New Hardness Results for Planar Graph Problems in P and an
Algorithm for Sparsest Cut

Amir Abboud
IBM Almaden Research Center
Almaden, US.A.
amir.abboud@gmail.com

Vincent Cohen-Addad
Sorbonne Universités, UPMC Univ
Paris 06, CNRS, LIP6
Paris, France

Philip N. Klein
Brown University
Providence, U.S.A.
klein@brown.edu

vcohenad@gmail.com

ABSTRACT

The Sparsest Cut is a fundamental optimization problem that has
been extensively studied. For planar inputs the problem is in P and
can be solved in O(n®) time if all vertex weights are 1. Despite a
significant amount of effort, the best algorithms date back to the
early 90’s and can only achieve O(log n)-approximation in O(rn)
time or 3.5-approximation in O(n?) time [Rao, STOC92]. Our main
result is an Q(n?~¢) lower bound for Sparsest Cut even in planar
graphs with unit vertex weights, under the (min, +)-Convolution
conjecture, showing that approximations are inevitable in the near-
linear time regime. To complement the lower bound, we provide a
3.3-approximation in near-linear time, improving upon the 25-year
old result of Rao in both time and accuracy.

Our lower bound accomplishes a repeatedly raised challenge by
being the first fine-grained lower bound for a natural planar graph
problem in P. Moreover, we prove near-quadratic lower bounds un-
der SETH for variants of the closest pair problem in planar graphs,
and use them to show that the popular Average-Linkage proce-
dure for Hierarchical Clustering cannot be simulated in truly sub-
quadratic time.

At the core of our constructions is a diamond-like gadget that
also settles the complexity of Diameter in distributed planar net-
works. We prove an Q(n/logn) lower bound on the number of
communication rounds required to compute the weighted diameter
of a network in the CONGEST model, even when the underlying
graph is planar and all nodes are D = 4 hops away from each other.
This is the first poly(n)+w(D) lower bound in the planar-distributed
setting, and it complements the recent poly(D, log n) upper bounds
of Li and Parter [STOC 2019] for (exact) unweighted diameter and
for (1 + ¢) approximate weighted diameter.

CCS CONCEPTS

- Theory of computation — Graph algorithms analysis.

KEYWORDS
Algorithm, Planar graphs, Sparsest cut

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °20, June 22-26, 2020, Chicago, IL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6979-4/20/06. .. $15.00
https://doi.org/10.1145/3357713.3384310

996

ACM Reference Format:

Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein. 2020. New Hard-
ness Results for Planar Graph Problems in P and an Algorithm for Sparsest
Cut. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing (STOC °20), June 22-26, 2020, Chicago, IL, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3357713.3384310

1 INTRODUCTION

Cuts in Planar Graphs. The Sparsest Cut problem is among the
most fundamental optimization problems. It is NP-hard and one of
the most important problems in the field of approximation algo-
rithms; through the years, it has led to the design of new, powerful
algorithmic techniques (e.g. the O(4/log n)-approximation of Arora,
Rao, and Vazirani [12]), and is also increasingly becoming a key-
stone of divide-and-conquer strategies for a variety of problems
arising in graph compression [31], clustering [30], and beyond. The
goal is to cut the graph into two roughly balanced parts while
cutting as few edges as possible.

This paper studies this problem in planar graphs where it is
solvable in (weakly) polynomial time, in part because the cut can
be shown to be a cycle in the dual of the graph. Let us mention two
motivating reasons. First, finding sparse cuts in planar graphs is of
high interest in applications such as network evaluation [74], VLSI
design [18, 55], and more [59]. For instance, sparse cuts are used to
identify portions of road networks that may suffer from congestion,
or to design good VLSI layouts. A second motivation comes from
finding optimal separators, a ubiquitous subtask in planar graph
algorithms. The classic result of Lipton and Tarjan [60] shows that
any bounded-degree planar graph has a balanced vertex separator
of size O(+/n), but this bound may be suboptimal in many cases (see
for example [74]). In such non-worst-case instances, algorithms for
finding better separators could speed up many algorithms.

There are two common ways to define the value (or sparsity) of
a cut: we divide its cost by either the weight of the smaller of the
two sides, or their product. The former definition is more standard
and easier to work with in planar graphs; we will refer to it as MQC,

defined below. We will refer to the other one, that asks to find asks
to find the cut S that minimizes w(SC)O+(g/)—S)

Cut.

simply as Sparsest

DEFINITION 1 (THE MINIMUM QUOTIENT CUT PROBLEM (MQC)).
Given a graph G = (V,E) with edge costs ¢ : E — R* and vertex
weights w : V = R*, find the cut (S,V — S),S C V minimizing the
quotient:

cost(S)
min{w(S), w(V - S)}

quotient(S) :=

https://doi.org/10.1145/3357713.3384310
https://doi.org/10.1145/3357713.3384310

STOC 20, June 22-26, 2020, Chicago, IL, USA

where cost(X) := 3, (woree c(u,v) and w(X) = Y, ex w(u).
ueX,veX

The study of Sparsest Cut in planar graphs dates back to Rao’s
first paper in the 80’s [70], and to subsequent works by Rao [71]
and by Park and Phillips [66]. The first exact algorithm was by Park
and Phillips and had a running time of O(n®W) where W is the
sum of the vertex weights. Here the O(-) notation hides logarithmic
factors in n, W, and C the sum of edge costs. Note that in the
“unweighted” case of unit vertex weights, W = n and this upper
bound is O(n®). They also showed that the problem is weakly NP-
Hard, and therefore cannot be solved exactly in O(poly(n)) time.
Rao’s work gave a 3.5-approximation for MQC in O(n?) time, and
an O(log n) approximation in O(n) time.

Since then, there has been progress on related problems such
as the Minimum Bisection problem where we want to find the cut
of minimum cost that is balanced, i.e. w(S) = w(V = S) = W/2.
Rao [70] showed that an approximation algorithm for MQC can
be used to approximate Minimum Bisection in the following bi-
criteria way: we return a cut with at most two-thirds of the vertex
weight on each side and with cost that is O(log n) times the cost of
the minimum bisection. Garg et al. [37] gave a different algorithm
with similar bicriteria guarantees where the cost is only a factor
of 2 away from the optimal. This involves iterative application
of the exact algorithm of Park and Phillips. More recently, Fox et
al. [33] gave a polynomial-time bicriteria approximation scheme
for Minimum Bisection but the algorithm runs in time nP°(1/).

Still, almost no progress has been made on Sparsest Cut since
the early 90’s. In the most interesting regime of near-linear running
times, Rao’s O(log n)-approximation is the best known, and there
is no exact algorithm running in time 6(n?W). The gaps are large,
but the most pressing question is:

OPEN QUESTION 2. Can Sparsest Cut in planar graphs be solved
exactly in near-linear time?

Given that the upper bound is longstanding, it is natural to try to
use the recent tools of fine-grained complexity in order to resolve
this question negatively. Can we show that a linear time algorithm
would refute SETH or one of the other popular conjectures? This is
challenging because this field has not been successful in proving
any conditional lower bound for a planar graph problem in P, not
to mention a natural and important problem like Sparsest Cut.
Nonetheless, our main result is a quadratic conditional lower bound
even for the unit-vertex-weight version of Sparsest Cut where the
upper bound is cubic, and it also applies for MQC and Minimum
Bisection. The lower bound is based on the hypothesis that the
basic (min, +)-Convolution problem requires quadratic time. This
hardness assumption was recently highlighted by Cygan et al. [28]
after being used in other papers [15, 17, 52, 53]. It is particularly
appealing because it implies both the 3-SUM and the All-Pairs
Shortest Paths conjectures, and therefore also all the dozens of
lower bounds that follow from them (see [28, 77]).

