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Abstract

Transformer-based models have pushed state

of the art in many areas of NLP, but our under-

standing of what is behind their success is still

limited. This paper is the first survey of over

150 studies of the popular BERT model. We

review the current state of knowledge about

how BERT works, what kind of information

it learns and how it is represented, common

modifications to its training objectives and

architecture, the overparameterization issue,

and approaches to compression. We then

outline directions for future research.

1 Introduction

Since their introduction in 2017, Transformers

(Vaswani et al., 2017) have taken NLP by storm,

offering enhanced parallelization and better mod-

eling of long-range dependencies. The best known

Transformer-based model is BERT (Devlin et al.,

2019); it obtained state-of-the-art results in nume-

rous benchmarks and is still a must-have baseline.

Although it is clear that BERT works remark-

ably well, it is less clear why, which limits further

hypothesis-driven improvement of the architec-

ture. Unlike CNNs, the Transformers have little

cognitive motivation, and the size of these models

limits our ability to experiment with pre-training

and perform ablation studies. This explains a large

number of studies over the past year that at-

tempted to understand the reasons behind BERT’s

performance.

In this paper, we provide an overview of what

has been learned to date, highlighting the questions

that are still unresolved. We first consider the

linguistic aspects of it, namely, the current evi-

dence regarding the types of linguistic and world

knowledge learned by BERT, as well as where and

how this knowledge may be stored in the model.

We then turn to the technical aspects of the model

and provide an overview of the current proposals

to improve BERT’s architecture, pre-training, and

fine-tuning. We conclude by discussing the issue

of overparameterization, the approaches to com-

pressing BERT, and the nascent area of pruning

as a model analysis technique.

2 Overview of BERT Architecture

Fundamentally, BERT is a stack of Transformer

encoder layers (Vaswani et al., 2017) that consist

of multiple self-attention ‘‘heads’’. For every in-

put token in a sequence, each head computes key,

value, and query vectors, used to create a weighted

representation. The outputs of all heads in the

same layer are combined and run through a fully

connected layer. Each layer is wrapped with a skip

connection and followed by layer normalization.

The conventional workflow for BERT consists

of two stages: pre-training and fine-tuning. Pre-

training uses two self-supervised tasks: masked

language modeling (MLM, prediction of randomly

masked input tokens) and next sentence predic-

tion (NSP, predicting if two input sentences are

adjacent to each other). In fine-tuning for down-

stream applications, one or more fully connected

layers are typically added on top of the final

encoder layer.

The input representations are computed as

follows: Each word in the input is first tokenized

into wordpieces (Wu et al., 2016), and then three

embedding layers (token, position, and segment)

are combined to obtain a fixed-length vector.

Special token [CLS] is used for classification

predictions, and [SEP] separates input segments.

Google1 and HuggingFace (Wolf et al., 2020)

provide many variants of BERT, including the

original ‘‘base’’ and ‘‘large’’ versions. They vary

in the number of heads, layers, and hidden state

size.

1https://github.com/google-research/bert.
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3 What Knowledge Does BERT Have?

A number of studies have looked at the know-

ledge encoded in BERT weights. The popular ap-

proaches include fill-in-the-gap probes of MLM,

analysis of self-attention weights, and probing

classifiers with different BERT representations as

inputs.

3.1 Syntactic Knowledge

Lin et al. (2019) showed that BERT representa-

tions are hierarchical rather than linear, that is,

there is something akin to syntactic tree structure

in addition to the word order information. Tenney

et al. (2019b) and Liu et al. (2019a) also showed

that BERT embeddings encode information

about parts of speech, syntactic chunks, and

roles. Enough syntactic information seems to be

captured in the token embeddings themselves to

recover syntactic trees (Vilares et al., 2020; Kim

et al., 2020; Rosa and Mareček, 2019), although

probing classifiers could not recover the labels

of distant parent nodes in the syntactic tree (Liu

et al., 2019a). Warstadt and Bowman (2020) report

evidence of hierarchical structure in three out of

four probing tasks.

As far as how syntax is represented, it seems

that syntactic structure is not directly encoded

in self-attention weights. Htut et al. (2019) were

unable to extract full parse trees from BERT

heads even with the gold annotations for the root.

Jawahar et al. (2019) include a brief illustration of

a dependency tree extracted directly from self-

attention weights, but provide no quantitative

evaluation.

However, syntactic information can be recov-

ered from BERT token representations. Hewitt

and Manning (2019) were able to learn transforma-

tion matrices that successfully recovered syntactic

dependencies in PennTreebank data from BERT’s

token embeddings (see also Manning et al., 2020).

Jawahar et al. (2019) experimented with transfor-

mations of the [CLS] token using Tensor Product

Decomposition Networks (McCoy et al., 2019a),

concluding that dependency trees are the best

match among five decomposition schemes (although

the reported MSE differences are very small).

Miaschi and Dell’Orletta (2020) perform a range

of syntactic probing experiments with concate-

nated token representations as input.

Note that all these approaches look for the

evidence of gold-standard linguistic structures,

Figure 1: Parameter-free probe for syntactic know-

ledge: words sharing syntactic subtrees have larger

impact on each other in the MLM prediction (Wu et al.,

2020).

and add some amount of extra knowledge to the

probe. Most recently, Wu et al. (2020) proposed a

parameter-free approach based on measuring the

impact that one word has on predicting another

word within a sequence in the MLM task (Figure 1).

They concluded that BERT ‘‘naturally’’ learns

some syntactic information, although it is not

very similar to linguistic annotated resources.

The fill-in-the-gap probes of MLM showed

that BERT takes subject-predicate agreement

into account when performing the cloze task

(Goldberg, 2019; van Schijndel et al., 2019),

even for meaningless sentences and sentences

with distractor clauses between the subject and

the verb (Goldberg, 2019). A study of negative

polarity items (NPIs) by Warstadt et al. (2019)

showed that BERT is better able to detect the

presence of NPIs (e.g., ‘‘ever’’) and the words

that allow their use (e.g., ‘‘whether’’) than

scope violations.

