For initial and final states specified by the quantum numbers h and h′, and for a quark bilinear
f ′f (x) = q̄f ′ (x)Γ qf (x), with Dirac structure Γ , a generic matrix element is given by

Mh′h
Of ′ f

= ⟨h′
|Of ′f |h⟩. (25)

or the purposes of this review, the primary focus is on forward matrix elements of flavor-conserving quark bilinears
etween identical states, Mh

Of
= ⟨h|Of |h⟩. A standard approach to computing such matrix elements is via the construction

f three-point correlation functions [202,203], defined as

Ch
3pt,Of

(x; y; x0) = ⟨χh(x)Of (y)χ̄h(x0)⟩. (26)

8 More complicated multi-hadron blocks have also been considered, for example in Ref. [102], at the cost of increased storage requirements.
9
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Fig. 2. Illustration of the first two steps of the quark–hadron contraction method. The small circles in the left-hand section of each figure correspond
to the quarks in the source interpolating operator, while the large squares in the right-hand sections, and lines extending from them, correspond to
the hadronic blocks. In the first step (a), the indices of the first baryon block are contracted with the quark fields. In the second (b) and subsequent
steps, additional baryon blocks are included and contracted with the remaining quark indices in the source wavefunction.
Source: Figure modified from Ref. [192].

atios of three-point and two-point correlation functions, appropriately summed over the spatial positions x⃗ and y⃗,
symptote to the matrix elements Mh

Of
in the limit of large temporal separations between the sources, operators, and

inks. For the case of an operator that does not change the quantum numbers of the state or inject momentum, an
ppropriate ratio is

Rh
3/2,Of

(t, τ ) =

a6
∑

x⃗,y⃗ C
h
3pt,Of

(x; y; 0)

Ch
2pt(t)

t,τ→∞
−→ c Mh

Of
, (27)

here t and τ correspond to the temporal coordinates of x and y. In the {t, τ , |t − τ |} → ∞ limit, contributions from
xcited states vanish exponentially rapidly, and the denominator cancels the exponential fall-off and overlap factors in
he numerator, leaving the desired matrix element up to kinematic factors denoted by c in Eq. (27). More complicated
atios are required in the case of non-forward matrix elements.

Alternative approaches to computing matrix elements based on spectroscopy in a background field coupled to the
esired operator [204–206] are also possible. Two distinct background-field approaches have been considered in the
ontext of nuclear matrix elements and are reviewed here. The first approach is particularly suited to the determination
f matrix elements of the electromagnetic current, although it can be generalized to other interactions [207]. This method
s implemented by modifying the SU(3) gauge links by multiplication by a particular set of external (classical) U(1) gauge
inks,

Uµ(x) → Uµ(x)Uext
µ (x), (28)

here Uext
µ (x) ∈ U(1) and the modified field is in the U(3) group rather than the SU(3) group. The modifications of

he links can be performed during the generation of the gauge-field configurations or it can be applied to existing SU(3)
onfigurations. In the latter case, the coupling to sea-quark degrees of freedom through the quark determinant is not
ncluded.9 Nevertheless, there are situations in which sea-quark contributions vanish and exact results can be obtained
n this way. As a specific example that will be discussed at length in Section 3, a magnetic field aligned along the
ˆ = x3-direction can be implemented through the U(1) link field

Uext
µ (x) = eiQex1B δµ,2e−iQex2BL δµ,1 δx1,L−a , (29)

here Q is the quark charge in units of the electron charge e, and L is the spatial extent of the gauge field configuration.
he first term in this expression implements a constant magnetic field B⃗ = Bẑ. However, on the discrete toroidal geometry
f LQCD calculations, periodicity would lead to a non-constant B⃗ at the boundary. The second exponential factor in Eq. (29)

9 This absence could be addressed using reweighting methods.
10
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orrects for this artifact. In order to ensure that the flux through each elementary plaquette of the lattice is uniform, the
agnetic field in the expression above must satisfy the ’t Hooft quantization condition [208], QeB = 2π ñ/L2, where

ñ ∈ Z is the flux quantum of the torus, for each fundamental charge Q . There is flexibility in the choice of the external
field; for example, constant electric fields have also been implemented [209]. More general choices of fields include
spatially-varying electromagnetic fields, relevant for extracting matrix elements at non-zero momentum transfer and
higher multipole properties [207,210,211].

In this background-field approach, two-point correlation functions constructed from quark propagators determined
from the modified link fields contain interactions with the external field to all orders in the field strength. Under
appropriate conditions, the two-point correlation function has a spectral decomposition analogous to Eq. (19);

Ch
2pt(t, B) ≡ a3

∑
x⃗

⟨χh(x)χ̄h(x0)⟩B

= V
∑
n

|⟨0|χh(0)|n⟩B|
2e−Ehn (B)t , (30)

here the subscript B denotes a correlation function evaluated on gauge configurations modified by the U(1) field in
q. (29). In the second line, a spectral decomposition over the energy eigenstates n (which remains valid in the presence
f this field) is employed, with the sum over states being over those with zero three-momentum. The eigenenergies and
verlap factors depend on B and their determination at multiple values of B allows for information about the structure
f the eigenstates to be extracted, as will be reviewed in Section 3. In the time regions in which the relevant correlation
unctions show ground-state dominance, the energy shift induced by the magnetic field, δEh(B) = Eh

0 (B) − Eh
0 (0), can be

obtained from ratios of the background-field correlation functions defined in Eq. (30) evaluated at zero and non-zero
values of the field strength:

Rh(t, B) =
Ch
2pt(t, B)

Ch
2pt(t, B = 0)

t→∞
−→ Zh(B) e−δEh(B)t , (31)

here Zh(B) is a time-independent, but B-dependent, quantity.
An alternative background-field approach is based on constructing extended quark propagators. In this case, a

eneralized quark propagator is introduced that contains a single insertion of the operator proportional to a field-strength
arameter λf (z):

S
λf
f ,Of

(x; y) = Sf (x; y) +

∫
d4z λf (z) Sf (x; z)Γ Sf (z; y), (32)

here again Of = q̄fΓ qf [38,212]. Here, λf (z) can in general have spacetime dependence, but will henceforth be taken
o be a constant for simplicity.10 This generalized propagator can now be used to build baryon blocks and two-point
orrelation functions for nuclei using the contraction strategies detailed above. Such two-point functions,

C
h,Of
λu,λd

(x, x0) = Ch
2pt(x, x0)[Sf → S

λf
f ,Of

] , (33)

ave polynomial dependence on λf . Here, the square brackets indicate the replacement of all propagators of flavor f by
eneralized propagators with the specified values of the parameters λf . Different field-strength parameters can be used
or different flavors of quarks, and, restricting to non-strange nuclei, the two-point functions built from these generalized
ropagators are a polynomial in both of the variables λu and λd:

C
h,Of
λu,λd

(x, x0) =

nu∑
iu=0

nd∑
id=0

λiuu λ
id
d C

h,Of
λu,λd

(x, x0)
⏐⏐⏐
O(λiuu λ

id
d )
, (34)

here nf denotes the number of quarks of flavor f in the interpolating operator and the . . .|O(λn) extracts the coefficient
f λn. The coefficient proportional to λf of the polynomial defined by the two-point correlation function of a particular
uclear state corresponds to the summation with respect to the operator insertion point, i.e.,

C
h,Of
λu,λd

(x, x0)
⏐⏐⏐
O(λf )

= a4
∑
y

⟨χh(x)Of (y)χ̄h(x0)⟩ = a4
∑
y

Ch
3pt,Of

(x; y; x0). (35)

ince the polynomial in Eq. (34) is of fixed order, this leading coefficient can be determined exactly given correlation
functions computed with a sufficient number of different values of λf . It should be noted that the chosen values of λf do
not need to be real, or small in magnitude. In fact, it was shown in Ref. [197] in a similar context that it is advantageous
to use complex field-strength values and perform a discrete Fourier transform to obtain all coefficients in the polynomial.

10 A useful non-constant choice is λf (z) = λf θ (z ∈ R), which is constant in a subregion, R, of the lattice geometry and zero elsewhere. Recently,
spatially-varying background fields have been used in this approach for single nucleons [213]. Another generalization is to include flavor-changing
background fields.
11
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Given the background-field two-point correlation function of Eq. (35), the ratio

Rh
3/2,Of

(t) =

a3
∑

x⃗ C
h,Of
λu,λd

(x, x0)
⏐⏐⏐
O(λf )

Ch
2pt(t)

(36)

ay be defined [38–40,214], where, as above, x0 = (x⃗0, 0), x = (x⃗, t), and Ch
2pt(t) is defined in Eq. (17). The sum over

patial sites in the numerator projects the background-field two-point correlation function to zero three-momentum. An
‘effective matrix element’’ can be extracted from this ratio as

Mh,eff
Of

(t) =
1
ac

[Rh
Of

(t + a) − Rh
Of

(t)], (37)

where c denotes kinematic factors as in Eq. (27). In the limit of large time t , this effective matrix element exponentially
converges to the matrix element Mh

Of
in Eq. (25). At finite times, excited states contaminate the effective matrix element.

These contributions can be parameterized as

Mh,eff
Of

(t) = Mh
Of

[
1 + Ae−∆t

+ Bte−∆t
+ · · ·

]
, (38)

here Eq. (36) has been expanded in a Taylor series under the assumption that e−∆t
≪ 1, where ∆ is the energy gap

o the first excited state contributing to the correlation function. The ellipsis denotes additional contributions suppressed
y larger energy gaps. Detailed descriptions of the behavior of excited-state contamination can be found in Ref. [214].
urthermore, a generalization of this background-field approach to a basis of interpolating fields, and to transition matrix
lements, as well as a comprehensive discussion of excited-state contamination, can be found in Refs. [40,215].
The particular computational approach described here is well-suited to the computation of matrix elements of nuclei

nd requires only two-point correlation function contraction codes which are relatively simple compared to those for
uclear three-point correlation functions. However, additional contractions must be performed for each value of λf . A
urther advantage of this approach is that it allows the extraction of matrix elements with different numbers of insertions
f the operators into correlation functions within the same computation, as studied in Refs. [39,40] and discussed further
n Section 5. As an example, the second-order response to an applied field of flavor u projected to zero momentum is

C
h,Of
λu,λd=0(t) = a3

∑
x⃗

⟨χh(x⃗, t)χ̄h(0)⟩ + a7λu
∑
x⃗,y⃗

t∑
t1=0

⟨χh(x⃗, t)Ou(y⃗, t1)χ̄h(0)⟩

+ a11
λ2u

2

∑
x⃗,y⃗,z⃗

t∑
t1,2=0

⟨χh(x⃗, t)Ou(y⃗, t1)Ou(z⃗, t2)χ̄h(0)⟩ + O(λ3u); (39)

this correlation function can be analyzed to extract the second-order matrix element ⟨h|OuOu|h⟩.

2.2. Lattice QCD for few- and many-body systems

A primary objective of LQCD studies of multi-nucleon systems is to constrain experimental observables of interest in
nuclear physics. This is a challenging program for two primary reasons. First, it is likely that in the near future LQCD will
not be able to directly access the properties of nuclei with A > 5, as used in many experiments, given the computational
cost of such calculations and other challenges arising from the unique features of nuclear systems that will be discussed
in Section 2.3. Second, even for few-nucleon systems for which LQCD studies are viable, LQCD correlation functions,
or combinations thereof, determine spectra and matrix elements that correspond to those of QCD in a finite Euclidean
spacetime volume. The matching between LQCD results and physical observables that are defined in an infinite volume
and Minkowski spacetime, such as scattering and transition amplitudes for electroweak and BSM processes, is generally
non-trivial. This matching can proceed in at least three ways:

• One approach applies Lüscher’s formalism [115,216], Lellouch–Lüscher’s formalism [217], and generalizations
[218–261], to provide a formal mapping between finite-volume energies and/or matrix elements and the infinite-
volume scattering and transition amplitudes for few-hadron processes below certain inelastic thresholds. Beyond
single channels, model dependence in such extractions enters in relating contributions evaluated at different
kinematic points. These methods require that the interactions between fields are vanishing at the boundaries of the
lattice volume, which requires the range of interaction R < L/2. However, because off-axis distances between lattice
images are larger than L, this formalism provides estimates with small systematic errors for R>∼ L/2 for interactions
whose strength decreases rapidly with the distance between the hadrons [115,262].

• Another approach that has been successfully employed is to use an effective Hamiltonian derived from an EFT at
a given order in the expansion and construct relevant finite-volume observables to match to those of the LQCD
calculation(s), e.g. Ref. [129]. In the case of scattering and reactions, the energy eigenvalues and matrix elements
computed in the finite lattice volume(s) can be matched to those computed with the EFT to determine a finite
number of LECs. In contrast to Lüscher’s formalism discussed above, these methods apply even when the fields are
12
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interacting at the lattice boundaries [129,262,263], i.e., beyond R = L/2. In principle, this approach should provide
an equally reliable method for providing QCD predictions; however, there is a limit to the achievable precision set
by the order of the matching and the implementation of the EFT in many-body calculations. Pionless EFT [264–271],
in which all mesons including the pion are integrated out, accurately describes few-baryon systems at low energies
in nature and at somewhat larger energies in LQCD calculations with unphysically-large quark masses. In order
to describe multi-baryon systems over the wider range of energies relevant for nuclear physics in nature, pions
and sometimes ∆ resonances must be included as explicit degrees of freedom in chiral EFT. There has been recent
progress in constructing chiral potentials capable of reproducing experimentally-measured nucleon–nucleon phase
shifts and nuclear-structure properties, as reviewed e.g., in Refs. [272,273]. However, inconsistencies in the power
counting of chiral potentials remain a limitation in making reliable predictions with a complete quantification of
uncertainties using chiral EFT [33]. In particular, Weinberg’s power counting prescription [274,275] is not consistent
at a fixed order in the chiral expansion (when iterated in the Lippmann–Schwinger or Schrodinger equation to
compute observables) [264], but at sufficiently high orders the LECs required for renormalizability at a lower order
are present, even in channels with a tensor force, including the 3S1-3D1 coupled channels containing the deuteron.
By promoting nucleon–nucleon contact interactions from the orders estimated using naive dimensional analysis
(NDA) in sufficiently low partial waves [264–266], and also nonperturbatively including iterated one-pion-exchange
effects in low partial waves where singular potentials arise from tensor forces [276–282], it is expected that a chiral
EFT power counting consistent with fixed-order renormalizability can be constructed for multi-nucleon systems
that converges for momenta relevant to nuclear physics (see Ref. [283] for further discussions and Ref. [284] for a
recent review). Kaplan–Savage–Wise (KSW) power counting [265,266] is valid in spin-singlet channels such as 1S0,
while for other channels a hybrid of Weinberg and KSW power-counting schemes was suggested in Ref. [277] and
extended to higher partial waves in Ref. [278]. In addition, a fractional-order power-counting scheme was suggested
in Ref. [279]. There has also been recent progress in understanding renormalization constraints on nuclear matrix
elements in chiral EFT, where NDA is similarly insufficient to guarantee renormalizability at fixed order in the EFT
expansion [285–287]. More work is required to connect studies of the renormalization of few-nucleon systems with
phenomenologically-successful descriptions of larger nuclei in chiral EFT, but progress in this direction is ongoing.

• A third approach is to constrain models of nuclear forces and matrix elements by directly matching finite-volume
energies and matrix elements to those of LQCD calculations. This shares most of the features described in the
previous point related to matching LECs in EFT, but may utilize interactions that do not have systematic expansion
parameters. This is similar to constraining phenomenological nuclear forces from experimental data, but makes use
of the additional ‘‘parameter’’ of the lattice volume. Such constrained interactions are expected to provide estimates
of other quantities through interpolation, but it is not possible to provide a complete quantification of uncertainties
using constrained models. Interactions of this type have been developed, constrained with precision by experiment,
and successfully implemented in extensive many-body studies of nuclear systems. LQCD calculations are expected
to help refine components of these forces that are difficult or impossible to access experimentally. This may lead to
significant near-term improvements in the accuracy of model predictions for matrix elements of electroweak and
BSM currents in experimentally-relevant nuclei outside the current reach of systematically-controlled EFTs.

Each of these approaches has been successfully implemented in recent years, although only the second approach has
been applied to nuclear matrix elements. The applicability and appropriateness of each method depends on the system
under study and the ultimate goal of the analysis. Lüscher’s approach can be regarded as more general, as it is independent
of any effective description of interactions, relying only on a parameterization of the scattering amplitude and other
n-point functions. However, it has so far been limited to the two- and three-hadron sectors of QCD except in the
perturbative regime of interactions. The model/EFT matching approach (directly or through the use of Lüscher’s method
to constrain a model or EFT description of the scattering amplitude) combined with the use of many-body methods, in
principle extends the reach of QCD-based predictions to the nuclear many-body sector. Specifying an EFT also allows
for exponentially-small volume effects that are neglected in Lüscher’s approach to be incorporated. The limitation of this
approach is its reliance on the validity of the model/EFT for the particular system considered [141,155,262,283,288]. These
approaches, along with select examples of their applications, are described in more detail in this section.

Another approach to two- (and three-) hadron interactions, which has been developed and applied by the HAL
QCD Collaboration, takes advantage of Bethe–Salpeter wavefunctions obtained from LQCD computations of correlation
functions of multiple baryons [101,119,120,289–291]. These wavefunctions are used to constrain non-local potentials in
the form of a truncated velocity expansion. The potentials are then used to solve the Lippmann–Schwinger equation in
infinite volume to obtain the physical scattering amplitudes. The HAL QCD potential method and its applications have been
reviewed in Refs. [120,291–298], and the potential systematic uncertainties associated with the method are discussed in
Refs. [92,299–303] and briefly summarized in Section 2.3.2. Since this approach does not currently extend to computations
of matrix elements, it is not a focus of this review.

2.2.1. Current status of studies of nuclei
Over the last decade, the ground-state energies of light nuclei and hypernuclei have been computed by a number of

groups [104,105,107–109,111,112,114,120,291–298,304–306] using the LQCD approach described in the previous sections.
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Fig. 3. The binding energies of light nuclei obtained with LQCD over a range of pion masses. Dimensionless quantities are used for each axis in
order to minimize the effects of scale-setting choices when comparing results obtained in different studies. This summary figure shows results that
have been extrapolated to infinite volume. Here, blue circles denote NPLQCD Collaboration results [107,108,304], orange triangles show PACS-CS
Collaboration results [109,111], and green squares show CalLat Collaboration results [114]. For the deuteron channel, the CalLat Collaboration [114]
finds a second, shallow, state below the two nucleon threshold at mπ = 806 MeV. Since this state is consistent with being a possible continuum
state, it is not shown in the figure. The physical point is denoted by the dashed red line and experimental results are denoted by red stars. The
HAL QCD Collaboration predicts that nuclei are unbound in the NN channels using the potential method at the unphysical quark masses they have
studied.

Because of the large computational resource requirements of such studies, all nuclear calculations to date have used
larger-than-physical values of the quark masses corresponding to 300 ≤ mπ ≤ 800 MeV (although HAL QCD have used
lose-to-physical quark-mass ensembles to constrain hyperon–hyperon and nucleon–hyperon potentials). While infinite-
olume extrapolations have been undertaken based on LQCD calculations at a fixed set of quark masses on a few lattice
olumes, continuum extrapolations have not yet been performed.
A summary of the state-of-the-art LQCD calculations of binding energies of light nuclei, Bh = Mh − AMN , for nuclei h

ith atomic number A, is shown in Fig. 3. It is observed, in all studies that find bound states, that the binding energies
f nuclei at larger-than-physical values of the quark masses are larger than those in nature. The HAL QCD Collaboration,
sing the potential approach, does not find bound NN systems for any of the larger-than-physical quark masses that they
ave studied [120,291–298,305,306]. Besides this tension, discussed further below in Section 2.3.2, studies performed by
ifferent collaborations using different lattice actions are broadly consistent, with an indication of a monotonic approach
o the physical binding energies for each nucleus. Light hypernuclei for A ≤ 4 have also been studied. In particular, LQCD
redictions have been made for the binding energy of the H-dibaryon (a six-quark state uuddss [307]), whose existence
ay have interesting phenomenological consequences [104–106,112,308–311].
In addition to the nuclear spectrum and matrix elements, which are the primary focus of this review, LQCD calculations

f nucleon–nucleon, as well as hyperon–nucleon, forces and scattering have developed rapidly, as detailed in the following
ubsection. Furthermore, LQCD studies of the gluon structure of light nuclei have been undertaken [144], albeit as-yet at
nphysical values of the quark masses. The goal of these studies is to provide reliable predictions for how the partonic
tructure of a nucleon is affected when bound in a nucleus, a subject that will be investigated with higher resolution than
as been possible so far at the planned Electron–Ion Collider (EIC) [312]. Other interesting questions, such as the possibility
f exotic states of matter in the form of quarkonium-nucleus bound states, have also been explored in first-principles
tudies of nuclei using LQCD [313].

.2.2. Scattering and transition amplitudes from finite-volume correlation functions
The quantum-mechanical approach of Lee, Huang, and Yang [314] in the 1950s established the connection between

he elastic two-body scattering length and the energy eigenvalues in a finite volume. Lüscher generalized this result to
uantum field theory and to the full scattering amplitude below inelastic thresholds [115,216]. Further extensions of
14
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he formalism [218,220–235] to boosted systems, coupled-channel processes, non-identical particles with arbitrary spin,
s well as more general geometries and boundary conditions, have enabled LQCD determinations of phase shifts and
nelasticities for a variety of two-hadron channels, see e.g., Refs. [90,100,104,107,110,112–114,129,304,315–325].

In a general form, Lüscher’s ‘‘quantization condition’’ for two-hadron states in a finite cubic volume with periodic
oundary conditions (PBCs) can be written as

Det [M−1
+ F ] = 0, (40)

here the determinant is over all kinematically-allowed two-hadron channels, as well as over the total angular momen-
um J and its azimuthal component mJ , the total partial wave l, and the spin S of the system. M is the scattering amplitude
nd F is a kinematic function:

[F ]JmJ ,lS;J ′mJ′ ,l
′S′;ρ,ρ′ =

inρk∗
ρ

8πE∗
δS,S′δρ,ρ′

⎡⎣δJ,J ′δmJ ,mJ′
δl,l′ +

2i
πγ

∑
l′′,m′′

(k̃∗

ρ)
−l′′−1Z d⃗

l′′m′′ [1; (k̃∗

ρ)
2
]

×

∑
ml,ml′ ,mS

⟨lS, JmJ |lml, SmS⟩⟨l′ml′ , SmS |l′S, J ′mJ ′⟩

∫
dΩY ∗

l,ml
Y ∗

l′′,m′′Yl′,ml′

⎤⎦ . (41)

Here, k̃∗
ρ = k∗

ρL/2π , where k∗
ρ is the magnitude of the relative momentum of two hadrons in channel ρ in the center of

mass (CM) frame, E∗ and E are the CM and laboratory-frame energies, respectively, γ = E/E∗ is the relativistic γ -factor,
and nρ = 1/2 (1) if the particles in channel ρ are identical (distinguishable). Lüscher’s Z-function is defined as

Z d⃗
lm[s; x2] =

∑
r⃗

r lYl,m(r⃗)
(r2 − x2)s

, (42)

here r = |r⃗ |. The sum is performed over r⃗ = γ̂−1(n⃗ − αρ d⃗ ), where n⃗ is a triplet of integers, d⃗ is the normalized

boost vector d⃗ = P⃗L/2π , αρ =
1
2

[
1 +

m2
ρ,1−m2

ρ,2
E∗2

]
, and γ̂−1x⃗ ≡ γ−1x⃗∥ + x⃗⊥, with x⃗∥ (x⃗⊥) denoting the component

of x⃗ that is parallel (perpendicular) to the total momentum, P⃗ . mρ,1 and mρ,2 denote the masses of each hadron in
channel ρ. When twisted boundary conditions are used, or the volume has asymmetric extents, a modified Z function is
required [228–230,232,326].

In contrast to meson–meson scattering, nuclear-physics applications of Lüscher’s formalism took longer to develop,
due to a delay in understanding that systems with large scattering lengths could also be reliably computed in a finite
volume. As re-emphasized in Ref. [219], Lüscher’s formula is a nonperturbative relation in the interaction strength,
and is valid below inelastic thresholds as long as the range of interactions is smaller than L/2, as mentioned before.
Explicitly, Lüscher’s relation in Eq. (40) is valid below the first inelastic threshold, e.g., the threshold for producing an
on-shell pion in nucleon–nucleon scattering, with corrections suppressed by ∼ e−L/(2R) where R denotes the range of
interactions, typically R ∼ m−1

π in nuclear physics. Ref. [219] also provided a simple derivation of Lüscher’s formula that,
although it takes advantage of an EFT description of the amplitudes, makes it clear that the details of the short-distance
physics are irrelevant to the infrared physics associated with boundary effects. Employing Lüscher’s method, the first QCD
determination of two-nucleon scattering amplitudes at low energies, albeit at unphysically large quark masses, appeared
soon after [103]. Lüscher’s method has continued to be used to study two-baryon scattering amplitudes in various channels
and partial waves [90,100,104,107,110,112–114,129,304,315,327].

