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Analytical and experimental nonzero-sum
differential game-based control of a 7-DOF
robotic manipulator
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Abstract
We formulate a Nash-based feedback control law for an Euler–Lagrange system to yield a solution to noncooperative

differential game. The robot manipulators are broadly used in industrial units on the account of their reliable, fast, and

precise motions, while consuming a significant lumped amount of energy. Therefore, an optimal control strategy needs to

be implemented in addressing efficiency issues, while delivering accuracy obligation. As a case study, we here focus on

a 7-DOF robot manipulator through formulating a two-player feedback nonzero-sum differential game. First, coupled

Euler–Lagrangian dynamic equations of the manipulator are briefly presented. Then, we formulate the feedback Nash

equilibrium solution to achieve perfect trajectory tracking. Finally, the performance of the Nash-based feedback controller

is analytically and experimentally examined. Simulation and experimental results reveal that the control law yields almost

perfect tracking and achieves closed-loop stability.

Keywords
Nonzero-sum differential game, Nash equilibrium, control, high-DOF robot

1. Introduction

The robot manipulators are broadly used in industrial units
on the account of their reliable, fast, and precise motions
Bagheri et al. (2015), while consuming a significant lumped
amount of energy. Therefore, optimization schemes need
to be used to address efficiency issues, while delivering ac-
curacy obligation. For a dynamically interconnected robotic
system, there can be multiple players having different
criteria whereas all players intend to execute a task spec-
ified. In the so-called cooperative game, players are subject
to an agreement leading to a best feasible solution for the
game, whereas for a “noncooperative” game Basar and
Olsder (1999), each player pursues its own individual in-
terests, which may result in conflict with the other ones.
Note that a solution to the noncooperative game is an
equilibrium because it represents a control strategy pro-
viding a balance between interests of players. Although the
players work to reach the same goal, each player has its own
cost function leading to a multi-objective optimization
problem to be dealt with.

The optimal control theory was developed as an efficient
approach to determine optimal input parameters maxi-
mizing performance criteria defined, while satisfying
physical constraints. The game theory Tijs (2003) is an
effective approach to address the concerns of having
multiple players for complex dynamical systems.

Finding the Nash equilibria has received substantial
attention in various disciplines including, but not limited
to, mathematics, computer science, economics, and system
engineering. Through the Nash strategy, the cost function,
for each player, cannot unilaterally be minimized by
changing the strategy. The game theory deals with strategic
interactions among multiple players making simultaneous
decisions, while each player tries to minimize their own cost
function. The control of a high-DOF robot manipulator,
with N-player, is an example of nonzero-sum non-
cooperative differential game. In this problem, each player
has their own criterion through minimizing its own control
inputs and tracking errors, while all players intend to
complete the task specified, tracking desirable joint-space
trajectories. Note that a zero-sum game Johnson et al.
(2011) is a mathematical representation of a situation in
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which gain or loss of each participant is balanced by the
other ones. The players’ objective functions cannot be
easily optimized by ignoring the other ones’ choices be-
cause each player affects the actions of the other players.
Therefore, it is crucial to achieve the goal of finding the
feedback Nash equilibrium solution minimizing all players’
cost functions, while completing the task. Nash (1951)
provided a solution for a class of general N-player non-
cooperative games. In 1960s, Isaacs (1965) investigated the
multiplayer extension of the dynamic programming solu-
tion for the differential games. Ji et al. (2019) proposed
a fuzzy linear quadratic regulator game-based control
scheme to simultaneously enhance vehicle stability while
compensating driver’s inappropriate steering reaction in
emergency avoidance. Lee et al. (2010) presented the ap-
plication of advanced optimization techniques to unmanned
aerial system mission path planning system (MPPS) using
multi-objective evolutionary algorithms. Quintana and
Patino (2018) studied a decentralized scheme for active
noise control from a game theoretical perspective. They
formalized the Nash equilibrium (i.e., the simultaneous best
strategy) in the interaction between the controllers.
Bhattacharya and Hutchinson (2009) presented a game-
theoretic analysis of a visibility-based pursuit—evasion
game in a planar environment containing obstacles. In
their work, the pursuer and the evader are assumed to
be holonomic having bounded speeds. LaValle and
Hutchinson (1994) investigated a method to analyze and
select time-optimal coordination strategies for n robots
whose configurations are constrained to lie on a C-space
road map (which could, for instance, represent a Voronoi
diagram). Li et al. (2016a, 2016b) proposed a framework to
analyze the interactive behaviors of human and robot in
physical interactions. They used game theory in describing
the system under study, and policy iteration was adopted to
provide a solution of Nash equilibrium. Sharma and Gopal
(2014) tried to achieve a superior performance with fuzzy
Markov game-based control by hybridizing two game
theory–based approaches of “fictitious play” and “mini-
max.” They formulated a controller for a two-link robot and
compared its performance against fuzzy Markov game
control and fuzzy Q control. Eslamipoor et al. (2019) used
the game theory approach as a generalized form of non-
linear optimum control, in designing a closed-loop con-
troller for a fixed-base two-link manipulator. Bugnon and
Mohler (1988) provided insight into the solution of difficult
problems specific to N versus 1 games. To illustrate further
N versus 1 game problems, a nonoptimal scalar case was
presented in which the decentralized structure is proven
superior. Wang et al. (2018) considered a novel coupled
state-dependent Riccati equation approach for systemati-
cally designing nonlinear quadratic regulator and H∞