The above claims of syntactic knowledge are

belied by the evidence that BERT does not

‘‘understand’’ negation and is insensitive to

malformed input. In particular, its predictions

were not altered2 even with shuffled word order,

2See also the recent findings on adversarial triggers, which

get the model to produce a certain output even though they
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truncated sentences, removed subjects and objects

(Ettinger, 2019). This could mean that either

BERT’s syntactic knowledge is incomplete, or

it does not need to rely on it for solving its

tasks. The latter seems more likely, since Glavaš

and Vulić (2020) report that an intermediate

fine-tuning step with supervised parsing does

not make much difference for downstream task

performance.

3.2 Semantic Knowledge

To date, more studies have been devoted to

BERT’s knowledge of syntactic rather than se-

mantic phenomena. However, we do have evi-

dence from an MLM probing study that BERT

has some knowledge of semantic roles (Ettinger,

2019). BERT even displays some preference for

the incorrect fillers for semantic roles that are

semantically related to the correct ones, as op-

posed to those that are unrelated (e.g., ‘‘to tip a

chef’’ is better than ‘‘to tip a robin’’, but worse

than ‘‘to tip a waiter’’).

Tenney et al. (2019b) showed that BERT en-

codes information about entity types, relations,

semantic roles, and proto-roles, since this infor-

mation can be detected with probing classifiers.

BERT struggles with representations of num-

bers. Addition and number decoding tasks showed

that BERT does not form good representations for

floating point numbers and fails to generalize away

from the training data (Wallace et al., 2019b). A

part of the problem is BERT’s wordpiece tokeniza-

tion, since numbers of similar values can be di-

vided up into substantially different word chunks.

Out-of-the-box BERT is surprisingly brittle

to named entity replacements: For example,

replacing names in the coreference task changes

85% of predictions (Balasubramanian et al., 2020).

This suggests that the model does not actually

form a generic idea of named entities, although

its F1 scores on NER probing tasks are high

(Tenney et al., 2019a). Broscheit (2019) finds that

fine-tuning BERT on Wikipedia entity linking

‘‘teaches’’ it additional entity knowledge, which

would suggest that it did not absorb all the

relevant entity information during pre-training on

Wikipedia.

are not well-formed from the point of view of a human reader

(Wallace et al., 2019a).

Figure 2: BERT world knowledge (Petroni et al., 2019).

3.3 World Knowledge

The bulk of evidence about commonsense know-

ledge captured in BERT comes from practitioners

using it to extract such knowledge. One direct

probing study of BERT reports that BERT strug-

gles with pragmatic inference and role-based

event knowledge (Ettinger, 2019). BERT also

struggles with abstract attributes of objects, as

well as visual and perceptual properties that are

likely to be assumed rather than mentioned (Da

and Kasai, 2019).

The MLM component of BERT is easy to adapt

for knowledge induction by filling in the blanks

(e.g., ‘‘Cats like to chase [ ]’’). Petroni et al.

(2019) showed that, for some relation types, va-

nilla BERT is competitive with methods relying

on knowledge bases (Figure 2), and Roberts et al.

(2020) show the same for open-domain QA using

the T5 model (Raffel et al., 2019). Davison et al.

(2019) suggest that it generalizes better to unseen

data. In order to retrieve BERT’s knowledge, we

need good template sentences, and there is work

on their automatic extraction and augmentation

(Bouraoui et al., 2019; Jiang et al., 2019b).

However, BERT cannot reason based on its

world knowledge. Forbes et al. (2019) show that

BERT can ‘‘guess’’ the affordances and properties

of many objects, but cannot reason about the

relationship between properties and affordances.

For example, it ‘‘knows’’ that people can walk

into houses, and that houses are big, but it cannot

infer that houses are bigger than people. Zhou et al.

(2020) and Richardson and Sabharwal (2019) also

show that the performance drops with the number

of necessary inference steps. Some of BERT’s

world knowledge success comes from learning

stereotypical associations (Poerner et al., 2019),

for example, a person with an Italian-sounding

name is predicted to be Italian, even when it is

incorrect.
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3.4 Limitations

Multiple probing studies in section 3 and section 4

report that BERT possesses a surprising amount of

syntactic, semantic, and world knowledge. How-

ever, Tenney et al. (2019a) remark, ‘‘the fact that

a linguistic pattern is not observed by our probing

classifier does not guarantee that it is not there, and

the observation of a pattern does not tell us how it

is used.’’ There is also the issue of how complex a

probe should be allowed to be (Liu et al., 2019a).

If a more complex probe recovers more infor-

mation, to what extent are we still relying on the

original model?

Furthermore, different probing methods may

lead to complementary or even contradictory con-

clusions, which makes a single test (as in most

studies) insufficient (Warstadt et al., 2019). A

given method might also favor one model over

another, for example, RoBERTa trails BERT with

one tree extraction method, but leads with another

(Htut et al., 2019). The choice of linguistic formal-

ism also matters (Kuznetsov and Gurevych, 2020).

In view of all that, the alternative is to focus

on identifying what BERT actually relies on at

inference time. This direction is currently pursued

both at the level of architecture blocks (to be

discussed in detail in subsection 6.3), and at the

level of information encoded in model weights.

Amnesic probing (Elazar et al., 2020) aims to

specifically remove certain information from the

model and see how it changes performance,

finding, for example, that language modeling does

rely on part-of-speech information.

Another direction is information-theoretic prob-

ing. Pimentel et al. (2020) operationalize probing

as estimating mutual information between the

learned representation and a given linguistic prop-

erty, which highlights that the focus should be

not on the amount of information contained in

a representation, but rather on how easily it can

be extracted from it. Voita and Titov (2020) quan-

tify the amount of effort needed to extract infor-

mation from a given representation as minimum

description length needed to communicate both

the probe size and the amount of data required for

it to do well on a task.

4 Localizing Linguistic Knowledge

4.1 BERT Embeddings

In studies of BERT, the term ‘‘embedding’’ refers

to the output of a Transformer layer (typically,

the final one). Both conventional static embed-

dings (Mikolov et al., 2013) and BERT-style

embeddings can be viewed in terms of mutual

information maximization (Kong et al., 2019),

but the latter are contextualized. Every token is

represented by a vector dependent on the par-

ticular context of occurrence, and contains at least

some information about that context (Miaschi and

Dell’Orletta, 2020).

