
Wildfire Spread Modeling with Aerial Image
Processing

Qiyuan Huang, Abolfazl Razi, Fatemeh Afghah, Peter Fule
School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA

Emails:{qh33, abolfazl.razi, fatemeh.afghah, pete.fule}@nau.edu

Abstract—Currently, wildfire spread modeling has drawn a lot
of attention from the research community since many countries
are suffering from severe socioeconomic impacts of wildfires,
every year. Fire spread modeling is a key requirement for effective
fire management to deploy fire control equipment and forces
at the right time and locations, and plan timely evacuations of
residential areas.

This paper proposes a new data-driven model for fire ex-
pansion which uses reference-based image segmentation for
vegetation density estimation and incorporates it into the fire heat
conduction modeling. Compared with the conventional parameter
collection methods at fire scenes, our method relies on top-
view images taken by unmanned aerial vehicles, which provides
significant advantages of flexibility, safety, low cost, and conve-
nience. Our low-complexity and probabilistic model incorporates
the terrain slope, vegetation density, and wind factors with
adjustable model parameters which can be easily learned from
experiments. The proposed model is flexible and applicable to
forests with mixed vegetation and different geographical and
climate conditions. We evaluate the fire propagation model by
comparing the results with the propagation data available for
California Rim fire in 2013 1.

I. INTRODUCTION

Wildfire is a growing threat to humankind with severe
socioeconomic impacts. In 2018 alone, more than 58,000 fires
burned nearly nine million acres across the United States.
More than 25,000 structures were destroyed, including 18,137
residences and 229 commercial structures [1]. This threat
is not specific to the USA. In Australia, the bushfires have
been destructive in many ways. During the 2019-2020 season,
more than 46 million acres (72,000 square miles) of land
were burned and at least 34 people died in the bushfires [2].
Wildfires also lead to devastating damage to the environment.
At least 80 percent of the Blue Mountains World Heritage
area in New South Wales and 53 percent of the Gondwana
world heritage rain-forests in Queensland were burned by
wildfires [2]. All these facts urge for synergistic efforts from
different research communities to develop more efficient fire
monitoring, modeling, and control platforms.

Although wildfires that occur in wild-lands are difficult to
control, effectively preventing fires from spreading to human
habitation can minimize fire hazards drastically. A key re-
quirement to protect residential areas from the wildfire threats
is developing precise models that predict the fire spread to
guide investing the fire control efforts on more impactful spots.
This research proposes a novel data-driven low-complexity
fire spread model based on aerial images that incorporates

1This material is based upon the work supported by the National Science
Foundation under Grant No. 1755984.

environmental factors and vegetation density for more accurate
fire spread prediction.

Advanced fire spread modeling is a long-lasting research
topic. In the last century, a few simple conceptual models were
established to predict the fire spread. Fons in 1946 [3], and
Emmons in 1963 [4] calibrated the surface fire equilibrium
spread rate on flat grounds by combustion experiments in
flame chamber and wind tunnel, respectively [3], [4]. The core
of their approaches is developing an empirical model of fuel
composites under other wind and slope conditions. Afterward,
Richards developed a set of functions that characterizes fire
front propagation in terms of elliptical shapes [5]. Today
some simple empirical models still assume that the fire front
propagates in an elliptical shape. With the development of
high-performance computing technology, some researchers
have made achievements in developing physics-based models
in recent years. Two examples include the Wildland Urban In-
terface Fire Dynamics Simulator developed by the Los Alamos
National Laboratory in 2007 [6] and University of Utah’s
Coupled Atmosphere-Wildland Fire Large Eddy Simulator
developed in 2009 [7]. Moreover, the equation-based semi-
empirical model developed by Rothermel for the USDA forest
service has significantly improved the accuracy of empirical
models [8].