Binding energies can be directly extracted from the spectral decomposition of LQCD two-point correlation functions
as long as the state is deeply bound, in which case the binding energy, B, is exponentially close to the corresponding
finite-volume energy. For a nonrelativistic two-body bound state, the binding momentum in a finite volume, κL, is

κL = κ +
Z2

L

[
6 e−κL

+
12
√
2
e−

√
2κL

+
8

√
3
e−

√
3κL
]

+ O
(
e−2κL

L

)
, (43)

here κ is the infinite-volume binding momentum of the state (κ =
√
MB for two identical hadrons with mass M)

nd Z2 is the residue of the scattering amplitude at the bound-state pole. With slight modification, this relation can be
xtended to the case of relativistic bound states [222]. Relations for two-body systems with arbitrary masses moving
n a finite volume can be found in Refs. [222,233,328,329]. This result, which can be intuitively understood from a
henomenological description of a bound-state wavefunction and the location of associated images in adjacent lattice
olumes due to PBCs [233], is a direct consequence of Eq. (40) when analytically continued as k∗2

→ −κ2
L . When a

eeply-bound state is present in the spectrum, the volume dependence in Eq. (43) provides a check on the validity of the
xtracted energies [113,303,330], see Section 2.3. Once the scattering amplitude is constrained in a given partial wave
sing Lüscher’s method, the binding energy can also be obtained from the location of the pole in the scattering amplitude
n that partial wave. The comparison between the binding energy obtained from extrapolation of finite-volume energies
sing Eq. (43) and that from the pole of the scattering amplitude provides a further consistency check on the calculations.
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For quantitatively understanding matter in extreme environments, there is a need to improve constraints on three-,
our-, and higher-body nuclear forces. Such constraints will improve knowledge of the equation of state in neutron stars
nd predictions for neutron-rich isotopes to be studied at the Facility for Rare Isotope Beams (FRIB). Generalizations of
üscher’s formalism to three-hadron systems have been formulated using various approaches [236–249]. This program
as developed significantly, and there is agreement in appropriate limits among different approaches, see Ref. [331]
or a recent review. A number of these formalisms have been applied to constrain the parameterizations of three-pion
nteractions from LQCD [125,332–335]. Additionally, relations for the three-hadron binding energies can be determined
rom the corresponding finite-volume formalisms, see e.g., Refs. [237,336–339].

Progress beyond three hadrons presents a challenge as Lüscher’s formalism cannot be straightforwardly extended to
igher-body sectors. New ideas have appeared that do not rely on such an approach [340,341], but instead are based on
ertain limits of a properly constructed smeared spectral function in a finite volume such that the Maiani-Testa no-go
heorem [342] is circumvented in the infinite-volume limit. In the approach of Ref. [341], determination of scattering
mplitudes for n → m processes requires LQCD calculations of n + m-point correlation functions that are numerically
hallenging, as well as an inverse transform of a discrete set of data, which necessarily involves model dependence.
onetheless, this approach is formally straightforward to generalize to arbitrary elastic and inelastic processes. On the
ther hand, in the threshold region, i.e., when the interactions are weak such as in multi-pion systems in a maximal
sospin state, quantum-mechanical perturbation theory can be used to relate the shift in the energy of n-boson systems
n a finite volume to the two-boson scattering parameters defining the effective range expansion, the scattering length and
he effective range parameter, and higher-body interactions [343–345]. With the use of this result, a three-hadron force
arameter in the pionic system was constrained for the first time in Refs. [122,346]. This investigation has been extended
n recent years with the use of nonperturbative 3 → 3 quantization conditions in the three-pion sector [125,332–335,347].

The matching described above for scattering amplitudes in the two- and three-hadron sector is a necessary ingredient
or the mapping between finite-volume nuclear matrix elements from LQCD and their infinite-volume counterparts.
ellouch and Lüscher established that knowledge of finite-volume energies and matrix elements, as well as the energy
ependence of the 2 → 2 scattering amplitude at those energies, are essential in connecting the 1 → 2 matrix elements of
xternal operators in a finite Euclidean spacetime to the corresponding physical transition amplitude [217]. This formalism
as successfully applied to the weak process K → ππ [348,349], and its generalizations [225,251–256] were applied to
tudies of the transition form factors of the ρ resonance [350]. Generalization to {0, 1, 2} → 2 processes for relativistic
ystems with generic currents have since appeared [254–256,258]. For two-nucleon transitions involving an electroweak
urrent, the relevant mapping can be obtained from the general relation [254]⏐⏐⏐⟨Enf , P⃗f , L|J (0)|Eni , P⃗i, L⟩

⏐⏐⏐2 =
1
L6

Tr
[
R(Eni , P⃗i)WL,df(Pi, Pf , L)R(Enf , P⃗f )WL,df(Pf , Pi, L)

]
, (44)

or 2
J

−→ 2 processes. Here, the left-hand side is the absolute value squared of the finite-volume matrix element of the
chrödinger-picture current J at the origin between initial and final two-hadron states with finite-volume energies Eni
nd Enf and total three-momenta P⃗i and P⃗f , respectively. The function WL,df is defined as

WL,df(Pf , Pi, L) ≡ Wdf(Pf , Pi) + M(Pf ) [G(L) · w](Pf , Pi) M(Pi), (45)

here Pi(f ) = (Eni(f ) , P⃗i(f )), and Wdf is a divergence-free infinite-volume transition amplitude in which the on-shell

ivergences associated with the 1
J

−→ 1 transitions on external-states hadrons are subtracted out. M is the 2 → 2 elastic
cattering amplitude of initial- and final-state hadrons, G(L) is a new finite-volume function arising from the s-channel
wo-hadron loops with an insertion of the one-body current on the hadrons, defined in Ref. [254], w is the 1

J
−→ 1

ransition amplitude, and R is defined as

R(En, P⃗) ≡ lim
E→En

[
(En − E)

1
F−1(P, L) + M(P)

]
, (46)

here P = (E, P⃗), and F is the finite-volume function defined in Eq. (41). All functions in Eq. (44) are, therefore, evaluated
t on-shell kinematics for the two-hadron system, giving access to the on-shell 2

J
−→ 2 transition amplitude. As will be

eviewed in Section 2.2.3, similar relations have been derived in the context of EFT expansion of two-nucleon electroweak
ransitions in Refs. [225,326,351], such that the corresponding low-energy constants (LECs) can be constrained from LQCD
atrix elements in two-nucleon systems.
For nuclear observables involving bi-local insertions of the electroweak current, such as the Compton scattering

mplitudes of the nucleon and of nuclei, and 2νββ and 0νββ decays, the Lellouch–Lüscher formalism must be generalized
s potential intermediate multi-hadron states complicate the mapping between Minkowski and Euclidean spacetime
uantities. Since the on-shell intermediate states are sensitive to the spacetime metric signature, their individual con-
ributions must be reconstructed from LQCD determinations of two- and three-point functions separately and subtracted
rom the four-point function under study, as discussed in Ref. [259]. Under the assumptions that the kinematics of the
rocess allow only zero, one-, and two-hadron intermediate states to go on-shell, the finite-volume effects have been
dentified, completing the connection to the physical bi-local transition amplitudes. This formalism was first developed
nd applied to studies of the KL − KS mass difference and of rare kaon decays in Refs. [257,352–354], and was recently
xtended to 2νββ [261] and 0νββ [146,149] decays and other scenarios [259,260].
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.2.3. Matching to nuclear effective field theories and models
A complementary approach to extracting nuclear spectra and properties from LQCD calculations is that of matching

he numerical results to an appropriate description of the system under study using an EFT or a phenomenological model.
his has the advantage that, in principle, more complicated systems can be addressed than through the direct approach
iscussed above. In part, this is possible because of the hierarchies that exist in nuclear physics and are encapsulated in
uclear models or nuclear EFTs. The forces that bind protons and neutrons together to form nuclei are dominated by two-
ody interactions, and three- and higher-body forces are subleading at normal nuclear densities. Similarly, where they are
nown, nuclear matrix elements are typically dominated by the coupling to single nucleons, with small but non-negligible
ontributions from the coherent coupling of two or more nucleons to the external probe. Since EFTs provide a systematic
ay to take advantage of such hierarchies, and since existing LQCD results have been primarily matched to EFTs in the

ew-nucleon sector, the focus of this section is on matching to EFTs rather than phenomenological models. Nonetheless,
QCD results for multi-nucleon correlation functions can also be used to constrain the parameters of phenomenological
uclear models, just as experimental data have been used to constrain and improve them.
While the precise power countings of nuclear forces and currents within EFTs that are consistent with the observed

ierarchies in nature are still under development, existing EFTs have already provided the basis for a LQCD–EFT matching
rogram. This approach has the distinct advantage that small nuclear systems that are computationally accessible in LQCD
an be used in order to determine the unknown LECs, the parameters defining the forces and couplings to external currents
n the EFT Lagrangian. Given LQCD results for spectra and interactions of nuclear systems, the LECs of EFT calculations can
uned to match the LQCD results. Such matching can be performed in the same finite volume as the LQCD calculations.
aving determined the values of the LECs needed for a given process, the EFT interactions can be fed into one of a range
f many-body methods [29,355–363] that enable predictions for nuclear systems considerably larger than those for which
irect LQCD calculations are feasible. Significant diagnostic efforts have been undertaken to characterize the differences
etween many-body methods based on different EFT Hamiltonians (with different dynamical degrees of freedom, cutoff
cales, EFT order, parameter fitting and estimations, etc.), and these effects have been quantified for key observables, such
s the lowest-lying spectra of light and medium-mass nuclei, their charge radii, and the nuclear saturation point and
ymmetry energy. In the remainder of this section, technical features of the EFT-based approaches in ab initio calculations
ill not be reviewed; the reader is referred to a recent review [33] for a discussion of ongoing developments.
An early demonstration of the value of matching LQCD and nuclear EFTs was presented in Ref. [103], where the

alculated NN phase shifts were matched to low-energy EFT in both spin channels. Another example of such matching was
resented in Ref. [129], where the NΣ scattering phase shifts and the role of theΣ−-hyperons in the composition of dense
uclear matter were examined. In particular, the energies of I = 3/2 NΣ states were determined in two large volumes
t a larger-than-physical quark mass. The spin-singlet NΣ channel was found to be attractive, supporting a bound sate
t the unphysically heavy quark mass considered. In contrast, a large positive energy shift was seen in the spin-triplet
hannel, indicating a highly repulsive interaction, potentially invalidating the condition on the range of interactions in
üscher’s method. In Weinberg’s power counting [274,275], the leading order (LO) EFT expansion of the hyperon–nucleon
orce comprises a contact interaction and a one-meson-exchange term [364,365]. For the 3S1 channel, in addition to using
üscher’s method, the three-dimensional Schrödinger equation was solved in the finite volume and the contact LECs
ere tuned so that the lowest-lying energy levels matched those from LQCD at a larger-than-physical quark mass. The
onstrained LEC was then used at the physical quark masses to obtain the phase shifts in infinite volume, assuming a
egligible quark-mass dependence in the LEC of the momentum-independent interaction. A compilation of the results
f this study is shown in Fig. 4. Another example of an EFT matching was performed for two octet-baryon scattering
t an unphysically large quark masses in Ref. [113], which led to interesting observations about the nature of nuclear
nd hypernuclear forces consistent with large-Nc predictions [366,367]. With future advances in ab initio methods using
uclear and hypernuclear Hamiltonians simultaneously [368], these studies will help disentangle the nature of matter at
he densities found in the interior of neutron stars.

Another key example of the LQCD–EFT matching was presented in Refs. [127,369], where the binding energies of
range of nuclei were predicted at unphysical values of the quark masses corresponding to mπ = 806 MeV using
QCD input. To achieve this, the LO two- and three-body interactions in pionless EFT [267,269,271] were determined
y matching to LQCD determinations of the binding energies of A ∈ {2, 3} systems [108]. The ground-state energies
f nuclei with atomic number A ∈ {4, 5, 6} were then computed in Ref. [127] using an auxiliary-field diffusion Monte
arlo (AFDMC) method, see Fig. 5. The binding energy of the A = 4 system (4He) was found to be consistent, within
ncertainties, with that obtained from LQCD, validating the approach. In extensions of this approach to larger nuclei,
FDMC [128] and a discrete-variable representation in the harmonic oscillator basis [141] were used to compute the
round-state energy of a doubly-magic nucleus 16O (and 40Ca in the case of Ref. [141]). The two approaches, performed
t different orders in EFT, disagree on whether 16O remains bound at mπ = 806 MeV, indicating that a higher-order EFT
alculation is needed when extrapolating LQCD results to larger nuclei. This progress, nonetheless, serves as a milestone
n connecting LQCD and nuclear-structure studies. More precise LQCD input and increasingly reliable EFT Hamiltonians
nd many-body methods will result in refined predictive capabilities in upcoming years.
Matching LQCD to finite-volume few-body calculations to constrain nuclear models and/or EFTs appears a promising

ath, eliminating the step involving obtaining and matching the infinite-volume quantities. As an example, Ref. [132]
erforms a direct matching of the pionless EFT in a finite volume for A ∈ {2, 3} nuclei to LQCD results at unphysical values
17
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Fig. 4. The 3S1 (left panel) and 1S0 (center panel) nΣ− phase shifts versus laboratory momentum computed with LQCD and extrapolated to the
physical pion mass using EFT (blue bands), along with other determinations (green bands are EFT fits to data, while the black and red curves are
predictions from phenomenological models). The right panel shows the energy shift versus neutron density of a Σ− in a non-interacting Fermi gas
of neutrons as determined from Fumi’s theorem. The inner (outer) band encompasses statistical (systematic) uncertainties.
Source: Figure from Ref. [129].

Fig. 5. Binding energies of the deuteron, dineutron, 3He, and 4He at an SU(3) flavor-symmetric point obtained with LQCD at quark masses
orresponding to a pion mass of 806 MeV [108] are used to obtain the binding energy of light nuclei up to A = 6 using an AFDMC computation
ith the pionless EFT [127]. The two- and three-nucleon LECs were constrained by the LQCD calculation of the A ∈ {2, 3} binding energies.
ource: Data from Refs. [108,127].

f the quark masses, resulting in increased precision in the determination of the binding energies in the infinite-volume
imit. Additionally, in Ref. [370] the ground- and first excited-state energies of the two-neutron system in a finite cubic
olume with PBCs were computed. Once LQCD calculations of multi-neutron systems are available at the physical quark
asses, such an approach can lead to constraints on multi-neutron forces from QCD. Furthermore, as argued in Ref. [371],
QCD studies of the properties of neutron systems in small volumes could provide valuable input into the nature of the
quation of state of cold neutron matter at high densities.
The LQCD–EFT matching approach can be extended to nuclear matrix elements. For example, provided a matrix element

an be reliably described within an EFT framework, the procedure outlined above will provide constraints on the LECs
ssociated with currents coupling to a single nucleon, or coherently to two or more nucleons. Such a mapping was first
ntroduced in Ref. [326,351] for EM and weak processes in two-nucleon systems. In the presence of a background EM
r weak field, the finite-volume energies of the nuclear systems are shifted. These shifts can be related to finite-volume
atrix elements and thereby determine the LECs in an EFT expansion of the relevant transition amplitude. As will be
iscussed in Section 3, this approach has been used [38] to access the cross-section for the np → dγ process from LQCD.
he extension of the formalism to a Lellouch–Lüscher-type formula for two-nucleon electroweak transitions, such as pp
usion, was presented in Ref. [225]. Future studies of the np → dγ process at lighter quark masses than those used in
ef. [37] will require the application of this formalism. In Ref. [372], this matching approach was further explored, and
he two-nucleon EM-coupling LECs were fit to the isotriplet-isosinglet two-nucleon transition rate [37] and the magnetic
oment of the deuteron [143] obtained from LQCD at mπ = 806 MeV (along with the binding energies of A ∈ {2, 3}
ystems [108] and the nucleon’s isovector magnetic moment [36]). Having constrained these LECs, the triton magnetic
oment, as well as the magnetic polarizability of deuterium, were postdicted, and the polarizabilities of three-nucleon
ystems were predicted [143].
18
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.3. Technical challenges and developments in lattice QCD studies of nuclei

There are several technical challenges specific to the study of multi-nucleon systems in LQCD: such calculations suffer
rom (i) signal-to-noise (StN) at late Euclidean times that grows exponentially with the atomic number A [91], (ii) dense
xcitation spectra arising from an accumulation of continuum scattering states in the infinite-volume limit, and (iii) a
apid growth in the number of contractions required to compute nuclear correlation functions, as discussed above in
ection 2.1.1. To address these issues requires methods to mitigate StN degradation, to analyze and control excited-state
ffects, and to reduce the cost of contractions in calculations relevant for nuclear physics. These challenges, and strategies
o mitigate them, are outlined in the following subsections.

.3.1. The signal-to-noise problem
The statistical uncertainty of Monte Carlo calculations of a correlation function ⟨O⟩ approaches Var⟨O⟩/

√
Ncfg as

cfg → ∞, where Ncfg is the number of effectively decorrelated11 statistical samples.12 However, Var⟨O⟩ depends on
he observable under study, and the StN ratios, ⟨O⟩/Var⟨O⟩, of nuclear correlation functions decrease exponentially at
ate source/sink separation times, t [88,376], and with baryon number, A [91]. This StN problem can be understood by
nalyzing the variance of (the real part of) nuclear two-point correlation functions:

Var ⟨Re [χA(t)χ̄A(0)]⟩ =
1
2

⟨χA(t)χ̄A(t)χA(0)χ̄A(0)⟩

+
1
2

⟨χA(t)χA(t)χ̄A(0)χ̄A(0)⟩ − ⟨χA(t)χ̄A(0)⟩2 .
(47)

ere, the nuclear interpolating operator χA has strangeness zero, and baryon number A is explicitly specified. Additional
uantum numbers such as spin and isospin that are irrelevant for this discussion are suppressed in this subsection. The
patial dependence of the interpolating operator has also implicitly been summed over to project to zero momentum. As
ointed out by Parisi [88] and Lepage [376] for the case of single-hadron states, and in Refs. [90,375] specifically for the
ase of nuclei, the second term on the right-hand side of Eq. (47) involves operators at a single time with baryon number
A, but the first term involves operators with baryon number zero which decay exponentially more slowly with t than
χA(t)χ̄A(0)⟩2. Because the fermion integration in Eq. (13) is performed exactly, the lowest-energy state that contributes to
χA(t)χ̄A(t)χA(0)χ̄A(0)⟩ includes 3A pions. The variance of a nuclear correlation function with baryon number A is therefore
roportional to e−3Amπ t in the large-t limit, neglecting energy shifts arising from pion interactions.13 It follows that StN

atios for Monte Carlo calculations of nuclear correlation functions are proportional to
√
Ncfge

−A
(
MN−

3
2mπ

)
t in the large Ncfg

and t limits, also neglecting further energy shifts arising from nuclear binding. This naively suggests that LQCD calculations
of nuclei require statistical ensembles whose size must grow exponentially with A in order to maintain a fixed StN ratio
at a given time.

Although Parisi–Lepage scaling holds in the t → ∞ and Ncfg → ∞ limits, excited-state contributions to the
variance correlation function in Eq. (47) can significantly modify the finite-t behavior of the variance. High-statistics
tudies [90,91,375] showed that the exponential StN degradation at late times obtained in numerical LQCD calculations of

wo- and three-baryon systems is significantly slower than e−A
(
MN−

3
2mπ

)
t at intermediate times. In particular, these studies

xhibited the appearance of a ‘‘golden window’’ [375] where t is both sufficiently large that excited-state effects in single-
baryon correlation functions are sufficiently small that the variance decays much more rapidly with t than e−3Amπ t . This
behavior can be understood by considering the large-t spectral representation of the variance correlation function. The
variance interpolating operator χAχ̄A has overlap onto states of the form AN+AN̄ , 3Aπ , and all intermediate combinations
of the form (A − k)N + (A − k)N̄ + 3kπ , and therefore at large source/sink separation the variance of the real part of a
nuclear correlation function is given by

Var ⟨Re [χA(t)χ̄A(0)]⟩ → ZAN,AN̄ e−2AMN t
+ Z(A−1)N,(A−1)N̄,3π e−[2(A−1)MN+3mπ ]t

+ · · ·

+ ZN,N̄,3(A−1)π e−[2MN+3(A−1)mπ ]t
+ Z3Aπ e−3Amπ t , (48)

where the constants Zα denote the overlap factors onto the state described by α, and interactions between hadrons and
towers of states in which hadrons move with relative momenta are ignored. The interpolating operator construction
discussed in Section 2.1.1 includes multi-baryon sinks built from products of baryon blocks in plane waves with definite

11 See Refs. [153,373,374] for discussions of autocorrelation in Markov Chain Monte Carlo samples, and techniques to account for them.
12 As the spacetime volume of the lattice geometry V increases, the number of source positions on a single gauge-field configuration that can
be used to calculate approximately independent correlation functions increases. This volume averaging is particularly important for calculations
of nuclear correlation functions; heavier systems tend to remain more localized in the vicinity of their sources, and as such experience a reduced
sampling of the gauge configuration for any single source position. This localization effect not only contributes to the relatively poor StN for baryonic
quantities relative to mesonic quantities, but also means that a greater number of statistically-independent correlation functions can be extracted
from a given configuration, as discussed for instance in Ref. [375].
13 By constructing nuclear correlation functions from nucleon blocks, at early times the variance of nuclear correlation functions scale as ∼ e−2AMN t

(neglecting nuclear binding energies). See the subsequent discussions.
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Fig. 6. Histograms of the real parts of deuteron correlation functions with mπ = 450 MeV from Ref. [304], at three values of t normalized
ndependently by multiplying by 1/

⟨
Re Cd(t)

⟩
. The blue curves show fits to complex log-normal distributions obtained as in Refs. [379,380] from

product of a log-normal distribution with mean µR = ⟨rd⟩ and variance σ 2
R =

⟨
r2d
⟩
− µ2

R times a wrapped-normal distribution with zero mean
nd variance σ 2

θ = − ln
(
⟨cos θd⟩2 + ⟨sin θd⟩2

)
obtained using sample mean estimators for µR , σ 2

R , and σ
2
θ from LQCD results for Cd = erd+iθd . The

istribution of the real part shown is obtained by marginalizing over the imaginary part of the resulting distribution for the complex variable Cd .

elative momentum. This leads to a volume suppression of Z(A−k)N,(A−k)N̄,3kπ/ZAN,AN̄ ∼ (k!)2(m3
πV )−k, because a product

of N and N̄ plane-wave interpolating operators only includes significant overlap with a 3π state from terms where two
nucleons are localized in coordinate space within a hadronic volume ∼ m3

πV , as discussed in Refs. [90,92,375]. For finite
t and large V , contributions from terms in Eq. (48) besides those from the 3Aπ contribution can be numerically larger
than the asymptotically dominant 3Aπ state. If this is this case for a given interpolating operator and lattice volume,
then there is a golden window where StN degradation is exponentially less rapid with t than predicted by Parisi–Lepage
scaling, facilitating LQCD calculations of nuclei with larger A. Increasing V decreases the ground-state overlap of nuclear
variance correlation functions for this class of interpolating operators and enlarges the golden window. However, this
window ultimately shrinks with increasing A due to the appearance of (A!)2 in multi-pion to multi-nucleon overlap-factor
ratios in the variance correlation function. For large A and large t , including overlap-factor scaling gives

StN ⟨Re [χA(t)χ̄A(0)]⟩ →

√
(V/a3)ANcfg

A!
e−A

(
MN−

3
2mπ

)
t
, (49)

ndicating rapid StN degradation with A.
More recent theoretical analysis and numerical investigations have revealed that correlation-function noise has

dditional structure beyond Parisi–Lepage scaling of StN ratios. Correlation-function probability distributions are defined
s

PA(c, t) =
1
Z

∫
DqDq̄DU e−SQCD δ (χA(t)χ̄A(0) − c) , (50)

nd encode the possible quantum fluctuations of a system and their likelihood. The average correlation function scales as
CA(t)⟩ =

∫
dc PA(c, t) c → e−AMN t , where → denotes proportionality at large t neglecting multi-hadron interactions,14

hile Parisi–Lepage scaling predicts that the second moment scales as
⟨
CA(t)2

⟩
=
∫
dc PA(c, t) c2 → e−3Amπ t . This analysis

has been generalized to higher moments of correlation functions [93,377], with the result that even and odd moments
scale differently as

⟨
CA(t)2n

⟩
→ e−3Anmπ t and

⟨
CA(t)2n+1

⟩
→ e−AMN te−3Anmπ t respectively, where n ∈ N. This implies that the

distributions of the real and imaginary parts of CA, which is complex evaluated on a generic background gauge field (even
though ⟨CA⟩ is real), become increasingly broad and symmetric for large values of At . The distributions of the real parts
of nucleon correlation functions are observed to be heavy-tailed and consistent with a Cauchy (Lorentzian) distribution
at large source/sink separations [378]. Robust estimators may therefore prove useful for reliably determining nuclear
correlation functions at large source/sink time separations, as discussed in Ref. [93].