Several studies reported that distilled context-

ualized embeddings better encode lexical seman-

tic information (i.e., they are better at traditional

word-level tasks such as word similarity). The

methods to distill a contextualized representation

into static include aggregating the information

across multiple contexts (Akbik et al., 2019;

Bommasani et al., 2020), encoding ‘‘semantically

bleached’’ sentences that rely almost exclusively

on the meaning of a given word (e.g., "This is <>")

(May et al., 2019), and even using contextualized

embeddings to train static embeddings (Wang

et al., 2020d).

But this is not to say that there is no room

for improvement. Ethayarajh (2019) measure how

similar the embeddings for identical words are

in every layer, reporting that later BERT layers

produce more context-specific representations.3

They also find that BERT embeddings occupy a

narrow cone in the vector space, and this effect

increases from the earlier to later layers. That is,

two random words will on average have a much

higher cosine similarity than expected if em-

beddings were directionally uniform (isotro-

pic). Because isotropy was shown to be beneficial

for static word embeddings (Mu and Viswanath,

2018), this might be a fruitful direction to explore

for BERT.

Because BERT embeddings are contextualized,

an interesting question is to what extent they

capture phenomena like polysemy and hom-

onymy. There is indeed evidence that BERT’s

contextualized embeddings form distinct clus-

ters corresponding to word senses (Wiedemann

et al., 2019; Schmidt and Hofmann, 2020), making

BERT successful at word sense disambiguation

task. However, Mickus et al. (2019) note that

the representations of the same word depend

3Voita et al. (2019a) look at the evolution of token

embeddings, showing that in the earlier Transformer layers,

MLM forces the acquisition of contextual information at the

expense of the token identity, which gets recreated in later

layers.
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Figure 3: Attention patterns in BERT (Kovaleva et al., 2019).

on the position of the sentence in which it

occurs, likely due to the NSP objective. This is

not desirable from the linguistic point of view, and

could be a promising avenue for future work.

The above discussion concerns token embed-

dings, but BERT is typically used as a sentence

or text encoder. The standard way to generate

sentence or text representations for classification

is to use the [CLS] token, but alternatives are also

being discussed, including concatenation of token

representations (Tanaka et al., 2020), normalized

mean (Tanaka et al., 2020), and layer activations

(Ma et al., 2019). See Toshniwal et al. (2020) for a

systematic comparison of several methods across

tasks and sentence encoders.

4.2 Self-attention Heads

Several studies proposed classification of attention

head types. Raganato and Tiedemann (2018) dis-

cuss attending to the token itself, previous/next

tokens, and the sentence end. Clark et al. (2019)

distinguish between attending to previous/next

tokens, [CLS], [SEP], punctuation, and ‘‘at-

tending broadly’’ over the sequence. Kovaleva

et al. (2019) propose five patterns, shown in

Figure 3.

4.2.1 Heads With Linguistic Functions

The ‘‘heterogeneous’’ attention pattern shown

in Figure 3 could potentially be linguistically

interpretable, and a number of studies focused on

identifying the functions of self-attention heads. In

particular, some BERT heads seem to specialize

in certain types of syntactic relations. Htut

et al. (2019) and Clark et al. (2019) report that

there are BERT heads that attended significantly

more than a random baseline to words in certain

syntactic positions. The datasets and methods

used in these studies differ, but they both find

that there are heads that attend to words in

obj role more than the positional baseline. The

evidence for nsubj, advmod, and amod varies

between these two studies. The overall conclusion

is also supported by Voita et al.’s (2019b) study

of the base Transformer in machine translation

context. Hoover et al. (2019) hypothesize that even

complex dependencies like dobj are encoded by

a combination of heads rather than a single head,

but this work is limited to qualitative analysis.

Zhao and Bethard (2020) looked specifically for

the heads encoding negation scope.

Both Clark et al. (2019) and Htut et al. (2019)

conclude that no single head has the complete

syntactic tree information, in line with evidence

of partial knowledge of syntax (cf. subsection 3.1).

However, Clark et al. (2019) identify a BERT head

that can be directly used as a classifier to perform

coreference resolution on par with a rule-based

system, which by itself would seem to require

quite a lot of syntactic knowledge.

Lin et al. (2019) present evidence that attention

weights are weak indicators of subject-verb

agreement and reflexive anaphora. Instead of

serving as strong pointers between tokens that

should be related, BERT’s self-attention weights

were close to a uniform attention baseline, but

there was some sensitivity to different types of

distractors coherent with psycholinguistic data.

This is consistent with conclusions by Ettinger

(2019).

To our knowledge, morphological information

in BERT heads has not been addressed, but with

the sparse attention variant by Correia et al.

(2019) in the base Transformer, some attention

heads appear to merge BPE-tokenized words.

For semantic relations, there are reports of self-

attention heads encoding core frame-semantic

relations (Kovaleva et al., 2019), as well as lexi-

cographic and commonsense relations (Cui et al.,

2020).

The overall popularity of self-attention as an

interpretability mechanism is due to the idea that

‘‘attention weight has a clear meaning: how much
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a particular word will be weighted when comput-

ing the next representation for the current word’’

(Clark et al., 2019). This view is currently debated

(Jain and Wallace, 2019; Serrano and Smith,

2019; Wiegreffe and Pinter, 2019; Brunner et al.,

2020), and in a multilayer model where attention

is followed by nonlinear transformations, the

patterns in individual heads do not provide a full

picture. Also, although many current papers are

accompanied by attention visualizations, and there

is a growing number of visualization tools (Vig,

2019; Hoover et al., 2019), the visualization is

typically limited to qualitative analysis (often with

cherry-picked examples) (Belinkov and Glass,

2019), and should not be interpreted as definitive

evidence.