Most previously reported wildfire models are based on
analyzing fire behaviors, processing statistical data, and in-
corporating physical functions [9]. These models, based on
their modeling approaches, can be divided into four categories
of (i) empirical models, (ii) semi-empirical models (e.g.,
Rothermel’s model) [9], (iii) statistical models (e.g., Canadian
wild-land fire model) and (iv) physical models [10]. The
empirical and semi-empirical models process fire behaviors
to develop practically meaningful models [11], while the
statistical models draw statistical conclusions from the history
of fire incidents. Also, physical models focus on develop-
ing equations that mimic the impact of different factors on
fire spread. Therefore, neither statistical models nor physical
models take into account fire behaviors [12]. Neither of the
statistic and physical models seems to be practically useful
since the former is limited to forests where statistical data
is available for a long period of time, and the latter is too
complex and rarely applicable. Further, physical models do not
incorporate specific geographical, climate and environmental
factors readily available for the impacted area. Therefore, our
modeling follows the recent trend of developing data-driven
empirical and semi-empirical models.
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Empirical models utilize simple formulas derived from
experiments with a few adjustable parameters which are easy
to obtain [11]. Current empirical models typically consider
slope direction and fire resistance coefficients of the plants;
however, ignore the vegetation density [13]. Another limitation
of empirical models is that an accurate fire simulation can
only be realized in areas with little topographic changes [11],
[13]. Furthermore, empirical models do not consider heat
conduction mechanisms [13], so that these models do not
define when the fire front would stop in the simulation phase.
Indeed, most empirical models assume that the fire fronts
always form elliptical shape [11] which is too simplistic and
obviously do not provide a reasonably accurate estimate of
fire frontline evolution in most cases.

Rothermel’s semi-empirical model is a more complex model
with 11 parameters [14] including vegetation density. It is
based on the spread model of energy conservation, considering
the mechanism of heat conduction. Although the Rothermel’s
model is more flexible than the former empirical models,
unfortunately, it does not offer much higher accuracy [15]. We
conjecture that the inaccuracy of this model mainly relates to
three main problems. First, the model formulation is dependent
on the accuracy of the parameters, some of which are difficult
to obtain precisely, and some are even unavailable in practice.
Second, there exist interlaced and nesting relationships be-
tween parameters that cause huge deviations from reality when
some of the parameters are not accurate enough [13]. Third,
although the model considers the vegetation density with heat
conduction mechanisms [16], it assumes that combustibles
are uniformly distributed [13] which can be different from
the actual situation. In fact, there can be many barriers in
the wildfire propagation direction like rivers and highways,
which may stop the expansion of wildfire. Therefore, the fire
spread models that ignore the region profile and the vegetation
distribution do not provide accurate simulations in general.

Our work is the first work, to the best of our knowledge, that
considers using image processing to extract the truly spatial
distribution of vegetation in the fire region and incorporating it
into the spread modeling. The algorithm is applied to different
forest types, vegetation, and seasons including forest types
with mixed vegetation. We use top-view images taken by
different technology including satellites [17], planes [18], and
more recently by unmanned aerial vehicles (UAVs) as an
emerging low-cost technology [17], [19]–[22].

Once the vegetation profile of the regions is extracted from
the top-view aerial images, it is converted into the cellular
automata format that suits our simulation. This format is grid
of cells, each of which associated with three states, defined in
sequel.

In the fire spread modeling part, we combine the vege-
tation distribution with the principle of heat conduction in
Rothermel’s model, which can reflect the process and the state
of the wildfire spread. To construct the model, we choose
parameters that significantly affect the fire spread, yet are
easily available in practice at a reasonable accuracy. These
parameters include the instantaneous speed and direction of the
wind averaged over predefined time intervals, fire propagation

rate of combustibles, the vegetation density, and the slope
(magnitude of the gradient) as well as the aspect (direction of
the maximum gradient magnitude) of the terrain. This model
uses the heat conduction as the baseline method while using
the above parameters to express the complex phenomenon of
fire spread through some macro rules discussed later in this
paper.