The symmetric, heavy-tailed distributions of baryon correlation functions differ from the corresponding distributions
of zero-momentum pion correlation functions, which are approximately log-normally distributed at large t [381,382].
Log-normal distributions also describe correlation functions in theories of non-relativistic fermions [383–387] and the
real parts of many-hadron correlation functions at small t [388]. For small t , both the log-magnitudes and phases of
aryon correlation functions are approximately normally distributed; however, the width of the phase distribution grows
ith t , and for large t the phase distribution approaches a uniform distribution on (−π, π] and Re[eiθh,A ] is therefore
pproximately Cauchy distributed. As shown in Fig. 6, a complex log-normal distribution obtained from the product of a
ormally distributed Rh,A and a wrapped normal distribution (a sum over 2π-periodic images of a normal distribution)
or θh,A describes the real parts of multi-baryon correlation functions for a wide range of t [379].

The role of complex-phase fluctuations in StN problems can be clearly seen from expectation values of the magnitudes
and phase factors of nuclear correlation functions [379]. Ensemble averages of magnitudes of nuclear correlation functions
are observed to scale with t as ⟨|CA(t)|⟩ → e−

3
2 Amπ t analogously to even moments of CA, while ensemble-averaged nuclear

14 Partial quenching effects arising from integrating out the quark fields before taking moments are also neglected in these scaling estimates.
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c
orrelation-function phase factors are observed to scale with t as
⟨
eiArg[CA(t)]

⟩
→ e−A(MN−

3
2mπ )t [379,389]. Since |eiArg[CA]

| = 1
and Var[eiArg[CA]

] is therefore O(1) for all t , this implies that the average phase factor has an exponential StN problem with
the same severity as the full nuclear correlation function. The magnitude and phase contributions to the effective mass
are also seen to plateau much more slowly than the full correlation function. The region of t in which the correlation
function is consistent with ground-state saturation, but the average phase factor has not yet reached the asymptotic value
of A(MN −

3
2mπ ), corresponds to the golden window in which the StN degrades slower than predicted by Parisi–Lepage

scaling.
The existence of gauge-field-dependent phase fluctuations of CA(t) leads to a ‘‘sign problem’’ in the path integral in

Eq. (18) defining ⟨CA(t)⟩: the full path integrand is not positive-definite and therefore cannot be interpreted as a probability
distribution [379]. Sign problems notoriously occur for partition functions of theories with complex actions, such as QCD
with non-zero baryon chemical potential or with a CP-violating θ term and theories in Minkowski spacetime, and indicate
that exponential increases in statistics are needed to achieve polynomial reduction in uncertainty (see Ref. [390] for a
review). Although the occurrence of sign problems in path integrals defining observables does not obstruct standard
Monte Carlo importance sampling strategies, the connection between phase fluctuations and StN problems suggests
that improving one problem should improve the other. Phase reweighting techniques [379,389] similar to constrained
path methods in nonrelativistic quantum Monte Carlo calculations [391,392], as well as phase unwrapping techniques
combined with a cumulant expansion [393] analogous to methods applied to QCD with non-zero baryon chemical
potential [394], demonstrate that reducing correlation function phase fluctuations leads to exponential StN improvement
but introduces additional systematic uncertainties. An approach to reducing phase fluctuations without introducing
additional systematic uncertainties has been introduced in Ref. [395], where integration-contour deformation techniques
previously applied to improve sign problems in theories with complex actions [396–398] are used to construct ‘‘deformed
observables’’. These observables have identical expectation values to their undeformed counterparts by Cauchy’s theorem,
but have deformation-dependent variance that can be exponentially reduced by optimizing the choice of deformation.
Future studies will explore whether contour deformations and other methods for improving sign problems can be used
to improve the StN problems of nuclear correlation functions and matrix elements.

The spacetime structure of correlation functions has also been recently investigated and leveraged to propose new
methods of improving StN problems. Building off observations of the local coherence of the Dirac operator [399], hadron
correlation functions have been shown to approximately factorize into products of correlation functions in which quark
propagators only have support on a lattice subvolume [400]. The StN ratio of the correlation-function factor associated
with each subvolume scales with the temporal extent of the subvolume rather than the full temporal extent and is,
therefore, exponentially larger than the StN ratio of the full correlation function. Multilevel integration algorithms have
been developed, in which path integrals over subvolumes are performed and subsequently products of the subvolume
results are averaged over the remaining degrees of freedom to construct correlation functions. This approach has been
used to exponentially improve StN ratios for exactly factorizable observables in Yang–Mills theory [401–404]. Using this
approximate factorization of quark propagators, and a similar approximate factorization of quark determinants, multilevel
algorithms have been shown to exponentially improve nucleon correlation-function StN ratios [400,405,406]. Applying
multilevel integration to nuclear correlation functions is complicated by the presence of corrections to approximate quark-
propagator factorization that must be accounted for in a suitably generalized nuclear contraction algorithm. If these
challenges can be overcome, however, multilevel integration could lead to exponential improvement of the nuclear StN
problem.

Even without modifying Parisi–Lepage scaling, it is possible to make significant practical improvements to the precision
of nuclear correlation-function and matrix-element calculations. Ref. [407] presented an approach to StN optimization
based on construction of a variational basis of correlation functions similar to that discussed in Section 2.3.2. This
method can minimize the overlap onto the variance ground state, extend the golden window, and improve the precision
of correlation functions at fixed t that can be achieved with fixed computational resources. Methods to reduce the
computational cost of calculating correlation functions using machine learning are also being explored [408,409], although
technical challenges remain. The computational cost of calculating nuclear correlation functions could also be reduced by
implementing more efficient linear-system solvers or accelerating the Hybrid Monte Carlo algorithm used to generate
gauge-field configurations, for example, using Fourier acceleration [410,411] and machine learning methods [408,412–
421]. Future application of these algorithms could provide significant practical improvements in the precision of nuclear
correlation functions and matrix elements achievable with fixed computational resources. Hardware developments could
also address these challenges. For example, a quantum computer of sufficient capability and capacity would enable real-
time evolution of quantum systems, implemented either by the intrinsic dynamics of an analog simulator or by the
gate-set of a digital quantum computer. This approach would not rely on Monte-Carlo importance sampling and therefore
would not suffer from some of the bottlenecks encountered in present-day LQCD calculations. However, quantum
simulation of QCD is not yet developed and may face other significant challenges. The first scientific and technological
developments in this direction are now being made [263,422–446].

2.3.2. Excited-state contamination
As the atomic number of a nucleus increases, its excitation spectra typically become more finely spaced. Furthermore,

when scattering states are considered, which are present in many reaction processes, physical amplitudes can only
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Fig. 7. The expected excited-state level-spectra for correlation functions with the quantum numbers of 4He in three different volumes at mπ =

06 MeV. The gray bands correspond to the lowest energy in each of the channels labeled at the bottom of the figure, computed as the sum of
he energies of the individual components of the given channel. The colored lines correspond to the non-interacting energy levels that follow from
hese thresholds.
ource: Figure from Ref. [108].

e accessed in LQCD from a discrete finite-volume spectrum with Lüscher’s method and its generalizations. However,
he density of states above the elastic threshold increases quickly as the lattice volume increases [108]. For example,
he energy gap between the bound ground state (when present) and the first excited non-bound finite-volume state
xponentially approaches the infinite-volume binding energy as the volume increases. On the other hand, the energy
ap between the excited non-bound states approaches zero polynomially in inverse powers of the volume. An example
f the expected level spectra of 4He at mπ = 806 MeV is shown in Fig. 7. The closeness of states in the spectrum

can potentially lead to the misidentification of states due to cancellations between exponential contributions from
nearby states for non-symmetric correlation functions. For correlation functions with the quantum numbers of nuclei,
exponential StN degradation limits the range of source/sink temporal separations that can be used in fits to the lowest-
lying energies, hence making the issue of excited-state contamination particularly relevant. In fact, given the resource
requirements of nuclear LQCD studies and the features outlined above, some LQCD results in two-nucleon systems studied
to date remain inconsistent in their conclusions regarding the presence of bound states at large values of the quark
masses [108,109,111,112,120,292,304]. This discrepancy is seen primarily between two classes of studies employing
Lüscher’s method [115] on one hand, and the potential method [101,119,120,289–291,447] on the other. Two origins
have been proposed in the literature to account for the lack of agreement between these studies:

(i) Lüscher’s method, as discussed in Section 2.2, provides a model-independent mapping between finite-volume energy
eigenvalues of two-hadron systems and the physical scattering amplitudes at those energies, as long as exponentially
small corrections suppressed by ∼ e−mπ L are negligible. Nonetheless, the inputs to Lüscher’s mapping are the energy
eigenvalues extracted from a LQCD computation, which are subject to statistical and systematic uncertainties. As
discussed above, a significant source of systematic uncertainty in nuclear correlation functions is the contribution
from excited states at early Euclidean times when the signal is not yet overwhelmed by the noise at late times. In
Refs. [448,449], it is argued that all LQCD studies of two-nucleon systems at the time of those publications suffer from
the false identification of plateaus in effective masses formed from two-nucleon two-point correlation functions.
The argument is that the two-nucleon elastic excitation gaps at the physical values of the quark masses are of the
order of a few MeV in currently-accessible lattice volumes, to be compared with a typical gap in nucleon inelastic
excitations that is O(ΛQCD). This means that the correlation functions will be dominated by the ground state only
at very large Euclidean times beyond those accessible to current studies. The example of two different interpolating
operator structures, wall and smeared sources, was examined to provide evidence for source dependence of the
plateaus observed, indicating a ‘‘fake’’/‘‘mirage’’-plateau problem. This criticism was rebutted in Refs. [113,303,330]
where it was shown that optimized operators with large overlap onto the states studied can suppress excited-
state contamination substantially, effectively providing a golden window at earlier times in which energies can
be extracted before the statistical noise dominates (see also discussions in Section 2.3.1). It was further shown in
Ref. [450] that results obtained with wall and smeared sources do, in fact, agree, in a high-precision example studied
in that reference. Once the slow approach of the single-nucleon correlation function to its ground state is taken
into account for the wall sources (when taking the ratio of interacting and non-interacting two-baryon correlation
functions to extract ground-state energy shifts), consistent energies are obtained, albeit with much larger statistical
uncertainties for the wall sources. Indeed, it was shown that the naive assignment of a plateau to the effective ratio in
22



Z. Davoudi, W. Detmold, P. Shanahan et al. Physics Reports 900 (2021) 1–74

T
D
o
i
s

t
E
H
c
t
d
o
b
n

a
o
f

the case of wall sources gives rise to a volume dependence that follows that expected for scattering states, signaling
significant excited-state contamination, while the energies obtained from the smeared sources follow an exponential
volume dependence, signaling the presence of a bound state in the infinite-volume limit. Finally, in Refs. [113,330]
the negligibly-small volume dependence of two-nucleon correlation functions at larger values of the quark masses
was presented as crucial evidence for the existence of a bound state. It was argued that it is highly unlikely that
intricate cancellations are in play between multiple exponential terms with nearly-equal energies, such that the net
contribution conspires to create a single-exponential form, as such cancellation should work out identically for lattice
volumes that are substantially different in size, and therefore have substantially different energies for scattering
states. While the criticisms of Refs. [448,449] might not affect a number of LQCD studies for the reasons outlined,
they strongly motivate the development of increasingly more reliable energy determinations from LQCD correlation
functions in future studies, as will be reviewed below.

(ii) In the HAL QCD potential method [101,119,120,289–291,447], energy-dependent but non-local two-baryon poten-
tials are expressed in a derivative expansion. The first few terms in the expansion are used to form a truncated
potential that is used in a Lippmann–Schwinger equation to solve for the scattering parameters in the infinite
volume. The potential is derived from a Bethe–Salpeter wavefunction obtained from LQCD two-point functions.
The result of this procedure provides a prediction of QCD only at the eigenenergies of the two-point functions,
and in general may systematically differ from the physical scattering amplitudes at other energies. Despite recent
studies attempting to quantify and control systematic uncertainties in the potential method [302,451], major
theoretical drawbacks [92,300,301] of the approach remain unsettled. In particular, as pointed out in Refs. [92,300],
and more thoroughly argued in Refs. [301,452], the potential in quantum field theory is momentum dependent,
and the physical scattering phase shifts only agree with the solution of the Lippmann–Schwinger equation at the
corresponding energy of the potential. A derivative expansion of the potential, in particular, does not provide an
expansion in momentum but in velocity, and the coefficients of this expansion are still momentum dependent.
Solving for the phase shifts at all values of momenta from a potential that is only valid at the corresponding momenta
of the finite-volume eigenstates could lead to uncontrolled systematic uncertainties. This also means that the
derivative expansion does not necessarily provide a systematic expansion in a small parameter, and demonstrating
the suppression of a higher-order contribution in the expansion is not sufficient to establish the suppression of
other higher-order terms. The other closely-related issue is the dependence of the potential, particularly at short
distances, on the interpolating operators used to extract the Bethe–Salpeter wavefunctions from LQCD two-point
functions. Again this fundamental issue means that the operator independence of extracted amplitudes must be
checked on a case-by-case basis and cannot be established a priori. Furthermore, such a potential may not be reliable
for use in studies of dense nuclear systems with strong sensitivity to short-distance physics [453]. Finally, the time-
dependent potential method [120] has been argued to be sensitive only to the nucleon’s inelastic excitation gaps,
hence only requiring correlation functions at much smaller Euclidean times than in other methods. However, as
argued in Ref. [452], a direct consequence of the momentum dependence of the true potential is to invalidate this
statement. This puts the same requirement for ground-state saturation on the potential method that is demanded
in the energy extractions required for approaches based on Lüscher’s method. Additionally, the time-dependent
method requires the signal region to be free of contamination from states above the inelastic threshold, a criterion
that cannot be mathematically demonstrated with a finite set of data at discrete times.

he arguments in favor of, and against, the points outlined continue [155,454], and no consensus has been reached to date.
espite the current disagreements, it is important to note that as the computational resources dedicated to LQCD studies
f nuclei increase toward the exascale computing era, there is in principle no impediment to calculating the spectrum and
nteractions of few-nucleon systems at lighter values of the quark masses in the upcoming years, using methods based
olely in QCD.
In the remainder of this section, the computational and analysis strategies developed in recent years to reliably extract

he lowest-lying energy spectra from LQCD correlation functions are reviewed in more detail. As shown in Eq. (19),
uclidean two-point correlation functions are guaranteed to have a spectral representation as a sum of exponentials.
owever, it is not possible to invert this relation exactly and obtain the full energy spectrum from finite-precision
orrelation functions determined over a finite range of t . In practice, it is necessary to fit correlation functions to a
runcated spectral representation including the ground state and possibly a few excited states, and to select the range of
iscrete t to include in the fit. These, and other choices that must be made during fitting, lead to systematic uncertainties
n the spectral results that are extracted. The concern regarding misidentification of the ground state can be ameliorated
y the use of multiple different combinations of source and sink interpolating operators for a given set of quantum
umbers, treated either independently, in a correlated manner, or used to build a variational basis as discussed below.
In order to precisely calculate nuclear binding energies and multi-hadron energy shifts, correlations between single-

nd multi-hadron correlation functions can be exploited. Fluctuations of gauge fields lead to correlated fluctuations
f ⟨χh(t)χ̄h(0)⟩ for different states h. In particular, fluctuations of nuclear correlation functions are correlated with
luctuations of single-nucleon correlation functions, and correlated ratios:

RA(t) =
⟨χA(t)χ̄A(0)⟩

A (51)

⟨χN (t)χ̄N (0)⟩
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an often be determined significantly more precisely than ⟨χA(t)χ̄A(0)⟩. In the t → ∞ limit when both the numerator and
enominator are dominated by the ground-state contribution, RA ∼ e−∆t , where ∆ = MA−AMN is the difference between
he finite-volume energy of an A-nucleon system and A times the nucleon mass. Fitting RA(t) to a single-exponential
orm, or equivalently fitting 1

a ln [RA(t)/RA(t + a)] to a constant, allows ∆ to be determined more precisely than from
an uncorrelated analysis of the correlation functions in the numerator and denominator of Eq. (51). Both the numerator
and denominator of Eq. (51) are contaminated by excited states for any finite t , and these excited-state contributions
may partially cancel in ratios. This means that RA(t) can appear to be dominated by ground-state contributions even
for small t where excited-state effects on the individual correlation functions in Eq. (51) are significantly larger than
statistical uncertainties on RA.15 Single-state fits to RA(t) should only be performed at large enough t that excited-state
contamination is negligible in both the numerator and denominator of Eq. (51). Alternatively, single- or multi-state fits
can be used to extract the ground-state energies of both correlation functions in the ratio separately, and a correlated
difference between the resulting ground-state energies can be used to extract ∆. This strategy is advantageous because
the individual fit functions can include all excited states that make resolvable contributions to either correlation function
in the ratio, while statistical fluctuations are still analyzed in a correlated manner using jackknife or bootstrap resampling
in order to improve the precision of determinations of ∆.

Rather than performing combined fits to correlation functions with multiple interpolating operator choices, it is also
possible to build linear combinations of correlation functions with different interpolating operators that are optimized to
maximize overlap onto a particular state of interest. The Prony [455–457] and Matrix-Prony methods [375,457] construct
optimized correlation functions from a vector of correlation functions with different sink operators. With an m × m
Hermitian matrix of different source and sink operators, it is possible to obtain up to m QCD energy levels using the
Generalized Eigenvalue Problem (GEVP) method [458–462]. Important steps in this direction have been made in Ref. [112],
where correlation functions for the H-dibaryon were constructed from products of momentum-projected baryon operators
at both the source and the sink, and GEVP methods were applied to the resulting matrices of correlation functions. For
the success of GEVP methods, it is essential that a set of interpolating operators with statistically-significant overlap onto
all states in the spectrum, below a given energy, can be found. In future calculations, large operator sets that include
operators overlapping strongly with both bound and scattering states will be needed in order to disentangle the dense
spectra of low-lying states in analyses of nuclear correlation functions using GEVP methods.

With a view to the future, possible applications of quantum computing to this challenge are also being investigated.
For example, approaches to construct optimized interpolating operators using hybrid quantum-classical algorithms have
been developed [434]. Eventually, reliable large-scale quantum computers may provide an independent path to addressing
the effects of excited states in lattice field theory calculations by providing direct access to S-matrix elements through
real-time evolution, circumventing the challenges of identifying the ground and lowest-lying excited state contributions to
an imaginary-time correlation function entirely [422–424]. Nevertheless, quantum-resource requirements for initial-state
preparation and final-state spectroscopy have not yet been investigated for strongly-interacting quantum field theories
such as QCD.

2.3.3. Correlation-function complexity
Over the last few years, significant algorithmic improvements have accelerated both gauge-field generation and the

computation of quark propagators, which have historically dominated the computational resource requirements of LQCD
calculations. In particular, the development of algebraic multigrid algorithms for LQCD [463–471], which utilize an efficient
approximation to the Dirac operator recursively defined on coarser levels and thereby exploit the finite correlation length
of QCD, have enabled algorithms which are more efficient than traditional Krylov methods, such as conjugate gradient,
by orders of magnitude, particularly for light quark masses. As a result of these improvements, for calculations of even
modest-sized nuclei, contracting quark propagators to assemble correlation functions is now a significant cost.

Ref. [472] presents an algorithm to accelerate the contraction of quark propagators into correlation functions, motivated
by the goal of reducing the numerical cost of computing multi-hadron correlation functions for LQCD calculations of
nuclear physics. In that work, it was demonstrated that forming correlation functions from sparsened propagators defined
on a coarsened lattice geometry enables significant speedups in the contraction stage of LQCD calculations for particular
types of two- and higher-point correlation functions, reducing the cost of this task. Specifically, a simple blocking
prescription, where correlation functions are constructed from a sparse propagator defined from the full propagator on a
coarse grid of sites, was shown to preserve the low-energy spectrum in hadronic and nuclear systems. Sparsened baryon
blocks are defined by

Ba1,a2,a3
b,sparse (p⃗, t; s1, s2, s3) =

∑
x⃗∈Λ̃(Nsparse)

eip⃗·x⃗
NB(b)∑
k=1

w̃
(c1,c2,c3),k
b

∑
i⃗

ϵ i1,i2,i3

× S(ci1 , x; a1, x
(s1)
0 )S(ci2 , x; a2, x

(s2)
0 )S(ci3 , x; a3, x

(s3)
0 ),

(52)

15 When the sources and sinks used in Eq. (51) are symmetric, the numerator and denominator are separately convex, however their ratio does
not need to be because of potential cancellations.
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here the sparse spatial lattice Λ̃(Nsparse) is defined by

Λ̃(Nsparse) = {a(̃n1, ñ2, ñ3) | 0 ≤ ñi < L/a, ñi ≡ 0(mod Nsparse)}. (53)

parsened baryon blocks can be computed using N3
sparse fewer operations than needed for the standard baryon blocks

efined by Eq. (24). Correlation functions produced from contractions of sparsened baryon blocks are identified as
orrelation functions using modified interpolating operators

Ch
2pt, sparse(t, p⃗) ≡ a3

∑
x⃗∈Λ̃

eip⃗·x⃗C2pt(x, x0). (54)

hese sparsened correlation functions are only approximately projected to the center-of-mass momentum p⃗, and include
dditional contributions from states with momentum p⃗ +

2πNsparse
L (n1, n2, n3) with ni ∈ Z. These additional contributions

lter the excited-state structure of correlation functions at small t , but do not modify the low-lying spectrum. A simple
umerically-inexpensive bias correction applied to the sparsened correlation functions can be applied to remove the
odified excited-state effects [472]. The subvolumes over which sparsening can be effective depend on physical length
cales, so as the continuum limit is approached, the improvement provided by this algorithm will increase. Applying
ackground-field methods in sparsened baryon blocks leads to background-field correlation functions that are only
odified by the presence of additional excited-state effects and can be used to calculate nuclear matrix elements using

he methods described in Section 2.1.2.
For larger numbers of baryons (A > 8 protons and neutrons), it is necessary to use multiple source locations because

f the Pauli exclusion principle. The block construction of Eq. (24) can be generalized to allow the quark propagators to
riginate from multiple different source locations, {x(1)0 , x

(2)
0 , . . .}, using

Ba1,a2,a3
b (p⃗, t; s1, s2, s3) =

∑
x⃗

eip⃗·x⃗
NB(b)∑
k=1

w̃
(c1,c2,c3),k
b

∑
i⃗

ϵ i1,i2,i3 (55)

×S(ci1 , x; a1, x
(s1)
0 )S(ci2 , x; a2, x

(s2)
0 )S(ci3 , x; a3, x

(s3)
0 ).

With these generalized blocks, the baryon-based algorithm discussed in Section 2.1.1 allows for the construction of
correlation functions for even very large nuclei, although the complicated spatial wavefunctions required because of the
Pauli exclusion principle result in an exponential growth of complexity as A increases.

As shown in Ref. [192], nuclear two-point correlation functions can be expressed as a determinant of a matrix G whose
matrix elements are constructed from the quark propagator S as

G(a⃗′
; a⃗)j,i =

{
S(a′

j; ai) for a′

j ∈ a⃗′ and ai ∈ a⃗
δa′

j,ai
otherwise , (56)

where, as before, a⃗′
= (a′

1, a
′

2 . . . a
′
nq ) and a⃗ = (a1, a2 . . . anq ). The non-trivial block of the matrix G(a⃗′

; a⃗) is of size nq × nq,
hence only this block is needed for computing its determinant. Making use of this definition, the full nuclear correlation
function can be written as

⟨χh1 (t)χ̄h2 (0)⟩ =

∫
DU P(U)

N ′
w∑

k′=1

Nw∑
k=1

w̃′

h1
(a′

1,a
′
2···a′

nq ),k
′

w̃
(a1,a2···anq ),k
h2

× DetG(a⃗′
; a⃗) . (57)

Because of the flavor-blindness of the strong interaction, the matrix G(a⃗′
; a⃗) is block diagonal in flavor space resulting

in a product of smaller determinants, one for each flavor. This contraction approach is illustrated in Fig. 8. Given the
reduced weights determined above, and appropriate quark propagators, the implementation of Eq. (57) is very fast, scaling
polynomially with the number of terms in the source and sink quark-level interpolating fields as well as the number of
quarks per flavor. The total cost of this form of contractions naively scales as n3

un
3
dn

3
s ×N ′

wNw , where N ′
w , Nw , are the number

of terms in the sink and source quark interpolating fields respectively, and careful application of an algorithm such as LU
decomposition is used to evaluate the determinant.16 Further improvements arise from using rank-1 updates (or higher-
rank updates via the Woodbury formula) to relate determinants of similar matrices [474] and by caching; a large fraction
of determinants can be evaluated with only O(nq) or O(n2

q) cost in the number of quarks of a given flavor (although
determining the optimal clustering that enables this is a challenging problem). As a result, if interpolating fields with
sufficiently small numbers of terms are found, correlation functions with a large atomic number A can be constructed; in
Ref. [192], explicit calculations are presented for systems as large as A = 28. It is possible that in the future the contraction
problem for nuclei with larger A could be addressed with novel algorithmic and hardware advances. For example, because
of their ability to exploit superposition, in the future it is conceivable that the registers of quantum computers may be
able to address the exponentially increasing number of nuclear contractions with only a polynomially increasing number
of qubits.