4.2.2 Attention to Special Tokens

Kovaleva et al. (2019) show that most self-

attention heads do not directly encode any

non-trivial linguistic information, at least when

fine-tuned on GLUE (Wang et al., 2018), since

only fewer than 50% of heads exhibit the

‘‘heterogeneous’’ pattern. Much of the model pro-

duced the vertical pattern (attention to [CLS],

[SEP], and punctuation tokens), consistent with

the observations by Clark et al. (2019). This re-

dundancy is likely related to the overparameteri-

zation issue (see section 6).

More recently, Kobayashi et al. (2020) showed

that the norms of attention-weighted input vectors,

which yield a more intuitive interpretation of self-

attention, reduce the attention to special tokens.

However, even when the attention weights are

normed, it is still not the case that most heads

that do the ‘‘heavy lifting’’ are even potentially

interpretable (Prasanna et al., 2020).

One methodological choice in in many studies

of attention is to focus on inter-word attention

and simply exclude special tokens (e.g., Lin et al.

[2019] and Htut et al. [2019]). However, if atten-

tion to special tokens actually matters at inference

time, drawing conclusions purely from inter-word

attention patterns does not seem warranted.

The functions of special tokens are not yet well

understood. [CLS] is typically viewed as an ag-

gregated sentence-level representation (although

all token representations also contain at least

some sentence-level information, as discussed in

subsection 4.1); in that case, we may not see, for

example, full syntactic trees in inter-word atten-

tion because part of that information is actually

packed in [CLS].

Clark et al. (2019) experiment with encoding

Wikipedia paragraphs with base BERT to consider

specifically the attention to special tokens, noting

that heads in early layers attend more to [CLS],

in middle layers to [SEP], and in final layers

to periods and commas. They hypothesize that its

function might be one of ‘‘no-op’’, a signal to

ignore the head if its pattern is not applicable to

the current case. As a result, for example, [SEP]

gets increased attention starting in layer 5, but its

importance for prediction drops. However, after

fine-tuning both [SEP] and [CLS] get a lot of

attention, depending on the task (Kovaleva et al.,

2019). Interestingly, BERT also pays a lot of

attention to punctuation, which Clark et al. (2019)

explain by the fact that periods and commas are

simply almost as frequent as the special tokens,

and so the model might learn to rely on them for

the same reasons.

4.3 BERT Layers

The first layer of BERT receives as input a

combination of token, segment, and positional

embeddings.

It stands to reason that the lower layers have

the most information about linear word order.

Lin et al. (2019) report a decrease in the knowledge

of linear word order around layer 4 in BERT-base.

This is accompanied by an increased knowledge

of hierarchical sentence structure, as detected by

the probing tasks of predicting the token index,

the main auxiliary verb and the sentence subject.

There is a wide consensus in studies with

different tasks, datasets, and methodologies that

syntactic information is most prominent in the

middle layers of BERT.4 Hewitt and Manning

(2019) had the most success reconstructing syn-

tactic tree depth from the middle BERT layers (6-9

for base-BERT, 14-19 for BERT-large). Goldberg

(2019) reports the best subject-verb agreement

around layers 8-9, and the performance on syntac-

tic probing tasks used by Jawahar et al. (2019) also

seems to peak around the middle of the model.

The prominence of syntactic information in the

middle BERT layers is related to Liu et al.’s

4These BERT results are also compatible with findings

by Vig and Belinkov (2019), who report the highest attention

to tokens in dependency relations in the middle layers of

GPT-2.
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Figure 4: BERT layer transferability (columns

correspond to probing tasks, Liu et al. (2019a).

(2019a) observation that the middle layers of

Transformers are best-performing overall and the

most transferable across tasks (see Figure 4).

There is conflicting evidence about syntactic

chunks. Tenney et al. (2019a) conclude that ‘‘the

basic syntactic information appears earlier in the

network while high-level semantic features appear

at the higher layers’’, drawing parallels between

this order and the order of components in a typical

NLP pipeline—from POS-tagging to dependency

parsing to semantic role labeling. Jawahar et al.

(2019) also report that the lower layers were more

useful for chunking, while middle layers were

more useful for parsing. At the same time, the

probing experiments by Liu et al. (2019a) find

the opposite: Both POS-tagging and chunking

were performed best at the middle layers, in both

BERT-base and BERT-large. However, all three

studies use different suites of probing tasks.

The final layers of BERT are the most task-

specific. In pre-training, this means specificity to

the MLM task, which explains why the middle

layers are more transferable (Liu et al., 2019a). In

fine-tuning, it explains why the final layers change

the most (Kovaleva et al., 2019), and why restoring

the weights of lower layers of fine-tuned BERT

to their original values does not dramatically hurt

the model performance (Hao et al., 2019).

Tenney et al. (2019a) suggest that whereas

syntactic information appears early in the model

and can be localized, semantics is spread across

the entire model, which explains why certain

non-trivial examples get solved incorrectly at first

but correctly at the later layers. This is rather to be

expected: Semantics permeates all language, and

linguists debate whether meaningless structures

can exist at all (Goldberg, 2006, p.166–182). But

this raises the question of what stacking more

Transformer layers in BERT actually achieves in

terms of the spread of semantic knowledge, and

whether that is beneficial. Tenney et al. compared

BERT-base and BERT-large, and found that the

overall pattern of cumulative score gains is the

same, only more spread out in the larger model.

Note that Tenney et al.’s (2019a) experiments

concern sentence-level semantic relations; Cui

et al. (2020) report that the encoding of ConceptNet

semantic relations is the worst in the early layers

and increases towards the top. Jawahar et al.

(2019) place ‘‘surface features in lower layers,

syntactic features in middle layers and semantic

features in higher layers’’, but their conclusion is

surprising, given that only one semantic task in

this study actually topped at the last layer, and

three others peaked around the middle and then

considerably degraded by the final layers.

5 Training BERT

This section reviews the proposals to optimize the

training and architecture of the original BERT.

5.1 Model Architecture Choices

To date, the most systematic study of BERT ar-

chitecture was performed by Wang et al. (2019b),

who experimented with the number of layers,

heads, and model parameters, varying one option

and freezing the others. They concluded that the

number of heads was not as significant as the

number of layers. That is consistent with the find-

ings of Voita et al. (2019b) and Michel et al.

