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Abstract High ozone concentrations have become the major summertime air quality problem in
China. Extensive in situ observations are deployed for developing strategies to effectively control the
emissions of ozone precursors, that is, nitrogen oxides (NOX = NO + NO2) and volatile organic compounds
(VOCs). The modeling analysis of in situ observations often makes uses of the dependence of ozone peak
concentration on NOX and VOC emissions, because ozone observations are among the most widely
available air quality measurements. To extract more information from regulatory ozone observations, we
extend the ozone‐precursor relationship to ozone peak time in this study. We find that the sensitivities of
ozone peak time and concentration are complementary for regions with large anthropogenic emissions
such as China. The ozone peak time is sensitive to both VOC and NOX emissions, and the sensitivity is
nearly linear in the transition regime of ozone production compared to the changing ozone peak con-
centration sensitivity in this regime, making the diagnostics of ozone peak time particularly valuable. The
extended ozone‐precursor relationships can be readily applied to understand the effects on ozone
by emission changes of NOX and VOC and to assess potential biases of NOX and VOC emission
inventories. These observation constraints based on regulatory ozone observations can complement the
other measurement and modeling analysis methods nicely. Furthermore, we suggest that the ozone peak
time sensitivity we discussed here to be used as a model evaluation measure before the empirical
kinetic modeling approach (EKMA) diagram is applied to understand the effectiveness of emission control
on ozone concentrations.

Plain Language Summary High ozone concentrations have become the major summertime air
quality problem in China. Air quality models are routinely used to investigate effective ozone strategies by
controlling the emissions of ozone precursors, nitrogen oxides (NOX = NO + NO2) and volatile organic
compounds (VOCs). Therefore, the evaluations of model‐simulated sensitivities of ozone to its precursor
emissions using available observations are urgently needed. In the past, efforts have been focused on
sensitivities of ozone peak concentrations to its precursor emissions. We show in this work that the
observations of ozone peak time can also be applied to understand ozone sensitivities to its precursor
emissions, especially in regions with large anthropogenic emissions such as China. Before air quality models
are applied to investigate effective strategies of controlling ozone precursor emissions, we suggest that the
model simulations of ozone peak time and concentrations are evaluated using the extensive regulatory
air quality monitoring network data. Model biases in simulated ozone peak time or concentrations also
provide important clues to potential model errors, such as systematic biases in the estimated emissions of
ozone precursors. These biases in model simulations can lead to erroneous emission control strategies and
need to be corrected before air quality models can be used in policy applications.

1. Introduction

Ground‐level ozone is a secondary air pollutant that damages human and vegetation health (U.S.
EPA, 2013). The chemical production of ground‐level ozone involves the photochemical reactions between
nitrogen oxides (NOX = NO + NO2) and volatile organic compounds (VOCs) (Seinfeld & Pandis, 2016). The
ozone‐precursor relationship, that is, the sensitivity of ozone to NOX and VOC emissions, is an important
factor in establishing effective ozone control strategies (Blanchard & Fairley, 2001; Geng et al., 2008;
Jimenez & Baldasano, 2004; Liu et al., 2012; Parra et al., 2009; Ren et al., 2013; Yang et al., 2011; Zhao
et al., 2009). In China megacity clusters, ozone production is often in the transition regime (Jin &
Holloway, 2015; Li et al., 2013; Liu et al., 2012; Ran et al., 2009; Xing et al., 2011).
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China is experiencing high levels of ozone due to high precursor emissions in association with rapid urba-
nization and industrialization (Duncan et al., 2016; Lin et al., 2013; Ma et al., 2019; Sun et al., 2019; Wang
et al., 2017; Zhao et al., 2013). In July 2018, for example, ozone was the dominant air pollutant in 155 of
the 168 major cities in China, and in 104 of them, the maximum daily 8‐hr average (MDA8) ozone exceeds
160 μg m−3 (~80 ppbv, the Grade II national air quality standard of China) (CNEMC, 2018). Ozone has been
increasing by 1–3 ppbv yr−1 in urban and background regions in China recently (Gao et al., 2017; K. Li et al.,
2019; Ma et al., 2016). In this fast‐changing environment, observation constraints are sorely needed on
precursor emissions used in the model and model‐based emission control strategies.