16 The expectation of polynomial scaling of contractions was noted in Ref. [473]. However, the scaling of Nw and N ′
w can grow exponentially with

the atomic number A.
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Fig. 8. Illustration of the quark determinant-level contractions. The subblocks on each side (initial and final states), list the up, down, and strange
quarks of a given pair of source and sink wavefunction terms in Eq. (57). Within each block of a given flavor, all permutations of contractions are
performed by forming a determinant of the matrix of quark propagators as described in the text.
Source: Figure modified from Ref. [192].

3. Electromagnetic interactions of light nuclei

Some of the most fundamental properties of nuclei are encoded in electromagnetic (EM) matrix elements that describe
the response of composite nuclear systems to external electromagnetic fields. These responses depend both on the
currents induced by the fields and on the distribution of the quarks and gluons inside nuclei and thus provide important
information about nuclear structure. For example, the magnetic moments of s-shell nuclei are very well described by
the phenomenological nuclear shell model [475], which is based on the observation that, although nuclei are composed
of quarks and gluons bound together by the strong force, many nuclear properties are qualitatively compatible with a
simple model of nucleons interacting weakly in a mean-field potential. Despite shell-model descriptions being widely
and successfully applied to a large variety of nuclei, this behavior is not yet understood at a fundamental level from
QCD. LQCD calculations of electromagnetic properties can explain this phenomenon from QCD, reveal whether the same
behavior holds at unphysical values of the quark masses, and investigate how these quantities evolve as the physical limit
is approached.

The electromagnetic structure of hadrons has been the target of LQCD investigations since the 1980s; the first LQCD
computations of the nucleon’s response to uniform magnetic fields were performed in the quenched approximation,
starting with calculations of the nucleon magnetic moments [205,206,476,477], and more recently extending to other
baryons in the baryon octet [478] and decuplet [479,480]. A series of subsequent calculations were able to extract not
only magnetic moments, but also polarizabilities, for several members of the lowest-lying baryon and meson octets
[481–495]. Computations of EM properties involving more than one hadron have only been achieved recently, with the
first calculation of the leading contribution to the magnetic-field response of s-shell nuclei being presented in Ref. [36],
followed by a study of their magnetic polarizabilites in Ref. [143]. Extensions of these studies led to the first LQCD
determination of the cross-section for the radiative radiative capture process np → dγ [37], which enabled the isolation of
subleading short-range modifications to the single-nucleon contributions to this process, and found consistency between
LQCD and experimental measurements.

This section will review the existing studies of nuclear responses to electromagnetic fields, all of which were
undertaken using two ensembles of gauge-field configurations generated using a Lüscher–Weisz [159] gauge action with
clover fermions [163], the first at the SU(3)f -symmetric point where mπ = 806 MeV [108,110], and the second with
Nf = 2 + 1 flavors corresponding to mπ = 450 MeV [304]. For both ensembles, the gauge coupling is β = 6.1, and the
spacetime volume is 323

×48 for the SU(3)f -symmetric ensemble and 323
×96 for the ensemble with Nf = 2+1. Despite

the limited systematic control that can be achieved using calculations at a single lattice spacing and lattice volume, and
with larger-than-physical quark masses, phenomenologically-relevant results have already been obtained. Further impact
can be expected given the controlled studies of the electromagnetic properties of nuclei which will be possible in the near
future, as discussed in Section 3.4.

3.1. Magnetic moments and polarizabilities

The magnetic moments and polarizabilities of nuclei have been studied in LQCD using the background-field method
described in Section 2.1.2. In this approach, spatially constant background magnetic fields in a given direction are
26
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onstructed by multiplying the SU(3) gauge links of an ensemble by classical U(1) gauge links, i.e., Uµ(x) → Uµ(x)Uext
µ (x) ,

here the form of Uext
µ to create a magnetic field aligned along the x3-direction is specified in Eq. (29). Since this method

ncorporates the U(1) gauge links in the calculation after the gauge-field configurations have been generated, the coupling
o sea-quark degrees of freedom (and indirectly to gluons) through the fermionic determinant is missing.17 Nevertheless,
here are situations in which sea-quark contributions exactly vanish. This is the case, for example, for SU(3)f -symmetric
alculations of the nuclear magnetic moments [36], and the np → dγ transition matrix element [37], where the sea-
uark contributions, arising from expanding the fermionic determinant to linear order in the external field, are given
y the product of a common mass factor (the quark mass is the same for all three quark flavors, mu = md = ms)
nd a charge factor,

∑
f Qf = Qu + Qd + Qs, which is exactly zero. With SU(3)f -symmetry breaking, the sum of sea-

uark current effects no longer vanishes because contributions from each flavor are no longer identical, and disconnected
ontributions generally appear. Nevertheless, in the isospin-symmetric case where mu = md, the electromagnetic current
an be decomposed into isoscalar and isovector contributions. Isovector quantities, such as the difference between proton
nd neutron magnetic moments and the np → dγ transition, are insensitive to disconnected contributions even away
rom the SU(3)f -symmetric point. Isoscalar quantities computed in this approach have a systematic bias from the missing
ea-quark contributions, although the omitted disconnected terms have been found to be small compared to the connected
ontribution in numerical studies of the EM structure of the nucleon [496].
In the absence of a background magnetic field, the energy eigenstates of a nuclear system are momentum eigenstates,

nd by choosing interpolating operators which project onto fixed three-momentum, one can extract the ground-state
nergy of the system as discussed in Section 2.3.2. To study the response of charged hadrons to a magnetic field, a
atural projection is onto the lowest Landau level as explored in Refs. [491,492,497,498]. Such a projection enhances
he overlap of the interpolating operators onto the state of interest whilst suppressing contributions from higher-energy
tates. This procedure has not yet been extended to nuclei; in this case, it is not clear how to combine Landau-projected
roton blocks with momentum-projected neutron blocks to obtain operators with a better overlap onto nuclear Landau
evels. A study of the quality of the overlap of nuclear interpolating operators onto Landau levels was undertaken in
ef. [143] (see Fig. 5 of that work). In that study, it was found that the ratio of overlap factors of different states at
onzero and zero background magnetic-field strengths is only weakly dependent on the field strength for neutral states,
hile for charged states it rapidly decreases with increasing magnetic-field strength, indicating that one must be cautious
ith the interpretation of extracted states. While it is clear that more effort needs to be invested in this direction to
chieve complete systematic control of LQCD calculations of this type, the extractions of magnetic properties of light
uclei presented in Refs. [36,37,143] serve as benchmarks for future investigations.
To be explicit, in a uniform background magnetic field in the z-direction (x3-direction), i.e., B⃗ = Bẑ, the energy

igenvalues of a hadron or a nucleus with spin j ≤ 1, polarized in the z-direction, and with magnetic quantum number
z , can be expressed as

Eh;jz (B) =

√
M2

h + P2
∥

+ (2nL + 1)|QheB| − µhjzB − 2πβ (M0)
h |B|2 − 2πβ (M2)

h ⟨j, jz |T̂33|j, jz⟩B2
+ · · · . (58)

ere, the ellipsis denotes terms that are higher order in the magnetic-field strength B, Mh is the mass of the hadron or
ucleus h, P∥ is its momentum parallel to the magnetic field, Qh is its charge in units of e, and nL is the quantum number
f the Landau level that it occupies. When j ≥

1
2 , there is a contribution from the magnetic moment, µ⃗h = µh j⃗, that is

inear in the magnetic field. The scalar and tensor magnetic polarizabilities, βh ≡ β
(M0)
h and β (M2)

h respectively, contribute
at O(B2), and T̂ij =

1
2

[
Ĵi Ĵj + Ĵj Ĵi − 2

3δij Ĵ
2
]
is a traceless symmetric tensor constructed from angular-momentum generators

Ĵi.
As can be inferred from the expansion in Eq. (58), at lowest order the difference in energy between the jz = ±j states

n a background magnetic field yields the magnetic moment. This quantity can be extracted from ratios of correlation
unctions (given by Eq. (31)) with maximal spin projections jz = ±j [36,486]. The magnetic polarizabilities that govern
he second-order response, on the other hand, can be obtained from spin-averaged ratios where the leading magnetic
oment contributions cancel [143].
Fig. 9 shows LQCD results for the magnetic moments and polarizabilities of light nuclei obtained in calculations per-

ormed at a single set of quark masses corresponding to a pion mass of mπ = 806 MeV (for nucleons
483,486,491–493] and other baryons in the Jπ =

1
2

+
octet [489], such studies have been undertaken for a range of quark

masses). Note that the results are presented using natural units that for magnetic moments correspond to ‘‘natural nuclear
magnetons’’ (nNM), µ̂h = µh

MN
2e , defined with respect to the nucleon mass at the quark masses used in the calculation. This

hoice avoids scale-setting uncertainties that arise when converting lattice units to nuclear magnetons using the physical
ucleon mass. For magnetic polarizabilitites, an appropriate dimensionless scale is given by the dominant ∆-resonance
ole contribution that is O(e2/[M2

N (M∆−MN )]), and dimensionless scalar and tensor magnetic polarizabilities are defined

as β̂h =
M2

N (M∆−MN )
e2

β
(M0)
h and β̂ (2)

h =
M2

N (M∆−MN )
e2

β
(M2)
h , respectively. Since this quantity is only weakly dependent on the

uark masses, one expects that it will provide appropriate units at any quark mass. Polarizabilities in physical units are
resented in Fig. 23 of Ref. [143].

17 Sea-quark contributions to the electric polarizability of hadrons were explored in Ref. [488] by means of a reweighting of sea-quark charges to
allow them to couple to the background field, revealing important difficulties in the estimation of the reweighting factors due to the large stochastic
noise.
27



Z. Davoudi, W. Detmold, P. Shanahan et al. Physics Reports 900 (2021) 1–74

p
m
u
S

L

a
e
f
E
d
o
s
e

Fig. 9. Magnetic moments (left) and magnetic polarizabilities (right) of nucleons and light nuclei calculated with LQCD at the SU(3)f -symmetric
oint with mπ = 806 MeV. The results are given in natural units, as discussed in the text. The red dashed lines (left) correspond to the experimental
agnetic moments. The darker shaded region represents the total uncertainty obtained by combining in quadrature the statistical and systematic
ncertainties, and estimates of discretization and FV effects.
ource: Data from Refs. [36] and [143].

Despite the use of a single, unphysical, set of quark masses, interesting features can be inferred from the existing
QCD investigations of the magnetic moments and polarizabilities of light nuclei. One feature of the results in Fig. 9 is
the approximate realization of naive shell-model expectations. In nature there is only a small difference between the
experimental value and the shell-model prediction for the magnetic moment of 3He, which is very close to that of the
neutron, with little contribution from the spin-paired protons. Similarly, the magnetic moment of the triton is very close
to that of the proton, with little contribution from the spin-paired neutrons. From the left panel of Fig. 9, it is apparent
that this similarity persists at the unphysical values of the quark masses used in the LQCD calculations, indicating that
a shell-model-like description based on nucleon degrees of freedom remains appropriate. On the other hand, different
trends were observed for the polarizabilities. For example, from Fig. 9 it can be seen that the dineutron18 polarizability,
β̂nn = 0.296+(19)(15)

−(18)(15), differs from twice that of the neutron by δβ̂nn ≡ β̂nn−2β̂n = −0.070+(6)(4)
−(9)(4). For the deuteron, which is

described by the coupled 3S1-3D1 channels, Eq. (58) shows that both the scalar and tensor polarizabilities contribute to the
quadratic dependence of the deuteron energy on the magnetic-field strength. The magnetic moment and a combination
of polarizabilities of the deuteron can be obtained from a coupled fit to the two jz = ±1 states, giving the values
µ̂d = 1.41+(28)(4)

−(25)(4) and β̂
(M0)
d +

1
3 β̂

(M2)
d = 0.70+(24)(4)

−(23)(4). Comparing this result with the sum of the individual neutron and proton
polarizabilities, β̂p + β̂n ∼ 1.02+(10)(5)

−(7)(5) , again illustrates the important role played by nuclear forces and electromagnetic
interactions, which cause the bound np system to be more magnetically rigid compared with the sum of its constituents.
The result obtained for the triton is significantly smaller than the sum of dineutron and proton polarizabilities, allowing
for a potential extraction of information on the two- and three-nucleon electromagnetic contributions. The polarizability
computed for 3He, however, is compatible with the sum of the polarizabilities of the diproton and neutron constituents
within the uncertainties. That is, deviations from the simple one-body contributions to the magnetic polarizabilities,
i.e., from short-range correlated two-nucleon responses to the field, could not be obtained given the large uncertainties
involved in the determination of the 3He and pp results. The 4He nucleus has no magnetic moment (since J = 0 for
this system), but its polarizability is determined to be between those of the pp and nn systems, with the same level
of uncertainty as that characterizing the A = 3 systems. These LQCD determinations of the magnetic moments and
polarizabilities, along with those known from experiment, were analyzed in pionless EFT in Ref. [372].

3.2. Two nucleons in strong magnetic fields

While the extraction of magnetic moments and polarizabilities is based on an expansion around zero field strength,
LQCD calculations can also be performed for large values of the magnetic field. In fact, it is possible to utilize strong
magnetic fields with magnitudes comparable to the QCD scale, |eB| ≳ Λ2

QCD, in which the electrodynamics effects
re comparable to the strong interaction effects. These extreme fields may be encountered in natural astrophysical
nvironments, for example in magnetars [499], which are rapidly rotating neutron stars with extremely large magnetic
ields of up to O(1014) Gauss at the surface that are conjectured to reach O(1019) Gauss in the interior [500]. Very strong
M fields are also present in heavy-ion collisions [501,502], where the currents produced by relativistic nuclei, particularly
uring (ultra-)peripheral collisions, lead to fields within the projectiles that have also been estimated to be of the order
f O(1019) Gauss. From a phenomenological point of view, the asymptotic freedom of QCD [503] dictates that nuclear
ystems under the effects of extremely large magnetic fields that are comparable to the QCD scale are expected to have
igenstates that are weakly-interacting up and down quarks in Landau levels. Hence, as the magnetic field tends to infinity,

18 The dineutron is bound at this set of quark masses, see Section 2.2.1.
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Fig. 10. Response of the binding of the dineutron (top), of the jz = +1 deuteron (center), and of the diproton (bottom) to applied magnetic fields,
in lattice units. The figures in the left column show the results at mπ = 806 MeV, while the ones on the right show results at mπ = 450 MeV. The
haded regions correspond to envelopes of fits to the energy shifts using linear and quadratic polynomials in ñ2 for the case of the dineutron, and
n ñ up to 4th (2nd) order for the mπ = 806 (450) MeV ensemble, in the ranges indicated by the shaded regions. The horizontal pink bands indicate
he binding thresholds.
ource: Figure modified from Ref. [142].

he ground-state energies of nuclei approach the sum of their constituents. The response of the spin-up and spin-down
ucleon states to an external magnetic field was studied in Ref. [143]. Interestingly, it was observed that the ground-state
nergies of both jz = ±

1
2 states for the proton exhibit significant nonlinearities for the whole range of magnetic field

trengths that were explored, as expected due to the presence of Landau levels. The spin-up and spin-down neutron
tates behave very differently, however, with the spin-up state following a non-linear dependence, and the spin-down
tate a linear dependence, on the magnetic-field strength.
The effects of strong magnetic fields were investigated for two-nucleon systems in LQCD in Ref. [142]. The magnetic

esponse of a two-nucleon system to an applied magnetic field can be obtained by determining the energy shift

∆NN (B) ≡ δENN (B) −

∑
h∈{NN}

δEh(B) , (59)

here the energy splittings are defined as δEh(B) = Eh(B) − Eh(0), with Eh(B) given by Eq. (58) (with P∥ = 0), and
he sum ranges over the hadrons (h) contributing to the composite NN system, e.g., for the deuteron, with jz = +1,
jz=+1, the relevant hadrons are p↑ and n↑. The shift defined in Eq. (59) can be obtained from the large-time exponential
ecay of appropriate ratios of correlation functions. Fig. 10 shows the energy shifts determined using this approach for
he dineutron, the jz = +1 deuteron, and the diproton for a magnetic field quantized as |eB| = 6π |ñ|/(L2), where
˜ = {1, 2, 3, 4, 6, 12} for mπ = 806 MeV and ñ = {1, 2, 4} for mπ = 450 MeV [142]. Since B ∼ O(1019) Gauss for
˜ = 1 in this lattice volume, this corresponds to extremely large physical field strengths. For the dineutron and jz = +1
euteron, and for both values of the quark masses, as the strength of the applied magnetic field is increased, the ground
tate energies of the two-nucleon systems move closer to threshold, and in some cases may unbind once a critical field
trength is reached. For both channels, the point of minimum binding decreases with the pion mass, suggesting that at
he physical quark masses the (unbound) dineutron resonance is pushed even further into the continuum by an intense
agnetic field, while the deuteron becomes unbound due to the applied field. The behavior in these channels is exemplary
f the unitary regime in two-particle interactions, in which the binding energies decrease to zero and consequently the
cattering lengths diverge. Near the values of the field strength at which the binding approaches zero, universal physics
ould emerge from the study of the low-energy dynamics of these systems. While this universality has been observed
s Feshbach resonances in atomic physics [504], an analogous observation has not been made in nuclear systems. For the
iproton, as seen in the lowest two panels of Fig. 10, an enhanced binding is observed at both quark masses as the field
trength increases. This pattern would suggest that at the physical quark masses, the (unbound) diproton could overcome
he Coulomb repulsion and form a bound state in sufficiently large magnetic fields, in agreement with the expectations
f Ref. [505].
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In Ref. [142], magnetic-field effects on the channel with the quantum numbers of two Λ-baryons were also studied
see Fig. 5 in that reference). This doubly-strange channel contains a deeply bound state at the heavy quark masses used
n the calculations [104,105,108]. However, while it exhibits a slight reduction of the binding energy for intermediate
ield strengths, comparable in size to that of the dineutron system, it does not show resonant behavior in the range of
ield strengths that are probed as the binding energy is significantly larger than that in the two-nucleon case.

.3. The np → dγ radiative capture process

Determinations of the energy levels of the Iz = jz = 0 np states in the 1S0 and 3S1–3D1 channels in a background
magnetic field have direct implications for our knowledge of nucleon–photon interactions and are relevant to the evolution
of the early universe. Specifically, since a magnetic field couples these two states, by determining the corresponding energy
difference one can extract the short-distance two-body electromagnetic contributions to the low-energy radiative capture
process, np → dγ , and to the photo-disintegration process γ d → np [37,143,326]. The relevant energy difference can be
computed in LQCD by constructing a matrix of correlation functions generated from source and sink operators associated
with 3S1 and 1S0 Iz = jz = 0 interpolating operators:

C(t, B) =

(
C

3S1,3S1
2pt (t, B) C

3S1,1S0
2pt (t, B)

C
1S0,3S1
2pt (t, B) C

1S0,1S0
2pt (t, B)

)
, (60)

where the background-field two-point correlation functions are defined as in Eq. (30) (but with the individual specification
of the quantum numbers of the source and sink interpolating fields). Principal correlation functions, λ±(t, B), which
exponentially converge to the eigenstates of the coupled system at large times, can then be obtained by diagonalizing
this matrix at each value of t and B. In this large-t limit, the energy shift between the two eigenstates can be computed
from the ratio

δR 3S1,1S0 (t, B) ≡
λ+(t, B)
λ−(t, B)

Cn,↑
2pt (t, B)C

p,↓
2pt (t, B)

Cn,↓
2pt (t, B)C

p,↑
2pt (t, B)

t→∞
−→ Z e

−δE 3S1,1S0
(B)t
, (61)

where Cp/n,↑/↓
2pt (t, B) are the background-field correlation functions corresponding to the different polarizations of the

proton and neutron, and Z is a field-dependent overlap factor. The energy shift in the exponential can be written in terms
of the energies of the two eigenstates and those of the polarized nucleons:

δE 3S1,1S0 ≡ ∆E 3S1,1S0 − [Ep,↑ − Ep,↓] + [En,↑ − En,↓] , (62)

where ∆E 3S1,1S0 is the (positive) energy difference between the two eigenstates. At the large values of the quark masses,
corresponding to mπ = 806 MeV and mπ = 450 MeV, used in the only existing LQCD determinations of this energy [37],
the appropriate framework to relate this energy shift to the short-range two-nucleon interaction coefficient is pionless
EFT.

Employing dibaryon fields to resum effective-range contributions [506,507], the Lagrange density describing the
interactions of the nucleon and the dibaryons with an external magnetic field can be written as:

L =
e

2MN
N† [κ0 + κ1τ

3] σiBi N +
e

MN

l1
√
r1r3

[
t†j s3Bj + h.c.

]
+

e
MN

l2
r3

iϵijkt
†
i tjBk, (63)

here ti and s3 are the ith spin component of the isosinglet 3S1 and the third isospin component of the isotriplet 1S0
ibaryons, respectively. σ⃗ is the spin operator, and κ0 =

1
2

(
κp + κn

)
/2 and κ1 =

(
κp − κn

)
/2 are the isoscalar and

isovector nucleon magnetic moments, respectively, in nuclear magnetons with κp = 2.79285 and κn = −1.91304. r1 and
r3 are the effective ranges in the singlet and triplet channels, respectively. The NLO coefficients, l1 and l2,19 describe the
coupling of the dibaryons to the magnetic field. This Lagrangian can be used to obtain the LO and NLO contributions to the
M1 amplitude [507], which dominates the EM multipole expansion of the low-energy np → dγ cross-section [508,509]:

σ (np → dγ ) =
e2(γ 2

t + |p⃗ |
2)3

M4
Nγ

3
t |p⃗ |

[
|X̃M1|

2
+ · · ·

]
. (64)

n this expression, γt is the binding momentum of the deuteron, p⃗ is the momentum of each incoming nucleon in the CM
frame, and X̃M1 is the M1 amplitude, which is given by:

X̃M1 =
Zd

−
1
a1

+
1
2 r1|p⃗ |

2
− i|p⃗ |

[
κ1γ

2
t

γ 2
t + |p⃗ |

2

(
γt −

1
a1

+
1
2
r1|p⃗ |

2
)

+
γ 2
t

2
l1

]
. (65)

19 Note that in Ref. [143] l2 has been replaced by l̃2−r3κ0 to make explicit the deviation of the deuteron magnetic moment from the single-nucleon
contribution.
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Fig. 11. LQCD results for the energy splittings between the two lowest-lying eigenstates of the 3S1–1S0 system (left), with the single-nucleon
ontributions removed as a function of the magnetic field strength quantum ñ, along with the associated fits to extract the linear response. Also
hown are the results of LQCD calculations of L̄1 (blue points) (right). The blue (green) shaded regions show extrapolations of L̄1 to the physical
ion mass (red vertical line) in natural nuclear magnetons (nNM) which are linear (quadratic) in mπ .

Source: Figure modified from Ref. [37].

Here, Zd = 1/
√
1 − γt r3 is the square-root of the residue of the deuteron propagator at its pole and a1 is the scattering

length in the 1S0 channel. Contributions from higher-order multipoles in Eq. (65), denoted by the ellipses, are suppressed
at low energies. The quantity l1 = l̃1 −

√
r1r3κ1 encapsulates the short-distance two-nucleon interactions through the

oefficient l̃1. This is the only quantity which is not determined by kinematics, single-nucleon properties, or scattering
arameters. As is discussed in Ref. [37], Wigner SU(4) symmetry allows this coefficient to be related to the energy
ifference between the two eigenstates of the coupled 1S0–3S1 system:

∆E3S1,1S0 (B) = 2
(
κ1 + γtZ2

d l̃1
) e
M

|B| + O(|B|2) , (66)

ith γtZ2
d l̃1 ≡ L̄1 characterizing the two-nucleon contributions. Note that magnetic-field couplings to sea quarks do not

ontribute to this energy shift or to L̄1 in isospin-symmetric LQCD calculations.
Combining Eqs. (62) and (66), the value of L̄1 can be extracted from the slope of the field-strength dependence of

δE 3S1,1S0 , as shown in the left panel of Fig. 11 for LQCD calculations performed with mπ = 450 and 806 MeV. To obtain
a prediction for the L̄1 LEC from these results requires extrapolation to the physical values of the light-quark masses.
While the form of this extrapolation is not known a priori, the mild mπ dependence that is observed in the right panel of
Fig. 11, together with the mild variations shown by the magnetic moments (when expressed in units of natural nuclear
magnetons), suggests that linear and quadratic forms could be reasonable choices to extrapolate to the physical point, as
shown in the figure. These two functional forms yield consistent values at the physical quark masses and allow an estimate
of the extrapolation uncertainty. The extrapolated value is L̄LQCD1 = 0.285+(63)

−(60) nNM, where the uncertainty incorporates
the mass-extrapolation uncertainty in addition to statistical, correlation function fitting, and field-strength dependence
fitting uncertainties. This value leads to lLQCD1 = −4.48+(16)

−(15) fm, which can be used in Eq. (65) to extract the value of the
M1 amplitude needed to obtain the cross-section for the np → dγ process through Eq. (64), σ LQCD

= 332.4+(5.4)
−(4.7) mb ,

which is in agreement with the experimental determination σ expt
= 334.2(0.5) mb [510], both at an incident neutron

speed of v = 2200 m/s.