THEOREM 3. If for some ¢ > 0, the Sparsest Cut, the Minimum
Quotient Cut, or the Minimum Bisection problems can be solved in
O(n®7%) time in planar graphs of treewidth 3 on n vertices with unit
vertex-weights and total edge cost C = n®W, then the (min, +)-
Convolution problem can be solved in O(n?~¢) time.

997

Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

After settling the high-order question it is easier to direct our en-
ergies into decreasing the gaps. A natural next question is whether
there could be a cubic lower bound, which would completely settle
the exact case. We show that this is not the case; a natural use of
O(+/n)-size separators in the right way inside the Park and Phillips
algorithm reduces the running time to n?->. Figuring out the exact
exponent remains an important open question. It seems that new
algorithmic techniques will be required to bring the upper bound
down to O(nW), yet we do not know of hard instances that seem
to require super-quadratic time.

THEOREM 4. The Sparsest Cut and Minimum Quotient Cut prob-
lems in planar graphs on n vertices with total vertex-weight W and
total edge costs C can be solved in O(n3/2W10g(CW)) time.

Since near-linear time algorithms are the most desirable, perhaps
the next most pressing question is whether the O(log n) approxi-
mation of Rao is the best possible:

OPEN QUESTION 5. Is there an O(1)-approximation algorithm for
MQC in near-linear time?

Our main algorithmic result in this work is a near-linear time
3.3-approximation algorithm for MQC, showing that constant fac-
tors are indeed possible. Surprisingly, we also beat the previous
3.5-approximation in O(n?) time both in time and accuracy. Our
algorithm combines several techniques with new ideas; the main ad-
vantage comes from finding and utilizing a node that is guaranteed
to be close to the optimal cycle rather than on it.

THEOREM 6. The Minimum Quotient Cut problem in planar graphs
on n vertices with total vertex-weight W and total edge cost C can be
approximated to within a factor of 3.3 in time nlog®M(CWn).

New Hardness Results in Planar Graphs. Theorem 3 finally re-
solves a repeatedly raised challenge in fine-grained complexity: Are
there natural planar graph problems in P for which we can prove
a conditional w(n) lower bound? The list of problems with such
lower bounds under SETH or other conjectures is long, exhibiting
problems on graphs [78], strings [9, 14], geometric data [13, 19, 36],
trees [2, 20], dynamic graphs [7, 48], compressed strings [1], and
more!. Perhaps the most related results are the lower bounds for
problems on dynamic planar graphs [6] but those techniques do not
seem to carry over to the more restricted setting of (static) graphs.
Indeed, the above question has been raised repeatedly, even after
[6], including in the best paper talk of Cabello at SODA 2017 [22].
The search for an answer to this question has been remarkably fruit-
ful from the viewpoint of upper bounds; Cabello’s breakthrough
(a subquadratic time algorithm for computing the diameter of a
planar graph) came following attempts at proving a quadratic lower
bound (such a lower bound holds in sparse but non-planar graphs
[73]), and the techniques introduced in his work (mainly Abstract
Voronoi Diagrams) have led to major breakthroughs in planar graph
algorithms (see [25, 27, 38, 39]).

Strong lower bounds were found for some restricted graph classes
such as graphs with logarithmic treewidth [8] (e.g. a quadratic lower
bound for Diameter); but these are incomparable with planar graphs.
For some problems such as subgraph isomorphism there are lower

!For a more extensive list see the survey in [77].

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut

bounds even for trees [2], a restricted kind of planar graphs; how-
ever these problems are not in P when the graphs are planar but
not trees. Many hardness results are known for geometric problems
on points in the plane (e.g. [13, 16, 36]); while related in flavor, the
techniques are specific to the euclidean nature of the data and it is
not clear how to extract lower bounds for natural graph problems
out of these results.

The main challenge, of course, is in designing planar gadgets and
constructions that are capable of encoding fine-grained reductions.
While this has already been accomplished in other contexts such
as NP-hardness proofs or in parameterized complexity, those tech-
niques do not work under the more strict efficiency requirements
that are needed for fine-grained reductions. From the perspective of
lower bounds, the main contribution of this paper is in coming up
with a planar construction that exhibits the super-linear complexity
of basic problems like Sparsest Cut. By extracting the core gadget
from this construction and building up on it we are able to prove
lower bounds for other, seemingly unrelated problems on planar
graphs.

Notably, our constructions are not only planar but also have
very small treewidth of two or three, but crucially not one since
our problems become easy on trees. This might be of independent
interest.

Closest Pair of Sets and Hierarchical Clustering. Hierarchical Clus-
tering (HC) is a ubiquitous task in data science and machine learn-
ing. Given a data set of n points with some similarity or distance
function over them (e.g. points in Euclidean space, or the nodes of
a planar graph with the shortest path metric), the goal is to group
similar points together into clusters, and then recursively group
similar clusters into larger clusters. Perhaps the two most popular
procedures for HC are Single-Linkage and Average-Linkage. Both
are so-called agglomerative HC algorithms (as opposed to divisive)
since they proceed in a bottom-up fashion: In the beginning, each
data point is in its own cluster, and then the most similar clusters
are iteratively merged - creating a larger cluster that contains the
union of the points from the two smaller clusters - until all points
are in the same, final cluster.

The difference between the different procedures is in their notion
of similarity between clusters, which determines the choice of clus-
ters to be merged. In Single-Linkage the distance (or dissimilarity)
is defined as the minimum distance between any two points, one
from each cluster. While in Average-Linkage we take the average
instead of the minimum. It is widely accepted that Single-Linkage
is sometimes simpler and faster, but the results of Average-Linkage
are often more meaningful. Extensive discussions of these two pro-
cedures (and a few others, such as Complete-Linkage where we take
the max, rather than min or average) can be found in many books
(e.g. [10, 34, 56, 75]), surveys (e.g. [23, 63, 64]), and experimental
studies (e.g. [68]).

Both of these procedures can be performed in nearly quadratic
time and a faster, subquadratic implementation is highly desir-
able. Some subquadratic algorithms that try to approximate the
performance of these procedures have been proposed, e.g. [5, 26].
However, it is often observed that an exact implementation is at
least as hard as finding the closest pair (of data points), since they
are the first pair to be merged. Indeed, if the points are in Euclidean

998

STOC 20, June 22-26, 2020, Chicago, IL, USA

space with w(log n) dimensions, the Closest Pair problem requires
quadratic time under SETH [11, 49], and therefore these procedures
cannot be sped up without a loss.

But what if we are in the planar graph metric? This argument
breaks down because the Closest Pair problem is trivial in planar
graphs (the minimum weight edge is the answer). Moreover, the
Single-Linkage procedure can be implemented to run in near-linear
time in this setting, since it reduces to the computation of a mini-
mum spanning tree [43]. In fact, subquadratic algorithms are known
for many other metrics that have subquadratic closest pair algo-
rithms such as spaces with bounded doubling dimension [61], and
efficient approximations are known when the closest pair can be
approximated efficiently [5]. This naturally leads to the question:

OPEN QUESTION 7. Can Average-Linkage be computed in sub-
quadratic time in any metric where the closest pair can be computed
in subquadratic time?

Surprisingly to us, it turns out that the answer is no. In this paper
we prove a near-quadratic lower bound under SETH for simulating
the Average-Linkage and Complete-Linkage procedures in planar
graphs, by proving a lower bound for variants of the closest pair of
sets problem which are natural problems of independent interest:
We are given a planar graph on n nodes that are partitioned into
O(n) sets and the goal is to find the pair of sets that minimizes the
sum (or max) of pairwise distances. An O(n?) upper bound is easy
to obtain from an all-pairs shortest paths computation.

THEOREM 8. If for some ¢ > 0, the Closest Pair of Sets problem,
with sum-distance or max-distance, in unweighted planar graphs on
n nodes can be solved in O(nz_g) time, then SETH is false. Moreover,
if for some ¢ > 0 the Average-Linkage or Complete-Linkage algo-
rithms on n node planar graphs with edge weights in [O(log n)] can
be simulated in O(nz_f) time, then SETH is false.