Diagnosing ozone sensitivity to precursor emissions often requires intensive field observations of a suite of
chemical species (e.g., Liu et al., 2012; Lu et al., 2017). When the extensive field measurements are unavail-
able, it is often desirable to use the observations from the regulatory monitoring networks. The benefit is that
these networks cover vast regions in a nation, but the limitation is that precursor measurements either have
issues or are unavailable (e.g., J. Li et al., 2019). High‐quality measurements of ozone are readily available
from these networks (e.g., Lu et al., 2018). A commonly used ozone‐precursor relationship is the dependence
of peak concentration of daytime ozone on NOX and VOC emissions, which is also known as the empirical
kinetic modeling approach (EKMA) diagram (e.g., Ashok & Barrett, 2016; Kinosian, 1982; Tan et al., 2018).
For regulatory application purposes, it is natural to focus on peak ozone concentrations. However, from the
point of view of modeling diagnostics and making use of the extensive ozone observations from monitoring
networks, ozone peak time is also of interest. Previous studies showed that the spatial and temporal distri-
butions over the cities (Wang et al., 2017; Yang et al., 2020) and model simulations revealed that the peak
time of the average diurnal profile of ozone responds to VOC or NOX emissions (Karl et al., 2019; J. Li
et al., 2019; Ojha et al., 2012).

In this study, we extend the ozone‐precursor relationship to ozone peak time and investigate the potential of
using extensive ozone observations in China to improve observation constraints on model simulated ozone‐
precursor relationships (J. Li et al., 2019). We use the observations of ozone in July 2014 as an example to
demonstrate this potential. We show that ozone peak time's dependence on NOX and VOC emissions offers
new constraints on the emissions that are different from those placed by the observed peak concentrations.
Therefore, the discrepancies between simulated and observed ozone peak time and peak concentrations can
be applied to understand the biases in ozone precursor emission inventories and provide pertinent guidance
on adjusting model‐based emission control strategies.

2. Data and Methods
2.1. The China National Environmental Monitoring Center (CNEMC) Network

CNEMC has established ambient atmosphere quality monitoring networks across the country since 2013,
reporting hourly real‐time data of six criteria pollutants (O3, CO, NO2, SO2, PM2.5, and PM10) and air quality
index (AQI) in cities online (http://www.cnemc.cn). The data were used in recent studies for analyzing the
current air quality issues (K. Li et al., 2019; Liu et al., 2018; Lu et al., 2018). In this work, we analyzed the
hourly surface ozone observations from 861 sites in 189 cities for July 2014. For each site, we remove all
the data that are higher than four times the monthly average of 3‐hr running mean data for the hour of
the observations. We then group the data by the hour of the observation and apply Tukey's fences to remove
outliers. Specifically, we remove the outlier data which are outside the range of Q1 − k(Q3 − Q1) and Q3+k
(Q3−Q1), whereQ1 andQ3 are the 25th and 75th quartiles, respectively, and k= 1.5 (Tukey, 1977). A total of
2.3% of the measurement data are removed. Comparison with another data quality control method
(Lu et al., 2018) and no data quality control shows that the regional mean ozone peak time and peak concen-
tration values are insensitive to the quality control method used (Text S1 and Figures S1 and S2 in the sup-
porting information). The results presented in this work change negligibly when all the observation data are
used. For each city, processed hourly observation data are first averaged over all sites, and peak time and
peak concentration of ozone are then calculated separately for each city in each day. The days with missing
daytime (8 a.m. to 8 p.m. in local Sun time) hourly data are excluded in the peak value analysis. The peak
time of ozone is converted to local Sun time based on the longitude of the city. If a computed daily peak time
of ozone occurs at nighttime (8 p.m. to 8 a.m. in local Sun time), manual inspection is made either to discard
the data or to recalculate the daytime ozone peaks for that day. The resulting daily data for each city are used
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to compute regional averages. Model results for cities with corresponding observation data are processed in
the same manner.

2.2. The 3‐D Regional Chemical Transport Model

The 3‐D Regional chEmical trAnsport Model (REAM) has been widely used in studies over North America,
East Asia, and other regions (Gu et al., 2014; Liu, Wang, Vrekoussis, et al., 2012; Liu et al., 2014; Wang
et al., 2006, 2007; Xu et al., 2018; Zeng et al., 2006; Zhang et al., 2016; R. Zhang et al., 2017, 2018; Zhao,
Wang, Choi, et al., 2009). The horizontal resolution of the model is 36 kmwith 30 vertical layers in the tropo-
sphere. Meteorological data are obtained from the Weather Research and Forecasting model (WRF 3.6)
assimilations constrained by the National Centers for Environmental Prediction Climate Forecast System
Version 2 (NCEP CFSv2) products (Saha et al., 2013). The boundary conditions for chemical tracers are
obtained from the GEOS‐Chem model (v9–02) (Bey et al., 2001). The chemistry mechanism extends the
GEOS‐Chem chemistry mechanism with reactions involving aromatics, ethylene, and acetylene. The
Multiresolution Emission Inventory for China (MEIC, http://www.meicmodel.org/) emissions for the year
2012 are adopted in the model for anthropogenic emissions of NOX, VOCs, and CO (Li et al., 2017). The
emissions are scaled by the diurnal ratio taken from the National Emissions Inventory (NEI), and there is
no weekday‐to‐weekend variation. Biogenic emissions of isoprene are calculated using the Model of
Emissions of Gases and Aerosols from Nature (MEGAN v2.1) (Guenther et al., 2012). We run the model
for July 2014, the same period as the data we used. The model is spun up for 10 days for initialization.

