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Abstract—Due to Wildfire’s huge destructive impacts on agri-
culture and food production, wildlife habitat, climate, human life
and ecosystem, timely discovery of fires enable swift response to
fires before they go out of control, in order to minimize the
resulting damage and impacts. One of the emerging technologies
for fire monitoring is deploying Unmanned Aerial Vehicles,
due to their high flexibility and maneuverability, less human
risk, and on-demand high quality imaging capabilities. In order
to realize a real-time system for fire detection and expansion
analysis, fast and high-accuracy image-processing algorithms
are required. Several studies have shown that deep learning
methods can provide the most accurate response, however the
training time can be prohibitively long, especially when using
online learning for constant refinement of the developed model.
Another challenge is the lack of large datasets for training a
deep learning algorithm. In this respect, we propose to use a pre-
trained mobileNetV2 architecture to implement transfer learning,
which requires a smaller dataset and reduces the computational
complexity while not compromising the accuracy. In addition, we
conduct an effective data augmentation pipeline to simulate some
extreme scenarios, which could promise the robustness of our
approach. The testing results illustrate that our method maintains
a high identification accuracy in different situations - original
dataset (99.7%), adding Gaussian blurred (95.3%), and additive
Gaussian noise (99.3%)1 2.

Index Terms—Wildfire detection, deep learning, CNN for
mobile device, unmanned aerial vehicles (UAVs)

I. INTRODUCTION

Based on the statistic result from the National Interagency

Fire Center (NIFC), wildfires exhaust 10 million acres of land

in 2016 and brought $6 billion irrecoverable damages from

1995 to 2014 in the United States [1]. Wildfires not only

impact the wildlife, but more importantly endanger human

lives. Therefore, early detection of wildfires before they get

out of control is an urgent requirement. Wildfires are often

initiated in remote forest areas where the common fire detec-

tion methods such as lookout tower stations fail to detect such

fires in a timely manner. Moreover, conventional detection

approaches can barely provide sufficient fire information about

the precise fire locations, the orientation of fire expansion, etc.

To detect forest fires, there are two general approaches using

satellite images, and sensor networks. However, the satellites

cannot provide real-time video or images since the quality of

their images is highly impacted by weather conditions. Fire

1Huayu Li and Haiyu Wu equally contributed to this paper.
2This material was based upon the work supported by the National Science

Foundation under Grant No. 1755984. This work is also partially supported
by the Arizona Board of Regents (ABOR) under Grant No. 1003330

detection using wireless sensor networks is costly and high-

maintenance to cover wide forest areas [2]. Manned aircraft

can precisely survey a wide area in a short amount of time,

however, this solution is costly and will endanger the life of

pilots due to the high-temperature airflow and thick smoke.

Unmanned Aerial Vehicles (UAV) have been recently uti-

lized in wildfire detection and management as a low-cost

and agile solution to collect data/imagery considering their

unique features such as 3-dimensional movements, easy to fly,

maneuverability and flexibility [3]–[7]. The UAV networks can

offer several features in such operations including tracking

the fire front line, fast mapping of wide areas and damage

assessment, real-time video streaming, and search-and-rescue

[8]–[11]. In this paper, we focus on early detection of wildfires

from collected images using UAVs with the goal of develop-

ing a low-computational mechanism appropriate for resource-

constrained UAVs. Therefore, we develop a deep learning-

based fire detection mechanism for accurate detection of fires

using small training datasets.

Machine learning algorithms have been recently utilized for

fire detection using aerial images. For instance, the authors

in [2] developed a Support Vector Machine (SVM)-based

approach to achieve real-time wildfire detection. SVM, as a

classic machine learning algorithm, can achieve a good accu-

racy for fire detection. In [2], they improve the average true

detection rates, but the average speed decreases dramatically

in complex situations and the accuracy of this method is much

lower than the expected rate for real-world wildfire detection.

Deep learning algorithms can provide high accuracy for fire

detection as long as a sufficiently large dataset is used for

training. The key advantage of the deep learning-based fire

detection methods over other techniques is their capability in

automatically learning high-level features rather than relying

on hand-crafted feature descriptors to define the shape and

texture of smoke or flame, and the color of the fire. In [12],

[13], Convolutional Neural Networks (CNN) are utilized.