Diameter in Distributed Graphs. Our final result is on the com-
plexity of diameter in planar graphs in the CONGEST model. This is
the central theoretical model for distributed computation, where the
input graph defines the communication topology: in each round,
each of the n nodes can send an (log n)-bit message to each one
of their neighbors. The complexity of a problem is the worst case
number of rounds until all nodes know the answer.

In the CONGEST, a problem is considered tractable if it can
be solved in poly(D,logn) time, where D is the diameter of the
underlying unweighted network? (i.e. the hop-diameter). Many
basic problems such as finding a Minimum Spanning Tree (MST)
and distance computations have been shown to be intractable [4, 21,
24,29, 32, 35, 65, 69]. For example, no algorithm can decide whether
the diameter of the network is 3 or 4 in n°) rounds [35]. That is, the
Diameter problem itself cannot be solved in poly(diameter) time.

While (sequential®) algorithms for planar graphs have been an
extensively studied subject for the past three decades, only recently
have they been considered in the distributed setting [42, 44-47, 57].
This study was initiated by Ghaffari and Hauepler [40, 41] who also
demonstrated its potential: While MST has an Q(+/n) lower bound
in general graphs [29], the problem is tractable on planar graphs.
2Note that Q(D) rounds are usually required; some nodes cannot exchange any infor-

mation otherwise.
3This seems to be the standard term for not distributed algorithms.

STOC 20, June 22-26, 2020, Chicago, IL, USA

All previous lower bound constructions are far from being planar,
and it is natural to wonder: Do all problems* become tractable in
the CONGEST when the network is planar?®

In this paper, we provide a negative answer with a simple ar-
gument ruling out any f(D) - n°®) distributed algorithms even in
planar graphs. A very recent breakthrough of Li and Pater showed
that the diameter problem in unweighted planar graphs is tractable
in the CONGEST [58]. We show that the weighted case is intractable.
Our lower bound is only against exact algorithms which is best-
possible since Li and Parter achieve a (1 + ¢)-approximation in the
weighted case with O(D%) rounds.

THEOREM 9. The number of rounds needed for any protocol to
compute the diameter of a weighted planar network of constant hop-
diameter D = O(1) on n nodes in the CONGEST model is Q(@).

Our technique for showing lower bounds in the CONGEST model
is by reduction from two-party communication complexity and is
similar to the one in previous works. For general graphs, there
are strong Q(n/log? n) lower bounds for computing the diameter
even in unweighted, sparse graphs of constant diameter [4, 21, 35].
Our high-level approach is similar, but a substantially different
implementation is needed in order to keep the graph planar. In
fact, we design a simple but subtle, diamond-like gadget for this
purpose (see Section 3). The other lower bounds in the paper were
obtained by building on top of this simple construction and they
show that this gadget may really be capturing the difficulty in
many planar graph problems. In particular, the lower bounds for
closest pair of sets, which are the most complicated in this paper,
are achieved by combining O(n) copies of this gadget together in an
“outer construction” that also has the same structure of this gadget.

2 SPARSEST CUT, MINIMUM QUOTIENT CUT
AND MINIMUM BISECTION

We now provide formal definitions of the Sparsest Cut, Minimum
Quotient Cut and Minimum Bisection problems. Consider a planar
graph G = (V, E) with edge costs ¢ : E — RR* and vertex weights
w: V - R™". Given a subset of vertices S, we define the cut induced
by S as the set of edges with one extremity in S and the other in
V —S. We will slightly abuse notation by referring to the cut induced
by S as the cut of S. We let

cost(S) = Z c(u,v)
(u,v)eE
uesS, v¢S

and, with a slight abuse of notation, w(S) = },,,cs w(v). Given a
subset of vertices S, we define the sparsity of the cut induced by S as
the ratio cost(S)/(w(S) - w(V —S)). The Sparsest Cut problem asks
for a subset S of V' that has minimum sparsity over all cuts induced
by a subset S C V. This is not to be confused with the General
Sparsest Cut which is APX-Hard in planar graphs®.

“4Here, we mean decision problems. It is easy to show that problems with a large output
such as All-Pairs-Shortest-Paths are not tractable even in trivial networks.

5Note that even NP-Hard problems might become tractable in this model, since the
only measure is the number of rounds, not the computation time at the nodes. For
example, in the LOCAL model where we do not restrict the messages to be short, all
problems can be solved in O(D) rounds.

OThere, there is a weighted demand between pair of vertices and the goal is to find a
subset S such that the cut induced by S minimizes the ratio of cut(S) to the amount
of demand between pairs of vertices in S and V' — S.

999

Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

The quotient of a cut S is defined to be cost(S)/(min{w(S), w(V —
S)}). The Minimum Quotient Cut problem asks for a cut with mini-
mum quotient. The Minimum Bisection problem asks for a subset S
such that w(S) = w(V)/2 and that minimizes cost(S).

2.1 Proof of Theorem 3: Lower Bounds
In this section, we aim prove a conditional lower bound of Q(n?~¢)
for the unit vertex-weight case of all three problems: the Spars-
est Cut, the Minimum Quotient Cut, and the Minimum Bisection
problems. We will first provide a reduction for the case of non-unit
vertex-weight and then show how to adapt it to the unit vertex-
weight case.

Our lower bounds are based on the hardness of the (min, +)-
Convolution Problem, defined as follows, which is conjectured to
require Q(n?~¢ time, for all ¢ > 0.

DEFINITION 10 (THE (min, +)-CONVOLUTION PROBLEM). Given
two sequences of integers A = (a1, ...,an), B = (b1,...,by), the out-
putisasequenceC = {c1,¢z,...,cp) suchthatcy = ming<; <k ag—j41+

b;.

To prove our conditional lower bounds we will show reduc-
tions from the following variant called (min, +)-Convolution Upper
Bound, which was shown to be subquadratic-equivalent to (min, +)-
Convolution by Cygan et al. [28]. Namely, there is an O(n?~¢)
algorithm for some constant ¢ > 0 for the (min, +)-Convolution
Upper Bound problem if and only if there is an O(n*¢) for the
(min, +)-Convolution problem, for some ¢’ > 0.

DEFINITION 11 (THE (min, +)-CoNvoLuTION UPPER BOUND PROB-
LEM). Given three sequences of positive integers A = (a1, az, . ..,an),
B = (b1,b2,...,by), and C = {c1,c2,...,cn), verify that for all
k € [n], there is no pair i, j such that i + j = k and a; + bj < ck.

The Reduction. The construction in each of our three reductions
is the same, and the analysis is a little different in each case. There-
fore, we will present all three in parallel. Given an instance A, B, C
of the (min, +)-Convolution Upper Bound problem, we build an in-
stance G for the Sparsest Cut, Minimum Quotient Cut or Minimum
Bisection problems as follows.

LetT=X" aj+b;+cjand f = 4Tn?. The graph G will have
two special vertices u and v of weights 10n and 11n respectively. It
will also have three paths P4, P, Pc that connect u and v and will
encode the three sequences as follows.

e The path P4 has a vertex vg, for each g; in A, of weight
1. We connect vg; to vg,;,, with an edge of cost § + a; for
each 1 < i < n. Moreover, we connect vg, to u with an
edge of cost ff + an and v to v,, with an edge e4 of cost
1210n%(28 + T).

The path Pp is defined in an analogous way. We create a

vertex vy, of weight 1 for each b; in B and connect it with

an edge of cost § + b; to vp,,, for each 1 < i < n, and we
connect v, to u with an edge of cost § + by, and v to vy,

with an edge ep of cost 1210n%(28 + T).

o The path Pc is defined differently: the indices are ordered
in the opposite direction and the numbers are flipped. We
create a vertex v, of weight 1 for each ¢; in C but connect
each v¢; to v¢,,, with an edge of cost f + T — ¢; for each

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut

Figure 1: The graph generated in our reduction. Dashed
edges are edges of weight 1210n2(2f + T).