A 0‐D box model is also developed based on the 3‐D REAM. The 0‐D box model uses the same chemical
mechanism as the 3‐DREAMmodel. The meteorological, physical, and chemical parameters including tem-
perature, pressure, water concentration, boundary layer height, photolysis rates, deposition rates, and aero-
sol surface area are averaged hourly for city grid cells with surface ozone observations. Advection transport is
specified with a transport lifetime of 5.3 hr, corresponding to an average city scale of 100 km and an average
wind speed of 5.2 m s−1. Hourly background concentrations for ozone are set at the fifth percentile value of
the observations. Hourly backgrounds of other chemical tracers are set at the fifth percentile values of 3‐D
REAM results. Each simulation is run until a steady state is reached when the differences in ozone peak con-
centration and time converge to <1% from the results of the previous day. A total of 400 simulations were
conducted for NOX emissions in the range of 0–4.5 × 1016 molecules m−2 s−1 and VOC emissions in the
range of 0–1.4 × 1017 molecules m−2 s−1; NOX and VOC emissions are evenly divided into 20 bins each.
The upper limits of NOX and VOC emission ranges correspond to three times of average MEIC emissions
for the cities with surface ozone observations.

3. Results
3.1. Correlations of O3 Peak Concentration and Time to NOX and VOC Emissions

The ozone‐precursor relationships to be studied can be simply illustrated by the correspondence of ozone
peak time and concentration to NOX and VOC emissions in China. Figures 1a and 1b show the correlations
between ozone peak concentration and NOX and VOC emissions, respectively. The correlation coefficients
of ozone peak concentration with NOX and VOC emissions are comparable at 0.54 and 0.53, respectively. In
small cities with NOX emissions <1 × 1015 molecules m−2 s−1, the transport processes dominate the concen-
trations of ozone and its precursors, and we remove these four sites (3%) of Beihai, Zhangjiajie, Weihai, and
Lhasa to focus on the effects of local ozone photochemistry. Figure 1c shows that the observed ozone peak
time correlates well with MEIC NOX emission (R = 0.61) in the cities with strong NOX emissions (>1 × 1015

molecules m−2 s−1). The ozone peak time delays from 1–3 to 4–6 pm as the NOX emissions increase from
1 × 1015 to 1 × 1017 molecules m−2 s−1. The ozone peak time is also correlated with VOC emission with
an R value of 0.56 (Figure 1d). Figure 1 implies that the EKMA‐type relationship between ozone peak con-
centration and its precursor emissions may be extended to ozone peak concentration in China.

3.2. Modeling Analysis of the Observations

The observed and simulated distribution of maximum daily 8‐hr average (MDA8) ozone concentrations in
the cities are evaluated in Figure 2a. The mean simulated ozone concentration over the city grid cells is
57 ± 12 ppbv, which is comparable to the observed 53 ± 13 ppbv, with an overall correlation coefficient of
0.72. To understand regional characteristics, we grouped the data into six regions by economic
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development and topography (Figure 2b): North Central Plain (NCP), Northeast (NE) region, Yangtze River
Delta (YRD), Northwest (NW) region, Southwest (SW) region, and Pearl River Delta (PRD). Table 1
summarizes the regional statistics. The observed mean MDA8 ozone concentrations range from 41 to
64 ppbv in the six regions. The highest mean ozone concentration occurs in the NCP region, and the
lowest mean concentration occurs in the PRD region. The model results differ from the observations by
0–13 ppbv in the six regions, and the correlation coefficients between observed and simulated ozone range
from 0.61 to 0.81.

The comparisons of the monthly means of the simulated and observed ozone peak concentration and peak
time are illustrated in Figures 2c and 2d. Both the observed and simulated monthly mean ozone peak con-
centrations in the cities are in the range of 20–90 ppbv, and they are strongly correlated with a R value of
0.71. Most of the simulation results lie between the 1:2 and 2:1 lines with some exceptions in the SW and
YRD regions, where the simulated peak ozone concentrations are overestimated. The ozone peak concentra-
tions are highest in the NCP region and lowest in the PRD region. The observed and simulated ozone peak
time data are moderately correlated with R = 0.51, and the range of the ozone peak time is mostly from 2 to

Figure 1. Observed ozone peak concentration and time as a function of NOXand VOC emissions in the MEIC inventory,
respectively, for July 2014. The pink triangles denote urban regions with NOXemissions <1015molecules m−2 s−1, which
are excluded from this study. The red line is a least squares regression for urban regions with NOXemissions
>1015molecules m−2 s−1.
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6 p.m. The simulated ozone peak time data in 150 cities lie within 1 hr of the observed ozone peak time. The
cities in the NCP region tend to have late afternoon (3 to 6 p.m.) ozone peaks while the cities in the PRD
region tend to have early afternoon (1 to 4 p.m.) ozone peaks.