II. IMAGE PROCESSING METHODOLOGY

Our methodology uses the top-view images for vegetation
profiling of the region. This operation is based on determining
some points in the image as a reference for the regions
with vegetation. Then, all the pixels with close-enough pixel
values in the feature map are classified as the vegetation
versus the background. This enables a dynamic way of image
segmentation to develop a vegetation profile of the region.

Most reference-based image segmentation methods utilize
the RGB color space for their feature map [23]. Since some
pixels in the image are selected as the reference, it can
simply identify pixels with similar colors and the color region
segmentation can be performed directly through RGB vectors
[23]. However, this method is sensitive to the pixel values and
may produce false results when some non-vegetation objects
present similar feature values to the reference. For instance,
ponds, rivers, and other objects with similar color values to
the vegetation reference can be falsely classified as vegetation
areas if the method solely relies on the RGB color map.

To alleviate this problem, We propose a new methodology
that combines color space rules including the RGB rules and
the hue, saturation, intensity (HSI) rules with the frequency
features to generate a new metric m [23]. Here, the frequency
is an index that characterizes the intensity of the grayscale
changes in the image [23]. The metric m is used to asses
the similarity of pixels to the reference region when classi-
fying the image into vegetation versus background segments.
Although the non-vegetated regions may have similar colors
to the vegetation references in the original image, but they
exhibit considerable distinctions in terms of HSI, and spectrum
features that facilitates a more accurate classification.

Our implementation includes the following steps. First, the
reference region is processed to obtain the original image in
RGB space, HSI space, and the frequency spectrum, respec-
tively denoted as IRGB , IHSI , and If . Then, following the
work in [23], the coordinates [M,N,K] of the pixels in the
above images (RGB, HSI and frequency) are extracted. Next,
each of the three images are reshaped into 3 dimensional image
with M rows and N columns, and K = 3, [M,N, 3] [23]. After
this transformation, the index of all non-zero-valued pixels in
the reshaped images are calculated to form the matrix I as
the weighted sum of the RGB, HSI and frequency spectrum
components.

The matrix I is simply defined as

I = αIRGB + βIHSI + γIf , (1)

where α, β, and gamma are mixing coefficients with values
between 0 and 1, and α + β + γ = 1 to be tuned based on
experiments.
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Our experiments verified that the matrix I , when obtained
as the weighted sum of the RGB, HSI, and frequency spectrum
components, can effectively avoid the misclassification issue
of the commonly used RGB-based methods. The matrix I is
used to calculate the average vector m and the covariance
matrix C of the pixels in the vegetation reference area. Next,
we calculate the standard deviation of the RGB, HSI, and
frequency spectrum components in the reference region as the
square root of the summation of the diagonal elements of C
[23]. Then, we find T as the maximum value of the elements
in the obtained standard deviations in different spaces. Finally,
the image is segmented into the vegetation vs background
using a similarity metric. Here, we use Mahalanobis distance
as a reference for similarity metric [24]) with T as the
threshold [23].

The result of the image segmentation is a binary image
that represent the vegetation distribution of the region. The
segmented image is converted to the cellular automata format
to be used in the subsequent spread modeling stage.

To asses the performance of the proposed modeling, we use
the images from a real-world massive wildfire, Rim fire, which
occurred in the California state in the USA in 2013. This fire
burned 257,314 acres and cost more than 127 million (2013
USD) [25], [26]. Fig. 1 shows a satellite image where the
perimeter of the fire region at a specific time point (August
26, 2013) is shown by a red contour. We also found a satellite
image at the same location before this fire (Fig. 2) available
from google earth [27]. We will show later in the results
section (Fig. 7) that our model is able to reconstruct the fire
spread region which highly correlates wit the actual fire region
in Fig.1.

Fig. 3 illustrates the image processing results in terms of
the extracted vegetation distribution that is converted into the
final (cellular automata) format. To model the fire spread, we
define 3 possible states for each cell, corresponding to No-fire,
on-fire, and burned out as explained in Section III.A. Our fire
spread model exhibits superior performance for forests where
a single tree species is dominant. However, for the forest with
diverse tree species, when the color of different vegetation
types varies considerably, we take the following approach. We
extract multiple vegetation references and use them to segment
the vegetation of different colors separately, then we synthesize
all segmented images into one picture using majority voting
to obtain the most accurate vegetation distribution.