(2019) (section 6), and also the observation by

Liu et al. (2019a) that the middle layers were the

most transferable. Larger hidden representation

size was consistently better, but the gains varied

by setting.

All in all, changes in the number of heads and

layers appear to perform different functions.

The issue of model depth must be related to

the information flow from the most task-specific

layers closer to the classifier (Liu et al., 2019a), to

the initial layers which appear to be the most task-

invariant (Hao et al., 2019), and where the tokens

resemble the input tokens the most (Brunner et al.,

2020) (see subsection 4.3). If that is the case,

a deeper model has more capacity to encode

information that is not task-specific.

On the other hand, many self-attention heads

in vanilla BERT seem to naturally learn the same

patterns (Kovaleva et al., 2019). This explains
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why pruning them does not have too much impact.

The question that arises from this is how far we

could get with intentionally encouraging diverse

self-attention patterns: Theoretically, this would

mean increasing the amount of information in the

model with the same number of weights. Raganato

et al. (2020) show for Transformer-based machine

translation we can simply pre-set the patterns that

we already know the model would learn, instead

of learning them from scratch.

Vanilla BERT is symmetric and balanced in

terms of self-attention and feed-forward layers, but

it may not have to be. For the base Transformer,

Press et al. (2020) report benefits from more

self-attention sublayers at the bottom and more

feedforward sublayers at the top.

5.2 Improvements to the Training Regime

Liu et al. (2019b) demonstrate the benefits of

large-batch training: With 8k examples, both the

language model perplexity and downstream task

performance are improved. They also publish their

recommendations for other parameters. You et al.

(2019) report that with a batch size of 32k BERT’s

training time can be significantly reduced with no

degradation in performance. Zhou et al. (2019)

observe that the normalization of the trained

[CLS] token stabilizes the training and slightly

improves performance on text classification tasks.

Gong et al. (2019) note that, because self-

attention patterns in higher and lower layers are

similar, the model training can be done in a

recursive manner, where the shallower version

is trained first and then the trained parameters are

copied to deeper layers. Such a ‘‘warm-start’’ can

lead to a 25% faster training without sacrificing

performance.

5.3 Pre-training BERT

The original BERT is a bidirectional Transformer

pre-trained on two tasks: NSP and MLM

(section 2). Multiple studies have come up with

alternative training objectives to improve on

BERT, and these could be categorized as follows:

• How to mask. Raffel et al. (2019) system-

atically experiment with corruption rate and

corrupted span length. Liu et al. (2019b)

propose diverse masks for training examples

within an epoch, while Baevski et al. (2019)

mask every token in a sequence instead of

a random selection. Clinchant et al. (2019)

replace the MASK token with [UNK] token,

to help the model learn a representation for

unknowns that could be useful for transla-

tion. Song et al. (2020) maximize the amount

of information available to the model by

conditioning on both masked and unmasked

tokens, and letting the model see how many

tokens are missing.

• What to mask. Masks can be applied to

full words instead of word-pieces (Devlin

et al., 2019; Cui et al., 2019). Similarly, we

can mask spans rather than single tokens

(Joshi et al., 2020), predicting how many

are missing (Lewis et al., 2019). Masking

phrases and named entities (Sun et al.,

2019b) improves representation of structured

knowledge.

• Where to mask. Lample and Conneau

(2019) use arbitrary text streams instead of

sentence pairs and subsample frequent out-

puts similar to Mikolov et al. (2013). Bao

et al. (2020) combine the standard autoencod-

ing MLM with partially autoregressive LM

objective using special pseudo mask tokens.

• Alternatives to masking. Raffel et al. (2019)

experiment with replacing and dropping

spans; Lewis et al. (2019) explore deletion,

infilling, sentence permutation and docu-

ment rotation; and Sun et al. (2019c) predict

whether a token is capitalized and whether

it occurs in other segments of the same

document. Yang et al. (2019) train on dif-

ferent permutations of word order in the input

sequence, maximizing the probability of the

original word order (cf. the n-gram word or-

der reconstruction task (Wang et al., 2019a)).

Clark et al. (2020) detects tokens that were

replaced by a generator network rather than

masked.

• NSP alternatives. Removing NSP does not

hurt or slightly improves performance (Liu

et al., 2019b; Joshi et al., 2020; Clinchant

et al., 2019). Wang et al. (2019a) and

Cheng et al. (2019) replace NSP with the

task of predicting both the next and the

previous sentences. Lan et al. (2020) replace

the negative NSP examples by swapped
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sentences from positive examples, rather than

sentences from different documents. ERNIE

2.0 includes sentence reordering and sentence

distance prediction. Bai et al. (2020) replace

both NSP and token position embeddings by

a combination of paragraph, sentence, and

token index embeddings. Li and Choi (2020)

experiment with utterance order prediction

task for multiparty dialogue (and also MLM

at the level of utterances and the whole

dialogue).

• Other tasks. Sun et al. (2019c) propose

simultaneous learning of seven tasks, in-

cluding discourse relation classification and

predicting whether a segment is relevant for

IR. Guu et al. (2020) include a latent knowl-

edge retriever in language model pretrain-

ing. Wang et al. (2020c) combine MLM with

a knowledge base completion objective. Glass

et al. (2020) replace MLM with span predic-

tion task (as in extractive question answer-

ing), where the model is expected to provide

the answer not from its own weights, but

from a different passage containing the cor-

rect answer (a relevant search engine query

snippet).

Another obvious source of improvement is pre-

training data. Several studies explored the benefits

of increasing the corpus volume (Liu et al., 2019b;

Conneau et al., 2019; Baevski et al., 2019) and

longer training (Liu et al., 2019b). The data

also does not have to be raw text: There is a

number efforts to incorporate explicit linguistic

information, both syntactic (Sundararaman et al.,

2019) and semantic (Zhang et al., 2020). Wu

et al. (2019b) and Kumar et al. (2020) include

the label for a given sequence from an annotated

task dataset. Schick and Schütze (2020) separately

learn representations for rare words.

Although BERT is already actively used as a

source of world knowledge (see subsection 3.3),

there is also work on explicitly supplying

structured knowledge. One approach is entity-

enhanced models. For example, Peters et al.