The regional day‐to‐day variability of observed and simulated data is also compared for ozone peak concen-
tration (Figure S3) and peak time (Figure S4), and the overall time series is illustrated in Figure S5. The

Figure 2. Panel (a) shows the simulated (background) and observed (circle) maximum daily 8‐hr average ozone
(MDA8 O3) concentrations for July 2014. Panel (b) shows the six regions: northwest (“NW”, orange), North China
Plain (“NCP”, red), northeast (“NE”, green), southwest (“SW”, purple), Pearl River Delta (“PRD”, blue), and Yangtze
River Delta (“YRD”, yellow). Panel (c) shows the comparison between observed and simulated monthly mean
ozone peak concentrations in the cities, and the data are color‐coded by region. The horizonal and vertical bars denote
the observed and simulated standard deviations, respectively. The red solid line corresponds to 1:1, and the red
dashed lines are for 1:2 and 2:1. Panel (d) is the same as (c) but for monthly mean ozone peak time. The red solid line
corresponds to 1:1, and the red dashed lines correspond to 1‐hr difference from the 1:1 line.

Table 1
Statistics of Observed and Simulated Means and Standard Deviations (ppbv) of MDA8 Ozone in Six Regions for July 2014

NCP NE NW PRD YRD SW Overall

Observations 64 ± 9 56 ± 9 55 ± 11 41 ± 11 52 ± 8 43 ± 12 53 ± 13
Simulations 64 ± 8 59 ± 9 55 ± 6 42 ± 6 58 ± 12 56 ± 14 57 ± 12
Correlation coefficient 0.61 0.78 0.72 0.81 0.62 0.67 0.72
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ozone peak concentration data show high correlations between the observations and simulation results,
indicating that the model can capture the day‐to‐day variance of the ozone peak concentrations reasonably
well. However, the correlation between the observed and simulated ozone peak time is low. The low correla-
tion is due in part to the small daily ozone peak variation in a region since the square of R is inversely pro-
portional to the total sum of the data variance. For the overall time series. The median of the difference
between the simulated and observed ozone peak time is 0.14 hr.

The observed and simulated daytime (10 a.m. to 4 p.m.) NO2 concentrations are compared in Figures S6 and
S7. The correlation coefficient between observed and simulated NO2 is 0.56 for city‐to‐city variability and
0.43 for day‐to‐day variability, respectively. The day‐to‐day variability is higher (0.58–0.85) in the NCP,
NE, PRD, and YRD regions and lower (0.48) in the NW and SW regions. Previous studies have shown that
the surface measurements of NO2 have high biases due to the interferences of other reactive nitrogen species
such as peroxyacetyl nitrate (PAN) and nitric acid (HNO3) and suggested a correction factor of 0.5 to the
observation data in July in the United States (Lamsal et al., 2008; R. Zhang et al., 2018). However, in
China, a ratio of 0.80 has been found between the satellite‐derived surface NO2 and CNEMCmeasurements
in July (Gu et al., 2017). In this research, the ratio between the simulated and observed averaged NO2 is 0.72,
similar to Gu et al. (2017). Given the much shorter lifetime of NOX than ozone in the summer, surface mea-
surements of the former can be strongly affected by nearby local sources. The general lack of spatial repre-
sentativeness of urban NO2 measurements also contributes to the differences between observed and
simulated surface NO2 concentrations.