1 < i < n. And this time we connect v, to u with an edge
ec of cost 1210n?(28 + T) and v,,, to v with an edge of cost
B+cn.

Itis easy to see that the resulting graph is planar and has treewidth
at most 3. See also Figure 1. The total weight in our construction
is W = 24n because there are 3n vertices of weight 1 and the two
special vertices u, v have weight 21n.

Correctness of the Reductions. To analyze the reduction, we start
by proving two lemmas about the structure of the optimal solution
in each of the three problems in the instances we generate. To build
intuition, observe that in our construction any cut that does not
separate u and v is far from being balanced and therefore will not
be an optimal solution. Another observation is that the weights of
the edges {e4, ep, ec} is practically infinite and therefore they will
not be cut by an optimal cut.

LEMMA 12. The Minimum Quotient Cut, the Sparsest Cut, and the
Minimum Bisection cut intersect each of P4, Pg, Pc exactly once and
do not intersect any edge of {e4, ep,ec}.

Proor. We start with the Minimum Bisection, which is the sim-
plest case since the cut is forced to have exactly W/2 weight on
each side. By picking edges (vq,, Vg,), (vp,> Vp,), and (ve,, vc,), we
indeed obtain a cut that breaks the graph into two connected com-
ponents of the same weight. The value of the cut is then at most
B+ai+f+bi+f+T—cy <3B+2T. However, any cut intersecting
{ea. e, ec} has cost at least 1210n%(2f + T) and so the (optimal)
Minimum Bisection does not intersect {e4, eg, ec }. Moreover, it is
easy to see that the Minimum Bisection Cut must separate u from v
as otherwise, the cut is not balanced. Thus the Minimum Bisection
intersects each of P4, Pp, Pc at least once. Finally, suppose it inter-
sects them more than once. The cost is thus at least 45, while by
picking edges (va,, Va,), (Up,, Vp,), and (v, vU¢;), the cost achieved
is at most 2T + 3. By the choice of §, we have 2T + 3§ < 4f and so
the Minimum Bisection intersects each of P4, Pg, Pc exactly once.

We then argue that the Minimum Quotient cut Q and the Sparsest
Cut S do not intersect any edge of {e4, eg, ec}. Indeed, any cut U
that intersect an edge {e4, eg, ec} has cost at least 1210n(2f +
T) and so induces a Quotient Cut of value at least 1210n%(2f +
T)/(12n) = 110n(2 + T) and a cut of Sparsity at least 1210n%(2f +
T)/(12n)? = 10(2f + T). Now, consider the cut separating a; from
the rest of the graph. This cut has cost at most 28+ T Thus, it forms
a quotient cut of value at most 2 + T and a cut of sparsity at most
(2f + T)/12n. This induces a cut that is both of smaller sparsity and
of smaller quotient value than any cut involving any of {e4, ep, ec}.
It follows that Q and S do not intersect {e4, eg, ec}.

1000

STOC 20, June 22-26, 2020, Chicago, IL, USA

We now show that both Q and S separate u from v. Consider a
cut U that has both u and v on one side. This cut needs to contain
at least two edges and so has cost at least 2(§ + 1). It thus induces
a quotient cut of value at least 2(f + 1)/3n and a cut of sparsity
at least 2(f + 1)/(22n - 3n). On the other hand, consider a cut Y
obtained by picking an edge from each of P4, Pg, Pc. The cost
of this cut is at most 38 + 2T, which induces a quotient cut of
value at most (38 + 2T)/(10n) and of sparsity (38 + 2T)/(10n).
Since 8 = 4Tn?, we have that (38 + 2T)/(10n) < (28 + 1)/(3n) and
(3B + 2T)/(10n)% < 2(B + 1)/(20n - 3n), as long as n > 1. Therefore,
Q and S separate u from v and so intersect at least one edge from
each of Py, Pg, Pc.

Finally, by Theorem 2.2 in [66] and Proposition 2.3 in [67], we
have that the minimum quotient cut and the sparsest cut are simple
cycles in the dual of the graph. Picking two edges of P4 (or of Pg, or
Pc) together with at least one edge of Pg and of Pc would induce
a non-simple cycle in the dual of the graph and so a non-optimal
cut. Therefore, we conclude that the minimum quotient cut and
sparsest cut uses exactly one edge of P4, one edge of P, and one
edge of Pc. O

LEMMA 13. If the Minimum Quotient Cut, the Sparsest Cut, or
the Minimum Bisection intersects edges (vq;,Va;,,), (vbj, vij) and
(Veg» Vg,)» thenv and the vertices in{vq,, . . ., Va; 1, {Vp;» -+ +» Op, h
and {ve,,,. .., Vc, }, are on one side of the cut while the remaining
vertices are on the other side.

Proor. By Lemma 12, the Minimum Quotient Cut, the Sparsest
Cut and the Minimum Bisection intersect each of P4, Pg, Pc exactly
once. Thus, if one of them intersect edges (vq;, vq;,,), (vbj, Uij)
and (v¢, , Ve, ,,), then vg; remains connected to v through the path
{va,> ..., vq,} and so all the vertices in {v, vg,, ..., vq; } are in the
same connected component. The remaining vertices of P4 remains
connected to u. A similar reasoning applies to v}, and v, and yields
the lemma. O

From these two lemmas it follows that the only way that an
optimal cut can be completely balanced (i.e. has weight W/2 = 12n
on each side) is by cutting three edges (vq;, vq;,,), (Ubj, vbjﬂ) and
(Veg»> Vepy,)» Where i + j = k. This is the crucial property of our
construction. To see why it is true, note that i + j + (n — k) vertices
go to the side of v while (n — i) + (n — j) + k vertices go to the side
of u, and so to achieve balance it must be that:

i+j—k+n+wl)=k—-i—j+2n+w)

which simplifies to i + j = k because of our choice of w(u) = 10n
and w(v) = 11n. Moreover, the cost of this cut is exactly (34 + T) +
(ai +bj — c) which is less than (38 + T) if and only if a; + b; < ck.
The correctness of the reductions follows from the following claim.

Cram 14. There is no k € [n] and a pair i, j such thati+j = k
and a; + bj < cy, if and only if either of the following statements is
true:

o the Minimum Quotient Cut has value at least (3 + T)/12n,

e the Sparsest Cut has value at least (3 + T)/(12n?), or
o the Minimum Bisection has value at least (35 + T).

Proor. Consider first the Minimum Bisection. By Lemma 12,
the Minimum Bisection intersects each of P4, P, Pc exactly once.

STOC 20, June 22-26, 2020, Chicago, IL, USA

Thus, combined with Lemma 13, we have that the if the Minimum
Bisection intersects an edge (v¢, , v¢,,,) for some k, then it must
intersect (vg;, vq,,,), and (vbj, Uij) such that j + i = k to achieve
balance. Therefore, the cut has value 38 + a; + by_; + T — ¢; which
is at least 34 + T if and only if there is no i, j such that i + j = k and
a; + bj < Ck-

We now turn to the cases of Minimum Quotient Cut and Sparsest
Cut. For the first direction, assume that there is a triple i, j, k where
k = i+ jsuch that a; + bj < ci. In this case, we have a cut of
quotient value less than (3+T)/(12n) and a cut of sparsity less than
(38 + T)/(12n)? obtained by taking edges (Va;»Vazy)s (vbj, Ubjﬂ)
and (vey, Ve,)-

For the other direction, let us first focus on the Minimum Quo-
tient Cut Q. By Lemma 12, Q contains one edge from each of
P4, P, Pc say (vg;, Va;,,) (vbj, vb‘m) and (v¢y, V¢,). First, if i +
J # k, by Lemma 13, we have that the cut has quotient value at least
(3B+a;+bj+T—cy)/(12n—1) which is at least (33+1)/(12n—1). By
the choice of , we have that 35/12n > 10T and so, (34 + 1)/(12n —
1) > (38 +T)/12n.

