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Abstract—Due to Wildfire’s huge destructive impacts on agri-
culture and food production, wildlife habitat, climate, human life
and ecosystem, timely discovery of fires enable swift response to
fires before they go out of control, in order to minimize the
resulting damage and impacts. One of the emerging technologies
for fire monitoring is deploying Unmanned Aerial Vehicles,
due to their high flexibility and maneuverability, less human
risk, and on-demand high quality imaging capabilities. In order
to realize a real-time system for fire detection and expansion
analysis, fast and high-accuracy image-processing algorithms
are required. Several studies have shown that deep learning
methods can provide the most accurate response, however the
training time can be prohibitively long, especially when using
online learning for constant refinement of the developed model.
Another challenge is the lack of large datasets for training a
deep learning algorithm. In this respect, we propose to use a pre-
trained mobileNetV2 architecture to implement transfer learning,
which requires a smaller dataset and reduces the computational
complexity while not compromising the accuracy. In addition, we
conduct an effective data augmentation pipeline to simulate some
extreme scenarios, which could promise the robustness of our
approach. The testing results illustrate that our method maintains
a high identification accuracy in different situations - original
dataset (99.7%), adding Gaussian blurred (95.3%), and additive
Gaussian noise (99.3%)' 2.

Index Terms—Wildfire detection, deep learning, CNN for
mobile device, unmanned aerial vehicles (UAVs)

I. INTRODUCTION

Based on the statistic result from the National Interagency
Fire Center (NIFC), wildfires exhaust 10 million acres of land
in 2016 and brought $6 billion irrecoverable damages from
1995 to 2014 in the United States [1]. Wildfires not only
impact the wildlife, but more importantly endanger human
lives. Therefore, early detection of wildfires before they get
out of control is an urgent requirement. Wildfires are often
initiated in remote forest areas where the common fire detec-
tion methods such as lookout tower stations fail to detect such
fires in a timely manner. Moreover, conventional detection
approaches can barely provide sufficient fire information about
the precise fire locations, the orientation of fire expansion, etc.
To detect forest fires, there are two general approaches using
satellite images, and sensor networks. However, the satellites
cannot provide real-time video or images since the quality of
their images is highly impacted by weather conditions. Fire
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detection using wireless sensor networks is costly and high-
maintenance to cover wide forest areas [2]. Manned aircraft
can precisely survey a wide area in a short amount of time,
however, this solution is costly and will endanger the life of
pilots due to the high-temperature airflow and thick smoke.

Unmanned Aerial Vehicles (UAV) have been recently uti-
lized in wildfire detection and management as a low-cost
and agile solution to collect data/imagery considering their
unique features such as 3-dimensional movements, easy to fly,
maneuverability and flexibility [3]-[7]. The UAV networks can
offer several features in such operations including tracking
the fire front line, fast mapping of wide areas and damage
assessment, real-time video streaming, and search-and-rescue
[8]-[11]. In this paper, we focus on early detection of wildfires
from collected images using UAVs with the goal of develop-
ing a low-computational mechanism appropriate for resource-
constrained UAVs. Therefore, we develop a deep learning-
based fire detection mechanism for accurate detection of fires
using small training datasets.

Machine learning algorithms have been recently utilized for
fire detection using aerial images. For instance, the authors
in [2] developed a Support Vector Machine (SVM)-based
approach to achieve real-time wildfire detection. SVM, as a
classic machine learning algorithm, can achieve a good accu-
racy for fire detection. In [2], they improve the average true
detection rates, but the average speed decreases dramatically
in complex situations and the accuracy of this method is much
lower than the expected rate for real-world wildfire detection.

Deep learning algorithms can provide high accuracy for fire
detection as long as a sufficiently large dataset is used for
training. The key advantage of the deep learning-based fire
detection methods over other techniques is their capability in
automatically learning high-level features rather than relying
on hand-crafted feature descriptors to define the shape and
texture of smoke or flame, and the color of the fire. In [12],
[13], Convolutional Neural Networks (CNN) are utilized.
However, they did not use global average pooling [14] after
the last convolution layer, which leads to unnecessarily high
number of parameters in the fully connected layers and costs
a large computation resource. To improve the accuracy of the
CNN approach, the second paper implemented a deeper CNN
and adopted saliency detection to support the identification
work of CNN [13].