To further investigate the relationships of ozone peak concentration and time with NOX and VOC emissions,
we conduct two series of sensitivity tests: (1) NOX emissions changing from − 50% to + 50% with an

Figure 3. Sensitivities of ozone daily peak concentration and peak time to VOCs and NOXemissions in the six regions for
July 2014. The black open circles and lines show the observed peak averages and the corresponding standard deviations.
The open circles at the intersection of the red and blue lines denote the standard simulation results. The red lines
with solid dots show the sensitivities to NOXemissions (“NOXSens”); the blue lines with solid dots show the sensitivities
of VOC emissions (“VOC Sens”). The signs of “+” and “−” denote an increase and decrease of the precursor emission in
the model, respectively. Each dot denotes an increment or decrement of 10% in emissions. Sensitivities up to plus or
minus 50% are shown.
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increment of 10% and (2) VOC emissions changing from − 50% to + 50% with an increment of 10%. Figure 3
shows the monthly mean results of the sensitivity simulations in comparison with the observations. VOC
emissions enhance the ozone peak concentration nearly linearly, while the NOX emissions affect the
ozone peak concentration differently. In the NW and SW regions, the ozone peak concentration increases
with NOX emissions, but the sensitivity decreases with increasing NOX emissions. The peak ozone and
NOX emission relationship is no longer monotonic in the other four regions. While increasing NOX

emissions decrease the ozone peaks, decreasing NOX emissions eventually also decrease the ozone peaks,
but the turnover points are shifted to the left in the NCP, YRD, and NE regions. The sensitivity results of
the ozone concentration to the emissions agree with previous studies (Li et al., 2013; Xing et al., 2011).

In contrast to the complex ozone peak concentration sensitivities to NOX emissions, the sensitivities of ozone
peak time to NOX and VOC are monotonic. Increasing NOX emissions delays the ozone peak time while
increasing VOC emissions advances the ozone peak time in all six regions. For the same 50% change of emis-
sions, the effect of NOX is larger than VOCs, which partly explains the higher correlation coefficient between
ozone peak time and NOX emissions than those between ozone peak time and VOC emissions or for ozone
peak concentration.

The monotonic sensitivities of ozone peak time to NOX and VOC emissions compared to the more complex
response of ozone peak concentration to emissions imply that the observations of ozone peak time provide
good constraints on model simulations other than the observations of ozone peak concentration. It is only
because the ambient ozone standard is based on concentrations that the observations of ozone peak time
are usually not applied to evaluate model simulations. A further useful property of the simulated ozone

Figure 4. The sensitivities of simulated ozone peak time to NOXand VOC emissions for July 2014. N + : increase
NOXemissions by 50%; N− : decrease NOXemissions by 50%; V + : increase VOC emissions by 50%; V− : decrease
VOC emissions by 50%; N +V+ : increase both NOXand VOC emissions by 50%; N−V− : decrease both NOXand VOC
emissions by 50%; N +V− : increase NOXemissions by 50% and decrease VOC emissions by 50%; and N−V+ : decrease
NOXemissions by 50% and increase VOC emissions by 50%.
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peak time is that the impact of changing NOX and VOC emissions concurrently by 50% is nearly additive
(Figure 4): The change of ozone peak time in a simulation of changing NOX and VOC emissions by 50%
concurrently is close to the sum of the simulated changes of changing NOX or VOC emissions by 50%
alone. This additive effect does not exist in the ozone peak concentration simulations due to chemical
nonlinearity (Figure 5), suggesting that the observed and simulated sensitivities of ozone peak time are
easier to interpret than ozone peak concentration in urban regions of China.

We examine in more detailed chemical processes leading to these sensitivity results. The chemical produc-
tion of ozone is due to the oxidation of NO by the hydroperoxy (HO2) radicals or organic peroxy (RO2) radi-
cals. Peroxy radicals are mostly produced from the reactions of VOCs with OH. Photolysis of oxygenated
VOCs (OVOCs) is also a large primary source of peroxy radicals in polluted urban regions. The reaction of
OH with NO2 is a large sink of radicals and NOX (Liu et al., 2012). The sensitivities of OH, HO2 + RO2,
and NOX and the rates of OVOC photolysis, the reaction rate of OH and NO2, and chemical production rate
of O3 (pO3) to 50% changes of NOX or VOCs are shown in Figure 6. The sensitivity results show that NOX and
VOC emissions affect ozone peak concentration and peak time in different ways. A 50% increase of NOX

emissions increases the radical sink through the reaction of OH and NO2, suppressing radical concentra-
tions. The net effect is a decrease in ozone production and peak ozone concentration. A 50% decrease of
NOX emissions has the opposite consequence. The radical suppressing effect by an increase of NOX is larger
in the early morning when the primary radical source is smaller than at noon. As a result, the ramping up of
ozone production is delayed, and the ozone peak time is later. A 50% increase of VOC emissions increases
HO2 and RO2 concentrations but does not affect NOX concentrations as much, thereby increasing ozone pro-
duction and peak concentrations. The effect of VOC emissions on ozone peak time is largely due to the reac-
tions of the VOCs with the OH radical (Figure S8) and the photolysis of OVOCs, both of which peak before or
at noon, while ozone peak time is in midafternoon (Figure 3). A 50% increase of VOC emissions increases

Figure 5. The same as Figure 4 but for ozone peak concentration.