Thus, we may assume that i + j = k. By Lemma 13, we hence
have that the quotient value of the cut is less than (38 + T)/(12n) if
and only if a; +b; < c. This follows from the fact that the quotient
value of the cutis (3 + a; + b; + T — ¢)/(12n) which is less than
(3B + T)/(12n) if and only if a; + b; < ci.

The argument for the Sparsest Cut is similar. Again, by Lemma 13,
the sparsest cut contains one edge from each of Py, Pg, Pc, say
(Va;Vazey)s (vbj, Ubjﬂ) and (v, , ve,,,)- Similarly, if i + j = k, we
have that the sparsity of the cut is less than (38 + T)/(12n)? if and
only if a; + bj < ¢, since the sparsity of the cut is (38 + a; + b; +
T —cx)/(12n)2.

Finally, if i +j # k then the sparsity of the cut is at least (35 +a; +
bj + T - ci)/((12n — 1)(12n + 1)) which is at least (35 + 1)/((12n —
1)(12n + 1)). By the choice of 8, we have that 38/((12n)? — 1) > 10T
and so, (36 +1)/(12n—1) > (3 + T)/12n. O

A Unit-Vertex-Weight Reduction. Intuitively, we are able to re-
move the weights because the total weight W is O(n). To show
this more precisely, we note that the above reduction makes use
of vertices of weight 1, except for u and v which are of weight 10n
and weight 11n respectively. Now, place a weight of 1 on u and
v and add vertices u!,...,u'%" 1 and connect them with edges
of length 1210n%(2f + T) to u and add vertices v, ..., v 1 and
connect them with edges of length 1210n%(2 + T) to v. For the
same argument used in Lemma 12, the Minimum Quotient cut, the
Sparsest Cut, and the Minimum Bisection do not intersect any of
these edges and so the above proof can be applied unchanged.

3 LOWER BOUND FOR DIAMETER IN
CONGEST

In this section we prove Theorem 9 and present the simple gadget
that is at the core of our lower bounds.

Proor oF THEOREM 9. The proof is by reduction from the two-
party communication complexity of Disjointness: There are two
players, Alice and Bob, each has a private string of n bits, A, B €
{0, 1}"* and their goal is to determine whether the strings are dis-
joint, i.e. for all i € [n] either A[i] = 0 or B[i] = 0 (or both). It is

1001

Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

known that the two players must exchange Q(n) bits of communi-
cation in order to solve this problem [72], even with randomness,
and we will use this lower bound to derive our lower bound for
distributed diameter.

Let A, B € {0,1}" be the two private input strings in an instance
(A, B) of Disjointness. We will construct a planar graph G on O(n)
nodes based on these strings and show that a CONGEST algorithm
that can compute the diameter of G in T(n) rounds implies a com-
munication protocol solving the instance (A, B) in O(T(n)log n)
rounds. This is enough to deduce our theorem.

The nodes V of G are partitioned into two types: nodes V4 that
“belong to Alice” and nodes Vg that “belong to Bob”. For each coor-
dinate i € [n] we have two nodes a; € V4 and b; € V. In addition,
there are four special nodes: £,r € V4 and ¢/,r’ € Vp.In total, there
are |V4| + |VB| = 2n + 4 nodes in G.

Let us first describe the edges E of G before defining their weights
w : E — G. The edges are independent of the instance (A, B) but
their weights will be defined based on the strings. Every coordinate
node a;, for all i € [n], has two edges: one left-edge (which will be
drawn to the left of a; in a planar embedding) connecting it to ¢,
and one right-edge connecting it to r. Similarly for Bob’s part of
the graph, every coordinate b; has a left-edge to ¢’ and a right-edge
to r’. Finally, there is an edge connecting ¢ with ¢’ and an edge
connecting r with r’.

One way to embed G in the plane is as follows: The nodes
ai,...,an,b1,...,by, are ordered in a vertical line with a; at the
top. In between a, and b; we add some empty space in which we
place the other four nodes in G such that ¢, ¢’ are to the left of the
vertical line and r, r’ are to the right, and the four nodes are placed
in a rectangle-like shape with €, r on top and ¢/, r’ on the bottom.

The final shape (see Figure2) looks like a diamond (especially if
we rotate it by 90 degrees) with ¢, ¢’ on top and r, r” on the bottom.
It is important to observe that the hop-diameter D of this graph is
a small constant, D = 3. A crucial property of G for the purposes of
reductions from two-party communication problems is that there
is a very small cut between Alice’s and Bob’s parts of the graph:
there are only two edges that go from one part to the other ((¢,¢’)
and (r,r")).

The main power of this gadget comes from the weights, defined
next. Set M = 4 (but it will be useful to think of M as a large weight).

w(,t)=M

w(r,r'y =M

@5.0) = i-M, if Ali] =0

WA T M1, Al =1
{(n +1-1i)- M, if Ali] = 0

w(ai,r) = .
(m+1-i)-M+1, ifA[i]=1

oy,) = {(n+1—]:)-M, %fB[]:] =0
(n+1-j)-M+1, ifB[j]=1

W@j,r,):{{-M, it Blj] = 0
j-M+1, ifB[j]=1

The key property of this construction is that every pair of nodes
in G will have distance less than (n+2)-M except for pairs a;, bj with

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut

a1

Figure 2: Our basic construction. For the Diameter CON-
GEST lower bound, the nodes ¢ and r are each split into an
edge. The complexity of handling this gadget comes from a
careful choice of the weights that makes a; and b; “interact”
for all i € [n], while the other pairs are not effective.

i = j. And for these special pairs a;, b; the distance will be exactly
(n+2)- M plus 0,1, or 2, depending on A[i], B[i]; thus the diameter
of G will be affected by whether A, B are disjoint. Achieving this
kind of property is the crux of most reductions from Disjointness
to graph problems. Next we formally show such bounds on the
distances in G.

Cram 15. The weighted diameter of G is (n+2)-M+2 if there exists
an i € [n] such that Ali] = B[i] = 1 and it is at most (n + 2) - M + 1
otherwise.

Proor. The proof is by a case analysis on all pairs of nodes x, y
in G. We start with the less interesting cases, and the final case is
the interesting one (which will depend on A, B).

If x = a; and y € {(,¢’,r,r’} then the path of length one
or two from x to y has weight d(x,y) < n-M+1+ M =
(n+1)-M+1.

Similarly for Bob’s side, if x = bj and y € {¢,¢’,r,r’} then
dx,y) <n-M+1+M=(n+1)-M+1

If x = a; and y = bj buti # j then the shortest path
goes through the cheaper of the two ways (left or right).
Specifically, the left path (a;, ¢, ¢’, bj) has weight (i — j + n +
2) - M + « for some {0, 1, 2} (that depends on the strings:
a = Ali] + B[j]), and the right (a;, r,r’, b;) path has weight
(j—i+n+2) M+ a Thus, if i < j we choose the left
path, and if i > j we choose the right path. In either case,
dix,y) <(n+1)-M+2.