(2019a); Zhang et al. (2019) include entity

embeddings as input for training BERT, while

Poerner et al. (2019) adapt entity vectors to BERT

representations. As mentioned above, Wang et al.

(2020c) integrate knowledge not through entity

Figure 5: Pre-trained weights help BERT find wider

optima in fine-tuning on MRPC (right) than training

from scratch (left) (Hao et al., 2019).

embeddings, but through the additional pre-

training objective of knowledge base completion.

Sun et al. (2019b,c) modify the standard MLM task

to mask named entities rather than random words,

and Yin et al. (2020) train with MLM objective

over both text and linearized table data. Wang et al.

(2020a) enhance RoBERTa with both linguistic

and factual knowledge with task-specific adapters.

Pre-training is the most expensive part of train-

ing BERT, and it would be informative to know

how much benefit it provides. On some tasks, a

randomly initialized and fine-tuned BERT obtains

competitive or higher results than the pre-trained

BERT with the task classifier and frozen weights

(Kovaleva et al., 2019). The consensus in the

community is that pre-training does help in most

situations, but the degree and its exact contribution

requires further investigation. Prasanna et al.

(2020) found that most weights of pre-trained

BERT are useful in fine-tuning, although there

are ‘‘better’’ and ‘‘worse’’ subnetworks. One ex-

planation is that pre-trained weights help the fine-

tuned BERT find wider and flatter areas with

smaller generalization error, which makes the

model more robust to overfitting (see Figure 5

from Hao et al. [2019]).

Given the large number and variety of pro-

posed modifications, one would wish to know how

much impact each of them has. However, due to

the overall trend towards large model sizes, syste-

matic ablations have become expensive. Most

new models claim superiority on standard bench-

marks, but gains are often marginal, and estimates

of model stability and significance testing are

very rare.
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5.4 Fine-tuning BERT

Pre-training + fine-tuning workflow is a crucial

part of BERT. The former is supposed to provide

task-independent knowledge, and the latter would

presumably teach the model to rely more on the

representations useful for the task at hand.

Kovaleva et al. (2019) did not find that to be the

case for BERT fine-tuned on GLUE tasks:5 during

fine-tuning, the most changes for three epochs

occurred in the last two layers of the models, but

those changes caused self-attention to focus on

[SEP] rather than on linguistically interpretable

patterns. It is understandable why fine-tuning

would increase the attention to [CLS], but not

[SEP]. If Clark et al. (2019) are correct that

[SEP] serves as ‘‘no-op’’ indicator, fine-tuning

basically tells BERT what to ignore.

Several studies explored the possibilities of

improving the fine-tuning of BERT:

• Taking more layers into account: learning

a complementary representation of the infor-

mation in deep and output layers (Yang and

Zhao, 2019), using a weighted combination

of all layers instead of the final one (Su and

Cheng, 2019; Kondratyuk and Straka, 2019),

and layer dropout (Kondratyuk and Straka,

2019).

• Two-stage fine-tuning introduces an inter-

mediate supervised training stage between

pre-training and fine-tuning (Phang et al.,

2019; Garg et al., 2020; Arase and Tsujii,

2019; Pruksachatkun et al., 2020; Glavaš

and Vulić, 2020). Ben-David et al. (2020)

propose a pivot-based variant of MLM to

fine-tune BERT for domain adaptation.

• Adversarial token perturbations improve

the robustness of the model (Zhu et al., 2019).

• Adversarial regularization in combination

with Bregman Proximal Point Optimization

helps alleviate pre-trained knowledge forget-

ting and therefore prevents BERT from

overfitting to downstream tasks (Jiang et al.,

2019a).

• Mixout regularization improves the stab-

ility of BERT fine-tuning even for a small

5Kondratyuk and Straka (2019) suggest that fine-tuning

on Universal Dependencies does result in syntactically

meaningful attention patterns, but there was no quantitative

evaluation.

number of training examples (Lee et al.,

2019).

With large models, even fine-tuning becomes

expensive, but Houlsby et al. (2019) show that

it can be successfully approximated with adapter

modules. They achieve competitive performance

on 26 classification tasks at a fraction of the com-

putational cost. Adapters in BERT were also used

for multitask learning (Stickland and Murray,

2019) and cross-lingual transfer (Artetxe et al.,

2019). An alternative to fine-tuning is extracting

features from frozen representations, but fine-

tuning works better for BERT (Peters et al.,

2019b).

A big methodological challenge in the

current NLP is that the reported performance

improvements of new models may well be within

variation induced by environment factors (Crane,

2018). BERT is not an exception. Dodge et al.

(2020) report significant variation for BERT

fine-tuned on GLUE tasks due to both weight

initialization and training data order. They also

propose early stopping on the less-promising

seeds.

Although we hope that the above observations

may be useful for the practitioners, this section

does not exhaust the current research on fine-

tuning and its alternatives. For example, we do not

cover such topics as Siamese architectures, policy

gradient training, automated curriculum learning,

and others.

6 How Big Should BERT Be?

6.1 Overparameterization

Transformer-based models keep growing by or-

ders of magnitude: The 110M parameters of base

BERT are now dwarfed by 17B parameters of

Turing-NLG (Microsoft, 2020), which is dwarfed

by 175B of GPT-3 (Brown et al., 2020). This trend

raises concerns about computational complexity

of self-attention (Wu et al., 2019a), environmental

issues (Strubell et al., 2019; Schwartz et al., 2019),

fair comparison of architectures (Aßenmacher

and Heumann, 2020), and reproducibility.

Human language is incredibly complex, and

would perhaps take many more parameters to

describe fully, but the current models do not make

good use of the parameters they already have.