However, they did not use global average pooling [14] after

the last convolution layer, which leads to unnecessarily high

number of parameters in the fully connected layers and costs

a large computation resource. To improve the accuracy of the

CNN approach, the second paper implemented a deeper CNN

and adopted saliency detection to support the identification

work of CNN [13].

The objective of this paper is to develop a Deep Learning

(DL)-based fire detection approach for aerial images with

a focus on reducing the computational complexity while
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maintaining a high accuracy. One challenge for developing

DL-based wildfire detection methods is the lack of large-scale

aerial wildfire imaging datasets. To address this challenge, we

utilized MobileNetV2, which is pre-trained on the Imagenet

database as our wildfire classifier [15], [16]. This lightweight

network structure uses depth-wise separable convolutions [17]

which can reduce the calculation complexity suitable for

UAVs. Instead of using the saliency detection algorithm for

enhanced detection, we directly feed the images into our

network. In detail, our network has 17 convolution layers with

an average processing speed of 19.8 ms/frame in a 3GHz

7th generation i5 CPU device while it achieves an overall

accuracy of 99.3% on the dataset collected from [18]. All

the images in this dataset are shuffled and re-slipped into

train and validation set as further described in Section IV-A.

Furthermore, to maintain this accuracy in extreme cases where

the collected images by the UAVs are impacted by severe

motions or other sources of image distortion, we augment

our images by different artifacts such as flipping images,

darkening images, brightening images, etc. The experimental

results show the higher performance of the proposed method

against FireNet [13] and AlexNet [19] on our dataset.

Standard Convolution

Depthwise Convolution

Pointwise Convolution

Fig. 1. The difference between the standard and Depth-wise convolution
layers. From the graph, we observe that the depth-wise convolution involves
fewer parameters and requires less computation. The depth-wise separable
convolution can be viewed as a depth-wise convolution followed with a 1×1

standard convolution.
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Fig. 2. The difference between standard residual block and inverted residual
block. The standard residual block uses hourglass architecture, and the inverted
residual block uses spindle architecture.

II. RELATED WORKS

Deep learning-based wildfire identification overcomes the

spatio-temporal limitations of human observation [12], [13].

In [13], a CNN method assisted by saliency segmentation is

proposed which utilizes the Region of Interest (ROI) proposal

and Bayes-based saliency detection to localize a wildfire,

then uses the banalization of the saliency map to support the

CNN in identifying whether or not there is a wildfire. This

saliency detection approach to localize the fire position with

high probability before using CNN classifier can assure a high

accuracy even with limited computing resources. However,

it still suffers from a slow operation and cannot offer the

expected real-time monitoring for time-sensitive fire detection

missions. Lightweight CNN architectures have less parameters

and provide almost the same performance as the traditional

CNNs. Therefore, they can be appropriate candidates for fast

fire detection using aerial images.

MobileNet [20] is a lightweight CNN architecture that

focuses on deployment in mobile or embedded devices. Mo-

bileNet takes advantage of depth-wise separable convolution

that can efficiently reduce the computational complexity and

the number of model parameters. In MobileNetV2 [15], linear

bottlenecks and inverted residuals are proposed to improve

the network performance. Compared with the CNN model in

[13], MobileNet architecture has a better learning capability

while running faster and using fewer parameters. Most UAVs

utilize embedded system-on-chip such as Arduino, Raspberry

Pi, or ARM for light-weight computation tasks, therefore low-

complexity architectures like MobileNet are preferred over the

more complex DL structures [21]. Another advantage of such

a low-complexity and real-time fire detection method is the

possibility of fire detection by UAVs that operate in isolated

and remote areas where the communication with the ground

station is not available.
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III. PROPOSED METHOD

A. Preliminaries

Before introducing the proposed method, we briefly intro-

duce the key properties of the utilized MobileNet architecture

[20].

1) MobileNet Series: MobileNet architecture is a

lightweight neural network designed for embedded and

mobile devices that has low execution time due to its few

parameters [15], [20]. MobileNetV1 and MobileNetV2

replace the traditional convolution methods with depthwise

separable convolutions [17] to achieve model compression

which is inspired by inception [22], [23], and Xception

(Extreme version of Inception) [17]. MobileNetV1 uses a

simple and straight architecture similar to VGG [24] and

AlexNet [19]. MobileNetV2 made further improvements

by introducing inverted residual connections and linear

bottlenecks into the original MobileNet architecture.