If x = a; and y = a; then we again have that i # j (or else
x = y) and the shortest path goes through the cheaper of the
two ways (left or right). Specifically, the left path (a;, £, a;)
has weight (i + j) - M + « for some {0, 1, 2}, and the right
(ai, 7, aj) path has weight (2n + 2 — i — j) - M + a. Thus, if
i+j < n+1we choose the left path,if i + j > n+ 1 we
choose the right path, and if i + j = n + 1 then both options
are equally good. In either case, d(x,y) < (n+1)- M + 2.

o The case that x = b; and y = b; is analogous.

o Now comes the final case of x = a; and y = b;. These
are the special pairs corresponding to the coordinates and

1002

STOC 20, June 22-26, 2020, Chicago, IL, USA

their distances are larger than all the other distances in the
graph. This happens because the two paths (left or right)
have the same weight and are equally “bad”. This weight is
(n+2)-M+ a where a € {0,1,2} is equal to A[i] + B[i].
Therefore, if A, B are disjoint, then for all i € [n] we have
Ali]+Bli] < 1and sod(aj, b;) < (n+2)- M+ 1. Otherwise, if
there is an i € [n] such that A[i] = B[i] = 1 then d(a;, b;) =
(n+2) - M + 2 which will be the furthest pair in the graph.
Finally, observe that any path from x to y that uses more
than three edges cannot be shortest, since its weights will
be at least (n + 3) - M and M > 3.

[m]

Thus we have constructed a graph G from the strings (4, B) such
that diameter of G is at most (n + 2) - M + 1 if and only if (A, B)
are disjoint. To conclude the proof we describe how a CONGEST
algorithm for Diameter leads to a two-party communication proto-
col. Assume there is such an algorithm for Diameter with a T(n)
upper bound on the number of rounds. To use this algorithm for
their two-party protocol, Alice and Bob look at their private inputs
and construct the graph G from our reduction. Note that all edges
in Alice’s part are known to Alice and all edges in Bob’s part are
known to Bob. The “common” edges which have one endpoint in
each side are known to both players since they do not depend on
the private inputs. Then, they can start simulating the algorithm. In
each round, each node x sends an O(log n)-bit message to each one
of its neighbors y. For the messages sent on “internal” edges (x,),
having both endpoints belong to Alice or to Bob, the players can
readily simulate the message on their own without any interaction.
This is because all information known to x during the CONGEST
algorithm will be known to the player who is simulating x. For the
two non-internal edges (¢, '), (r, r’) the two players must exchange
information in order to continue simulating the nodes. This can
be done by exchanging four messages of length O(log n) at each
round. At the end of the simulation of the algorithm, some node
will know the diameter of G and will therefore know whether (A, B)
are disjoint. At the cost of another bit, both players will know the
answer. The total communication cost is T(n) - O(log n). O

4 LOWER BOUNDS FOR CLOSEST PAIR OF
SETS AND HIERARCHICAL CLUSTERING

In this section we prove a lower bound on the time it takes to
simulate the output of the Average-Linkage algorithm, perhaps
the most popular procedure for Hierarchical Clustering, in planar
graphs, thus proving Theorem 8. We build on the diamond-like
gadget from the simple lower bound for diameter. The constructions
will combine many copies of these gadgets into one big graph that
is also diamond-like.

4.1 Preliminaries for the Reductions

The starting point for the reductions in this section is the Orthogo-
nal Vectors problem, which is known to be hard under SETH [76]
and the Weighted Clique conjecture [3].

DEFINITION 16 (ORTHOGONAL VECTORS). Given a set of binary
vectors, decide if there are two that are orthogonal, i.e. disjoint.

We consider two variants of the closest pair problem.

STOC 20, June 22-26, 2020, Chicago, IL, USA

DEFINITION 17 (CLOSEST PAIR OF SETS WITH MAX-DISTANCE).
Given a graph G = (V, E), a parameter A, and disjoint subsets of the

nodes Si, . ..,Sm €V, decide if there is a pair of sets S;, Sj such that
Max-Dist(S;,S;) = max _ d(u,v) < A.
€S;,veS

J

In the second variant we look at the sum of all pairs within
two sets, rather than just the max. This definition is used in the
Average-Linkage heuristic and it is important for its success.

DEFINITION 18 (CLOSEST PAIR OF SETS WITH SUM-DISTANCE).
Given a graph G = (V,E), a parameter A, and disjoint subsets of the
nodes Si, . ..,Sm €V, decide if there is a pair of sets S;, Sj such that

Sum-Dist(Si, Sj) = Zyes;,ves;d(u,v) < A.

We could also look at the Min-distance. However, it is easy to ob-
serve that the corresponding closest pair of sets problem is solvable
in near-linear time. It is enough to sort all the edges and scan them
once until a non-internal edge is found. Interestingly, there is also a
popular heuristic for hierarchical clustering based on Min-distance,
called Single Linkage, and it known that Single-Linkage can be
computed in near-linear time in planar graphs.

4.2 Reduction with Max-Distance and
Complete Linkage

We start with a simpler reduction which works only in the Max-
distance case. The reduction to Sum-distance will be similar in
structure but more details will be required.

THEOREM 19. Orthogonal Vectors on n vectors in d dimensions can
be reduced to Closest Pair of Sets with Max-distance in a planar graph
on O(nd) nodes with edge weights in [O(d)]. The graph can be made
unweighted by increasing the number of nodes to O(nd?).

Proor. Letoy,...,v, € {0, l}d be an input instance for Orthog-
onal Vectors and we will show how to construct a planar graph G
and certain subsets of its nodes from it. For each vector vy, k € [n]
we have a set of 2d nodes S = {uy, 1, .. ugat Y {u ,....u; 4}
in G. Each coordinate vy [j] is represented by two nodes Ug, and

.. In addition, there are two extra nodes in G that we denote ¢
and r. Thus, G contains the 2nd + 2 nodes S; U - - - U S, U{{, r}. The
edges of G are defined in a diamond-like way as follows. Every node
Uy, j or ul’c’j is connected with a left-edge to ¢ and with a right-edge
to r. Thus, G is planar.

The crux of the construction is defining the weights, and it will
be done in the spirit of our gadget from the diameter lower bound.
Set M = 4 as before, and for each k € [n] and j € [d] we define:

(g . 0) = j-M, ifor[jl=0
YRR TN M, ifol] = 1
2d+1-j) M, if vi[j] =
@2d+1-j)-M+1, ifofj]l=
()= d+1-j)- M, if vi[j] =
YR T Qd e 1=) M+ 1, ifoplj] =
(ifo[jl=0
Wi D =Y M, if o [j] = 1

1003

Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

Note that all weights are positive integers up to O(log n).
Cra 20. For any two sets Sq, S, we have that

<@d+1)-M+1,
2d+1)-M+2,

Max-Dist(Sa, Sp) = { ifvg, v%, are orthogonal
otherwise.

ProoF. The proof is similar to Claim 15 since the subgraph of G
induced by two sets Sg, S, (and the shortest paths between them)
is similar to our construction for the diameter lower bound (with
2d nodes instead of n). The details are deferred to the full version.

O

Thus, solving the closest pair problem on G with A = (2d + 1) -
M + 1 gives us the solution to Orthogonal Vectors.

The reduction can be made to produce an unweighted graph by
subdividing each edge of weight w into a path of length w. The
created nodes do not belong to any of the sets. The total number of
nodes is O(nd?).

[m]

Next, we present an argument based on this reduction showing
that the Complete-Linkage algorithm for hierarchical clustering
cannot be sped up even if the data is embedded in a planar graph.
We give a reduction only to the weighted case; the unweighted case
remains open (and seems doable but challenging).

THEOREM 21. If for somee > 0 the Complete-Linkage algorithm on
n node planar graphs with edge weights in [O(log n)] can be simulated
in O(n?=¢) time, then SETH is false.

Proor. To refute SETH it is enough to solve OV on n vectors
of d = O(log n) dimensions in O(n?~¢) time, for some ¢ > 0. Given
such an instance of OV, we construct a planar graph G such that
the solution to the OV instance can be inferred from a simulation
of the Complete-Linkage algorithm on G.