10.1029/2020JD033670Journal of Geophysical Research: Atmospheres

QU ET AL. 8 of 16



OVOC photolysis, shifting HO2 and RO2 concentration peak toward noon and making ozone peak time
occurs in earlier afternoon. Similarly, a 50% decrease of VOC emissions delays ozone peak time.

3.3. Isopleth Diagram for Ozone Peak Time

The EKMA isopleth diagram for the sensitivity of ozone to NOX and VOC emissions has been widely used
(Ashok & Barrett, 2016; Kinosian, 1982; Sillman et al., 1990; Sillman & Samson, 1993; Tan et al., 2018).
We use the 0‐D box model to compute the EKMA‐type diagrams for ozone peak concentration and time
for the urban regions of China in this study. Averaged hourly regional transport time, deposition rates, back-
ground concentrations, wind speed, and boundary layer height are included to simulate the effect of advec-
tion, mixing, and deposition. The results provide qualitative guidance on understanding the 3‐D model
results discussed previously.

Figure 7a shows the sensitivity diagrams for peak ozone concentration. The peak ozone sensitivity diagram
is as expected. Under high NOX and lowVOC emissions, peak ozone concentration increases with increasing
VOC and decreasing NOX emissions, although the VOC sensitivity is much higher than NOX. Hence, it is
often referred to as the VOC‐limited regime. Under low NOX and high VOC emissions, which is often
referred to as the NOX‐limited regime, peak ozone concentration increases with increasing NOX emissions
rapidly but is insensitive to VOC emissions. In the transition regime (near the area between the two dashed
red lines in Figure 7), peak ozone concentration increases with increasing NOX or VOC emissions. If the
VOC to NOX emission ratio (C:N ratio) decreases to the lower right of the diagram, the sensitivity of peak

Figure 6. Sensitivities of OH, HO2 + RO2, NOX, and the rates of OVOC photolysis, the reaction rate of OH and NO2, and pO3to 50% changes of NOXor VOCs at
urban sites in this study for July 2014. The black lines are the results from the standard model; the red dashed lines show the results from a 50% increase of
NOXemissions; the red dotted lines show the results from a 50% decrease of NOXemissions; the blue dashed lines show the results from a 50% increase of
VOCs emissions; the blue dotted lines show the results from a 50% decrease of VOCs emissions.
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ozone concentration to VOC emissions increases while the sensitivity of peak ozone concentration to NOX

emissions turns from positive to negative.

On average, the urban regions in China fall into the transition regime: the behaviors of the ozone peak con-
centrations in the NW and SW regions are centered in the transition regime while the other regions lean
toward the side of the transition regime with lower VOC to NOX (C:N) emission ratios. Figure 7b shows that
the sensitivity of ozone peak time in the vicinity of the transition regime is quite consistent and nearly linear
in comparison to the changing ozone peak concentration sensitivity in this regime. Increasing NOX emis-
sions or decreasing VOC emissions delays ozone peak time, in qualitative agreement with 3‐D model simu-
lation results. The reasons can be understood in Figure 6. For polluted urban regions, increasing NOX

emissions or decreasing VOC emissions has a similar effect of shifting the peak of peroxy radicals toward
the afternoon and resulting in a later peak time of ozone. The former is due to an increase of the primary
radical loss through the reaction of OH and NO2, and the latter is due to a decrease of the primary radical
source through the photolysis of OVOCs. As the C:N emission ratio continues decreasing to be <2:1 (lower
right), ozone peak time is moved earlier by increasing NOX emissions as peak ozone concentration
decreases, while it is delayed by increasing VOC emissions as peak ozone concentration increases. In this
regime, OH, ozone production, and chemical reactivity become increasingly suppressed by the reaction of
OH and NO2. Increasing VOC emissions decreases the effect of the reaction of OH and NO2 since the frac-
tion of OH reacts with VOCs would increase, and decreasing NOX has a similar effect. When the C:N emis-
sion ratio continues to increase from the transition regime to the NOX‐limited regime in the upper left, ozone
peak time becomes less sensitive to NOX and VOC emission. In the highly enriched VOC emission regime,
the peroxy radicals are not as sensitive to NOX emissions as in the transition or VOC‐limited regime.