The objective of this paper is to develop a Deep Learning
(DL)-based fire detection approach for aerial images with
a focus on reducing the computational complexity while
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maintaining a high accuracy. One challenge for developing
DL-based wildfire detection methods is the lack of large-scale
aerial wildfire imaging datasets. To address this challenge, we
utilized MobileNetV2, which is pre-trained on the Imagenet
database as our wildfire classifier [15], [16]. This lightweight
network structure uses depth-wise separable convolutions [17]
which can reduce the calculation complexity suitable for
UAVs. Instead of using the saliency detection algorithm for
enhanced detection, we directly feed the images into our
network. In detail, our network has 17 convolution layers with
an average processing speed of 19.8 ms/frame in a 3GHz
7t generation i5 CPU device while it achieves an overall
accuracy of 99.3% on the dataset collected from [18]. All
the images in this dataset are shuffled and re-slipped into
train and validation set as further described in Section IV-A.
Furthermore, to maintain this accuracy in extreme cases where
the collected images by the UAVs are impacted by severe
motions or other sources of image distortion, we augment
our images by different artifacts such as flipping images,
darkening images, brightening images, etc. The experimental
results show the higher performance of the proposed method
against FireNet [13] and AlexNet [19] on our dataset.

Standard Convolution

Depthwise Convolution

Pointwise Convolution

Fig. 1. The difference between the standard and Depth-wise convolution
layers. From the graph, we observe that the depth-wise convolution involves
fewer parameters and requires less computation. The depth-wise separable
convolution can be viewed as a depth-wise convolution followed with a 1 x 1
standard convolution.
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Fig. 2. The difference between standard residual block and inverted residual
block. The standard residual block uses hourglass architecture, and the inverted
residual block uses spindle architecture.

II. RELATED WORKS

Deep learning-based wildfire identification overcomes the
spatio-temporal limitations of human observation [12], [13].
In [13], a CNN method assisted by saliency segmentation is
proposed which utilizes the Region of Interest (ROI) proposal
and Bayes-based saliency detection to localize a wildfire,
then uses the banalization of the saliency map to support the
CNN in identifying whether or not there is a wildfire. This
saliency detection approach to localize the fire position with
high probability before using CNN classifier can assure a high
accuracy even with limited computing resources. However,
it still suffers from a slow operation and cannot offer the
expected real-time monitoring for time-sensitive fire detection
missions. Lightweight CNN architectures have less parameters
and provide almost the same performance as the traditional
CNNs. Therefore, they can be appropriate candidates for fast
fire detection using aerial images.

MobileNet [20] is a lightweight CNN architecture that
focuses on deployment in mobile or embedded devices. Mo-
bileNet takes advantage of depth-wise separable convolution
that can efficiently reduce the computational complexity and
the number of model parameters. In MobileNetV2 [15], linear
bottlenecks and inverted residuals are proposed to improve
the network performance. Compared with the CNN model in
[13], MobileNet architecture has a better learning capability
while running faster and using fewer parameters. Most UAVs
utilize embedded system-on-chip such as Arduino, Raspberry
Pi, or ARM for light-weight computation tasks, therefore low-
complexity architectures like MobileNet are preferred over the
more complex DL structures [21]. Another advantage of such
a low-complexity and real-time fire detection method is the
possibility of fire detection by UAVs that operate in isolated
and remote areas where the communication with the ground
station is not available.
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III. PROPOSED METHOD

A. Preliminaries

Before introducing the proposed method, we briefly intro-
duce the key properties of the utilized MobileNet architecture
[20].

1) MobileNet Series: MobileNet architecture is a
lightweight neural network designed for embedded and
mobile devices that has low execution time due to its few
parameters  [15], [20]. MobileNetVl and MobileNetV2
replace the traditional convolution methods with depthwise
separable convolutions [17] to achieve model compression
which is inspired by inception [22], [23], and Xception
(Extreme version of Inception) [17]. MobileNetV1 uses a
simple and straight architecture similar to VGG [24] and
AlexNet [19]. MobileNetV2 made further improvements
by introducing inverted residual connections and linear
bottlenecks into the original MobileNet architecture.