The graph G is similar to the one produced in the reduction
of Theorem 19 with a few additions described next. First, we add
M’ = 11d to all the edge weights in G. This does not change any
of the shortest paths, because for all pairs s, t the shortest path has
length exactly one if they are adjacent and exactly two otherwise.
Then, we connect the nodes of each set S; with a path such that
u, ,j is connected to u; j+1 for allj € [d - 1], u; 4 is connected to

u; i pandu] i is connected to u] ;_ , forall j € [d - 1]. All these new
edges have weight M + 1 = 5. As a result all nodes within S; are at
distance up to 5 - 2d = 10d from each other, but the distance from
any u; j or u;J to € or r does not decrease (since the new edges
are at least as costly as the difference between, e.g., w(u;, j, £) and
w(ui,jr1,0)).

Next, we analyze the clusters generated by an execution of the
Complete-Linkage algorithm on G: we argue that at some point
in the execution, each S; will be its own cluster (except that the
nodes ¢, r will be included in one of these clusters), and that the
next pair to be merged is exactly the closest pair of sets (in max-
distance). This is because the algorithm starts with each node in
its own cluster, and at each stage, the pair of clusters of minimum
Max-distance are merged into a new cluster. Let the merge-value
of a stage be the distance of the merged cluster, and observe that
this value does not decrease throughout the stages. The first few
merges will involve pairs of adjacent nodes on the new paths we

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut

added, in some order (that depends on the tie-breaking rule of the
implementation, which we do not make any assumptions about),
and the merge value will be 5. After all adjacent pairs are merged,
two adjacent clusters will be merged, increasing the merge-value
to 10. This continues until the merge value gets to 10d, and at this
point, each S; is its own cluster (since their inner distance is at most
10d and their distance to any other node is larger), plus the two
clusters {¢}, {r}. Next, the merge value becomes M’ +2dM and each
of the latter two clusters will get merged into one of the S;’s (could
be any of them). At this point, the max-distance between any pair
of clusters is exactly the max-distance between the corresponding
two sets Sg, Sp. This is because the nodes ¢, r will not affect the
max-distance. And so if we know the next pair to be merged, we
will know the closest pair and can therefore deduce the solution to
ov.

|

4.3 Reduction with Sum-Distance and Average
Linkage

The issue with extending the previous reductions to the Sum-
distance case is that pairs i,j with i # j will contribute to the
score (even though their distance is designed to be smaller than
that of the pairs with i = j). Indeed, if we look at Sum-Dist(Sg, Sp,)
instead of Max-Dist(Sg, Sp) for two vectors a, b we will just get
some fixed value that depends on d plus |a| + |b| (the hamming
weight of the two vectors, i.e. the number of ones). Finding a pair
of vectors with minimum number of ones is a trivial problem, since
the objective function does not depend on any interaction between
the pair. To overcome this issue, we utilize a degree of freedom in
our diamond-like gadget that we have not used yet: so far, the left
and right edges both have a +v[i] term, but now we will gain extra
hardness by choosing two distinct values for the two edges. The
key property of the special pairs i, j,i = j that we will utilize is
not that their distance is larger, but that their left and right paths
are equally long. Thus the shortest path can choose either path
depending on the lower order terms of the weights, whereas for
the non-special pairs the shortest path is constrained by the high
order terms.

The starting point for the reduction will be the Closest Pair prob-
lem on binary vectors with hamming weight. Alman and Williams
[11] gave a reduction from OV to the bichromatic version of this
problem, and very recently a surprising result of C.S. and Manuran-
gasi [49] showed that the monochromatic version (which is often
easier to use in reductions, as we will do) is also hard.

DEFINITION 22 (HAMMING CLOSEST PAIR). Given a set of binary
vectors, output the minimum hamming distance between a pair of
them.

THEOREM 23 ([49]). Assuming OVH, for every e > 0, there exists
se > 0 such that no algorithm running in time O(n*=¢) can solve
Hamming Closest Pair on n binary vectors in d = (logn)*¢ dimen-
sions.

Next we adapt the reduction from Theorem 19 to the sum-
distance case.

THEOREM 24. Hamming Closest Pair on n vectors in d dimensions
can be reduced to Closest Pair of Sets with Sum-distance in a planar

1004

STOC 20, June 22-26, 2020, Chicago, IL, USA

graph on O(nd) nodes with edge weights in [O(d)]. The graph can be
made unweighted by increasing the number of nodes to O(nd?).

Proor. The construction of the planar graph G from the set of
vectors will be similar, with one modification in the weights, to the
one in Theorem 19 but the analysis will be quite different.

As before, for each vector v, k € [n] we have a set of 2d nodes
Sk = {ug 1, U q} U {ul/c,l’ ... ’ul,c,d} in G, and we have two
additional nodes ¢, r. Each node uy ; or u/’c’j is connected to both £
and r.

Set M = 4 as before and for each i € [n],j € [d] we define
the edge weights of G as follows. The difference to the previous
reduction is that in the edges to r we add the complement of v [/]
rather than vy [J] itself.

The proof of the following claim is deferred to the full version.

Cram 25. For any two vectors a, b:
Sum-Dist(Sq, Sp) = f(d, M) + 2 - Ham-Dist(vg, vp)
where f(d, M) = O(Md>) depends only on d and M.

Thus, the closest pair of sets S4, Sp, in G will correspond to the
pair of vectors a, b that minimize Ham-Dist(vg, v,). This completes
the reduction. As before, the graph can be made unweighted by
subdividing the edges into paths. O

Finally, we present a lower bound argument for the Average-
Linkage algorithm in planar graphs. As before, the unweighted case
remains open.

THEOREM 26. If for some ¢ > 0 the Average-Linkage algorithm on
n node planar graphs with edge weights in [O(log n)] can be simulated
in O(n®>=¢) time, then SETH is false.

The proof is similar in structure to the proof of Theorem 21, and
is deferred to the full version.

5 ALGORITHMS FOR SPARSEST CUT AND
MINIMUM QUOTIENT CUT

In this section we present our algorithms.

5.1 Proof of Theorem 6: An
O(1)-Approximation for Minimum
Quotient Cut in Near-Linear Time

We will describe the algorithm in the dual graph, where cuts are
cycles. Thus the input is a connected undirected planar graph G
with positive integral edge-costs cost(e) and integral face-weights
w(f). Unless otherwise specified, n denotes the size of G. We denote
the sum of (finite) costs by P and we denote the sum of weights
by W. Given a cycle C, the total cost of the edges of C is denoted
cost(C), and the total weight enclosed by C is denoted w(C), while
the total weight outside C is denoted by W(C). We denote by A(C)
the ratio cost(C)/min{w(C), w(C)}. The goal is to find a cycle C that
minimizes A(C). We give a constant-factor approximation algorithm.
For an overview of the algorithm, please see Section ??.

STOC 20, June 22-26, 2020, Chicago, IL, USA

Overview of the Algorithm. Let C be the cycle C that achieves
the optimal cut. Our algorithm has two main parts, both of which
combine previously known techniques with a novel idea. Roughly
speaking, the goal of the first one is to find a node s that is close
to C, i.e. there is a path of small cost from s to some node in C.
Then, the second part will find an approximately optimal cycle
C by starting from a reasonable candidate that can be computed
in near-linear time and then iteratively fixing it using the node s.
This idea of finding a nearby node (rather than insisting on a node
that is on the optimal cycle, which incurs an extra O(n) factor) and
then using it to fix a candidate cycle is the crucial one that lets us
improve on the quadratic-time 3.5-approximation Rao [71] both in
terms of time and accuracy (as our fixing strategy turns out to be
more effective).