control of mechatronics systems. Dolezăl (1979) derived set
of necessary optimality conditions, which not only enable
the determination of the saddle-point strategies for both

participating players but also the optimal parameters. Based
on these conditions, an iterative numerical algorithm of
gradient type was suggested.

Shafei and Korayem (2017) formulated an open-loop
optimal control based on the Pontryagin minimum princi-
ple, which yields a 2-point boundary value problem. They
used the indirect method to extract the optimality con-
ditions. They calculated the maximum allowed load that a
mechanical manipulator with flexible links can carry while
traversing an optimal path. Shafei and Shafei (2018) for-
mulated a systematic procedure for the dynamic modeling
of a closed-chain robotic system in both the flight and
impact phases. In another effort, Korayem et al. (2013)
represented a systematic algorithm capable of deriving the
equations of motion of N-flexible link manipulators with
revolute–prismatic joints. In this study, the links are
modeled based on the Euler–Bernoulli beam theory and the
assumed mode method. Also, the effects of gravity as well
as the longitudinal, transversal, and torsional vibrations
have been considered in the formulations. Other efforts for
modeling and control of flexible-link robots can be found in
Bae and Haug (1987), Saha and Schiehlen (2001), Naudet
et al. (2003), Korayem et al. (2011) used the open-loop
optimal control approach for generating the optimal tra-
jectory of the flexible mobile manipulators in point-to-point
motion, whereas we, here, have the desired end-effector
trajectory from our previous deep learning-based path
planning Bertino et al. (2019), and therefore, the Nash-
based feedback control law is formulated and then exper-
imentally implemented to track the desirable trajectory.

Li et al. (2020a, 2020b) proposed a novel fault-tolerant
method with simultaneous fault diagnosis function for
motion planning and control of industrial redundant ma-
nipulators. The proposed approach is able to adaptively
localize which joints run away from the normal state to be
fault, and it can guarantee to finish the desired path tracking
control even when these fault joints lose their velocity to
actuate. Xie et al. (2012) formulated a new nested RRT
algorithm to fulfill fault tolerance and some other secondary
tasks at the same time. Compared with other existing fault
tolerant algorithms, they showed that this new algorithm is
more efficient. Jin et al. (2017) reformulated a quadratic
program with equality and bound constraints, which is then
solved by a discrete-time recurrent neural network. Cheng
et al. (2020) proposed a motion planning method based
on beetle antennae search algorithm for motion planning of
redundant manipulators with the variable joint velocity
limit. Li et al. (2020a, 2020b) formulated a novel motion
planning strategy with minimal potential energy modula-
tion. Such motion resolution scheme is formulated as an
optimization problem and solved by the zeroing dynamics
to achieve elegant global convergence. More case studies
can be found in Kamalapurkar et al. (2014b,2014a), Dixon
(2014), Kamalapurkar et al. (2018), Smyrnakis and Veres
(2014), Meng (2008), Korayem et al. (2016), Li et al. (2016a,
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2016b), Sharma (2016), Xu et al. (2012), Arslan et al.
(2007), Jumarie (1977), Ma and Peng (1999).