2) Depth-wise Separable Convolution: In this approach, the
traditional convolution operation is divided into two steps.
First, M 3 x 3 convolution kernels are used to convolve
the M feature maps input one at a time, without summing
them up. This operation is called depth-wise convolution that
generates M separate output layers. Then, it uses 1x 1 standard
convolution kernels to aggregate the M previously generated
channels into N output channels. This operation is called
point-wise convolution. Splitting the convolution into two
separate depth-wise and pointwise convolutions significantly
reduces the number of parameters, and hence the training
time. Fig. 1 illustrates the architectural difference between
the standard convolution and depth-wise separable convolution
operations.

3) Inverted Residual Block: MobileNetV1 [20] uses a very
simple and straightforward structure similar to VGG [24]
which is inefficient and hard to be trained as the depth of
the network increases. The subsequent series of ResNet [25],
DenseNet [26] and other structures have proven that residual
connections usually have a positive effect on the performance
by multi-scale features fusion. Since MobileNetV1 does not
deploy residual connections which is a notable drawback.
MobileNetV2 [15] solves this issue and makes a good use of
residual connection. In MobileNetV2 [15], every bottleneck
is switched to a inverted residual block. Inverted residual
block is a convolutional module with residual connection,
but a little different from standard residual block. To avoid a
massive computation load, standard residual block uses 1 x 1
convolution to compress the channels before using 3 x 3
convolution to extract features that compose an hourglass
structure. However, this structure leads to information loss
in depth-wise separable convolution. To address this problem,
MobileNetV2 uses an inverted residual block that expands the
channels by 1 x 1 point convolution, then fed the expanded
feature maps to 3 x 3 depth-wise convolution. Fig. 2 shows the
difference between the standard residual block and the inverted
residual block.

4) Linear bottlenecks: There is a simple but significant
motivation behind linear bottlenecks, that is, Rectifier Linear
Unit (ReLU) [27] that causes a large information loss for
the tensor with a lower number of channels. Therefore, the
1 x 1 convolutional layer that performs the dimensionality
reduction is not followed by a non-linear activation layer such
as ReLU. The characteristics of non-linear activation, such
as ReLU squash the input or just make the output of zero
for negative input, while the dimension reduction itself is the
process of feature compression, which makes the feature loss
more serious.

B. Network Overview

In the present work, we proposed using MobileNetV2 which
is pretrained on Imagenet dataset as our wildfire classifier. We
replace the 1280 x 1000 fully connected layer with two fully
connected layers with a size of 1280 x 256, and 256 x 2. We
deployed dropout layers with a rate of 0.5 before each fully
connected layer to counter overfitting. The whole architecture
of the proposed method is summarized in Table 1. In Table I,
t stands for the expansion rate of the inverted residual block,
c means the output channels, n is repeat number of each
bottlenecks, and s is the step size of convolution. For step
size greater than 1, the convolution operation performs a
dowmsampling.

TABLE I
THE ARCHITECTURE OF MOBILENETV2, WE REPLACE THE 1280 x 1000
FULLY CONNECTED LAYER WITH 2 1280 X 256 X 2 FC LAYERS.

Input operator t c n|s
2242 x 3 conv2d - 32 1[2
1122 x 32 bottleneck | 1 16 1|1
1122 x 16 bottleneck | 6 24 2|2
562 x 24 bottleneck | 6 | 32 | 3 | 2
282 x 32 bottleneck | 6 | 64 | 4 | 2
142 x 64 bottleneck | 6 926 3|1
142 x 96 bottleneck | 6 | 160 | 3 | 2
72 % 160 bottleneck | 6 | 320 | 1 | 1
72 % 320 conv2d 1x1 | - | 1280 [ 1 | 1
72 x 1280 avgpool 7x7 | - - 1| -

1 x1x 1280 conv2d 1x1 - 256 -
1 x1x 256 conv2d 1x1 - 2 -

C. Data Augmentation

It is known that CNN is a data-driven deep learning algo-
rithm that requires large datasets for training purpose. When
large datasets are not available, using pre-trained models to
implement transfer learning is a promising solution. Also,
reasonable data augmentation methods can be adopted. To
investigate the efficiency of the proposed method in real world
situations. Besides using random shift, rotation, and flipping,
we also deploy a data augmentation strategy as follows:

e Varying illumination intensity, especially extremely dark
or bright conditions can negatively impact the classifica-
tion accuracy. When UAVs operate in a dense jungle or at
nights, the captured image may be too dark, which may
cause the trained CNNs miss detecting smokes or small
flames. To simulate darkness, we randomly scale each
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pixel by multiplying a rate between 0.75 to 0.9 during the
pre-processing the training dataset. Likewise, to simulate
sharp lights, we use the scaling rate of 1 to 1.25, and the
pixels are clipped between 0 to 255.