2) Depth-wise Separable Convolution: In this approach, the

traditional convolution operation is divided into two steps.

First, M 3 × 3 convolution kernels are used to convolve

the M feature maps input one at a time, without summing

them up. This operation is called depth-wise convolution that

generates M separate output layers. Then, it uses 1×1 standard

convolution kernels to aggregate the M previously generated

channels into N output channels. This operation is called

point-wise convolution. Splitting the convolution into two

separate depth-wise and pointwise convolutions significantly

reduces the number of parameters, and hence the training

time. Fig. 1 illustrates the architectural difference between

the standard convolution and depth-wise separable convolution

operations.

3) Inverted Residual Block: MobileNetV1 [20] uses a very

simple and straightforward structure similar to VGG [24]

which is inefficient and hard to be trained as the depth of

the network increases. The subsequent series of ResNet [25],

DenseNet [26] and other structures have proven that residual

connections usually have a positive effect on the performance

by multi-scale features fusion. Since MobileNetV1 does not

deploy residual connections which is a notable drawback.

MobileNetV2 [15] solves this issue and makes a good use of

residual connection. In MobileNetV2 [15], every bottleneck

is switched to a inverted residual block. Inverted residual

block is a convolutional module with residual connection,

but a little different from standard residual block. To avoid a

massive computation load, standard residual block uses 1× 1
convolution to compress the channels before using 3 × 3
convolution to extract features that compose an hourglass

structure. However, this structure leads to information loss

in depth-wise separable convolution. To address this problem,

MobileNetV2 uses an inverted residual block that expands the

channels by 1 × 1 point convolution, then fed the expanded

feature maps to 3×3 depth-wise convolution. Fig. 2 shows the

difference between the standard residual block and the inverted

residual block.

4) Linear bottlenecks: There is a simple but significant

motivation behind linear bottlenecks, that is, Rectifier Linear

Unit (ReLU) [27] that causes a large information loss for

the tensor with a lower number of channels. Therefore, the

1 × 1 convolutional layer that performs the dimensionality

reduction is not followed by a non-linear activation layer such

as ReLU. The characteristics of non-linear activation, such

as ReLU squash the input or just make the output of zero

for negative input, while the dimension reduction itself is the

process of feature compression, which makes the feature loss

more serious.

B. Network Overview

In the present work, we proposed using MobileNetV2 which

is pretrained on Imagenet dataset as our wildfire classifier. We

replace the 1280× 1000 fully connected layer with two fully

connected layers with a size of 1280× 256, and 256× 2. We

deployed dropout layers with a rate of 0.5 before each fully

connected layer to counter overfitting. The whole architecture

of the proposed method is summarized in Table I. In Table I,

t stands for the expansion rate of the inverted residual block,

c means the output channels, n is repeat number of each

bottlenecks, and s is the step size of convolution. For step

size greater than 1, the convolution operation performs a

dowmsampling.

TABLE I
THE ARCHITECTURE OF MOBILENETV2, WE REPLACE THE 1280× 1000

FULLY CONNECTED LAYER WITH 2 1280× 256× 2 FC LAYERS.

Input operator t c n s

224
2 × 3 conv2d - 32 1 2

112
2 × 32 bottleneck 1 16 1 1

112
2 × 16 bottleneck 6 24 2 2

56
2 × 24 bottleneck 6 32 3 2

28
2 × 32 bottleneck 6 64 4 2

14
2 × 64 bottleneck 6 96 3 1

14
2 × 96 bottleneck 6 160 3 2

7
2 × 160 bottleneck 6 320 1 1

7
2 × 320 conv2d 1x1 - 1280 1 1

7
2 × 1280 avgpool 7x7 - - 1 -

1× 1× 1280 conv2d 1x1 - 256 -

1× 1× 256 conv2d 1x1 - 2 -

C. Data Augmentation

It is known that CNN is a data-driven deep learning algo-

rithm that requires large datasets for training purpose. When

large datasets are not available, using pre-trained models to

implement transfer learning is a promising solution. Also,

reasonable data augmentation methods can be adopted. To

investigate the efficiency of the proposed method in real world

situations. Besides using random shift, rotation, and flipping,

we also deploy a data augmentation strategy as follows:

• Varying illumination intensity, especially extremely dark

or bright conditions can negatively impact the classifica-

tion accuracy. When UAVs operate in a dense jungle or at

nights, the captured image may be too dark, which may

cause the trained CNNs miss detecting smokes or small

flames. To simulate darkness, we randomly scale each
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pixel by multiplying a rate between 0.75 to 0.9 during the

pre-processing the training dataset. Likewise, to simulate

sharp lights, we use the scaling rate of 1 to 1.25, and the

pixels are clipped between 0 to 255.