Voita et al. (2019b) showed that all but a few

Transformer heads could be pruned without
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Compression Performance Speedup Model Evaluation

BERT-base (Devlin et al., 2019) ×1 100% ×1 BERT12 All GLUE tasks, SQuAD

BERT-small ×3.8 91% − BERT4† All GLUE tasks
D

is
ti

ll
at

io
n

DistilBERT (Sanh et al., 2019) ×1.5 90%§ ×1.6 BERT6 All GLUE tasks, SQuAD

BERT6-PKD (Sun et al., 2019a) ×1.6 98% ×1.9 BERT6 No WNLI, CoLA, STS-B; RACE

BERT3-PKD (Sun et al., 2019a) ×2.4 92% ×3.7 BERT3 No WNLI, CoLA, STS-B; RACE

Aguilar et al. (2019), Exp. 3 ×1.6 93% − BERT6 CoLA, MRPC, QQP, RTE

BERT-48 (Zhao et al., 2019) ×62 87% ×77 BERT12
∗† MNLI, MRPC, SST-2

BERT-192 (Zhao et al., 2019) ×5.7 93% ×22 BERT12
∗† MNLI, MRPC, SST-2

TinyBERT (Jiao et al., 2019) ×7.5 96% ×9.4 BERT4
† No WNLI; SQuAD

MobileBERT (Sun et al., 2020) ×4.3 100% ×4 BERT24
† No WNLI; SQuAD

PD (Turc et al., 2019) ×1.6 98% ×2.5
‡ BERT6

† No WNLI, CoLA and STS-B

WaLDORf (Tian et al., 2019) ×4.4 93% ×9 BERT8
†‖ SQuAD

MiniLM (Wang et al., 2020b) ×1.65 99% ×2 BERT6 No WNLI, STS-B, MNLImm; SQuAD

MiniBERT(Tsai et al., 2019) ×6
∗∗ 98% ×27

∗∗ mBERT3
† CoNLL-18 POS and morphology

BiLSTM-soft (Tang et al., 2019) ×110 91% ×434
‡ BiLSTM1 MNLI, QQP, SST-2

Q
u

an
ti

-
za

ti
o

n Q-BERT-MP (Shen et al., 2019) ×13 98%¶ − BERT12 MNLI, SST-2, CoNLL-03, SQuAD

BERT-QAT (Zafrir et al., 2019) ×4 99% − BERT12 No WNLI, MNLI; SQuAD

GOBO (Zadeh and Moshovos, 2020) ×9.8 99% − BERT12 MNLI

P
ru

n
in

g

McCarley et al. (2020), ff2 ×2.2
‡ 98%‡ ×1.9

‡ BERT24 SQuAD, Natural Questions

RPP (Guo et al., 2019) ×1.7
‡ 99%‡ − BERT24 No WNLI, STS-B; SQuAD

Soft MvP (Sanh et al., 2020) ×33 94%¶ − BERT12 MNLI, QQP, SQuAD

IMP (Chen et al., 2020), rewind 50% ×1.4–2.5 94–100% − BERT12 No MNLI-mm; SQuAD

O
th

er

ALBERT-base (Lan et al., 2020) ×9 97% − BERT12
† MNLI, SST-2

ALBERT-xxlarge (Lan et al., 2020) ×0.47 107% − BERT12
† MNLI, SST-2

BERT-of-Theseus (Xu et al., 2020) ×1.6 98% ×1.9 BERT6 No WNLI

PoWER-BERT (Goyal et al., 2020) N/A 99% ×2–4.5 BERT12 No WNLI; RACE

Table 1: Comparison of BERT compression studies. Compression, performance retention, and inference

time speedup figures are given with respect to BERTbase, unless indicated otherwise. Performance

retention is measured as a ratio of average scores achieved by a given model and by BERTbase. The

subscript in the model description reflects the number of layers used. ∗Smaller vocabulary used. †The

dimensionality of the hidden layers is reduced. ‖Convolutional layers used. ‡Compared to BERTlarge.
∗∗Compared to mBERT. §As reported in Jiao et al. (2019).¶In comparison to the dev set.

significant losses in performance. For BERT,

Clark et al. (2019) observe that most heads in

the same layer show similar self-attention patterns

(perhaps related to the fact that the output of all

self-attention heads in a layer is passed through

the same MLP), which explains why Michel et al.

(2019) were able to reduce most layers to a single

head.

Depending on the task, some BERT heads/

layers are not only redundant (Kao et al.,

2020), but also harmful to the downstream task

performance. Positive effect from head disabling

was reported for machine translation (Michel et al.,

2019), abstractive summarization (Baan et al.,

2019), and GLUE tasks (Kovaleva et al., 2019).

Additionally, Tenney et al. (2019a) examine

the cumulative gains of their structural probing

classifier, observing that in 5 out of 8 probing

tasks some layers cause a drop in scores (typically

in the final layers). Gordon et al. (2020) find that

30%–40% of the weights can be pruned without

impact on downstream tasks.

In general, larger BERT models perform better

(Liu et al., 2019a; Roberts et al., 2020), but not

always: BERT-base outperformed BERT-large

on subject-verb agreement (Goldberg, 2019) and

sentence subject detection (Lin et al., 2019). Given

the complexity of language, and amounts of pre-

training data, it is not clear why BERT ends

up with redundant heads and layers. Clark et al.

(2019) suggest that one possible reason is the use

of attention dropouts, which causes some attention

weights to be zeroed-out during training.

6.2 Compression Techniques

Given the above evidence of overparameteriza-

tion, it does not come as a surprise that BERT can

be efficiently compressed with minimal accu-

racy loss, which would be highly desirable for

real-world applications. Such efforts to date are

summarized in Table 1. The main approaches are

knowledge distillation, quantization, and pruning.

The studies in the knowledge distillation

framework (Hinton et al., 2014) use a smaller
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student-network trained to mimic the behavior of

a larger teacher-network. For BERT, this has been

achieved through experiments with loss functions

(Sanh et al., 2019; Jiao et al., 2019), mimick-

ing the activation patterns of individual portions

of the teacher network (Sun et al., 2019a), and

knowledge transfer at the pre-training (Turc et al.,

2019; Jiao et al., 2019; Sun et al., 2020) or fine-

tuning stage (Jiao et al., 2019). McCarley et al.

(2020) suggest that distillation has so far worked

better for GLUE than for reading comprehen-

sion, and report good results for QA from a com-

bination of structured pruning and task-specific

distillation.