o The UAVs may cruise in the wild for a long time causing
the camera lens get dirty over time, which makes the
captured images blurred or noisy. The most extreme case
is when the camera lens is damaged and part of the
image is missing. To simulate such conditions, we deploy
random blurry kernels and additive noise to the training
images. Also, a random zero masking is used to discard
part of the images.

The pipeline of our data augmentation method is shown in
Algorithm 1 for flipping, rotation, blurring, noisifying, and
etc.

Algorithm 1: The algorithm of the data augmentation
which is used in the proposed method

Load the Image:
Generate 6 uniformly distributed random variables
ap,Q2,...,08 Nu(03 1)
if a1 < 0.5 then
| Flip the image
end
if as < 0.5 then
| Rotate the image
end
if a3 < 0.5 then
| Add noise to the image
end
if a4 < 0.5 then
| Make the image blurry
end
if a5 < 0.5 then

if ag < 0.5 then
| Make the image darker

else
| Make the image brighter

end
Export the image to the output
else
| Export the image to the output
end

IV. EXPERIMENTAL RESULTS
A. Dataset

To build our dataset, we collect 1048 positive samples
(images with flame or smoke) and 1048 negative samples
(images with no fire nor smoke) from the Internet. We split
this dataset into training set (888 images for each class and
validation set (160 images for both positive and negative
sample). We trained the model on training set, and evaluate
the performance on validation set. We resize the images into
224 x 224 and then scale the values of pixels into (0,1).
We noticed that some situations that may lead to wrong
classification. Generally, sharp lights in no-fire images can
be confused with fire. Smoke and fog also looks similar.

Sample images of these situations are shown in Fig. 3. The
red rectangle represents the confusion area in each image.

Fig. 3. Some samples from our dataset that may lead to miss-classification
errors.

B. Training Details

We train our models using Keras with TensorFlow back-
end [28]. We use the Adam [29] as our optimizer with an initial
learning rate of 0.001, 8; = 0.9 and By = 0.999. We trained
the model for 4500 epochs, and then reduced the learning rate
to 0.0005 and 0.0001 at 3000 and 4000 epochs. We used a
GTX 1080 Ti GPU, and set up a batch size of 64.

TABLE 11
COMPARISON FOR NUMBER OF PARAMETERS AND ACCURACY FOR CNN,
FIRENET, ALEXNET, AND THE PROPOSED METHOD.

Methods Accuracy | Million Parameters
CNN [12] 85.6% 17
FireNet [13] 97.5% 2.94
AlexNet [19] 95% 43
Proposed method 99.3% 2.5

C. Test results on original, noisy, and Blurry images

We re-implement the algorithms and follow all the hyper
parameters in [12] [13], and use pre-trained AlexNet [19]
with the same training strategy as our model. The comparison
results on clean validation set are shown in Table II. We
also test three alternative methods that are commonly used
in wildfire detection using our original dataset. The results
confirm that the proposed method achieves a classification
accuracy of 99.3% on the original images that outperforms all
the alternative methods. The two alternative methods (FireNet
and AlexNet) maintain a high identification accuracy, but
still lower than the proposed method. The performance of
standard CNN [12], which has 3 convolution layers and 2
fully connected layer, is out of an acceptable error range.
It is noteworthy that the proposed method overcomes other
methods in terms of the modeling complexity as well. Our
method utilizes only 2.5 million parameters that is significantly
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Original

Sigma =3

Sigma =5 Sigma =7

Fig. 4. We add Gaussian blur function to blur our images (fire and no fire). (1): Original pictures, (2): 0 =3, 3): 0 =5, (4): 0 =T.

Original Sigma = 0.15

Sigma = 0.35

Sigma = 0.45 Sigma = 0.5 Sigma = 0.65

Fig. 5. Demonstration of original image (1) and noisy images with standard deviations (2): o = 0.15, (3): ¢ = 0.35, (4): 0 = 0.45, (5): o = 0.5, and (6):

o = 0.65.

fewer than other methods. The second low-complexity model
is FireNet with about 3 million parameters.