3.4. Future impact

The response of a nucleus to an EM probe reveals a number of aspects of nuclear structure, including magnetic
moments, polarizabilities, and the nuclear EM response functions and form factors. Experimental determinations of the
magnetic moments of light nuclei led to insights into nuclear structure and provided early validation of nuclear shell-
model frameworks. By determining how these nuclear properties emerge from the SM, LQCD can provide further insights
into the quark and gluon structure of nuclei and the emergence of nucleons as effective degrees of freedom in nuclei. The
results reviewed above, in conjunction with future calculations at physical values of the light quark masses and including
multiple physical volumes and lattice spacings, will provide decisive constraints on physical quantities that cannot be
accurately measured experimentally and will increase our understanding of the behavior of nuclear systems and reactions
in the presence of magnetic fields of different intensities.

For example, given the lack of free neutron targets, neutron polarizability determinations rely on experiments involving
light nuclei. LQCD can provide insight into the electromagnetic structure of the deuteron and other light nuclei needed
to understand and correct for nuclear effects in these experiments. The LQCD calculations at unphysically large values
of the light-quark masses described above show that the sum of the neutron and proton polarizabilities is larger than
the deuteron polarizability, and therefore that the deuteron is more magnetically rigid than its components. Future LQCD
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alculations at the physical quark masses will determine whether this effect persists and predict the electromagnetic
olarizabilities of the deuteron and other light nuclei in nature. Such calculations will also determine the role of
uclear forces and gauge-invariant electromagnetic two-nucleon operators in the electromagnetic structure of light nuclei,
nd complement the constraints from upcoming experiments that will extract deuteron polarizabilities at the HIγ S
acility [511], MAX-Lab at Lund [512], and at MAMI in Mainz [513], as well as next-generation of Compton scattering
xperiments [514–516] that will extend those studies to different nuclear targets.
The LQCD studies discussed above have explored the simplest slow-neutron capture process, np → dγ , which is the

irst step of the big-bang nucleosynthesis (BBN) chain reaction that created the first elements in the seconds after the
ig bang. Future calculations of nuclear reactions in light nuclei will provide QCD predictions for reaction rates that are
ess well known experimentally. These first-principles theoretical constraints on BBN processes could shed light on the
ine-tuning of the evolution of the universe and perhaps on the deficit in the measured abundance of 7Li in the universe
ompared with theory predictions [517,518].
LQCD determinations of the responses of nuclear systems to intense magnetic fields will provide valuable information

or constraining phenomenological models of nuclei in extreme environments in nuclear astrophysics such as magnetars
nd in relativistic heavy ion collisions. The results above show that there are significant changes in the binding of two-
ucleon systems immersed in strong magnetic fields at two unphysical values of the quark masses, with the deuteron
ecoming unbound and diproton becoming bound at particular values of the magnetic-field strength. Future LQCD
alculations will determine whether this behavior and associated realizations of unitary physics persist at the physical
ight-quark masses and explore its consequences for nuclear astrophysics.

Precise measurements of the electromagnetic structure of light nuclei can also be used to search for new physics
eyond the SM [519–523]. The charge radii of light nuclei, in particular the deuteron, 3He, and 4He, have been
xtracted from laser spectroscopy measurements of the Lamb shifts of muonic atoms [524–526] as well as in electronic
tom spectroscopy [527] and electron-scattering experiments [528,529]. Tensions exist between muonic and electronic
easurements of the charge radii of light nuclei with similar significance to tensions in proton-radius measurements,
nd comparisons between results for the proton and various nuclei can test possible explanations of these discrepancies.
epton universality requires the same charge radius to enter electronic and muonic observables. Therefore, while there
re multiple possible sources of these discrepancies, new electron–muon universality-violating physics is an interesting
cenario. Nuclear-structure effects, including those present in two-photon exchange contributions to the Lamb shift,
dd significant theoretical uncertainties to extractions of nuclear charge radii using muonic-atom spectroscopy, and in
ome cases these nuclear-theory uncertainties dominate the total uncertainty of experimental extractions of nuclear
adii [530,531]. Precise SM predictions for the EM radii of light nuclei and other EM structure properties from LQCD
ould provide key insights into these discrepancies and other fundamental-symmetry tests.

. Nuclear matrix elements of weak currents

Low-energy nuclear reactions induced by the weak interactions of the SM are at the core of accurate descriptions
f Big Bang and supernova nucleosynthesis and of the burning mechanism and energy production in stars, and are key
nputs in astrophysical and terrestrial neutrino-flux models. LQCD offers the possibility to reliably constrain the cross-
ections, or more directly the relevant nuclear matrix elements, for processes that cannot be measured experimentally
iven the extreme conditions under which they proceed, such as the pp-fusion process that occurs in stars like the Sun.
urther, LQCD calculations can isolate and constrain the short-distance effects, such as two- and multi-nucleon currents,
n reactions of light nuclei to provide constraints on the EFTs or phenomenological models that can be fed into modern ab
nitio nuclear-reaction studies in larger nuclei [35,532,533]. The first LQCD results for the Gamow–Teller matrix element
elevant to tritium β decay and pp fusion, as well as the flavor-separated axial charges for nuclei with A < 3, are now
vailable [364], albeit at unphysical values of the quark masses. These results will be reviewed in this section.
Given that the dominant contribution to weak matrix elements in nuclei arises from the coupling of a single nucleon

o the weak current, characterized by the nucleon’s axial charge gA, progress in the determination of gA from LQCD is also
ummarized. LQCD determinations of gA rely on different methods to extract the nucleon matrix elements. Many studies,
uch as those of Refs. [59,60], calculate two- and three-point correlation functions as in Eqs. (18) and (26), and extract
he axial charge from the time dependence of their ratio. Variants of the method based on modified propagators, defined
n Eq. (31), have been employed in Refs. [38,61,534]. In all cases, a dominant source of systematic uncertainty arises from
he contributions of excited states as discussed in Section 2.3.2 (see Ref. [535] for a review of these effects in the context
f the nucleon). The latest FLAG report [71] provides community-consensus values of recent LQCD determinations of gA
sing ensembles with Nf ∈ {2, 2 + 1, 2 + 1 + 1} quark flavors. Among the most precise determinations to date are those
ith Nf = 2+1+1 by the CalLat collaboration [61,534] (one at the 1% level) and the PNDME collaboration [59,60] (at the
% level) using the same ensembles of gauge-field configurations but with different valence-quark actions. The FLAG value,
A = 1.251(33), is consistent with the considerably more precise experimental determinations, i.e., gA/gV = 1.2772(20)
y the UCNA collaboration [536,537] and gA/gV = 1.2761+14

−17 by PERKEO II [538], where gV is the isovector vector
harge and is equal to one up to very small corrections due to isospin breaking. The LQCD determinations of gA have
o far served as a testbed for the validation of LQCD methods and technologies in accessing nucleon matrix elements.
onetheless, as future determinations are anticipated to reach sub-percent precision, comparison to high-precision
32
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eutron-decay measurements [536,537] may allow for tests of the SM and constraints on BSM effects, such as right-
anded currents [19,539]. New systematic uncertainties such as QED effects and isospin splittings will need to be fully
ddressed to reach sub-percent precision.
While precision determinations of the nucleon axial charge from LQCD in recent years are promising, in nuclear-physics

ontexts it is the multi-nucleon contributions to axial matrix elements that are often ill-constrained and this is where
QCD can play the largest role. Explicitly, LQCD will soon provide constraints that are more precise than those from
xperiment alone, hence enhancing the predictive capabilities of studies of weak processes in nuclei.

.1. Proton–proton fusion

The production of deuterium in the pp-fusion process, pp → de+νe, is the first step in the chain of reactions that
roduces energy in stars with masses similar to, or smaller than, that of the Sun [10]. However, given the low incident
elocities of protons in the stellar interior, the weak nature of the process, and the Coulomb barrier, the rate of this process
s extremely low and has not been measured in the laboratory at the relevant energies. As this rate is an important input
nto the Standard Solar Model, which predicts the Sun’s neutrino flux for terrestrial neutrino-oscillation experiments,
ccurate theoretical determinations of the near-threshold cross-section are valuable (see e.g., Refs. [10,540] for recent
eviews). It is known that the single-nucleon contribution, i.e., the conversion of the proton to a neutron in the process,
ominates the cross-section, and the two-nucleon effects, described in phenomenological models by meson-exchange
urrents and in low-energy EFTs by such currents as well as by local two-nucleon operators, contribute only at the percent
evel [10]. Nonetheless, the need for sub-percent precision on the cross-section has prompted investigations to constrain
his two-body effect [541–552]. Similar higher-body effects further contribute to an understanding of the problem of the
henomenological quenching of the axial charge in larger nuclei, see e.g., Ref. [34], and are hence important to constrain
t the microscopic level.
Within a chiral EFT approach, the leading two-nucleon operators in the axial current are related to operators appearing

n two- and three-nucleon potentials. This leads to constraints on the two-body contributions to electroweak processes,
lbeit with large uncertainties [544,549]. The low-energy process of pp fusion is also suitable for analysis in pionless

EFT [265–267,269,506,507], in which the coupling of the axial–vector current to two nucleons at low energies is
characterized by a single momentum-independent LEC, L1,A. The first constraint on L1,A was obtained from analysis of
udbury Neutrino Observatory (SNO) and Super-Kamiokande data on charged-current and neutral-current neutrino–
euteron scattering reactions [551], since the same LEC contributes to these processes as well. Constraints on L1,A have
een further improved using an approach based on consistent treatment of the tritium β-decay rate which is known
recisely from experiment, and which shares the same LEC within the pionless EFT [550]. A new determination using
n improved calculation of (anti)neutrino–deuteron inelastic scatterings has also appeared [552]. Despite these advances,
he uncertainty on L1,A remains large and is comparable to its central value. Since muon capture on the deuteron is also
ensitive to L1,A, it is expected [553] that a precise measurement that is underway in the MuSun experiment will provide
significant improvement in the precision of L1,A [554–556]. A critical (and realistic) goal for LQCD in nuclear physics is
o provide a QCD-based determination of L1,A that competes with, or improves upon, the best phenomenological values.

The matrix element of the axial–vector current J−i = q̄γiγ5τ−q with q = (qu, qd)T and flavor matrix τ− = τ1 − iτ2,
etween the jth spin component of the deuteron and the two-proton system, can be written as⏐⏐⟨d; j ⏐⏐J−i ⏐⏐ pp⟩⏐⏐ ≡ gACη

√
32π
γ 3
t
Λ(k) δij, (67)

where all the factors except for the quantity Λ(k) are precisely known [543]. In particular, γt =
√
MNBd is the deuteron

inding momentum (Bd is the binding energy), Cη is the QED Sommerfeld factor, and k denotes the momentum of each
roton in the CM frame. For pp fusion at low incident velocities, Λ(0) provides the dominant contribution [10]. In pionless

EFT, the momentum-independent single- and two-nucleon isovector axial–vector currents are

J−(1)
k =

gA
2

N†τ−σkN, (68)

J−(2)
k = L1,A

(
NTPkN

)† (
NT P̄−N

)
, (69)

respectively [557]. Here, Pi ≡
1

√
8
σ 2σ iτ 2 (P̄−

≡
1

√
8
σ 2τ 2τ−) are projectors into the 3S1 (1S0) two-nucleon channel. With

his characterization of momentum-independent currents in the EFT, the threshold amplitude in Eq. (67) at NLO can be
ritten as [543,546,558]20

Λ(0) =
1

√
1 − γtρ

{eχ − γtapp[1 − χeχΓ (0, χ )] +
1
2
γ 2
t app

√
r1ρ} −

1
2gA

γtapp
√
1 − γtρ Lsd−2b

1,A . (70)

20 For improved convergence, effective-range contributions to the amplitude are resummed to all orders [507,546,550,559].
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ere, χ = αMp/γt , where α is the QED fine-structure constant, Γ (0, χ ) is the incomplete gamma function, app is the
p scattering length, and ρ is the effective range in the 3S1 channel expanded around the deuteron pole. The solely two-

nucleon short-distance axial coupling Lsd−2b
1,A is linearly dependent upon the L1,A coupling via a known relation, see Ref. [38],

nd its determination is the goal of the LQCD study discussed below.
A first LQCD determination of the pp-fusion process was presented in Ref. [38]. The transition between two-nucleon

ystems in the isosinglet and isotriplet channels have been studied from background-field correlation functions that are
eneralizations of those presented in Eq. (34) to transitions between different states. These correlation functions are

constructed from extended propagators with an insertion of the axial current, i.e., Γ = γ3γ5 in Eq. (32). In particular,
transition correlation functions C (1S0,3S1)

λu;λd=0(t) and C (1S0,3S1)
λu=0;λd

(t) can be shown to vanish for λu,d = 0, and to be third-order
polynomials in λu and λd, respectively. Calculations of the correlation function at at least three values of λu(d), as
well as the analogous correlation functions for the time-reversed transition, allow the extraction of the linear terms,
C (3S1,1S0)
λu(d);λd(u)=0(t)

⏐⏐⏐
O(λu(d))

and the time-reversed analog, from which the transition matrix element of the axial current can be

determined. Explicitly, these correlation functions can be shown to have the form

C (3S1,1S0)
λu;λd=0(t)

⏐⏐⏐
O(λu)

= ZdZ
†
np(1S0)

e−Ēt

[
sinh

(
t∆
2

){
⟨d|J̃ (u)3 |np(1S0)⟩

∆/2
+ c−

}

+ cosh
(
t∆
2

)
c+ + O(e−δ̃ t )

]
, (71)

nd similarly for C (3S1,1S0)
λu=0;λd

(t)
⏐⏐⏐
O(λd)

under the replacement J̃ (u)3 → J̃ (d)3 . Here,

J̃ (f )3 ≡

∫
d3x q̄f (x⃗, t = 0)γ3γ5qf (x⃗, t = 0), (72)

nd |np(1S0)⟩ and |d⟩ refer to the ground state of the isotriplet channel and to the m = 0 component of the deuteron,
espectively. Zd and Znp(1S0) are the overlap factors of the source and sink interpolating operators onto the ground states of
he 3S1 and 1S0 channels, respectively. ∆ = Enp(1S0) − Ed, Ē = (Enp(1S0) + Ed)/2, and δ̃ denotes the generic gap between the
round states and first excitations of the two-nucleon systems. c± are t-independent factors involving energy gaps, ratios
f overlap factors, and transition matrix elements between the ground and excited states. As is evident from Eq. (71),
n the limit of exact SU(4) Wigner symmetry in which ∆ → 0, the correlation function receives no contribution from
−. Away from this limit, the c− term contaminates the extraction of the ground-state to ground-state matrix element,
d|J̃ (u)3 |np(1S0)⟩, and its effects must be estimated carefully.

Given the transition correlation functions, the isovector ratio

R±

3S1,1S0
(t) =

1
2

C±

λu;λd=0(t)
⏐⏐⏐
O(λu)

− C±

λu=0;λd
(t)
⏐⏐⏐
O(λd)√

C (3S1)
2pt (t)C (1S0)

2pt (t)
(73)

can be formed, where

C±

λu;λd=0(t)
⏐⏐⏐
O(λu)

=
1
2

[
C (1S0,3S1)
λu;λd=0(t)

⏐⏐⏐
O(λu)

± C (3S1,1S0)
λu;λd=0(t)

⏐⏐⏐
O(λu)

]
, (74)

nd a similar expression defines C±

λu=0;λd
(t)
⏐⏐
O(λd)

. The overall exponential behavior in Eq. (71) cancels in this ratio, in
analogy to the general procedure described in Section 2.1.2. The ground-state transition matrix element can be isolated
as the coefficient of the term linear in t in R+

3S1,1S0
(t) using

R
+

3S1,1S0 (t) ≡
1
a

[
R+

3S1,1S0
(t + a) − R+

3S1,1S0
(t)
]

t→∞
−→

1
ZA

⟨d, 3|J̃+3 |pp⟩ + O
(

1
N4

c

)
, (75)

where ZA = 0.867(47) [38] is the axial-current renormalization factor and where isospin symmetry has been used to relate
the ⟨d, 3|J̃+3 |pp⟩ and ⟨d|J̃ (u)3 |np(1S0)⟩ matrix elements. While Wigner symmetry is not exact, ∆ ∼ O(1/N2

c ) in the large-Nc

imit of QCD, and the time-reversal even (T -even) combination C+

λu;λd
(t)
⏐⏐⏐
O(λf )

can be argued to receive only 1/N4
c ∼ 1%

orrections, see Ref. [40]. Additionally, the T -odd combination, R
−

3S1,1S0 (t), defined analogously using R−

3S1,1S0
(t), can provide

numerical estimate of the magnitude of the O(1/N4
c ) contamination.

The main results of the LQCD study are reproduced in Fig. 12. This study made use of the same ensemble of isotropic
lover gauge-field configurations that were discussed in the previous section, with SU(3)f -symmetric quark masses
orresponding to mπ = 806 MeV, a lattice volume of 323

× 48, and a lattice spacing of a ∼ 0.145 fm. The quantity
R

+

(t), which asymptotes to the pp → d axial transition matrix element at large times, is shown in the left panel.
3S1,1S0
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Fig. 12. The quantities R
+

3S1,1S0 (t) (left) and R
−

3S1,1S0 (t) (right). The former asymptotes to the pp → d bare matrix element at large times, while the
atter gives an estimate of dominant excited-state contaminations to the desired matrix element. Shown in the inset in the left is the (unnormalized)
ifference between the full matrix element and the single-nucleon contribution, giving rise to quantity Lsd−2b

1,A /ZA at large times. Different colors (blue
and orange) represent two different choices for the sink interpolating operators. For further detail, see Refs. [38,39].
Source: Figure modified from Ref. [38].

Shown in the inset is the (unrenormalized) matrix element when the single-body contribution is subtracted out, giving
rise to the quantity Lsd−2b

1,A /ZA. In addition, the quantity R
−

3S1,1S0 (t) is shown in the right panel. This quantity asymptotes
o a value that estimates the effects of excited states contaminating the extraction of the pp → d transition matrix
element, and is seen to be small. This provides further support for the claim that the contribution of c− in Eq. (71) is
O(1/N4

c ) ∼ O(1%) of the dominant term.
Without results at quark masses closer to the physical quark masses, a controlled determination of the LEC L1,A is not

possible. Nonetheless, the mild quark-mass dependence of the similar LEC in the two-nucleon sector for the vector-current
transitions, as discussed in Section 3.3, suggests that the constraint obtained on L1,A at mπ = 806 MeV may be close to
ts value in nature. By assigning a conservative 50% additive uncertainty for quark-mass extrapolation to the physical
uark masses, and combining the extracted matrix element with Eqs. (67)–(70), Ref. [38] obtains a constraint on the L1,A

coupling in nature evaluated at the scale µ = mphys
π :

L1,A = 3.9(0.2)(1.4) fm3, (76)

where the quoted uncertainties are statistical and systematic, respectively. This result can be compared with a recent
phenomenological value obtained from (ν̄)ν − d scattering: L1,A = 4.9+(1.9)

−(1.5) fm
3 [552]. Clearly the LQCD and phenomeno-

logical results are compatible and have similar overall uncertainties. Future LQCD studies of pp fusion offer the prospect
of significantly improving on the phenomenological result and thereby better constraining the solar burning process and
concomitant neutrino emission.

As discussed in Section 2.2.2, as one approaches lighter quark masses, nuclear binding decreases toward the physical
values [108,111,304], and in particular the two-nucleon system will be only slightly bound (in the isosinglet channel)
or unbound (in the isotriplet channels). This difference makes determination of nuclear matrix elements at the physical
point more involved, requiring the finite-volume technologies developed in e.g., Refs. [225,254] to relate the LQCD matrix
element to its counterpart in an infinite Minkowski spacetime.

4.2. Tritium β decay

Tritium β decay, the 3H →
3He e−ν̄ process, is a super-allowed process in the SM. Increasingly precise measurements

of its rate and of its final-state energy spectrum, such as at the Karlsruhe Tritium Neutrino experiment (KATRIN), will
lead to precise constraints on the absolute mass of the electron neutrino [560,561]. Such precise measurements will also
provide a valuable means to search for signals of new physics [562–565] such as sterile neutrinos [566,567]. Furthermore,
in EFT, the Gamow–Teller matrix element contributing to this process shares common LECs with the pp-fusion process
discussed in the previous subsection, as well as with other weak processes in the two-nucleon system, providing a
means to constrain unknown LECs such as L1,A. A systematic treatment of the decay within EFT [550,568–570] will
thus allow the two-nucleon short-distance contributions to the β decay of larger nuclei to be quantified. Historically,
Gamow–Teller transitions measured in medium-mass nuclei have been challenging to reproduce from theory [571–573],
initially requiring an ad hoc modification of the axial charge of the nucleon in nuclei, known as quenching of the axial
charge [574], to account for differences of tens of percent from single-nucleon estimates in which nuclear ground states
with non-interacting nucleons occupy only the lowest shell-model states. Recently this problem has been resolved in
some nuclei by a complete EFT treatment [34,35,570] including both a two-nucleon axial coupling and correlations in
the nuclear wavefunctions. LQCD studies can constrain the Gamow-Teller matrix element contributing to tritium β decay
35



Z. Davoudi, W. Detmold, P. Shanahan et al. Physics Reports 900 (2021) 1–74

o
a
S

d
o
t
r

⟨

T
e
c
p

w
u
t
f
(
c
q
e

f

a
v
i
c
m
s
n

4

o
s
p
s
w
d

Fig. 13. Ratios of correlation functions that asymptote to the (unrenormalized) isovector axial matrix element in 3H at large times (left), and ratio
f the isovector axial matrix element in 3H to that in the proton (right), with a horizontal line shown at 1 to guide the eye. Different colors (blue
nd orange) represent two different choices for the sink interpolating operators.
ource: Figure modified from Ref. [38].

irectly, which will provide a valuable check on the phenomenological constraints. As is the case for the axial charge
f the nucleon, a sufficiently precise calculation of the Gamow–Teller matrix element in the triton could be compared
o phenomenological extractions from experiment and thereby serve as a test of the SM [19], although the precision
equirements are challenging.

The first LQCD determination of the Gamow–Teller matrix element relevant to the tritium β decay, defined as
3He|q̄γkγ5τ+q|3H⟩ ≡ ūγkγ5τ+u gA⟨GT⟩ (where u and ū denote the 3He and 3H spinors) was performed in Ref. [38]. The
reduced matrix element, ⟨GT⟩, along with the Fermi contribution, ⟨F⟩, from the vector-current matrix element, determines
the half life of the decay, t1/2, as [541]

(1 + δR)fV
K/G2

V
t1/2 =

1
⟨F⟩2 + fA/fV g2

A ⟨GT⟩2
. (77)

he Fermi contribution is constrained to be unity in the limit of exact isospin symmetry, and deviations from that limit are
stimated to be at the sub-percent level by the Ademollo–Gatto theorem [575]. From phenomenology, the most precise
onstraint on the Gamow–Teller matrix element is ⟨GT⟩phys = 0.9511(13) [569]. All other factors in Eq. (77) are known
recisely from experiment.
In the isospin limit, the Gamow–Teller matrix element can be obtained from the axial charge of the triton in the same

ay that the neutron β decay amplitude is related to the nucleon’s vector axial charge. This quantity can be computed
sing the extended-propagator technique of Section 2.1.2 with an insertion of the axial–vector current. This determines
he desired matrix element from the solution to a set of polynomial equations for different values of the background-
ield strengths λu(d). After forming appropriate ratios of three- and two-point functions, as outlined in Section 2.1.2, the
unrenormalized) axial charge of the triton is obtained from a constant fit to the linear time dependence of the isovector
ombination 1

2 (R
3H
Ou

− R
3H
Od

) at large Euclidean time, where R
3H
Of

is defined in Eq. (36) and Of = q̄f γ3γ5qf . Further, this
uantity can be divided by the analogous quantity for the proton, which gives access to the reduced Gamow–Teller matrix
lement, ⟨GT⟩, at large Euclidean times. This ratio is independent of the renormalization of the lattice axial–vector current.
In Ref. [38], the first study of these quantities was reported using the same gauge-field ensembles as described above

or the pp-fusion study, as shown in Fig. 13. That study obtains

gA(3H)/ZA = 1.272(6)(22), (78)

⟨GT⟩ = 0.979(3)(10), (79)

t mπ = 806 MeV. In both cases, the first uncertainty is statistical and the second is the systematic uncertainty from
ariations in the fit windows chosen and the analysis techniques applied. The value of the Gamow–Teller matrix element
n tritium β decay that is obtained is within three percent of the experimental value. This is an interesting observation,
onsidering that the values of the quark masses used in this study are far from those in nature. This points to the same
ild quark-mass dependence as that observed for the Gamow–Teller matrix element of the proton, as well as for other
tructure properties of the nucleon and light nuclei that have been studied so far, such as the magnetic moments (when
ormalized in appropriate units) and the two-body contribution to the np → dγ transition rate, as discussed in Section 3.