• The UAVs may cruise in the wild for a long time causing

the camera lens get dirty over time, which makes the

captured images blurred or noisy. The most extreme case

is when the camera lens is damaged and part of the

image is missing. To simulate such conditions, we deploy

random blurry kernels and additive noise to the training

images. Also, a random zero masking is used to discard

part of the images.

The pipeline of our data augmentation method is shown in

Algorithm 1 for flipping, rotation, blurring, noisifying, and

etc.

Algorithm 1: The algorithm of the data augmentation

which is used in the proposed method

Load the Image:

Generate 6 uniformly distributed random variables

α1, α2, . . . , α6 ∼ U(0, 1)
if α1 < 0.5 then

Flip the image

end

if α2 < 0.5 then
Rotate the image

end

if α3 < 0.5 then
Add noise to the image

end

if α4 < 0.5 then
Make the image blurry

end

if α5 < 0.5 then

if α6 < 0.5 then
Make the image darker

else
Make the image brighter

end

Export the image to the output
else

Export the image to the output

end

IV. EXPERIMENTAL RESULTS

A. Dataset

To build our dataset, we collect 1048 positive samples

(images with flame or smoke) and 1048 negative samples

(images with no fire nor smoke) from the Internet. We split

this dataset into training set (888 images for each class and

validation set (160 images for both positive and negative

sample). We trained the model on training set, and evaluate

the performance on validation set. We resize the images into

224 × 224 and then scale the values of pixels into (0, 1).
We noticed that some situations that may lead to wrong

classification. Generally, sharp lights in no-fire images can

be confused with fire. Smoke and fog also looks similar.

Sample images of these situations are shown in Fig. 3. The

red rectangle represents the confusion area in each image.

Fig. 3. Some samples from our dataset that may lead to miss-classification
errors.

B. Training Details

We train our models using Keras with TensorFlow back-

end [28]. We use the Adam [29] as our optimizer with an initial

learning rate of 0.001, β1 = 0.9 and β2 = 0.999. We trained

the model for 4500 epochs, and then reduced the learning rate

to 0.0005 and 0.0001 at 3000 and 4000 epochs. We used a

GTX 1080 Ti GPU, and set up a batch size of 64.

TABLE II
COMPARISON FOR NUMBER OF PARAMETERS AND ACCURACY FOR CNN,

FIRENET, ALEXNET, AND THE PROPOSED METHOD.

Methods Accuracy Million Parameters

CNN [12] 85.6% 17
FireNet [13] 97.5% 2.94

AlexNet [19] 95% 43

Proposed method 99.3% 2.5

C. Test results on original, noisy, and Blurry images

We re-implement the algorithms and follow all the hyper

parameters in [12] [13], and use pre-trained AlexNet [19]

with the same training strategy as our model. The comparison

results on clean validation set are shown in Table II. We

also test three alternative methods that are commonly used

in wildfire detection using our original dataset. The results

confirm that the proposed method achieves a classification

accuracy of 99.3% on the original images that outperforms all

the alternative methods. The two alternative methods (FireNet

and AlexNet) maintain a high identification accuracy, but

still lower than the proposed method. The performance of

standard CNN [12], which has 3 convolution layers and 2

fully connected layer, is out of an acceptable error range.

It is noteworthy that the proposed method overcomes other

methods in terms of the modeling complexity as well. Our

method utilizes only 2.5 million parameters that is significantly
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Original Sigma = 3 Sigma = 5 Sigma = 7

Fig. 4. We add Gaussian blur function to blur our images (fire and no fire). (1): Original pictures, (2): σ = 3, (3): σ = 5, (4): σ = 7.

Original Sigma = 0.15 Sigma = 0.35 Sigma = 0.45 Sigma = 0.5 Sigma = 0.65

Fig. 5. Demonstration of original image (1) and noisy images with standard deviations (2): σ = 0.15, (3): σ = 0.35, (4): σ = 0.45, (5): σ = 0.5, and (6):
σ = 0.65.

fewer than other methods. The second low-complexity model

is FireNet with about 3 million parameters.