The amount of cooperation between players resulted in
different branches of game theory problems. The Nash
optimal control scheme is progressed when players have
additional information about the other ones. Therefore, it is
assumed that the players can observe the actions of the other
ones. Motivated by finding the feedback Nash equilibrium
solution, we explore the use of differential game theory in
formulating a controller to yield a stable Euler–Lagrangian
dynamic system, here a robot manipulator, to follow the
desired joint-space trajectories. Therefore, we use an ap-
proach to solve the nonzero-sum noncooperative differ-
ential game controlling a nonlinear system. Like other
classical game theory algorithms, we assume that the
players can observe the actions of each other and also know
the model information of the game. Then, we formulate the
feedback Nash equilibrium solution to achieve the perfect
tracking. A stability analysis is then carried out to prove that
all solutions asymptotically converge to desired trajectories
using the Nash-based strategy. Finally, the simulation and
experimental results are presented and discussed.

2. Mathematical modeling

The redundant manipulator, which is being studied here, has
7-DOF as shown in Figure 1. The manipulator’s Denavit–
Hartenberg parameters are shown in Table 1 provided by the
manufacturer. The robot manipulator is modeled as follows

MðqÞ€qþ Cðq, _qÞ _qþ fðqÞ ¼ τ (1)

where q, _q, and €q2R
7 are angles, angular velocities, and

accelerations of joints, respectively, and τ 2R
7 indicates

the vector of joints’ driving torques. Also, M(q) 2 R7×7,
Cðq, _qÞ 2R7×7, and fðqÞ 2R

7 are the mass, Coriolis, and
gravitational matrices, respectively, which are symbolically
derived using the Euler–Lagrange equation Bagheri et al.
(2019a, 2019b), Bagheri et al. (2018b, 2017), Bagheri
(2019), Bagheri et al. (2018c), Bertino et al. (2019),
Bagheri et al. (2019a, 2019b), Bagheri et al. (2018a),

Figure 1. 7-DOF Baxter’s arm: (a) Joints’ configurations;

(b) sagittal view; (c) top view.

Table 1. Baxter’s Denavit–Hartenberg parameters.

Link ai di αi θi

1 0.069 0.27035 �π/2 θ1
2 0 0 π/2 θ2 + π/2

3 0.069 0.36435 �π/2 θ3
4 0 0 π/2 θ4
5 0.010 0.37429 �π/2 θ5
6 0 0 π/2 θ6
7 0 0.3945 0 θ7

Bagheri and Naseradinmousavi 3



Bagheri and Naseradinmousavi (2017), Bagheri et al.
(2021). The inertia matrix M(q) is symmetric, positive
definite, and consequently invertible. This property is ex-
ploited in the subsequent development based on the fol-
lowing assumptions: (1) MðqÞ,Cðq, _qÞ, and f(q) matrices
are known and (2) q(t) and _qðtÞ are measurable.

3. Designing the Nash optimal controller

Through the game theory, the Nash equilibrium is a solution
of a noncooperative game involving two or more players in
which, each player is assumed to know the equilibrium
strategies of the other ones, and no player has anything to
gain by changing only its own strategy. The players are
committed to follow a predetermined strategy based on the
knowledge of initial state, system model, and cost function
to be minimized. Note that solution techniques for the Nash
equilibrium can be classified in various ways depending on
the amount of information available to the players.

3.1. Error system development

The control objective includes converging tracking errors to
zero such that the generalized coordinates track the desired
time-varying joints’ trajectories ðqdesðtÞ 2R

7Þ as well as
performance index. Consider the following assumption for
the desired joint-space trajectories:

Assumption 1. The desired joint-space trajectories,
qdesðtÞ, _qdesðtÞ, and €qdesðtÞ 2R

7, exist and are bounded for
all t ≥ 0.

To quantify the tracking performance, the angular (e1)
and combined (e2) tracking errors are defined as

e1 ¼ qdes � q (2)

e2 ¼ _e1 þ αe1 (3)

where e1, e2 2R
7, and α2R

7×7 is a constant positive def-
inite matrix. A state-space model can be developed based
on the tracking errors of equations (2) and (3). According
to this model, a controller is derived to improve tracking
performance indices subject to the assumption of knowing
dynamics of the system, as mentioned earlier. The control
term is then established as the solution to the nonzero-sum
Nash differential game.