.3. Flavor-separated axial charges of light nuclei

The calculations described above have also been extended from the isovector current to a full flavor decomposition
f the axial current in the proton, deuteron, and 3He systems [41]. The study of Ref. [41] was performed using the
ame background-field approach as described above for the connected quark contractions, and made use of hierarchical
robing [576,577] for calculation of the disconnected quark contractions. The resulting flavor-dependent charges are
hown in Fig. 14. As can be seen, the axial charges of the nuclei scale approximately with the total spin of the system, as
ould be the case for non-interacting nucleons in the lowest shell-model states. As for the isovector charge in tritium β

ecay, deviations from this scaling are resolved from zero and shown in Fig. 21 in Section 6.
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4.4. Hadronic parity violation

Parity violation in the SM, while understood precisely at the quark and lepton level, is poorly constrained at the
hadronic level due to the complicated non-perturbative nature of the strong interactions. Prior to the UA1 and UA2
discovery of the neutral weak gauge boson [578,579], hadronic parity violation, using the quantum numbers of nuclear
levels as filters, provided a prime laboratory to search for neutral weak currents [580]. While this motivation is no
longer relevant, the emphasis of hadronic studies of parity violation has changed from driving a fundamental discovery
to exploring their potential for high-sensitivity processes. Neutral-current weak interactions are more challenging to
investigate experimentally than the charged-current weak interactions. Given the O(10−7) suppression of the weak-
nteraction effects compared with strong-interaction effects, most nuclear parity-violation experiments have been focused
n larger nuclei since enhancements of parity-violating observables are expected (and found) in a nuclear medium (see
ef. [581] for a review). However, the connection to the quark and gluon degrees of freedom of the SM is challenging
o establish for hadronic parity-violating processes in nuclei. Recently, two-nucleon systems have been the focus of
xperimental investigations, such as searches for the longitudinal asymmetry in polarized p⃗p scattering [582] and the

photon asymmetry in n⃗p → dγ [583]. These processes are more straightforward to connect to the underlying SM
mechanism. In this context, EFTs have provided a systematic framework to identify leading parity-violating interactions
at low energies [584–597], improve upon conventional phenomenological approaches [598], and pave the way for a
systematic extension to larger nuclei. These EFTs, however, introduce new two-nucleon LECs that need to be constrained
by experimental data where it exists, or by LQCD. A first LQCD attempt in constraining the LO parity-violating pion–
nucleon coupling, needed for constructing the two-nucleon potential with ∆I = 1, was conducted in Ref. [599], albeit
subject to large statistical and systematic uncertainties.

Based on chiral and large-Nc arguments, it has recently been realized that the dominant contributions to parity
violation in two-nucleon systems arise from ∆I ∈ {0, 2} operators, rather than the ∆I = 1 operator that was considered
efore [594,595]. In fact, as was shown in Ref. [595], the current experimental results on the longitudinal asymmetry in

⃗p scattering already constrain a linear combination of the LECs, effectively reducing the number of unknown LECs to
ne. This suggests that the ∆I = 2 channel is most relevant from the LQCD perspective, where the lack of quark-line
isconnected diagrams provides a computational simplification. An exploratory LQCD study in this channel has been
ttempted, with preliminary results reported in Ref. [600], and the renormalization of relevant operators studied in
ef. [601]. Precise LQCD constraints on the low-energy EFTs or phenomenological models of hadronic parity violation
n the single- and two-nucleon sectors will help explain and predict parity violation in large nuclei.

.5. Future impact

The examples of determinations of weak-interaction nuclear matrix elements from LQCD discussed in this section
emonstrate the powerful interplay between LQCD and EFT descriptions of the weak matrix elements. Over the next
ecade, it is likely that the weak-interaction processes considered here, and others, will be studied directly from LQCD in
uclei with A ≤ 4, at or near to the physical values of the quark masses, with fully controlled uncertainties. With sufficient
recision, a meaningful connection to nuclear phenomenology, especially in the context of nuclear astrophysics, will be
ossible with the use of the EFTs and phenomenological models. While for L1,A the necessary precision is known to be
10%, in other cases, the crucial EFT input entering different processes must be identified, and the target uncertainty

f the corresponding LQCD determinations is yet to be defined. A notable aspect of LQCD is that it gives direct access to
37
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uclear matrix elements at given kinematics and does not rely on model assumptions, such as the threshold expansion
n the pp-fusion process. It can therefore provide a means to test such assumptions and to give access to higher-order
orrections. LQCD can also calculate the rate of weak reactions of light hypernuclei that are relevant to experiments at
-PARC [602,603] as well as for astrophysical investigations into the nature of dense matter [604].

Finally, it is notable that the progress in the nuclear-reaction program from LQCD has direct impact on the ongoing
heoretical studies of neutrino-nucleus scattering cross-sections for e.g., long baseline underground neutrino experiments
uch as the Deep Underground Neutrino Experiment (DUNE) [605,606] and Hyper-Kamiokande [607,608], which aim
o constrain the neutrino mass hierarchy and oscillation parameters with unprecedented precision by reconstructions
f the neutrino energy from the final state. An essential theory input into this reconstruction is the axial charge, and
ore generally the axial radii and form factors, of the nucleus used in the detector. Constraining the axial form factors
f the relevant nuclei, such as Argon, from the SM is thus a critical goal, as are studies of more complex subprocesses
uch as N → ∆ and N → Nπ axial transition matrix elements. QCD input on weak matrix elements in light nuclei
ill be essential for constraining EFTs and phenomenological models capable of describing the experimentally-relevant
edium-mass nuclei and grounding predictions for neutrino-nucleus scattering in the SM [21].
Future calculations of hadronic parity-violating transitions will also be useful in understanding broader aspects of the

eak interactions in nuclei [581,609]. Extensions of such studies to the anapole moment [610] that corresponds to a P-odd,
-even, transverse spin-dependent interaction with an external EM field will be valuable in the context of understanding
tomic and nuclear parity-violation experiments and constraining parity-violating pion–nucleon and nucleon–nucleon
nteractions.

. Neutrinoful and neutrinoless double-β decays

Neutrinoful double-β decays of nuclei of atomic number A and proton number Z , (A, Z) → (A, Z + 2) e−e−ν̄eν̄e,
re the rarest subatomic processes observed experimentally. They serve as intricate tests of our understanding of the
hysics of the weak interactions of nuclei and enable probes of deficiencies in that understanding. These decays occur
hrough two SM weak transitions and are only observable in the handful of nuclei where single-β decay is energetically
orbidden. Using sensitive experimental techniques, 2νββ has been observed for about a dozen nuclei, with half-lives
∼ O(1021) yr [611]. The neutrinoless decay mode, (A, Z) → (A, Z + 2) e−e−, is also sought in experiment. This mode

requires lepton number violation (LNV) by two units; since the difference between baryon number B and lepton number
L is conserved in the SM, observation of this (B − L)-violating process would imply new physical principles in nature
and potentially elucidate a central aspect of the origin of the matter-antimatter asymmetry of the universe. Furthermore,
an observation of this process would immediately imply that neutrinos are Majorana particles [612], and could provide
insight into the absolute scale of neutrino masses and the mechanism(s) for neutrino mass generation. Consequently,
an extensive program of experiments [613–625] have sought, and continue to seek, evidence for 0νββ decays. At this
time, the 0νββ lifetime of 136Xe is bounded by t0ν1/2 > 1.07 × 1026 yr [617], and next-generation, ton-scale, experiments
im to increase sensitivity by up to two orders of magnitude. A recent summary of constraints on the combination
ββ =

⏐⏐∑
i U

2
eimi

⏐⏐ as a function of mlightest = mini mi is reproduced in Fig. 15. Here, mi are the neutrino masses and U is
the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [626,627]. Note that in obtaining these constraints, it is assumed
that the primary mechanism for the 0νββ decay is that involving the light neutrinos coupling to matter through the
left-handed weak currents of the SM. Other mechanisms are possible, as discussed below, and each scenario requires
certain nuclear matrix elements to be constrained from theory.

For both 2νββ and 0νββ decays, critical components in determining the decay rate are the nuclear matrix elements
of the interactions that give rise to the decay. In recent years, LQCD studies of 2νββ and 0νββ decay matrix elements in
various scenarios have begun and will be discussed below. Combined with EFT methods and phenomenological models,
these calculations promise to better constrain nuclear inputs for these processes. Refs. [611] and [628] provide a more
comprehensive review of the connections of this LQCD effort to nuclear many-body approaches and phenomenology.

5.1. Neutrinoful double-β decay

The 2νββ decay mode is a crucial test of our understanding of weak interactions in nuclei. In particular, deviations of
2νββ rates from the naive scaling from single-β decay are observed and these differences are difficult to incorporate
in phenomenological nuclear models [611]. Achieving controlled predictions of 2νββ decay rates from the SM is a
challenging goal, as the nuclei which undergo this decay are too large for the direct application of LQCD in the foreseeable
future. On the other hand, the more phenomenological many-body methods which have so far been applied to this
problem have significant model-dependent uncertainties that are difficult to quantify. To improve the reliability of
these predictions, a promising path is to use LQCD to constrain and test EFTs and phenomenological models that
are able to access experimentally-relevant nuclei. Initial steps have recently been made toward this goal with the
first LQCD calculation of the second-order weak double-β decay matrix element of the two-nucleon system, nn →

ppe−e−ν̄eν̄e [39,40]. Future calculations of this and other few-body 2νββ decay matrix elements, that are sufficiently
precise and systematically controlled, will allow the free parameters of nuclear EFTs and phenomenological models to be
constrained from LQCD. Through this approach, the model dependence that exists beyond the g2 contributions in current
A
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Fig. 15. Constraints on, and expectations for, the quantity mββ (defined in the text) and the lightest neutrino mass, mlightest . The pink and green
egions show the allowed values consistent with neutrino-oscillation phenomenology for both the normal (NH) and inverted (IH) hierarchies of
eutrino masses. In the normal hierarchy, the two neutrino masses with the smaller splitting are smaller than the third mass, while the inverted
ierarchy refers to the opposite scenario. The blue and gray bands show the limits on mββ from searches using various nuclei. The width of these

bands indicates estimated uncertainties in relating bounds on half-lives to mββ , which are dominated by uncertainties in the requisite nuclear matrix
elements.
Source: Figure from Ref. [617].

many-body calculations of 2νββ decay rates will be reduced, and the associated uncertainties will be quantified more
reliably.

The second-order weak interaction responsible for 2νββ is dominated by the Gamow–Teller (axial–vector) piece
of the weak current since the Fermi (vector) piece is suppressed by isospin symmetry. Neglecting lepton-mass and
isospin-breaking effects, the inverse half-life of the neutrinoful double-β decay is expressed as [611]

[t2ν1/2]
−1

= G2ν(Ei − Ef , Zi)|M2ν
GT|

2
, (80)

here G2ν(E, Z) is a known phase-space factor [629,630], Zi is the proton number of the initial nuclear state, and Ei(f ) is
the energy of the initial (final) state. The matrix element M2ν

GT is defined by the time-ordered product of two axial–vector
currents between the initial and final states, i and f , as

M2ν
GT = 6 ×

1
2

∫
dt d3x d3y ⟨f |T

[
J+3 (x⃗, t)J+3 (y⃗, 0)

]
|i⟩ = 6

∑
n

⟨f |J̃+3 |n⟩⟨n|J̃+3 |i⟩
En − (Ei + Ef )/2

, (81)

where the spatial component of the ∆I3 = 1 zero-momentum axial–vector current in the x3-direction is expressed as

Ja3 (x) = q̄(x)
γ3γ5

2
τ aq(x), J̃a3 =

∫
d3x Ja3 (x⃗, 0), (82)

here τ denotes a Pauli matrix in isospin space, and τ+
=

1
√
2

(
τ 1 + i τ 2

)
.21 In Eq. (81), the complete set of zero-

omentum energy eigenstates is indexed by n, and the factor of 6 in M2ν
GT is a consequence of rotational symmetry

nd the normalization convention of the currents.
In Refs. [39,40], the first LQCD calculation of M2ν

GT was presented, focusing on the nn → ppe−e−ν̄eν̄e transition. While
his transition is not observed in nature, the matrix element is well defined and occurs as an off-shell subprocess in
ouble-β decays of larger nuclei. In this first calculation, many of the systematic uncertainties of LQCD methods were
stimated rather than quantified: electromagnetism was neglected, a single lattice spacing and volume were used, and
egenerate up, down, and strange quark masses corresponding to a larger-than-physical pion mass of mπ = 806 MeV
ere used for computational expediency. While these systematics need further exploration, already this work brought
o light an important qualitative conclusion regarding the importance of contributions to the double-β decay of nuclei
hat do not enter single-β decays, namely the isotensor axial polarizability, β (2)

A , of the 1S0 two-nucleon system. This is an

21 Note that this normalization is different by a factor of
√
2 to that used above Eq. (67) in Section 4.1, in order to match the conventions of

Refs. [39,40].
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nalog of the electric polarizabilities discussed in Section 3 and is defined through

1
6
M2ν

GT(nn → ppe−e−ν̄eν̄e) = β
(2)
A −

|⟨pp|J̃+3 |d⟩|
2

Epp − Ed
, (83)

.e., explicitly removing the Born contribution involving an intermediate deuteron from the Gamow–Teller amplitude.
his isotensor axial polarizability is an intrinsically two-nucleon effect. Theoretical calculations of double-β decay rates
ith fully quantified uncertainties will require constraint of the isotensor axial polarizabilities of nuclei. Refs. [39,40] also
utlined how LQCD can provide input to many-body methods by constraining second-order electroweak properties of
ight nuclear systems through determining the leading ∆I = 2 LEC of pionless EFT.

In Refs. [39,40], the matrix elements relevant to 2νββ were determined via the background-field technique discussed
in Section 2.1.2. Because of the isotensor (∆I = 2) nature of the nn → pp transition, and because only a single insertion
f the ∆I = 1 axial-current operators is allowed on any single quark line, no disconnected contractions of quark fields are
equired to evaluate the relevant axial-current matrix elements. The required matrix elements are therefore constructed
rom correlation functions formed from propagators computed in a background field corresponding to a single axial-
urrent insertion, as described in Section 2.1.2. For an axial current Ja3 (x), expanding the background-field correlation
functions from Eq. (33) to second order in the insertion of the current leads to a form analogous to Eq. (39), with the
nserted operator being Ja3 (x). The second-order term in the field strength, proportional to λ2u, can be extracted from
nalysis of calculations of the background-field correlation functions at multiple field strengths λu, while an analogous
rocedure can be followed for the response to a d-flavored external field. The background-field correlation function
efined in this way involves sums over the insertion times t{1,2} of the two axial currents, which is sufficient for a
etermination of the matrix element of the nn → pp transition. More refined methods with limited time windows of
nsertion will likely be necessary in extensions of this approach to calculations of the double-β decay transitions of larger
uclei, and at lighter values of the quark masses where the spectra of excitations with the same quantum numbers in the
nitial, intermediate, and finals states becomes more dense.

Using the isospin relation:

⟨pp|J+3 (x)J+3 (y)|nn⟩ = ⟨np|J (u)3 (x)J (u)3 (y)|np⟩ −
1
2
⟨nn|J (u)3 (x)J (u)3 (y) + J (d)3 (x)J (d)3 (y)|nn⟩, (84)

he ∆I3 = 2 correlation function of relevance to the nn → pp transition can be extracted from flavor-diagonal background
ields in which the extended propagators defined in Section 2.1.2 only include a single current insertion. Consequently,

Cnn→pp(t) = a11
∑
x⃗,y⃗,z⃗

t∑
t1,2=0

⟨0|χpp(x⃗, t)T
[
J+3 (y⃗, t1)J+3 (z⃗, t2)

]
χ†
nn(0)|0⟩. (85)

can be extracted by combining the coefficients of the terms quadratic in the field strength in Eq. (39) and its d-flavored
nalog using the state combinations prescribed in Eq. (84). The use of the background field allows for straightforward
valuation of the large number contractions implicit in Eq. (85). Inserting three complete sets of states between the source
nd the currents, between the two currents, and between the sink and the currents, Eq. (85) can be written as

Cnn→pp(t) = 2V
∑
n,m,l′

⟨0|χpp|n⟩⟨m|χ†
nn|0⟩e

−Ent ⟨n|J̃
+

3 |l′⟩⟨l′|J̃+3 |m⟩

El′ − Em

×

(
e−(El′−En)t − 1

El′ − En
+

e(En−Em)t − 1
En − Em

)
, (86)

here the zero-momentum energy eigenstates with the quantum numbers of the pp, nn and deuteron systems are denoted
s |n⟩, |m⟩, and |l′⟩, respectively.22 El′ and En are the energies of the l′th and nth states in the spin-triplet and spin-
inglet channels. Once isolated, the time dependence of this correlation function allows the short-distance isotensor axial
olarizability, defined in Eq. (83), to be extracted. The long-distance contribution from the intermediate-state deuteron
ole is determined by the square of the magnitude of the single-current matrix element ⟨pp|J̃+3 |d⟩, and can be extracted
ost precisely from the linear response to the background field in Eq. (39) as discussed in the previous section. By forming
ppropriate ratios [39,40], the ‘‘short-distance’’ combination of contributions from intermediate states other than the
euteron can be extracted, corresponding to the isotensor axial polarizability β (2)

A . Together, these combine to give the
ull double Gamow–Teller transition matrix element.

The energy gaps at the large quark masses used in Refs. [39,40] were such that the above separation between the
arious terms could be cleanly performed. However, at smaller quark masses (including the physical values), difficulties
ill arise in this method. Notably, the initial and final states will no longer be bound, complicating the relationship
etween the finite-volume bi-local matrix elements and the infinite-volume transition amplitudes, so the formalism
resented in Ref. [261] will be required.

22 Eqs. (85) and (86) have a different normalization than that in Refs. [39,40], for consistency with the choices in earlier sections.
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Fig. 16. The correlation function corresponding to the nn → pp transition at second order in the axial background field in the dibaryon pionless EFT
formalism. The small light (dark) gray circles denote the isotriplet (isosinglet) strong dibaryon coupling to two nucleons. The dressed (by s-wave
strong interactions) isotriplet (isosinglet) dibaryon propagator is represented by the thick dashed light (dark) gray lines, while the nucleon propagator
is shown with thin black lines. Finally, the doubly-weak dibaryon coupling to the background field (∼ h2,S ) is represented by the crossed square.
Source: Figure from Ref. [40].

The double Gamow–Teller transition matrix element for the nn → pp process can be used to constrain LECs in EFT
descriptions of the same system. As discussed in Section 2.2.3, with that achieved, the potentially key contribution from
the isotensor axial polarizability can be included in phenomenological models and EFT-based many-body calculations
of the decay rates of the larger nuclei that are used in experiment. For LQCD calculations undertaken with the large
quark masses of Refs. [39,40], and the low-energy kinematic of this process, it is natural to consider a pionless-EFT
description [507,559]. In Refs. [39,40], the dibaryon formulation of the pionless EFT [507,559] was used to match the LQCD
results for the axial polarizability at mπ = 806 MeV to the LECs of the EFT characterizing the second-order response of
the dibaryon (representing the two-nucleon isosinglet or isotriplet systems) to an axial–vector background field. A similar
framework for matching pionless EFT to LQCD correlation functions for the double-β decay process was developed with
nucleon degrees of freedom in Ref. [261].

At LO in the EFT, the interactions between the dibaryon field and the background field are momentum independent,
and at first order in the background-field strength they are of the following form [557,558,631]:

L(1)
= −

gA
2
N†σ3

[
W−

3 τ
+

+ W 3
3 τ

3
+ W+

3 τ
−
]
N

−
l1,A

2MN
√
rsrt

[
W−

3 t†3 s
+

+ W 3
3 t

†
3 s

3
+ W+

3 t†3 s
−

+ h.c.
]
, (87)

here the superscript (i) on the Lagrangian indicates the order of the terms in the background field strength. Here, W a
i

epresents the background field, with a (i) denoting the isovector (vector) indices, and W±
µ ≡ (W 1

µ ± iW 2
µ)/

√
2, N is

the nucleon field, sa is the ath isospin component of the isotriplet dibaryon field, and tj is the jth spin component of the
isosinglet dibaryon field. σ and τ refer to Pauli matrices in spin and isospin spaces, respectively. l1,A is the axial coupling of
the dibaryon (characterizing the transition between the isotriplet and isosinglet channels).23 MN is the nucleon mass and rs
(rt ) is the s-wave effective range in the isotriplet (isosinglet) two-nucleon channel. At second order in the background axial
field and LO in the EFT momentum expansion, the only short-distance contribution to the nn → pp isotensor transition
is

L(2)
= −

h2,S

2MN rs
(W+

3 )2s+†s−, (88)

rising from coupling to an I = 2, I3 = 2 combination of the background field. Note that the coupling h2,S only contributes
o, and can only be constrained from, ∆I = 2 processes such as the nn → pp transition amplitude.

The various interactions with the axial background field give rise to the nn → pp correlation function at second
rder in the background field. The contributions to this correlation function are shown diagrammatically in Fig. 16. The
inite-volume correlation function can be expressed using a similar expansion, but with a cubic spatial volume with
BCs assumed. The time-momentum representation of the correlation function when Wick-rotated to Euclidean space

23 This is the counterpart of L1,A in the nucleonic formulation that was introduced in Section 4. For a relation between the two couplings, see
e.g., Ref. [225].
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orresponds to the LQCD correlation function obtained at the same order in the background field strength. A substantial
enefit of a LQCD study performed at a large pion mass is the bound nature of both the di-neutron (proton) and the
euteron, making the matching relation between finite and infinite volume exact up to exponential corrections in volume
hat are expected to be at the percent level in the study of Refs. [39,40]. Furthermore, at the threshold kinematics that are
onsidered, no intermediate two- or more-hadron states besides a bound deuteron contribute to the non-local amplitude,
aking the matching between Euclidean and Minkowski correlation functions straightforward, see Refs. [40,259,261].
onsidering these features, taking the same ratio of the nn → pp transition correlation function to the zero-field two-point

function as done for the LQCD calculation, and taking the second derivative with respect to the external-field strength,
yields an expression that can be matched precisely to the LQCD result. This leads to a matrix element that can be expressed
as

Mnn→pp = −
|gA(1 + S) + L1,A|

2

∆
+

Mg2
A

4γ 2
s

− H2,S . (89)

he quantities L1,A and H2,S are directly related to the correlated two-nucleon single- and two-axial couplings l1,A and
h2,S , respectively (see Refs. [39,40] for further details), γs is the nn binding momentum,∆ is the energy difference between
the dineutron and the deuteron as defined after Eq. (72), and S is a known SU(4) Wigner symmetry-breaking factor.

The LECs in Eq. (89) can be constrained using the LQCD calculations of Refs. [39,40]. The first term corresponds to
the deuteron pole and provides ∼ 90% of the full matrix element, with the remaining contributions from H2,S and the
similarly-sized g2

A term. Explicitly, the correlated two-nucleon doubly-weak axial coupling of the pionless EFT in the
dibaryon approach is H2,S = 4.7(1.3)(1.8) fm at mπ = 806 MeV, where the two uncertainties are from statistical and
systematic effects. This result suggests that the contribution from the new short-distance coupling H2,S may play an
important role in analyses of double-β decay processes of larger nuclei. The numerical value, however, remains unknown
at the physical values of the quark masses and will be the subject of future LQCD studies.

5.2. Neutrinoless double-β decay

For light Majorana neutrinos, neutrinoless double-β decay corresponds to weak interactions that are separated over
length-scales that are significantly larger than the intrinsic QCD length scale, Λ−1

QCD. In this case, the non-locality of the
weak interactions must be accounted for in LQCD calculations. A second possibility is that the ∆I = 2 LNV interactions
arise from physics at energy scales that are considerably above the electroweak scale, ΛLNV ≫ MW . At the hadronic
scales relevant for LQCD calculations, this high-scale physics can be integrated out, resulting in the generation of local
operators beyond those in the SM. In this context, the SM forms the renormalizable sector of the so-called Standard Model
Effective Field Theory (SMEFT) that additionally includes an infinite tower of higher-dimensional operators, O(d)

n , that are
suppressed by powers of the scale, Λ, of BSM dynamics [632,633]:

LSMEFT = LSM +

∑
d≥5

∑
n

C (d)
n

Λd−4 O(d)
n , (90)

here d is the operator dimension and the C (d)
n are Wilson coefficients. The Weinberg operator that provides the simplest

mechanism for generation of a neutrino Majorana mass term enters at d = 5. In various BSM scenarios, Λ can be
anywhere from the TeV scale to the GUT scale,ΛGUT ∼ 1016 GeV. Recent reviews [611,628,634] provide more details on the
phenomenological aspects of 0νββ; here, the focus is on LQCD calculations relevant for both the light Majorana-neutrino
exchange scenario and the local-operator scenario.