Quantization decreases BERT’s memory

footprint through lowering the precision of its

weights (Shen et al., 2019; Zafrir et al., 2019).

Note that this strategy often requires compatible

hardware.

As discussed in section 6, individual self-

attention heads and BERT layers can be disabled

without significant drop in performance (Michel

et al., 2019; Kovaleva et al., 2019; Baan et al.,

2019). Pruning is a compression technique that

takes advantage of that fact, typically reducing the

amount of computation via zeroing out of certain

parts of the large model. In structured pruning,

architecture blocks are dropped, as in LayerDrop

(Fan et al., 2019). In unstructured, the weights in

the entire model are pruned irrespective of their

location, as in magnitude pruning (Chen et al.,

2020) or movement pruning (Sanh et al., 2020).

Prasanna et al. (2020) and Chen et al. (2020)

explore BERT from the perspective of the lot-

tery ticket hypothesis (Frankle and Carbin, 2019),

looking specifically at the ‘‘winning’’ subnet-

works in pre-trained BERT. They independently

find that such subnetworks do exist, and that trans-

ferability between subnetworks for different tasks

varies.

If the ultimate goal of training BERT is com-

pression, Li et al. (2020) recommend training

larger models and compressing them heavily

rather than compressing smaller models lightly.

Other techniques include decomposing BERT’s

embedding matrix into smaller matrices (Lan et al.,

2020), progressive module replacing (Xu et al.,

2020), and dynamic elimination of intermediate

encoder outputs (Goyal et al., 2020). See Ganesh

et al. (2020) for a more detailed discussion of

compression methods.

6.3 Pruning and Model Analysis

There is a nascent discussion around pruning as a

model analysis technique. The basic idea is that

a compressed model a priori consists of elements

that are useful for prediction; therefore by finding

out what they do we may find out what the whole

network does. For instance, BERT has heads

that seem to encode frame-semantic relations, but

disabling them might not hurt downstream task

performance (Kovaleva et al., 2019); this suggests

that this knowledge is not actually used.

For the base Transformer, Voita et al. (2019b)

identify the functions of self-attention heads and

then check which of them survive the pruning,

finding that the syntactic and positional heads are

the last ones to go. For BERT, Prasanna et al.

(2020) go in the opposite direction: pruning on the

basis of importance scores, and interpreting the

remaining ‘‘good’’ subnetwork. With respect to

self-attention heads specifically, it does not seem

to be the case that only the heads that potentially

encode non-trivial linguistic patterns survive the

pruning.

The models and methodology in these stud-

ies differ, so the evidence is inconclusive. In

particular, Voita et al. (2019b) find that before

pruning the majority of heads are syntactic, and

Prasanna et al. (2020) find that the majority of

heads do not have potentially non-trivial attention

patterns.

An important limitation of the current head

and layer ablation studies (Michel et al., 2019;

Kovaleva et al., 2019) is that they inherently

assume that certain knowledge is contained in

heads/layers. However, there is evidence of

more diffuse representations spread across the

full network, such as the gradual increase in

accuracy on difficult semantic parsing tasks

(Tenney et al., 2019a) or the absence of

heads that would perform parsing ‘‘in general’’

(Clark et al., 2019; Htut et al., 2019). If

so, ablating individual components harms the

weight-sharing mechanism. Conclusions from

component ablations are also problematic if the

same information is duplicated elsewhere in the

network.

7 Directions for Further Research

BERTology has clearly come a long way, but it

is fair to say we still have more questions than

answers about how BERT works. In this section,
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we list what we believe to be the most promising

directions for further research.

Benchmarks that require verbal reasoning.

Although BERT enabled breakthroughs on many

NLP benchmarks, a growing list of analysis papers

are showing that its language skills are not as

impressive as they seem. In particular, they were

shown to rely on shallow heuristics in natural lan-

guage inference (McCoy et al., 2019b; Zellers

et al., 2019; Jin et al., 2020), reading compre-

hension (Si et al., 2019; Rogers et al., 2020;

Sugawara et al., 2020; Yogatama et al., 2019),

argument reasoning comprehension (Niven and

Kao, 2019), and text classification (Jin et al.,

2020). Such heuristics can even be used to recon-

struct a non–publicly available model (Krishna

et al., 2020). As with any optimization method, if

there is a shortcut in the data, we have no reason

to expect BERT to not learn it. But harder datasets

that cannot be resolved with shallow heuristics are

unlikely to emerge if their development is not as

valued as modeling work.

Benchmarks for the full range of linguistic

competence. Although the language models

seem to acquire a great deal of knowledge about

language, we do not currently have comprehensive

stress tests for different aspects of linguistic

knowledge. A step in this direction is the

‘‘Checklist’’ behavioral testing (Ribeiro et al.,

2020), the best paper at ACL 2020. Ideally, such

tests would measure not only errors, but also

sensitivity (Ettinger, 2019).

Developing methods to ‘‘teach’’ reasoning.

While large pre-trained models have a lot of know-

ledge, they often fail if any reasoning needs to be

performed on top of the facts they possess (Talmor

et al., 2019, see also subsection 3.3). For instance,

Richardson et al. (2020) propose a method to

‘‘teach’’ BERT quantification, conditionals, com-

paratives, and Boolean coordination.

Learning what happens at inference time.

Most BERT analysis papers focus on different

probes of the model, with the goal to find what

the language model ‘‘knows’’. However, probing

studies have limitations (subsection 3.4), and to

this point, far fewer papers have focused on

discovering what knowledge actually gets used.

Several promising directions are the ‘‘amnesic

probing’’ (Elazar et al., 2020), identifying

features important for prediction for a given task

(Arkhangelskaia and Dutta, 2019), and pruning the

model to remove the non-important components

(Voita et al., 2019b; Michel et al., 2019; Prasanna

et al., 2020).

8 Conclusion

In a little over a year, BERT has become a

ubiquitous baseline in NLP experiments and

inspired numerous studies analyzing the model

and proposing various improvements. The stream

of papers seems to be accelerating rather than

slowing down, and we hope that this survey helps

the community to focus on the biggest unresolved

questions.
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