A state-space model, based on the tracking error, is
formulated through premultiplying the inertia matrix by the
time derivative of equation (3)

M _e2 ¼ M €qdes þ C _qdes þ ðMα� CÞe2
þ ��Mα2 þ Cα

�
e1 þ G� τ

→ _e2 ¼ €qdes þM�1C _qdes þ
�
α�M�1C

�
e2

þ ��α2 þM�1Cα
�
e1 þM�1G�M�1τ

(4)

Which yields

_e2 ¼ αe2 � α2e1 þ h�M�1τ (5)

where h2R
7 is a nonlinear function defined as

h ¼ €qdes þM�1ðC _qdes þ Gþ Cαe1 � Ce2Þ (6)

And the state-space model of error dynamics becomes

_e ¼ f ðe, τÞ ¼
�

e2 � αe1
αe2 � α2e1 þ h�M�1τ

�
(7)

Because the dynamics of system (1) is known, the
controller, based on equation (5), is designed as

τ7×1 ¼ Mðh� ðu1 þ u2 þ…þ uN ÞÞ (8)

where N is the number of players and u1ðtÞ,…, uN 2R
7 are

auxiliary players’ control inputs, which are formulated to
minimize their own cost functions including the tracking
errors. For two players having a feasible computation cost in
real-time operation, substituting equation (8) into (5) results
in the closed-loop error signal for e2(t) as

_e2 ¼ �α2e1 þ αe2 þ u1 þ u2 (9)

Finally, the state-space model for error dynamics is
derived as follows

_e ¼ Aeþ B1u1 þ B2u2 (10)

where e ¼ ½eT1 , eT2 �T 2R
14, and A2R

14×14 and Bi 2
R

14×7ði ¼ 1; 2Þ are defined as

A ¼
��α I7×7
�α2 α

�
(11)

Bi ¼ ½07×7 I7×7�T i ¼ 1; 2 (12)

where I7×7 and 07×7 are the identity and zero matrices,
respectively.

Note that through the Nash equilibrium solution, the
performance of each player cannot be improved by a uni-
lateral change of strategy. To determine the two-player
feedback Nash nonzero-sum differential game solution,
we define the following cost functions J1(e, u1, u2) and
J2ðe, u1, u2Þ 2R as

J1 ¼ 1

2

Z ∞

t0

�
eTQeþ uT1R11u1 þ uT2R12u2

�
dt (13)

J2 ¼ 1

2

Z ∞

t0

�
eTLeþ uT2R22u2 þ uT1R21u1

�
dt (14)

where t0 2R is the initial time and Q,L2R
14×14 are

symmetric semi-definite constant matrices defined as
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Q ¼
"
Q11 Q12

QT
12 Q22

#
, L ¼

"
L11 L12

LT
12 L22

#
(15)

whereQ and L impose penalties on the tracking errors. Also,
Rij 2R

7×7 is a constant positive definite matrix. Note that
we here focus on a game with memoryless perfect state
information. Therefore, the controller’s information set
contains the initial conditions e0 as well as the current state
estimates e(t) at time t. The actions of the players are
completely determined by the relations (u1, u2) = (γ1(e0, e),
γ2(e0, e)), where (γ1(e0, e), γ2(e0, e)) is the pair of strategies
Johnson (2011).

Definition. A pair of strategies ðγ∗1, γ∗2Þ is a Nash equilib-
rium for the differential game; if for all strategies (γ1, γ2),
then the following inequalities hold

J1
�
γ∗1, γ

∗
2

�
≤ J1

�
γ1, γ

∗
2

�
(16)

J2
�
γ∗1, γ

∗
2

�
≤ J2

�
γ∗1, γ2

�
(17)

Using the minimum principle Kirk (2012), we define the
Hamiltonians H1(e, u1, u2) and H2(e, u1, u2) of the control
inputs u1 and u2, respectively, as

H1 ¼ 1

2
eTQeþuT1R11u1þuT2R12u2þλT1 ðAeþB1u1þB2u2Þ

(18)

H2 ¼ 1

2
eTLeþuT2R22u2þuT1R21u1þλT2 ðAeþB1u1þB2u2Þ

(19)

Based on the results of Basar and Olsder (1999), Weeren
et al. (1999) provided for this information structure and
using the following Theorems, the feedback Nash solution
for nonzero-sum differential game is obtained.