The EFT description of the 0νββ decay at the nucleon level originates in Ref. [635] in the context of short-distance LNV
operators that contribute to a LNV two-nucleon potential within the Weinberg power counting of nuclear forces [274,275].
Although formally not renormalizable order-by-order [366], such a treatment indicates that 0νββ decay of a π+ that
is exchanged between the nucleons is the LO contribution to the 0νββ two-nucleon potential, requiring constraints
on the relevant pion matrix elements. At NLO, the LNV pion–nucleon coupling contributes, requiring the evaluation
of the relevant matrix elements between the neutron and the proton–pion states. At NNLO, the contact two-nucleon
LNV operator contributes, necessitating the evaluation of the matrix element in the two-nucleon states. Recently, it was
shown [286] that Weinberg power counting for this process breaks down due to UV divergences in s-channel loops
involving neutrino exchange. Consequently, the contact two-nucleon LNV operator must enter at LO to absorb these
divergences.24 LQCD determinations of the three classes of matrix elements (pion matrix elements, mixed pion–nucleon
matrix elements, and two-nucleon matrix elements) in both short-range and long-range 0νββ scenarios will be required
to confirm the suggested power counting of Ref. [286], and to constrain the associated new short-distance LECs. At present,
calculations have been performed for purely pionic transitions by several groups [145,146,148,149], with extensions to
the pion–nucleon and nn → pp cases currently in progress.

24 This is the same failure mode that precludes a chiral expansion for spin-singlet nuclear interactions using Weinberg’s power counting [265,266].
42



Z. Davoudi, W. Detmold, P. Shanahan et al. Physics Reports 900 (2021) 1–74

5

t
T
i

H
m

w

w

w

w
l
s
v
a

s
h
p
c
i
a
p

u
d
f

w
t
f
o
s

f

.2.1. Long-distance matrix elements for 0νββ
A light Majorana neutrino can propagate over distances that are resolvable at the QCD scale, and the non-locality of

he second-order weak process needs to be incorporated into the evaluation of the corresponding QCD matrix elements.
his leads to more complicated calculations than those for the 2νββ process discussed in Section 5.1, as the 0νββ process
ncludes integration over the momentum carried by the neutrino propagator.

The 0νββ process between an initial state i and final state fe−e− occurs through two insertions of the ∆I = 1 weak
amiltonian HW , that arises from integrating out SM physics above the mass of the bottom quark. This leads to the bi-local
atrix element∫

d4x d4y ⟨fee| T [HW (x)HW (y)] |i⟩ = 4mββG2
FV

2
ud

∫
d4x d4y Hαβ (x, y)Lαβ (x, y), (91)

here Vud is a Cabbibo–Kobyashi–Masakowa matrix element, the leptonic tensor is given by

Lαβ ≡ ēL(p1)γαSν(x, y)γβeCL (p2)e
−ip1·xe−ip2·y (92)

here p1,2 are the electron momenta, eL is an electron spinor and eCL is its charge conjugate, and the hadronic tensor is

Hαβ ≡ ⟨f | T
[
JαL(x)JβL(y)

]
|i⟩ , (93)

ith JµL(x) = q̄u,L(x)γµqd,L(x) for left-handed quark fields. In Eq. (92),

Sν(x, y) =

∫
d4q

(2π )4
eiq·(x−y)

q2
, (94)

here the small mass of the (SM) neutrino in this scenario is neglected in the denominator. The convolution with the
eptonic tensor and the integration over spacetime mean that evaluations of the hadronic tensor are required at all
pacetime points. Since LQCD calculations are performed in finite-volume Euclidean spacetime, extracting the infinite-
olume Minkowski-space matrix elements requires a non-trivial matching, particularly when the initial, intermediate,
nd/or final states are multiple hadrons.
The 0νββ matrix element that induces a transition between an initial π− state and a final π+e−e− state has been

tudied in Refs. [147–149]. This transition is unphysical due to the electron masses and the degeneracy of the π± states;
owever, it can contribute in 0νββ decay of physical nuclei and can be studied at unphysical kinematics where all external
articles are at zero momentum (note that the corresponding matrix element is equivalent to the kinematically-allowed
harge-exchange zero-momentum scattering process π−e+

→ π+e−). This is the simplest 0νββ process to investigate
n LQCD as, unlike the two-nucleon case (nn → ppee), there is no exponential StN problem at increasing Euclidean time,
nd it only involves single hadrons in the initial and final states. In addition, there are chiral perturbation theory (χPT)
redictions for this low-energy process that depend on a single LEC at NLO, namely gππν [148,636].
Two independent studies of this process are presented in Refs. [147–149] using domain-wall fermions. The calculations

se techniques that build upon studies of rare kaon decays by the RBC collaboration [637,638] and the 2νββ process
iscussed above. For these particular initial and final states, the hadronic matrix elements of interest can be determined
rom the correlation function

Cπ→πee
µν (t+, x, y, t−) =

⟨
T
[
χπ+ (t+)JµL(x)JνL(y)χ

†
π− (t−)

]⟩
(95)

here χπ+ (t) = a3
∑

x⃗ q̄u(x⃗, t)γ5qd(x⃗, t) and χπ− = χ
†
π+ are interpolating operators for zero-momentum pion states, and

erms with µ ↔ ν and x ↔ y are implied by the time-ordered product. After integrating out the quarks, this correlation
unction produces different types of contractions as shown in Fig. 17. By convolving with the lepton tensor, integrating
ver the spatial positions of the currents and over some range of current insertion times, and inserting a complete set of
tates between the two currents in Eq. (95), it can be shown that

Cπ→πee(t; T ) ≡ a8
∑
x⃗,y⃗

T∑
tx=0

T∑
ty=0

Lµν(x, y)Cπ→πee
µν (t+, x, y, t−)

Cπ (t)

∝

∑
n

⟨πee|HW |n⟩ ⟨n|HW |π⟩

En(En − mπ )

[
T +

e−(En−mπ )T − 1
En − mπ

]
(96)

or pions at rest, where T is the extent of the temporal integration window for the weak-current insertions and t =

|t+ − t−| is the π−
− π+ source–sink separation. To arrive at this expression, the current insertions are assumed to be

sufficiently far from the pion source and sink (t− ≪ 0 ≪ T ≪ t+) in order that excited-state contributions before and
after the integration window are negligible. The infinite tower of states contributing to the sum are: {|eν̄e⟩, |πeν̄e⟩, |n = 2⟩,
. . .}, with energies E ∼ me < mπ , E ∼ mπ and E > mπ , respectively (the particle content of the |n = 2⟩ and higher states
indicated by the ellipsis are not specified). For the lowest-energy state, the terms in the square brackets in Eq. (96) grow
exponentially with T and the matrix element is just the pion decay constant. For the second state, |πeν̄ ⟩, the term in the
e
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Fig. 17. Contractions for the π−
→ π+e−e− transition, (a) and (b), and for the π−π−

→ e−e− transition, (c) and (d). The solid blue and dashed
green lines represent down and up quark propagators respectively, and the circles correspond to the ∆I = 1 weak vertices. The dotted and solid
black lines represent the Majorana neutrino propagator and electron final states respectively.
Source: Figure modified from Ref. [628].

square brackets is approximately quadratic in T , while the remaining n ≥ 2 terms should behave linearly at large T . By
extracting these pieces individually, the matrix element governing 0νββ , i.e.,

Mπ→πee
=

∑
n

⟨πee|HW |n⟩ ⟨n|HW |π⟩

En(En − mπ )
, (97)

an be reconstructed, where HW is the weak Hamiltonian density appearing in Eq. (91). This is illustrated in Fig. 18 in the
approach of Ref. [149] (Ref. [148] and Ref. [149] use a similar overall approach but have technical differences, in particular
in the way the neutrino propagator is implemented). Knowledge of the matrix element at various different quark masses,
lattice spacings, and volumes is sufficient to determine the NLO χPT LEC

gππν (µ = 770 MeV) = −11.96(31), (π−π−
→ e−e−) [146]

= −10.89(28)(33)L(66)a, (π−
→ π+e−e−) [148]

= −10.78(12)(51), (π−
→ π+e−e−) [149] (98)

where the first uncertainty in each case is statistical and the others are due to systematic effects, either in combination
or broken into different contributions, as indicated by the subscripts a and L referring to lattice spacing and finite volume
uncertainties, respectively. The result of the preliminary study in Ref. [146] only includes a statistical uncertainty. These
values are in good agreement with each other and are more precise than, and in reasonable agreement with, the large-Nc
estimate gππν (µ)|µ=mρ= −7.6 [636,639].

The same second-order ∆I = 1 weak interactions also generate the π−π−
→ e−e− transition (the crossed-channel

analog of that discussed above). This transition is kinematically allowed but is not accessible experimentally. As with
π−

→ π+e−e−, however, it provides a useful theoretical arena in which to develop LQCD techniques for second order
processes. In Ref. [146], the amplitude for this transition in the light neutrino exchange scenario was investigated. Domain-
wall fermion ensembles with quark masses corresponding to pion masses mπ = 420 and 140 MeV were used, and, while
exploratory, this calculation demonstrated the feasibility of the methods used. As with π−

→ π+e−e−, there are two
types of contractions involved in constructing the LQCD correlation functions from which the transition amplitudes can
be determined; these are also shown in Fig. 17. An important complication in this calculation is that the initial state
is a two-particle state and the finite-volume state must be converted to the desired infinite-volume state using the
Lellouch–Lüscher factor [116,217]. This requires knowledge of the appropriate I = 2 ππ-scattering phase shifts, which
an be extracted from spectroscopic calculations of π−π− systems. As presented in Eq. (98), the results provide further
onstraints on gππ that are compatible with those obtained from the π−

→ π+e−e− transition amplitude.
ν
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Fig. 18. The integrated transition amplitude from Ref. [149] for an example ensemble before and after subtracting the vacuum state contribution in
Eq. (96) for fixed t (left). Also shown is the pion mass dependence of the matrix element normalized by the matrix element in the chiral limit, Sππ ,
s constrained by the chiral/continuum/finite volume extrapolation [149] (right). The dotted vertical line in the right panel indicates the physical
ion mass.
ource: Figures from Ref. [149].

.2.2. Short-distance matrix elements for 0νββ
As discussed above, if BSM physics contributes to 0νββ at scales above the electroweak scale (with or without light

ajorana neutrinos), then at lower scales the new physics can be integrated out and manifests through local composite
perators built from SM fields. A generic high-scale physics scenario will produce multiple different operators at low
nergies, of which the most phenomenologically relevant (having the lowest dimension) are the five four-quark scalar
perators, along with four negative parity counterparts.25 Using the basis of Ref. [145], the positive-parity operators can
e expressed as

O++

1+ =
(
q̄Lτ+γ µqL

) [
q̄Rτ+γµqR

]
,

O++

2+ =
(
q̄Rτ+qL

) [
q̄Rτ+qL

]
+
(
q̄Lτ+qR

) [
q̄Lτ+qR

]
,

O++

3+ =
(
q̄Lτ+γ µqL

) [
q̄Lτ+γµqL

]
+
(
q̄Rτ+γ µqR

) [
q̄Rτ+γµqR

]
,

O
′
++

1+ =
(
q̄Lτ+γ µqL

] [
q̄Rτ+γµqR

)
,

O
′
++

2+ =
(
q̄Lτ+qL

] [
q̄Lτ+qL

)
+
(
q̄Rτ+qR

] [
q̄Rτ+qR

)
, (99)

where the notation () or [] indicates which color indices are contracted together [640]. To determine the effects of
these operators on 0νββ rates in an EFT context [635,641,642], the matrix elements ⟨π+

|O++

i |π−
⟩, ⟨π+p|O++

i |n⟩, and
⟨pp|O++

i |nn⟩ are required. At present, only the pion matrix elements have been studied and these give access to a subset
of the relevant EFT LECs.

Ref. [145] presented a comprehensive calculation of these pion matrix elements, using multiple lattice spacings, lattice
volumes and a range of quark masses including those very close to the physical values. To extract the relevant matrix
elements, the four-quark operators are inserted between source and sink operators for the pion to build three-point
functions:

C (π )
3pt,O++

i
(ti, tf ) = a6

∑
x⃗,y⃗

⟨χπ+ (x⃗, tf )O++

i (0⃗, 0)χπ+ (y⃗, ti)⟩ , (100)

where χπ+ (x⃗, tf ) is an interpolating operator with the quantum numbers of the π+. The corresponding contraction is
shown in Fig. 19. Note that here the operator is kept at a fixed spacetime point while the source and sink pion interpolating
operators are inserted at arbitrary times, allowing for a complete exploration of the ti and tf dependence of this correlation
function for the cost of a single quark inversion sourced at the operator. Ratios

R(π )
3/2,O++

i
=

C (π )
3pt,O++

i
(ti, tf )

C (π )
2pt (ti)C

(π )
2pt (tf )

ti,tf →∞

∝ ⟨π+
|O++

i |π−
⟩, (101)

hich asymptote to the pion matrix elements of operators O++

i , can be formed by combining the above three-point
unction with the pion two-point correlation function, C (π )

2pt (t), Eq. (17). In Fig. 20, an example of this ratio calculated in
ef. [145] is reproduced, showing the clear ground-state plateaus obtained with this method.

25 The four-quark vector operators are also relevant in constructing the two-nucleon 0νββ potential as they couple the neutron state and the
pion-proton state, inducing LNV in the nn → pp transition at NLO in the power counting of Ref. [635].
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Fig. 19. Contractions for the π−
→ π+e−e− transition induced by short-distance four-quark operators. The solid blue and dashed green lines

represent down and up quark propagators, respectively, and the dark circle represents the ∆I = 2 operators introduced in Eq. (99). The solid black
lines represent the electron final states.
Source: Figure from Ref. [628].

Fig. 20. An example of the ratio of correlation functions, Ri ≡ R(π )
3/2,O++

i
, for the five relevant 0νββ operators on a near-physical pion-mass ensemble

ith a ≈ 0.12 fm (left). The horizontal bands are the ground-state contributions to Ri extracted from single-state fits. Interpolations/extrapolations
f the pion matrix elements (right). The bands represent the 68% confidence interval of the continuum, infinite-volume extrapolated values of the
atrix elements. The vertical gray band indicates the physical pion mass.
ource: Figures from Ref. [145].

After the matrix elements were extracted for different lattice spacings, masses, and volumes, extrapolations to the
ontinuum, physical pion mass, and infinite-volume limits were performed. These dependencies are determined by
PT [145,641,643] generalized to incorporate finite lattice-spacing corrections [644,645] and finite-volume effects [646].
o extract the phenomenologically-relevant matrix elements, the bare quark operators must be renormalized and evolved
o the appropriate scale for matching to particular BSM scenarios. As the scale is run between the electroweak and QCD
cales, some of the operators defined in Eq. (99) mix under renormalization, requiring consideration of the full matrix of
perators including the off-diagonal mixing. In Ref. [145], the relevant matrix of renormalization constants was computed
on-perturbatively following the Rome–Southampton method [647]. At the scale µ = 2 GeV in the MS scheme, that work
ound values of matrix elements that are in agreement with, and considerably more precise than, naive dimensional
nalysis estimates and also with indirect extractions from relations between π+–π−, K–K̄ and K → ππ matrix elements
or which results exist in the literature [641,643].

.3. Future impact

For both 0νββ and 2νββ , the existing LQCD studies described in the preceding subsections are stepping stones
oward constraining phenomenologically-relevant matrix elements in nuclei. Short- and long-range matrix elements
n pion states contribute to the LNV two-nucleon potential, but their effects might be of higher order [635,641,642].
or the neutrinoful nn → pp matrix elements, the constraints are as-yet at unphysically large quark masses, but new
hort-distance contributions that must be accounted for in future phenomenological studies have been identified.
Future studies using the approaches reviewed here have the potential to reduce the model dependence implicit in

henomenological calculations of double-β decay rates. Such LQCD studies are required in order to connect calculations of
ouble-β decay matrix elements to the SM; there are unknown LO LECs in the nuclear EFT for both decay modes [39,642]
hat so far can only be constrained through LQCD calculations. Nuclear EFTs used at present for double-β decay analyses
lso suffer from ill-defined power countings, whose numerical validity requires testing. Thus, even neglecting the
ystematic uncertainties inherent in the many-body methods built on top of nuclear EFTs, there are currently order-of-
agnitude uncertainties in theory predictions of the double-β decay matrix elements. Moreover, LQCD can provide a set
f benchmark quantities that phenomenological nuclear models can be compared with to constrain their input parameters
r to assess their predictive power and their ability to quantify uncertainties. While experimental observation of 0νββ
ould be a remarkable event, fully exploiting such an observation to reveal the underlying BSM physics mechanism will
equire precision calculations rooted in the SM.
46



Z. Davoudi, W. Detmold, P. Shanahan et al. Physics Reports 900 (2021) 1–74

a
m
A

q
t
p
t
a
m
A
i

6

o
t
d
t
a
l
m
e

s
o

w
d
S

Significant progress is required to achieve complete LQCD calculations of double-β decay matrix elements. As discussed
bove, performing the 2νββ LQCD calculation of Refs. [39,40], or analogous nn → pp 0νββ calculations, at physical quark
asses presents technical challenges related to the calculation of non-local matrix elements in finite volumes [260,261].
dditionally, these studies should be extended to larger nuclear systems; calculations in unphysical nnp → ppp or

nnn → npp systems as well as in nuclei such as 4H →
4Li and 6He →

6Be will better constrain the LECs in the nuclear
EFTs and phenomenological models capable of describing experimentally-relevant nuclei. Developments are needed in
both LQCD, nuclear EFTs, and the many-body methods based on them, in order for this to become a realistic prospect.
In particular, the issues of contraction complexity and noise discussed in Section 2 must be ameliorated to enable LQCD
calculations of these nuclear transitions, while the convergence properties and appropriate power countings of EFTs must
be better understood.

6. Nuclear matrix elements for beyond–Standard-Model physics

It is known that the Standard Model is not complete; definitive observational and experimental evidence confirms the
existence of dark matter, the dominance of matter over antimatter in the visible universe, and a small but non-zero mass
for neutrinos. In many phenomenologically-viable scenarios, BSM physics originates at very high energy scales, and in that
case, the SMEFT framework [648] (discussed in the previous section) can be built to encompass all BSM scenarios in which
the SM emerges as the appropriate low-energy EFT, with BSM physics entering through towers of higher-dimensional
operators with coefficients that depend inversely on the scale of new physics, see Eq. (90). SM matrix elements of various
operators in this framework then encode BSM interactions with the SM, and it is these matrix elements which must
be constrained to interpret the results of experimental searches for signals of new physics. To enhance their sensitivity,
experiments at the intensity frontier searching for signals of BSM physics often use targets constructed from nuclei of large
atomic number. In these cases, the critical SM theory inputs that are needed to optimally exploit experimental results
are therefore the nuclear, rather than nucleon, matrix elements of BSM operators. QCD matrix elements for BSM-physics
searches with nuclei thus fall into two classes: those for which the matrix elements of BSM operators in light nuclei are
themselves of phenomenological interest, and those for which matrix elements of larger nuclei are crucially required,
and where the impact of few-nucleon LQCD calculations is to provide key inputs and constraints for ab initio many-body
approaches to calculating the matrix elements of large nuclei, as discussed in Section 2.2.1.

To date, only a small number of matrix elements relevant to BSM physics have been calculated in LQCD for light
nuclei with A ≤ 4. In particular, the static responses of nuclei to scalar and tensor interactions have been calculated at
uark masses corresponding to a pion mass of mπ = 806 MeV, with ongoing studies at lighter quark masses. While
he systematic uncertainties in these studies are not yet fully controlled, the results are nevertheless of significant
henomenological interest. Knowledge of scalar-current nuclear matrix elements is key to interpreting the results of
errestrial dark-matter direct-detection experiments searching for weakly-interacting dark matter particles (WIMPs) with
spin-independent coupling to nuclei. The tensor current nuclear matrix elements determine the quark electric dipole
oment (EDM) contributions to nuclear EDMs and are necessary to interpret corresponding searches for BSM CP violation.
s these matrix elements are difficult to constrain using experiment, LQCD calculations provide key non-perturbative
nformation that is not accessible by any other method.

.1. Scalar matrix elements

The form of potential non-gravitational interactions between dark matter and SM particles is unknown and depends
n the BSM model considered [649]. Nevertheless, at low energy such interactions can often be parameterized using
he SMEFT; in most scenarios, operators mediating interactions between dark matter and quarks appear at operator
imension six and seven, and involve local quark bilinear operators [650]. Constraining the nuclear matrix elements of
hese operators from LQCD provides a non-perturbative connection between the SMEFT description and nuclear models
nd EFTs, and eventually many-body methods [651–658], since typically dark-matter direct-detection experiments involve
arge nuclei such as Xenon, Germanium, Iodine, and Argon [659–679]. Searches for sub-GeV dark matter, where dark-
atter interactions with nuclei are mediated by a new force carrier, have also been proposed based on small nuclei, for
xample using superfluid 4He [680–682].
Since the low-energy limit of a generic spin-independent interaction transforms as a scalar, a broad class of BSM

cenarios can be constrained by determinations of nuclear matrix elements of scalar currents. In this context, the leading
perators coupling spin- 12 dark matter χ with scalar quark bilinears can be expressed as

Lscalar
=

GF

2
χ̄χ

[
(a(u)S + a(d)S ) q̄q + (a(u)S − a(d)S ) q̄τ 3q + 2 a(s)S q̄sqs + · · ·

]
, (102)

here, as in previous sections, q = (qu, qd)T , and GF is the Fermi constant included to normalize the couplings of
ark matter to the quarks. In many BSM scenarios, such as neutralino WIMPs in supersymmetric extensions of the
M [683,684], these are the most important operators. Scalar–isoscalar gluonic operators that mix with q̄q are also
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mportant in some theories, such as models of technibaryon dark matter [685–687]. Nuclear matrix elements of the scalar
urrents J̃ (f )S =

∫
d3x q̄f (x⃗, 0)qf (x⃗, 0) define the nuclear sigma terms:

σ
(f )
Z,N ≡ g (f )

S (Z,N)mf ≡ ⟨Z,N|mf J̃
(f )
S |Z,N⟩, (103)

here N and Z are the neutron and proton numbers. While g (f )
S (Z,N) is renormalization-scale dependent, σ (f )

Z,N is not.
In the impulse approximation, low-energy nuclear observables are dominated by the contributions from individual

nucleons, and the nucleon sigma terms dictate those of nuclei:

σ
(f )
Z,N

⏐⏐
impulse = (N + Z)σ (f )

N , (104)

where σ (f )
N defines the nucleon sigma term for a given quark flavor, f . A combination of the u- and d-quark nucleon

sigma terms, σπN =
1
2 (mu + md)⟨N|J̃ (u)S + J̃ (d)S |N⟩, can be constrained by pion–nucleon scattering experiments, see

Ref. [688] for a recent analysis. They can also be calculated from LQCD with competitive precision; in the last five
years, computations with the physical values of the quark masses have been achieved with 10%–15% statistical and
systematic uncertainties [65,66,689–693], although results for σπN are in some tension with phenomenological analyses
f experimental data [694]. In particular, the community consensus average of Nf = 2 + 1 flavor LQCD calculations is
πN = 39.7(3.6) MeV (and σπN = 64.9(1.5)(13.2) MeV for Nf = 2+1+1 flavor calculations) [71], while the latest analyses

of experimental data yield σπN = 58(5) MeV [694]. Future more precise LQCD calculations will explore possible sources
of this tension. The strange-quark sigma term is best constrained from LQCD [65,66,689–691,693], with an average of
Nf = 2+1 flavor calculations giving σs = 52.9(7.0) MeV (and a less precise result, σs = 41.0(8.8) MeV, from Nf = 2+1+1
flavor calculations) [71], while heavy-quark contributions can be computed within the heavy-quark expansion (with LQCD
providing a consistency check for the charm quark contribution [693]). The impulse approximation, however, neglects
multi-body contributions to the sigma terms that will be present at some level. In many aspects of nuclear structure,
nuclear interactions modeled by meson-exchange currents in phenomenological models, and by higher-body operators
and exchange currents in EFTs, are found to modify the impulse approximation at the few-percent level. For the sigma
terms, however, it has been argued that such effects might be far more significant and, moreover, the Z and N dependence
of the nuclear sigma terms could be significantly modified from an impulse approximation [655,695,696]. In particular,
although such a dependence is not expected in chiral EFT using Weinberg power counting where two-body scalar currents
are subleading [654], inconsistencies in this power counting could remove this suppression in renormalizable EFTs, as seen
for other operators [285–287]. Clearly, the assumption of the impulse approximation must be tested, both to enable robust
interpretation of the results of ongoing and planned direct dark-matter detection experiments, and in order to optimize
the design of future experiments.

While at this stage the nuclear sigma terms of the large nuclei of experimental interest are not directly accessible
from LQCD because of computational limitations, the static responses of light nuclei with A ≤ 4 to scalar currents
can be computed. In particular, these quantities have been determined, via the Feynman–Hellmann theorem, from the
quark-mass dependence of the masses of light nuclei [697], and more recently for A ≤ 3 using a direct background-field
method [41]. All studies to date have significant systematic uncertainties arising, for example, from quark masses that
result in larger-than-physical values of the pion mass. Nevertheless, even the existing results are of phenomenological
interest; as discussed above, constraining the size of deviations from the impulse approximation is particularly important
to reliably convert limits on dark-matter–nucleus interaction cross-sections from experiments into a bound on the mass
of dark matter particles.