III. FIRE SPREAD MODEL

Since our model modified and complements the Rothermel’s
model, we first review this model, and then mention how we
incorporate the wind and vegetation density into the model.

A. Heat Conduction Model
The Rothermel’s surface fire spread model is based on

the conservation of energy [9], presuming that the spread of
fire fits the Huygens’ model [16]. Based on the conservation
of energy, we perform the heat conduction mechanisms on
modeling the wildfire spread. The heat conduction mechanisms
can be represented by a set of simple rules in cellular automata
as follows [29]. Each vegetation cell has three states, is

Fig. 1: Map of the RIM fire. The red line present the
perimeter of the fire region at 2 a.m. PDT, August 26, 2013

[28].

Fig. 2: Google Earth satellite historical image (2013) at same
location before the RIM fire [27].

burning/on fire (OF), burned out(BO) and no fire (NF). Rule
1 states that for a cell with current state of n(i, j, t) = OF ,
its next state is n(i, j, t + 1) = BO. Rule 2 states the cell
with current state n(i, j, t) = BO remain at the same state
n(i, j, t + 1) = BO. Rule 3 states that a cell with current
state n(i, j, t) = NF and sum[n(i± 1, j ± 1, t) = OF ] > 0,
then its next state would be n(i, j, t) = OF . The above rules
describe the basic nature of the wildfire spread. These rules
defines the spread of fire in which the unburned combustibles
in front of the wildfire are continuously ignited.

Since we are using a probabilistic spread model, we change
rule 3 as follows. The neighbor cell of a burning cell with
n(i, j, t) = OF becomes on fire n(i± 1, j ± 1, t+ 1) = OF ,
with probability Pf defined to capture the impact of topol-
ogy, slope, wind, vegetation density as described in the next
sections. Also, we add the forth rule that states a cell with
state n(i, j, t) = OF transitions to state n(i, j, t + 1) = BO
if the burning time t − argmint′{t′ < t, n(i, j, t′) = OF}
exceeds a predefined burning time τB , where τB depends on
the vegetation type of the region.
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Fig. 3: Image processing result in cellular automata format
using the proposed reference-based segmentation algorithm.

B. The influence of topography
Many empirical models suggest that topography is an impor-

tant factor that affects fire behavior. In the empirical analysis,
a flat terrain or positive slope can contribute to the faster fire
spread, while an environment with complex terrain and sharp
downhills (negative slopes) can slow down the fire spread. A
commonly used relationship between the terrain slope and the
fire behavior can be defined as [30]:

Ps = P0s + P1s cos(tθs), (2)

where Ps represent the fire propagation probability affected
by the train slope, P0s is the baseline propagation probability
(when the slope is zero), P1s is the slope-dependent propaga-
tion probability, θs is the slope angle of the patch, and t is
an adjustable coefficient that depends on the experiments [29],
[30]. For adjacent cells, θs is given by:

θs = tan−1(
|A1 −A2|

l
), (3)

where A1 and A2 are the altitudes of the two cells and l is the
side length of the cell (i.e. the distance between the centers of
the two adjacent cells).

C. The influence of wind
We also incorporate the impact of the wind on the fire

spread. In this respect, we present the wind as a vector field
that models the average of instantaneous winds over an interval
equivalent to the one time-slot of the simulations.

To model the relationship between the wind and fire prop-
agation, we calculate the probability of fire spread from any
cell to its eight adjacent cells under the influence of wind as
shown in Fig. 4. The probability Pw of fire propagation to the
adjacent cell affected by the wind factor is:

Pw = P0w + P1w cos(awθw), (4)

where P0w is the baseline propagation probability in no-wind
condition, P1w is the wind-dependent propagation probability,
θw is the direction between the wind and the line connecting
the cell to its adjacent cell, and aw is a tuning parameter. The
parameters P0w, P1w, and aw are obtained from experiments.