To examine the robustness of our model and data aug-
mentation strategy in some extreme situations, we conduct
two experiments on noisy and blurry datasets. In order to
investigate the performance of the proposed method in clas-
sifying blurry images, we used a Gaussian kernel to blur
the images in the test dataset. The standard deviation op
is set at 3, 5, 7 to evaluate the performance of the model
under different blurring degrees. Figure 4 shows images under
different blurring degrees. For testing our model on noisy
validation data, we add Gaussian noise with different levels
represented by oy = 0.15,0.35,0.45,0.5,0.55,0.65 after
normalizing the pixel values of the input images into (0, 1).
Figure 5 shows images with different noise levels. The test
results are shown in Table IIT and Table IV, respectively. We
can observe the outstanding performance of our method under
extreme cases.

More specifically, Table III represents the results for blurred
images with different op values that represent the standard
deviation of Gaussian kernel used for blurring the image.
The results show that the propose algorithms achieves a
classification accuracy of 95% at op = 3 that exhibits a
margin of about 7.5% with respect to the second best method
of FireNet with accuracy 87.8%. This improvement is even

more significant when the blurriness level increases (93.2%
for cg = 5 and 86.5% for o = 7).

Likewise, Table IV presents the identification accuracy
results of all methods, when Gaussian noise is added. At noise
level o = 0.15, the identification accuracy of the proposed
model is 99.3% significantly higher than other methods. The
margin with respect to the second best (FireNet with a 96.3%
accuracy) is about 2.8%. This margin improves with increasing
the noise level and it is 2.8,9.6,23.1,26.3,31.8,27.8% for
o =0.15,0.35,0.45,0.5,0.5,0.65, respectively. At op = 0.65
our method still maintain an acceptable accuracy of 87.8%,
while others fail in providing accuracy above 60%.

V. CONCLUSION

In this paper, we considered an important problem of using
aerial imaging for early fire detection noting the fact that cur-
rent deep learning methods fail in providing accurate fire de-
tection results with small datasets and low computational com-
plexity appropriate for UAVs with limited onboard processing
powers. To address this issues, we used a lightweight network,
MobileNetV2 [15] to realize transfer learning. We also used
an effective data augmentation pipeline by manipulating the
original images by flipping, changing the brightness, blurring,
and adding Gaussian noise to the images. This method not
only alleviates the insufficient dataset size, but also helps to
simulate real world conditions when the quality of captured
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TABLE III
ACCURACY OF CNN, ALEXNET, FIRENET AND THE PROPOSED METHOD IN IDENTIFICATION FOR BLURRY IMAGES WITH THREE DIFFERENT VALUES OF
GAUSSIAN KERNEL 0.

Gaussian blur op=3 | op=5|op="7
FireNet 87.8% 70.3% 54.4%
AlexNet 83.4% 66.9% 51.9%
CNN 82.8% 57.8% 50.3%
Proposed method (without data augmentation) 93.8% 75.0% 65.9 %
Proposed method (with data augmentation) 95.3% 93.2% 86.5%
TABLE IV
IDENTIFICATION ACCURACY OF CNN, ALEXNET, FIRENET AND THE PROPOSED METHOD FOR DIFFERENT NOISE LEVELS.
Gaussian noise on =015 | oy =035 | oy =045 | oy =05 | oy =0.55 | oy = 0.65
FireNet 96.3% 89.7 % 74.1% 68.4% 61.6% 60%
AlexNet 92.5% 87.5% 69.1% 63.1% 54.4% 53.8%
CNN 81.6% 74.7% 63.1% 58.8% 44.1% 52.2%
Proposed method (without data augmentation) 98.1% 94.1% 83.8% 75.3% 68.1% 63.1%
Proposed method (with data augmentation) 99.3% 99.3% 97.2% 94.7 % 93.4% 87.8%

images are impacted by the environmental conditions, the
camera quality, and the light intensity. Simulation results show
that the proposed method performs significantly better than
the alternative methods by a big margin ranging from 2.8%
to 31.8% when the captured images are subject to noise and
blurriness. The results confirm the suitability of the proposed
method for wild-fire detection using aerial monitoring systems.
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