Theorem 1. Let the strategies ðγ∗1, γ∗2Þ be such that there
exist solutions (λ1, λ2) to the following differential equations

_λ1 ¼ � ∂H1

∂e

�
e, γ∗1, γ

∗
2, λ1

�� ∂H1

∂u2

�
e, γ∗1, γ

∗
2, λ1

�
×
∂γ∗2
∂e

ðe0, eÞ
(20)

_λ2 ¼ � ∂H2

∂e

�
e, γ∗1, γ

∗
2, λ2

�� ∂H2

∂u1

�
e, γ∗1, γ

∗
2, λ2

�
×
∂γ∗1
∂e

ðe0, eÞ
(21)

where H1 and H2 are defined in equations (18) and (19),
respectively, satisfying

∂Hi

∂ui

�
e, γ∗1, γ

∗
2, λi

� ¼ 0 i ¼ 1; 2 (22)

And e satisfies

_e ¼ Aeþ B1γ
∗
1 þ B2γ

∗
2 (23)

Then, ðγ∗1,γ∗2Þ is a Nash equilibrium with respect to the
memoryless perfect state information structure, and the
following equalities hold

u∗1 ¼ γ∗1 ¼ �R�1
11 B

T
1 λ1 (24)

u∗2 ¼ γ∗2 ¼ �R�1
22 B

T
2 λ2 (25)

Theorem 2. Suppose (P, S) satisfy the coupled differential
Riccati equations (DREs), given by

_P ¼ �ATP � PA� Qþ PB1R
�1
11 B

T
1P þ PB2R

�1
22 B

T
2 S

þ SB2R
�1
22 B

T
2P � SB2R

�1
22 R12R

�1
22 B

T
2 S

(26)

_S ¼ �ATS � SA� Lþ SB2R
�1
22 B

T
2 S þ SB1R

�1
11 B

T
1P

þ PB1R
�1
11 B

T
1S � PB1R

�1
11 R21R

�1
11 B

T
1P

(27)

with the following boundary conditions

PðTÞ ¼ 0 (28)

SðTÞ ¼ 0 (29)

Then, the following pair of strategy�
γ∗1, γ∗2

� ¼ ��R�1
11 B

T
1PðtÞe,�R�1

22 B
T
2 SðtÞe

�
(30)

Is a feedback Nash equilibrium law, and the solutions to
the equations of (20) and (21) are as follows

λ1 ¼ Pe (31)

λ2 ¼ Se (32)

We can simultaneously solve DREs defined in (26) and
(27) using boundary conditions (28) and (29). Substituting
equations (31) and (32) into (24) and (25), respectively,
yields the following Nash-based controllers for two players

u∗1 ¼ �R�1
11 B

T
1Pe (33)

u∗2 ¼ �R�1
22 B

T
2Se (34)

Based on the feedback Nash strategy, the cost functions
defined in equations (13) and (14) are minimized by the
control inputs’ equations (33) and (34), respectively.
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4. Experimental results
We implement the two-player Nash-based feedback con-
troller for the 7-DOF Baxter manipulator through a pick-
and-place task, while each player tries to minimize its own
cost function. We take the advantage of this controller, using

Theorems 1 and 2, to globally asymptotically stabilize the
manipulator because of the fact that all the assumptions are
valid for the robot’s dynamics. Then, we thoroughly in-
vestigate the performance of this controller through sim-
ulations and experiments.

Figure 2. Experimental (blue line), simulated (green line), and desired joint-space trajectories (dash line) for (a) S0, (b) S1, (c) E0, (d) E1,
(e) W0, (f) W1, and (g) W2 joints.
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The initial conditions are selected based on the accuracy
of the joints’ sensors

q0 ¼ qd0 þ 0:05½r and ð0; 1Þ,…, r and ð0; 1Þ�T
_q0 ¼ 07×1

The weighting matrices L and Q and the Nash gains R11,
R12, R21, and R22 are selected as follows

Q11 ¼ diagf7:0, 9:0, 7:0, 10:0, 5:0, 8:0, 5:0g
Q12 ¼ 6 × I7×7, Q22 ¼ 0:5 ×Q11

L11 ¼ diagf7:0, 9:0, 70; 15; 25; 80; 25g
L12 ¼ �6 × I7×7, L21 ¼ 10 × I7×7
R11 ¼ 10 × I7×7, R12 ¼ R21 ¼ I7×7, R22 ¼ 7:5 × I7×7

The immediate challenge of experimental work emerged
as the computation time of the optimal control scheme in

Figure 3. Experimental (blue line) and simulated (green line) Nash-based tracking errors for (a) S0, (b) S1, (c) E0, (d) E1, (e)W0, (f)W1,

and (g) W2 joints.

Bagheri and Naseradinmousavi 7



each loop, which was incompatible with the minimum time
step (Δt = 0.001 s or f = 1 kHZ) of Baxter. The computation
time of the optimal control scheme was in the range of
0.003 s ≤ tc ≤ 0.005 s leading to a destabilizing time delay in
each control loop. Therefore, we addressed a critical trade-
off between the high accuracy and computational cost. To

resolve this problem, we increased the Baxter’s time step to
Δt = 0.01 s or f = 0.1 kHZ to avoid such a harmful time
delay.