Fig. 4: Weighted wind impact on fire spread using cellular
automata fire spread model.

D. The influence of vegetation density
Most methods assume a constant baseline propagation prob-

ability that is ignorant of the influence of vegetation density. In
reality, the vegetation distribution is not homogeneous, where
denser vegetation not only increases the propagation rate, but
also provides more burning fuel for longer burning time. This
important factor is not considered by former models. Our way
of extracting the actual vegetation density enables us to incor-
porate this important factor into the spread modeling. To this
end, we first divide the extracted vegetation image (e.g. Fig. 3)
into equally sized 4×4 small tiles, then calculate the maximum
connected region for each image tile. The size of the maximum
connected region is used as an index vd(i, j) =number of
connected pixels/16 that represent the vegetation density of
the corresponding cell. Then, the propagation probability of
each cell (i, j) is assumed to be proportional to the vegetation
density as

Pd = P0d ∗ vd, (5)

where P0d is the baseline propagation probability for full vege-
tation density vd = 1. This is based on a linear relationship be-
tween the vegetation density and the propagation probability,
and otherwise, 16 distinct spread rates R1, R2, . . . R16 can be
learned for each vegetation density level based on experiments.

In order to consider all three topology, wind, and density
factors, we use

Pf (i, j) = Ps(i, j) ∗ Pw(i, j) ∗ Pd(i, j) (6)

as the effective propagation probability of cell (i, j). Baseline
probabilities are used for each factor, if an accurate estimate
of the factor is not available.

IV. RESULTS

In this section, we illustrated the cellular automata simula-
tion of the Rim fire in the United States to verify the consis-
tency of our fire spread model with real-world incidents. For
the comparison with our results, we found the real progressing
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of the fire from August 19 through August 27 in 2013 as shown
in Fig. 5. Fig. 7 is our simulation results of the fire spread,
with parameter values of t1 = 0.35 and t1 = 0.55, t = 0.83,
P0w = 0.1, P1w = 0.8 and a = 0.95. Since the actual wind
parameters during the Rim fire in 2013 were not available, we
assumed that the wind was constant with a fixed direction by
Fig. 6. We determined the direction of the weighted wind in the
simulation by revising the direction of the smoke in the above
picture (note that we compensate for the orientation difference
of the two pictures). The simulation results in Fig. 7 illustrates
the estimated fire perimeters at different time points which
are similar to the fire progression in Fig. 5. This excellent
match verifies the accuracy of our model. This high alignment
between the modeling results and reality is consistent. Indeed,
we show the fire region for four time- points (64, 106, 181,
and 545) in our simulations in Fig. 7, which shows a high
consistency with the four time-points in Fig. 5 captured the
fire region on Aug.19, Aug.20, Aug.21 and Aug.27.

Fig. 5: Rim fire progression from August 19 through August
27, 2013 [31]

Fig. 6: Satellite image of the Rim Fire, on August 23, 2013
[32]

Fig. 7: Prediction of burned area by the the proposed model.

V. CONCLUSIONS

This paper implements a new method for forest wildfire
propagation modeling that combines empirical fire heat con-
duction methods and digital image processing for vegetation
density estimation. The proposed image processing stage uses
top-view images taken by drones, which provide flexibility
and convenience compared to traditional fire field parameter
acquisition methods. Through the proposed image processing
algorithm, the true distribution of the vegetation density is
obtained and incorporated into the probabilistic fire spread
modeling. Despite the physical and statistical models, our
method is applicable to forests with mixed vegetation and
different climate conditions provided that the model param-
eters are learned based on experiments. Our model is low-
complexity and can be run by drones on the fly to adjust the
model parameters. We applied the model to the California Rim
fire region, and the results show a perfect match with the actual
fire spread data, available online.
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