The first LQCD study of nuclear effects in the sigma terms was undertaken in Ref. [697], which focused on the light-
quark contribution. Assuming isospin symmetry (mu = md = m̄), the combined u and d quark contribution to the nuclear
sigma term can be expressed as

σπ (Z,N) = σ
(u+d)
Z,N = m̄⟨Z,N|J (u)S + J (d)S |Z,N⟩ = m̄

d
dm̄

EZ,N

=
[
1 + O

(
m2
π

)] mπ

2
d

dmπ

EZ,N , (105)

where EZ,N is the energy of the nuclear ground state, and the second line follows from the Gell-Mann–Oakes–Renner
relation [698,699] (Ref. [697] included a conservative uncertainty to account for deviations in that relation). In terms of
the binding energy of the nucleus, BZ,N = AMN − EZ,N , where MN is the isospin-averaged nucleon mass and A = N + Z ,
this can be re-expressed as

σ
(u+d)
Z,N = Aσ (u+d)

N + σ
(u+d)
BZ,N

= Aσ (u+d)
N −

mπ

2
d

dmπ

BZ,N . (106)

n this way, the light-quark nuclear sigma terms can be constrained using LQCD calculations of only the nucleon mass
nd the binding energies of light nuclei as a function of pion mass. Because of the high computational cost of LQCD
alculations of nuclei, the binding energies of light nuclei have, however, only been calculated at a few, widely-separated,
arger-than-physical, values of the pion mass. Given this status, the finite differences used in Ref. [697] to determine the
lope of the binding energies with respect to the pion masses resulted in large uncertainties in the nuclear sigma terms.
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evertheless, the conclusion of that study was that nuclear effects in the light-quark sigma terms of nuclei with A ≤ 4
re at the few- to 10-percent level at mπ = 660 MeV, and at the few-percent level at mπ = 330 MeV.
More recently, the complete flavor-decompositions of the nuclear sigma terms for A ∈ {2, 3} nuclei were calculated

rom LQCD for the first time using the background-field method described in Section 2.1.2 to compute the matrix elements
irectly [41], albeit also at larger-than-physical values of the quark masses corresponding to mπ = 806 MeV, and in the
imit of SU(3)f -flavor symmetry. Moreover, in addition to the scalar matrix elements, axial and tensor Dirac structures
ere investigated. Explicitly, matrix elements of operators of the form q̄ΓXΛ

(j)q were calculated, where q = (qu, qd, qs)T ,
∈ {S, A, T } for Dirac structures ΓS = 1, ΓA = γ5γµ, ΓT = iσµν , and flavor structures Λ(3)

≡ diag(1,−1, 0),
(8)

≡ diag(1, 1,−2), and the identity Λ(0)
≡ diag(1, 1, 1). In the notation of Ref. [41] (also as used above in Eq. (103)),

hese nuclear matrix elements are quantified by couplings g (f )
X times simple kinematic factors. Disconnected (equivalently

or non-strange nuclei in the SU(3)f limit, the strange-quark) contributions, are defined by the difference g (disc)
X = g (s)

X =

g (0)
X − g (8)

X )/3. Of primary physical interest in the BSM-phenomenology context are the nuclear effects in these matrix
lements; to isolate multi-nucleon contributions, the ratios of the nuclear matrix elements in a given nucleus A to those
n the proton can be calculated and compared with naive single-nucleon (NSN) estimates obtained using nuclear ground
tates with non-interacting nucleons occupying only the lowest shell-model states [571,572,700–702]. Defining the
atrix-element ratios as R(f )

X (A) = g (f )
X (A)/g (f )

X (p), the differences∆R(f )
X (A) = R(f )

X (A)−R(f )
X (A)NSN provide a measure of many-

ody nuclear effects in the matrix elements, since the NSN estimates R(f )
X (A)NSN correspond to the impulse approximation

or each nuclear matrix element and are determined only by the baryon number, spin, and isospin quantum numbers
f the nuclear state. Fig. 21 summarizes the key results of Ref. [41]; multi-body effects in the nuclear matrix elements
re at the few-percent level, except in the scalar matrix elements where deviations from the impulse approximation
s large as ∼ 10% are observed. While the nuclear effects in the axial matrix elements are found to be small in light
uclei, it is known that these effects scale with the size of the nucleus, becoming as large as 30% in medium-mass nuclei
571–573]. With the nuclear effects in the scalar matrix elements found to be at the 10% level even in light nuclei, this
omparison provides an indication of the significant level of uncertainty in the scalar nuclear matrix elements in isotopes
f relevance to experiments. The strange-quark contributions to axial and tensor nuclear matrix elements are negligible,
ut are significant for the scalar matrix elements, which is consistent with studies of the same matrix elements in the
roton [703–705]. Moreover, for each Dirac structure, the nuclear modifications follow a scaling that is approximately
ictated by the magnitude of the corresponding charge.
In order to constrain the sigma terms of the large nuclei used in dark matter direct-detection experiments, these LQCD

alculations of the relevant matrix elements in small nuclei must be matched to many-body methods based on EFTs
r phenomenological models [655,696], as discussed in Section 2.2.3. Computations of two-body systems can be used
o determine the dominant multi-body operators, and the effects of these contributions can be verified in few-nucleon
ystems before the many-body techniques are used to extrapolate to the large nuclei relevant for experiment. Executing
his program will require further systematic control of the LQCD calculations, and, in particular, studies with the physical
alues of the quark masses. Nevertheless, the existing calculations are already of some phenomenological value; the large
uclear effects which are observed in the scalar matrix elements urge caution in using the impulse approximation in the
nterpretation of direct searches for dark matter. If this feature persists in studies at the physical values of the quark
asses and with with fully-controlled uncertainties, nuclear effects in these quantities should not be neglected.

.2. Tensor matrix elements

The observed matter-antimatter asymmetry in the universe provides a tantalizing hint of possible new physics; it is
oughly nine orders of magnitude larger than that which could be created by purely SM interactions if the universe
as matter-antimatter symmetric at the end of the inflationary epoch [706]. New interactions which violate change
onjugation (C) and parity (P) symmetry, however, are naturally generated in many BSM scenarios and could explain this
bservation [707–709]. Permanent EDMs of fundamental and composite particles are CP violating as well as time-reversal
ymmetry (T) violating, and searches for such EDMs in systems ranging from free leptons to condensed-matter systems
rovide some of the most powerful probes of SM and BSM CP violation [707,708]. Since EDMs could have non-trivial
sospin dependence, their measurement or constraint in different systems [708,710–712] are a key target of current and
lanned experiments [713–715] aiming to place direct constraints on BSM physics. In particular, it was argued more
han 30 years ago that T-violating nuclear forces could substantially enhance the EDMs [716] of nuclei. EFTs describing T
iolation in nuclei are under active investigation [287,707,717–719].
In SMEFT, T-violating quark-gluon interactions arise at dimension four, but the coupling θ̄ describing these interactions

s constrained by neutron and nuclear EDM searches to be |θ̄ | ≲ 10−11 [709]. Assuming that θ̄ is suppressed due to
eccei–Quinn symmetry [720], or another source of fine-tuning, the next sources of T violation in SMEFT arise from quark
DM operators at dimension five. The quark EDM contributions to nuclear EDMs are encoded in tensor matrix elements
hrough the dimension-five CP-odd operator q̄f σµν F̃µνqf (where F̃µν =

1
2ϵ
µνρσ Fρσ is dual to the EM field-strength

ensor Fµν). The tensor matrix elements of nuclei are thus needed to interpret proposed searches for EDMs in nuclear
ystems [707,708,710,713–715,717,721,722]. As for the scalar matrix elements discussed in the previous subsection, the
ensor charges of the nucleon and of light nuclei, i.e., the forward matrix elements of the tensor current discussed above,
an be calculated from LQCD. For the up- and down-quark tensor charges of the nucleon, LQCD calculations have achieved
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Fig. 21. Differences ∆RX between LQCD calculations of the ratios R(f )
X (A) = g (f )

X (A)/g (f )
X (p) for nuclear matrix elements g (f )

X (A) of nuclei A with Dirac
tructure X = {S, A, T } and flavor combination f , from their values calculated using nuclear ground states with non-interacting nucleons occupying
nly the lowest shell-model states. The strange-quark matrix elements are small and indistinguishable from zero for the axial and tensor matrix
lements. Quantities that are identically zero are shown by lines at zero, and there is no associated uncertainty band.
ource: Data from Ref. [41].

precision of 3–7% [71], while the strange-quark nucleon tensor charge is constrained to be much smaller than those of
he light quarks [723]. In Ref. [41], nuclear effects in the tensor charges of light nuclei with A < 4 were resolved for the
irst time and found to be at the few-percent level in calculations with unphysically large values of the quark masses
orresponding to mπ = 806 MeV. These nuclear effects were seen to be similar to the analogous nuclear effects in axial
atrix elements, but far smaller than those in the scalar matrix elements. Fig. 21, using data from Ref. [41], summarizes

hese results. As well as their relevance to experimental searches for EDMs of light nuclei, the tensor charges also provide
he hadronic input to dark-matter–nucleus scattering cross-sections in dark-matter models that generate tensor quark–
ark-matter interactions [650]. As discussed in Section 6.1, many direct searches for dark matter are undertaken using
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uclei with A ≫ 4; QCD-informed predictions of the tensor matrix elements of these large nuclei will require not only
alculations of the nuclear tensor matrix elements with controlled systematic uncertainties, but also the matching of the
atrix elements for light nuclei to many-body methods based on EFTs and phenomenological models, as discussed above.

f the small nuclear effects revealed in the tensor charges of light nuclei persist in controlled calculations at the physical
uark masses, however, one might expect that impulse approximation will provide a better estimate for the cross-sections
f scattering of models with tensor quark–dark-matter interactions than for spin-independent scattering, governed by the
calar matrix elements.

.3. Baryon-number violation

The matter-antimatter asymmetry of the universe discussed above also motivates consideration of baryon-number-
iolating interactions, or more precisely interactions that violate the SM symmetry B–L, in the early universe [724].
nteractions that violate L and B–L could give rise to a lepton asymmetry that is transferred to the baryon sector through
lectroweak sphalerons [725]. Low-energy signatures of such interactions are constrained by 0νββ searches as discussed
n Section 5. Alternatively, the baryon asymmetry could be generated through B and B–L violating interactions. These
nteractions give rise to distinct experimental signatures including proton decay, neutron–antineutron (nn̄) oscillations,
nd B-violating nuclear decays. Proton decay and |∆B| = 1 nuclear decays receive dominant contributions in SMEFT from
imension-6 operators that preserve B–L and, depending on the order of the electroweak phase transition, are therefore
ot directly relevant for baryogenesis, although they are still of interest for constraining Grand Unified Theories (GUTs)
n particular. LQCD calculations of |∆B| = 1 matrix elements of the proton have a long history dating back to efforts
o constrain the minimal SU(5) GUT in the 1980s [726]. Recently, direct calculations of the nucleon-to-meson transition
mplitudes required to relate BSM physics parameters to the rates of decay processes, such as p → π0e+, have been

performed using nearly-physical values of the light quark masses [727,728]. Indirect calculations of proton-to-vacuum
transition amplitudes related to the desired physical decay rates in chiral EFT have also been performed (see Ref. [19] for
a review). The same LQCD calculations can also be used to constrain searches for B–L violating nucleon decays involving
dimension-7 operators in SMEFT that give rise to n → π+e− and other nucleon-decay processes [729]. To directly connect
BSM-physics parameters to experimentally-observable decay rates in large-volume underground detectors, the matrix
elements of |∆B| = 1 operators should be calculated with nuclei in the initial and final states. Such calculations have not
yet been attempted in LQCD or nuclear EFT, and, for example, proton-decay constraints from Super Kamiokande [730]
rely on nuclear models [731,732] in order to relate the proton and 16O decay rates.

There has been recent progress in constraining |∆B| = 2 interactions in nuclei using a combination of LQCD and chiral
EFT. nn̄ oscillations and |∆B| = 2 nuclear transitions are described in SMEFT by dimension-9 six-quark operators that
violate B–L, and can arise as low-energy signatures of phenomenologically-viable baryogenesis models [733–735]. The
nuclear matrix elements needed to constrain these models are defined by

M∆B=2
I (N, Z) = ⟨N − 2, Z |QI |N, Z⟩, I ∈ {1, . . . , 7}, (107)

where at dimension 9 in SMEFT, the QI include four SM gauge-singlet operators built from linear combinations of
(quCPL,Rqd)(quCPL,Rqd)(qdCPL,Rqd) and (quCPL,Rqu)(qdCPL,Rqd)(qdCPL,Rqd) with particular contractions of the color indices,
where C is the charge-conjugation matrix and PL,R project to left- and right-handed quark chiralities [736–738]. The
additional three independent six-quark operators arise at dimension 11 in SMEFT, accompanied by two powers of the
Higgs field [739], and are also of interest for BSM models of post-sphaleron baryogenesis [740,741]. With A = 1 and
Z = 0, Eq. (107) corresponds to nn̄ oscillations. The nn̄ oscillation timescale is given by

τnn̄ =

⏐⏐⏐⏐⏐⏐
∑

I∈{1,2,3,5}

CIM∆B=2
I (1, 0)

⏐⏐⏐⏐⏐⏐
−1

, (108)

where isospin symmetry has been used to reduce the number of independent matrix elements to five [739], and the CI
are Wilson coefficients parameterizing the strength of |∆B| = 2 interactions at high scales. The bound τnn̄ > 0.9 × 108 s
obtained from cold-neutron-beam experiments [742], combined with LQCD determinations of M|∆B|=2

I (1, 0), allow the CI
for BSM theories of interest to be constrained.

Large-volume underground detectors provide much stronger constraints on B-violating nuclear decay half-lives of order
1031 years; however, nuclear lifetimes Γ −1

N,Z depend quadratically on the nn̄ oscillation time in the impulse approximation
as Γ −1

N,Z = R|∆B|=2(N, Z)τ 2nn̄, where R|∆B|=2(N, Z) is a factor that must be calculated to relate constraints on ΓN,Z to
constraints of the CI . Deuteron decay is the simplest |∆B| = 2 nuclear decay. A search for deuteron decay at SNO provides a
lower bound on the deuteron lifetime [743] by using an optical-potential model from Ref. [744] to determine R|∆B|=2(1, 1).
In turn, this can be combined with LQCD calculations of M|∆B|=2

I (1, 0) [739,745] to constrain the fundamental parameters
of BSM theories of B violation. More recently, chiral EFT with KSW power counting has been used in Ref. [746] to verify
that the impulse approximation result Γ −1

d = R|∆B|=2(1, 1)τ 2nn̄ is valid at LO, identify a |∆B| = 2 contact interaction
arising at NLO, and calculate R|∆B|=2(1, 1) in terms of the M|∆B|=2

I (1, 0) matrix elements at NLO using a NDA estimate
|∆B|=2
of the unknown |∆B| = 2 LEC. This chiral EFT result for R (1, 1) is a factor of two larger than the earlier result of
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ef. [744], and consequently turns the SNO constraints on Γd into constraints on τnn̄ that are about a factor of two stronger
han the cold-neutron-beam constraints. However, chiral-EFT calculations using Weinberg power counting [747] show
ignificant differences arising from non-perturbative one-pion-exchange effects in the deuteron initial state, and favor a
alue closer to the optical potential result. Future LQCD calculations of the deuteron decay rate would provide a valuable
est of the validity of various EFT power countings in B-violating amplitudes and allow LECs associated with |∆B| = 2
contact interactions to be reliably determined. Experimentally-relevant deuteron decay modes such as d → π+π+π−

include complicated FV effects associated with transition amplitudes for three-hadron states. Studies of three-hadron
systems from LQCD may allow direct access to such matrix element in the future, however more immediate progress
in constraining |∆B| = 2 chiral EFT interactions using LQCD may be possible by matching matrix-element results for
processes such as d → π+ν̄ that avoid these FV complications. LQCD calculations of more inclusive processes such
as the total deuteron decay rate could potentially avoid these challenges through the use of spectral reconstruction
techniques [340,341] to extract total decay rates from Euclidean correlation functions, but these approaches face separate
challenges related to inverting a Laplace transform. Further studies are needed to explore the impact of LQCD constraints
on EFTs and models of B violation in nuclei on the interpretation of searches for B violation at future detectors such as
Hyper-Kamiokande and DUNE [748].

6.4. Future impact

Interpreting the results of experimental searches for BSM physics in many scenarios requires matrix elements which
encode BSM couplings to the SM. For intensity-frontier experiments using nuclear targets, it is the corresponding nuclear
matrix elements of BSM operators that are needed. As discussed in Sections 6.1 and 6.2, calculations of the scalar and
ensor matrix elements of light nuclei are primarily important as constraints on nuclear many-body approaches. While
tudies with the physical quark masses are necessary to undertake such a matching program, the recent LQCD calculations
f the scalar and tensor matrix elements in light nuclei with A ≤ 3, and unphysically-large values of the quark masses,
ave already provided phenomenologically-relevant information about dark-matter–nucleus scattering cross-sections
n scenarios where dark matter couples spin-independently to nuclei, and about the quark contributions to nuclear
DMs. In particular, large nuclear effects in the scalar matrix elements in light nuclei urge caution in using an impulse
pproximation to estimate scalar matrix elements of the large nuclei used in dark-matter direct-detection experiments.
alculations of these matrix elements with fully-controlled systematic uncertainties can be anticipated within the next
ecade. Complete systematic control will require not only studies with quark masses tuned to match the physical hadron
asses, but also investigation of lattice-spacing and volume dependence, and studies of operator mixing with gluon
perators under renormalization (in the case of isoscalar matrix elements). Ultimately, controlled LQCD determinations
f these matrix elements will reduce the theory uncertainty in the response of nuclei to probes relevant to BSM-physics
cenarios and allow a rigorous uncertainty quantification in the interpretation of BSM-physics searches.
There is also potential for calculations of scalar matrix elements in light nuclei that are within reach of near-future

QCD studies to provide direct input to experimental searches. For example, BSM physics that produces additional
nteractions between atomic electrons and the nucleus would lead to small shifts in atomic energy levels that can be tested
hrough optical measurements of frequency shifts between pairs of isotopes of hydrogen and helium atoms, light ions
ncluding lithium and nitrogen, as well as heavy atoms and ions [521,523]. Constraining the most relevant contributions
equires SM knowledge of scalar-current matrix elements in these light nuclei, as well as the differences between charge
adii of the isotope pairs.

In addition to the scalar and tensor matrix elements, other key nuclear matrix elements will be calculable using LQCD
n the same timescale, including nuclear matrix elements of operators such as q̄f γ{µDν }qf (where the braces indicate
ymmetrization and trace-subtraction) which will constrain models of velocity-dependent dark matter, and nuclear matrix
lements of dimension-9 operators relevant for B–L violating decays [746,749]. As discussed in Section 6.3, the most
tringent constraints on B–L violation through the nn̄ oscillation process are obtained by experiments searching for its
ccurrence inside nuclei such as the deuteron and oxygen [734]. Accurate interpretation of observations of B-violating
ecays requires SM knowledge of the nuclear matrix elements of the six-quark operators responsible for the decay. LQCD
alculations of these matrix elements in light nuclei will constrain nuclear EFTs and phenomenological models, and will
hereby provide valuable input to these experimental programs in the coming years.

Finally, another possible role for LQCD studies in informing searches for BSM physics is in the context of the upcoming
uon-to-electron-conversion experiment (mu2e) at Fermilab [750], which will search for lepton-flavor violation through

he conversion of a muon to an electron in the field of an aluminum nucleus. While neutrino oscillations allow for this
rocess in the SM, their contribution is many orders of magnitude smaller than the sensitivity of the experiment [751]. In
any BSM models, a larger lepton-flavor-violation signal is expected and a significant role may be played by four-fermion
perators of the form (ēΓµ)(q̄Γ ′q) [752]; nuclear matrix elements of the hadronic part of these four-fermion operators
s thus a key target of nuclear-physics studies. This is again an example where the primary role of future LQCD studies
ill be to constrain nuclear many-body approaches which can reach larger nuclei than will be feasible to study in LQCD
irectly, and success will require continued investment and advances both in LQCD and in nuclear many-body methods,
ridged by phenomenological models or nuclear EFTs.
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. Outlook

Building on more than forty years of intense development, a new era in first-principles studies of the SM of particle
hysics has emerged. Fully-controlled LQCD calculations, including QCD and QED effects, have become tractable for
spects of single-hadron structure, and encouraging first calculations of nuclear structure, reactions, and matrix elements
nvolving light nuclei have been undertaken. The field is entering a period in which first-principles calculations of low-
nergy aspects of nuclear structure and matrix elements, with complete quantification of uncertainties, are becoming
ractical. This new capability is anticipated to have far-reaching impacts on diverse experimental programs in the form
f SM information about nuclear effects that can be used as input into experimental measurements of more complicated
rocesses, and as SM benchmarks in searches for new physics. With sufficiently precise calculations, the significant impact
hat LQCD has had in the realm of quark-flavor physics, and the resulting tight coupling of fundamental theory with
xperiment, will be extended into the nuclear realm.
Theoretical control of electroweak and BSM nuclear matrix elements in particular will impact experiments designed

o refine our understanding, and predictive capabilities, of the evolution of the universe and to hunt for evidence of
SM physics. This review has highlighted the last decade of progress on this front, as well as key results that can be
nticipated in the future. In the context of the electromagnetic properties of nuclei, controlled first-principles calculations
ill improve constraints on nuclear polarizabilities and the electromagnetic radii of nuclei. Experiments to constrain
eutron properties are typically undertaken using the deuteron, and in this context the control of the nuclear effects
n light nuclei afforded by LQCD will be particularly impactful. Speculatively, future lattice QCD+QED calculations, in
hich the strength of electromagnetic interaction is an input parameter, may also improve our understanding of nuclear
strophysics and the BBN chain reaction via theory constraints on reaction cross-sections of light nuclei. Calculations of
he nuclear matrix elements of electroweak currents will improve our understanding of light nuclei and hypernuclei,
nd impact astrophysical investigations into the nature of dense matter. Simultaneously, calculations of the axial matrix
lements and form factors of light nuclei are projected to provide important constraints on neutrino-nucleus scattering
ross-sections. In particular, improved theory constraints are required to maximize the potential of long-baseline neutrino
xperiments, such as DUNE, whose mission is to determine the neutrino mass hierarchy and oscillation parameters, and
earch for baryon-number violation and other BSM processes. By constraining nuclear many-body methods required for
ccurate neutrino-energy reconstruction, LQCD will have an important role to play in this arena. Theoretical understanding
f weak nuclear matrix elements is also important to the interpretation of atomic and nuclear parity-violation experiments
nd constraining parity-violating pion–nucleon and nucleon–nucleon interactions. With first-principles calculations of
mportant subprocesses in 2νββ and 0νββ decay, and of BSM matrix elements in the context of dark-matter–nucleus
nteractions, baryon-number violating decays, and permanent electric dipole moments, LQCD will ultimately provide input
o key experimental design decisions, such as the choices of target materials, to maximize the potential of BSM physics
iscovery.
Beyond electroweak and BSM nuclear MEs, modifications to the partonic structure of nuclei will be informed by LQCD

alculations that are presently in the early stages of development, quantitatively elucidating the QCD origin of important
spects of nuclear structure such as the EMC effect. For example, at the EIC facility, planned for construction at Brookhaven
ational Laboratory over the next decade, LQCD calculations will provide SM benchmarks for measurements of the quark
nd gluon structure of nuclei, including moments of parton distribution functions and their flavor dependence. With
heoretical control of nuclear effects from LQCD, measurements of nuclear PDFs are expected to improve the flavor
eparation of proton PDFs and thereby reduce the effect of what is currently a leading uncertainty in searches for new
hysics in proton–proton collisions at the LHC and in deep-inelastic scattering experiments.
Critical to achieving the promise of first-principles nuclear physics is the continued development and support of the

PC hardware and software needed to undertake these demanding computations. The availability of exascale computing
esources to basic nuclear-physics research is crucial to this mission. Optimal use of these resources requires continued
evelopment of software and algorithms for LQCD, and further investigation of novel tools such as machine learning, and
ew hardware such as field-programmable gate arrays and various forms of quantum computing. Moreover, since it is
nticipated that the controlled first-principles calculations of nuclear matrix elements that will be achieved in the next
ecade will remain limited to studies of light nuclei with A ≲ 6, impact on experiments involving heavier nuclei will likely
ontinue to require matching to nuclear EFTs and phenomenological models. To capitalize on the coming era of controlled
QCD for nuclear physics will thus require continued effort to develop robust methods for propagating uncertainties
rom LQCD, with the corresponding systematic extrapolations in lattice spacing and volume, through matching to many-
ody methods, to the effects of the theory uncertainties on experiment. In many cases, these pipelines do not yet exist,
nd assumptions from nuclear models are embedded into analysis frameworks. Achieving the full promise of LQCD
alculations of nuclear structure and interactions will thus require coupled efforts in computing and algorithms, theory
nd phenomenology, and lattice field theory itself.
In summary, the status and prospects of using LQCD to calculate the response of nuclei to electroweak and BSM

nteractions have been reviewed. Such calculations have a central role in the search for new physics and in precision
ests of the SM. First LQCD calculations in light nuclei have now emerged and, with expected increases in HPC resources,
he next decade will see precision calculations performed in light nuclei with complete uncertainty quantification at the

hysical quark masses.
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