Figures 2 and 3 present the experimental and simulated
joint-space trajectories and tracking errors, respectively.
As can be observed, the simulation results reveal that the

Figure 4. Experimental (blue line) and simulated (green line) Nash-based torques for (a) S0, (b) S1, (c) E0, (d) E1, (e) W0, (f) W1, and

(g) W2 joints.

8 Journal of Vibration and Control 0(0)



manipulator perfectly tracks the desired trajectories,
whereas the experimental ones present a highly acceptable
tracking process. The negligible experimental tracking er-
rors mainly root on the inaccuracy of sensors and actuators.

The simulation results, shown in Figure 3, indicate that
the tracking errors asymptotically converge to zero, as
expected. However, the tracking errors of the experimental
work do not necessarily converge to zero because of the lack
of sufficient accuracies of sensors and actuators, mea-
surement noise, as well as the joints’ backlash. From an-
other aspect, the measurement of discrete time control, for
Baxter, is subject to noise. The noise affects the joint
position/velocity sensors. The joint angular positions are
measured directly through the use of encoders, whereas the
joint angular velocities are calculated by taking the de-
rivative of the angular positions (finite-difference approx-
imation). This amplifies the noise in the angular position

measurement, as well as introducing new noise due to
variations in sampling time as well as small uncertainties in
angular position based on the resolution of the encoder. This
noise in the angular velocity obviously affects the com-
putation of the joint torques. The joints’ torques, shown
in Figure 4, reveal that the incremental tracking errors ex-
pectedly demand more control torques to be applied.
Therefore, it is straightforward to conclude that the ex-
perimental torques are higher than those of the simulated
ones because the experimental tracking errors are higher
than the simulated ones, as shown in Figure 3. It is worth
mentioning that in addition to the control torques, the
gravity compensation torques need to be applied to over-
come the effect of gravity; this is a basic mode which is, by
default, active for the onset of manipulator operation.

The simulated and experimental minimization and
convergence processes of the cost functions for the two
players are shown in Figures 5 and 6, respectively. Shown in
Figure 5 reveals that both the cost functions asymptotically
converge to the optimal values, as expected, although the
experimental ones do not converge to optimal values per-
fectly (Figure 6). These happen due to the fact that the
experimental tracking process cannot be perfectly achieved,
while the errors do not converge to absolute zero. However,
the robot manipulator is stabilized using the Nash-based
feedback control law and has an acceptable tracking pro-
cess. Figure 7 presents the experimental work carried out at
our Dynamic Systems and Control Laboratory (DSCL) to
examine the Nash-based control law for a simple obstacle
avoidance pick-and-place task defined.

Conclusions

Throughout this effort, we presented the formulation of the
two-player Nash-based feedback control law for an Euler–
Lagrangian system, and then, the controller was experi-
mentally implemented for the 7-DOF Baxter manipulator.

Figure 5. Simulated cost functions for u1 and u2.

Figure 6. Experimental cost functions for u1 and u2.

Figure 7. Stable obstacle avoidance pick-and-place task using the

Nash-based feedback control law.

Bagheri and Naseradinmousavi 9



Toward formulating the controller, we assumed and then
validated some properties for the robot’s operation. We
formulated the Nash-based feedback controller using
Theorems 1 and 2 and then investigated its performance.
The experimental results revealed the stable operation of the
manipulator, and the robot could expectedly track the de-
sired joint-space trajectories.

We also presented that the simulated tracking errors,
using the Nash-based feedback controller, asymptotically
converge to zero guaranteed through Theorems 1 and 2.
Although, the experimental results revealed an acceptable
tracking process, which is because of the inaccuracy in-
volved with sensors and actuators, measurement noise, and
the joints’ backlash. The simulated and experimental tor-
ques were shown for all joints along with both the players’
cost functions. The simulation results indicate the asymp-
totic convergence of the cost functions of players. However,
because the errors of the experimental work did not con-
verge to absolute zero, the experimental torques and cost
functions did not converge to M(q)h and optimal values,
respectively. Note that the experiment revealed the stable
operation of the manipulator, while the robot tracked the
desired joint-space trajectory in an acceptable fashion.

Based on efforts reported in Zhou et al. (2015), Liu et al.
(2016), Nammoto and Kosuge (2012), we will investigate
the joints’ limit avoidance as our future study.
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