The EKMA isopleth diagram first proposed by Kinosian (1982) is an important analysis method to diagnose
the effectiveness of ozone precursor emission controls based on model simulations of the observation data.
As such the applications of this analysis method in the original 0‐Dmodeling framework need to target pol-
luted regions where ozone peak values are controlled by local emissions while taking into account the uncer-
tainties of the chemical mechanisms, boundary layer mixing, and emissions (e.g., National Research
Council, 1991). In this work, we extend the sensitivities of ozone to precursor emissions to ozone peak

Figure 7. EKMA‐type diagrams for the sensitivities of ozone peak concentration and time reacting to NOXand VOC emissions simulated in the box model. The
range of NOXand VOC emission increments covers up to three times of average urban emissions in model grid cells with urban surface ozone observations.
The red dashed lines bounding the transition regime are drawn based on the gradient of ozone peak time sensitivity to NOXor VOC emissions, illustrating the
different sensitivities of ozone peak time and concentrations to NOXand VOC emissions.
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hour because of the additional information that can be garnered from the observations. The considerations
for the applications of EKMA diagram also apply to our extension of the EKMA diagrams.We aggregated the
ozone data on a regional basis (Figure 2) to reduce the uncertainties associated with local emissions, trans-
port, and the limited data set size for a given city. When used in this manner, the extended EKMA diagram
method can be applied to 3‐D model simulation results to evaluate the model simulations and diagnose
possible biases in the model emissions. The regional aggregation is effective for China because of the high
density of polluted cities.

3.4. Diagnosing Potential Regional Emission Biases

The extended ozone‐precursor relationships of Figure 7 can be applied to understand the implications of the
observed changes in ozone peak time and concentration. For example, we would expect to see corresponding
changes when urban emissions of NOX or VOCs in a region decrease due to air quality control measures. The
qualitative diagrams of Figure 7 provide quick guidance on the effectiveness of the control measures, and
quantitative assessments can be carried out with modeling results (Figure 3). Here we illustrate the use of
Figure 3 to understand potential problems in the emissions of NOX or VOCs in themodel. More detailed ana-
lysis is recommended particularly with respect to more thoroughly understanding the model uncertainties.
Figure 3 shows that the simulation results are very close to the observations for the NW and NCP regions,
implying good emission estimation, consistent with previous studies (Guo et al., 2019; Li et al., 2018). For
the NE region, the model overestimates the observed ozone peak value and an early ozone peak time. To cor-
rect for both biases, the best solution is to increase NOX by 50%. For the SW region, the ozone peak time is
well simulated, but the ozone peak concentration is overestimated. The former dictates that a decrease of
NOX emissions must be accompanied by a decrease of VOC emissions since decreasing one alone would lead
to a bias in simulated ozone peak time and reducing both emissions is optimal (Figure 5). Previous research
suggested that MEIC may overestimate VOC emissions for 67% in Sichuan province in the SW region, con-
sistent with our results (Zhou et al., 2019). For the PRD region, the model‐observation difference is within
the variability of the observed data. For the YRD region, the model estimates a higher peak concentration
and an earlier peak time than the observations. These biases can be corrected by either increasing NOX

emissions or reducing VOC emissions. Since previous studies found overestimations of NOX emission
(Kong et al., 2019; Wu et al., 2017; L. Zhang et al., 2018; Zhang et al., 2020; Zhao et al., 2018), the simulation
results of Figure 3 indicate that VOC emissions are also overestimated. The potential biases in the emissions
discussed here need other methods such as direct measurements of NOX and VOC concentrations or
emissions to corroborate.

3.5. Uncertainty

For urban regions of China, Figure 7 qualitatively explains the additional information obtained by extending
the ozone‐precursor relationships from peak concentration to peak time. In and around the transition
regime, ozone peak time is sensitive to both NOX and VOC emissions, and its sensitivity to NOX emissions
is much more straightforward than that of peak ozone concentration. There are uncertainties of using the
ozone‐precursor relationships, which apply for the previously established ozone peak concentration as well
as ozone peak time discussed here. One caveat is that the observations of ozone are reported every hour.
When comparing model results to the observations, hourly data are also used. However, our analysis shows
that the uncertainty of the peak time due to the hourly sampled observation and correspondingmodel data is
negligible for the large datasets in this study (Text S2). The precision of ozone peak time and concentration
can be improved by increasing the observation frequency from every hour to every 10 min, which can be
easily achieved with today's technology. The same frequency must also be used for model data.

There are other factors to be considered which introduce uncertainties (e.g., National Research
Council, 1991). The standard deviation of the observed regional ozone peak concentrations is ~3 ppbv, simi-
lar to previous studies for longer periods (K. Li et al., 2019; Lu et al., 2019). The model‐simulated ozone sys-
tematic uncertainties are difficult to assess due in part to nonlinear chemistry (Liu et al., 2012). For practical
purposes, the update‐to‐date chemical mechanisms need to be used in modeling. Previous studies mostly
focused on ozone peak concentrations. In Mexico City, diurnal patterns of NOX and VOC emissions can
affect ozone peak concentrations by up to 17% (Ying et al., 2009). If we remove the diurnal variations of
NOX and VOC emissions, the largest effects occur in the NCP, NE, and PRD, where ozone peak time is
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Figure 8. The same as Figure 3with and extra case for removing the diurnal cycle of the emissions, marked as yellow dot.