To examine the robustness of our model and data aug-

mentation strategy in some extreme situations, we conduct

two experiments on noisy and blurry datasets. In order to

investigate the performance of the proposed method in clas-

sifying blurry images, we used a Gaussian kernel to blur

the images in the test dataset. The standard deviation σB

is set at 3, 5, 7 to evaluate the performance of the model

under different blurring degrees. Figure 4 shows images under

different blurring degrees. For testing our model on noisy

validation data, we add Gaussian noise with different levels

represented by σN = 0.15, 0.35, 0.45, 0.5, 0.55, 0.65 after

normalizing the pixel values of the input images into (0, 1).
Figure 5 shows images with different noise levels. The test

results are shown in Table III and Table IV, respectively. We

can observe the outstanding performance of our method under

extreme cases.

More specifically, Table III represents the results for blurred

images with different σB values that represent the standard

deviation of Gaussian kernel used for blurring the image.

The results show that the propose algorithms achieves a

classification accuracy of 95% at σB = 3 that exhibits a

margin of about 7.5% with respect to the second best method

of FireNet with accuracy 87.8%. This improvement is even

more significant when the blurriness level increases (93.2%
for σB = 5 and 86.5% for σB = 7).

Likewise, Table IV presents the identification accuracy

results of all methods, when Gaussian noise is added. At noise

level σN = 0.15, the identification accuracy of the proposed

model is 99.3% significantly higher than other methods. The

margin with respect to the second best (FireNet with a 96.3%
accuracy) is about 2.8%. This margin improves with increasing

the noise level and it is 2.8, 9.6, 23.1, 26.3, 31.8, 27.8% for

σ = 0.15, 0.35, 0.45, 0.5, 0.5, 0.65, respectively. At σB = 0.65
our method still maintain an acceptable accuracy of 87.8%,

while others fail in providing accuracy above 60%.

V. CONCLUSION

In this paper, we considered an important problem of using

aerial imaging for early fire detection noting the fact that cur-

rent deep learning methods fail in providing accurate fire de-

tection results with small datasets and low computational com-

plexity appropriate for UAVs with limited onboard processing

powers. To address this issues, we used a lightweight network,

MobileNetV2 [15] to realize transfer learning. We also used

an effective data augmentation pipeline by manipulating the

original images by flipping, changing the brightness, blurring,

and adding Gaussian noise to the images. This method not

only alleviates the insufficient dataset size, but also helps to

simulate real world conditions when the quality of captured
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TABLE III
ACCURACY OF CNN, ALEXNET, FIRENET AND THE PROPOSED METHOD IN IDENTIFICATION FOR BLURRY IMAGES WITH THREE DIFFERENT VALUES OF

GAUSSIAN KERNEL σB .

Gaussian blur σB = 3 σB = 5 σB = 7

FireNet 87.8% 70.3% 54.4%

AlexNet 83.4% 66.9% 51.9%

CNN 82.8% 57.8% 50.3%
Proposed method (without data augmentation) 93.8% 75.0% 65.9%

Proposed method (with data augmentation) 95.3% 93.2% 86.5%

TABLE IV
IDENTIFICATION ACCURACY OF CNN, ALEXNET, FIRENET AND THE PROPOSED METHOD FOR DIFFERENT NOISE LEVELS.

Gaussian noise σN = 0.15 σN = 0.35 σN = 0.45 σN = 0.5 σN = 0.55 σN = 0.65

FireNet 96.3% 89.7% 74.1% 68.4% 61.6% 60%

AlexNet 92.5% 87.5% 69.1% 63.1% 54.4% 53.8%

CNN 81.6% 74.7% 63.1% 58.8% 44.1% 52.2%

Proposed method (without data augmentation) 98.1% 94.1% 83.8% 75.3% 68.1% 63.1%

Proposed method (with data augmentation) 99.3% 99.3% 97.2% 94.7% 93.4% 87.8%

images are impacted by the environmental conditions, the

camera quality, and the light intensity. Simulation results show

that the proposed method performs significantly better than

the alternative methods by a big margin ranging from 2.8%
to 31.8% when the captured images are subject to noise and

blurriness. The results confirm the suitability of the proposed

method for wild-fire detection using aerial monitoring systems.
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