Figure 9. The same as Figure 3with two extra cases for 10% enhancement and 10% reduction of the dry deposition rate of
ozone, marked as green triangular pointing upward and downward, respectively.
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delayed by ~0.25 hr, and ozone peak concentration decreases by 0.5 and 1 ppbv in NCP and YRD regions,
respectively (Figure 8). The dry deposition also affects surface ozone (Zhao et al., 2019). Increasing or
decreasing dry deposition rate by 10% does not affect simulated ozone peak time but changes ozone peak
concentrations by up to 2 ppbv (Figure 9). Meteorology factors can also influence ozone concentrations
(Hu et al., 2010; Lin et al., 2008), and dedicated studies are required. In general, the regional and monthly
averages used in this study are less sensitive to meteorological biases than considering a single city.

4. Conclusions

In this study, we extend the ozone‐precursor relationship to ozone peak time. The initial clue is simply based
on the correlations of the observed ozone peak time and concentrations with NOX and VOC emissions. We
used the observations for the period of July 2014 to show that ozone peak time has better or comparable cor-
relations with ozone precursor emissions in comparison to ozone peak concentration. It implies that the
widely used EKMA diagram can be extended to observed ozone peak time and provides additional and inde-
pendent constraints on ozone control strategies on the basis of widely available regulatory air quality mon-
itoring data. We analyzed the observations for China, but the extended ozone‐precursor relationships can be
applied in other polluted regions where the EKMA diagram analysis is applicable.

We apply the 3‐D REAMmodel with an extensive suite of sensitivity simulations to examine the sensitivities
of ozone peak time and concentrations to NOX and VOC emissions. The 3‐Dmodel sensitivity results are cor-
roborated with the emission sensitivity isopleth diagram for ozone peak time similar to the EKMA diagram
for ozone concentrations. The sensitivity distributions of ozone peak time and concentration differ signifi-
cantly, indicating that the sensitivities of ozone peak time and concentration are complementary for regions
with large anthropogenic emissions such as China. The ozone peak time is sensitive to both VOC and NOX

emissions, and the sensitivity is nearly linear in the transition regime of ozone production compared to the
changing ozone peak concentration sensitivity in this regime, making the diagnostics of ozone peak time
particularly valuable.

Since ozone is a secondary pollutant produced from photochemical reactions, the near‐surface observations
are not affected as much by heterogeneously distributed emission sources as NOX and VOCs. The longer che-
mical lifetime of ozone than NOX and fast‐reacting VOCs also makes its measurements more representative
than its precursors. Furthermore, the measurements of ozone are more reliable and readily available than
NOX and VOCs in China and other regions. The extended ozone‐precursor relationships developed here pro-
vide both qualitative and quantitative constraints on understanding the effects on ozone by emission
changes of NOX and VOC. They can also be applied with air quality models to assess potential biases of
NOX and VOC emission inventories. In this work, we find that the emissions of ozone precursors are consis-
tent with the observed ozone peak time and concentrations for the NW and NCP regions. In the NE region,
NOX emissions may have a low bias of 50%. In the SW region, both the NOX and the VOC emissions are over-
estimated. In the YRD region, the VOC emissions are overestimated. In the PRD region, model results are in
agreement with the observations within the uncertainties of the measurements. Such observation con-
straints on the basis of regulatory ozone observations can complement nicely the other measurement and
modeling analysis methods for evaluating NOX and the VOC emission inventories.

Before air quality models are applied to investigate effective strategies of controlling ozone precursor emis-
sions, we suggest that the model simulations of ozone peak time and concentrations are evaluated using the
extensive regulatory air quality monitoring network data in China. Model biases in simulated ozone peak
time or concentrations provide important clues to potential model errors, such as systematic biases in the
estimated emissions of ozone precursors. These biases in model simulations can lead to erroneous emission
control strategies and need to be corrected before air quality models can be used in policy applications. The
uncertainties of the method developed here are similar to previous studies using the EKMA diagram (Moore
& Londergan, 2001; Tan et al., 2018). We examine specifically the uncertainties related to the diurnal varia-
tion of emissions and ozone dry deposition, and we find that they do not significantly affect the inference
results of potential emission biases based on ozone observations. While not explicitly studied, the inference
results are insensitive to short‐term meteorology biases because the modeling analysis (e.g., Figures 3–9) is
based on monthly and regional averaged results. Depending on the applications of the extended EKMA dia-
gram analysis, further uncertainty analysis needs to be carried out.
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