In more detail, the first part will utilize a careful recursive de-
composition of the graph with shortest-path cycle separators, in
order to divide the graph into subgraphs such that: the total size
of all subgraphs is O(nlog n) and we are guaranteed that C will be
in one of them, and moreover, for each subgraph there are O(1/¢)
candidate portals s such that one of them is guaranteed to be close
to C (if it is there). In the second part, we build on the construction
of Park and Phillips [66] that uses a spanning tree to define a di-
rected graph with cleverly chosen edge weights so that the sum
of weights of any fundamental cycle of the tree (if all edges have
the same direction) is exactly the total weight of faces enclosed
by the cycle. Then, using ideas from Rao’s algorithm [71] we can
modify the weights further so that any negative cycle C in the new
graph (which can be found in near-linear time) is almost what we
are looking for. The quotient of C is defined to be the cost of C
divided by the minimum between the weight inside and outside C,
while the construction so far is only looking at the weight inside.
Therefore, our candidate C could have too much weight inside it,
which makes it far from optimal. The final step, which is also the
most novel, will use a portal s to perform weight reduction steps on
¢ without adding much to the cost; in fact, the increase in cost will
depend on the distance from s to the cycle.

5.1.1 Outermost loop. The outermost loop of the algorithm is a
binary search for the (approximately) smallest value A such that
there is a cycle C for which A(C) < A. The body of this loop is a
procedure FIND(A) that for a given value of A either (1) finds a cycle
C such that A(C) < 3.292 or (2) determines that there is no cycle
C such that A(C) < A. The binary search seeks to determine the
smallest A (to within a 1.003 factor, or any 1 + ¢) for which FIND(1)
returns a cycle. Because the optimal value (if finite) is between 1/W
and P, the number of iterations of binary search is O(log WP).

5.1.2 Cost loop. The loop of the FIND(A) procedure is a search for
the (approximately) smallest number 7 such that there is a cycle C
of cost at most 27 with A(C) not much more than A. The body of this
loop is a procedure FIND(A, 7) that either (1) finds a cycle C such that
MC) < (1 + €)3.294 (in which case we say the procedure succeeds)
or (2) determines that there is no cycle C such that A(C) < A and
cost(C) < 27. The outer loop tries 7 = 1,7 = 1 + 6,7 = (1 + ¢€)?
and so on, until FIND(A, 7) succeeds. The number of iterations is
O(log P) where € is a constant to be determined. In proving the

1005

Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

correctness of FIND(4, 7), we can assume that calls corresponding
to smaller values of 7 have failed.

5.1.3 Recursive decomposition using shortest-path separators. The
procedure FIND(A, 7) first finds a shortest-path tree (with respect to
edge-costs) rooted at an arbitrary vertex r. The procedure then finds
arecursive decomposition of G using balanced cycle separators with
respect to that tree. Each separator is a non-self-crossing (but not
necessarily simple) cycle S = Py P,P3, where P; and P, are shortest
paths in the shortest-path tree, and every edge e not enclosed by S
but adjacent to S is adjacent to Py or Py. This property ensures that
any cycle that is partially but not fully enclosed by S intersects Py
or P.

The recursive decomposition is a binary tree. Each node of the
tree corresponds to a subgraph H of G, and each internal node is
labeled with a cycle separator S of that subgraph. The children of a
node corresponding to H and labeled S correspond to the subgraph
Hj consisting of the interior of S and the subgraph H; consisting
of the exterior. (Each subgraph includes the cycle S itself.) In Hy
and Hy, the cycle S is the boundary of a new face, which is called a
scar. The scar is assigned a weight equal to the sum of the weights
of the faces it replaced. Each leaf of the binary tree corresponds to
a subgraph with at most a constant number of faces. We refer to
the subgraphs corresponding to nodes as clusters.

One modification: for the purpose of efficiency, each vertex v
on the cycle S that has degree exactly two after scar formation is
spliced out: the two edges e1, ez incident to v are replaced with a
single edge whose cost is the sum of the costs of e; and e,. Clearly
there is a correspondence between cycles before splicing out and
cycles after splicing out, and costs are preserved. For the sake of
simplicity of presentation, we identify each post-splicing-out cycle
with the corresponding pre-splicing-out cycle.

Consecutive iterations of separator-finding alternate balancing
number of faces with balancing number of scars. As a consequence,
the depth of recursion is bounded by O(logn) and each cluster
has at most six scars. (This is a standard technique.) Because of the
splicing out, the sum of the sizes of graphs at each level of recursion
is O(n). Therefore the sum of sizes of all clusters is O(n log n).

Let H be a cluster. Because H has at most six scars, there are at
most twelve paths in the shortest-path tree such that any cycle in
the original graph that is only partially in the cluster must intersect
at least one of these paths (these are the two paths P;, P, from
above). We call this the intersection property, and we refer to these
paths as the intersection paths.

Because each scar is assigned weight equal to the sum of the
weights of the faces it replaced, for any cluster H and any simple
cycle C within H, the cost-to-weight ratio for C in H is the same as
the ratio for C in the original graph G.

5.1.4 Decompositions into annuli. The procedure also finds 1/e
decompositions into annuli, based on the distance from r. The
annulus Ala, b) consists of every vertex whose distance from r lies
in the interval [a, b). The width of the annulus is b — a. Let § = et
and let 0 = (1 + 2¢)r. For each integer i in the interval [0, 1/€],
the decomposition D; consists of the annuli A[if, i + o), A[id +
0,i8 + 20),Alid + 20,18 + 30) and so on. Thus the decomposition
D; consists of disjoint annuli of width o.

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut

5.1.5 Using the decompositions. The procedure FIND(4, 7) is as
follows:

- Search for a solution in each leaf cluster
- For each integer i € [0, 1/€]
- For each annulus A[a, b) in D;
- For each non-root cluster Q
- For each P that is the intersection of the annulus
with one of the twelve intersection paths of Q
- Form an er-net S of P (take nodes that are et apart)
- For each vertex s of S
- Call subprocedure ROOTEDFIND(4, 7, s, R)
where R = intersection of A[a, b) with
the parent of cluster Q

Here ROOTEDFIND(4, 7, 5, R) is a procedure such that if there is a
cycle C in R with the properties listed below then the procedure
finds a cycle C such that A(C) < 3.291 (in which case we say that
the call succeeds).

The properties are:

(1) A(C) < A,and

(2) (1+e)Ir < cost(C) < 27, and

(3) C contains a vertex v such that the minimum cost of a v-to-s
path is at most er.

In the last step of FIND, the procedure takes the intersection of
an annulus with a cluster. Let us elaborate on how this is done.
Taking the intersection with an annulus involves deleting vertices
outside the annulus. Deleting a vertex involves deleting its incident
edges, which leads to faces merging; when two faces merge, the
weight of the resulting face is defined to be the sum of weights of
the two faces. This ensures that the cost-to-weight ratio of a cycle
is the same in the subgraph as it is in the original graph.

We show that FIND(A, 7) is correct as follows. If the search for a
solution in a leaf cluster succeeds or one of the calls to ROOTEDFIND
succeeds, it follows from the construction that the cycle found
meets FIND’s criterion for success. Conversely, suppose that there
is a cycle C in G such that A(C) < A and (1 + €)~7 < cost(C) < 2.
Our goal is to show that FIND(4, 7) succeeds. Let Qg be the smallest
cluster that contains C. If Qg is a leaf cluster then the first line
ensures that FIND(A, 7) succeeds. Otherwise, Qg has a child cluster
Q such that C is only partially in Q. Therefore by the intersection
property C intersects one of the intersection paths P of Q. Let v be
a vertex at which C intersects P. Let s be the point in the er-net of
P closest to v.

Let a be the minimum distance from r of a vertex of C, and
let § be the maximum distance. Because cost(C) < 27, we have
p—a < r.Let o/ = min{a, distance of s from r} and let g’
max{f, distance of s from r}. Then f’ — &’ < 7 + €7, so there exists
an integer i € [0,1/€] and an integer j > 0 such that the interval
[i6 + jo,id + (j + 1)o) contains both @’ and f, and therefore the
annulus A[id + jo, i + (j + 1)o) contains C together with the v-to-s
subpath of P. The specification of ROOTEDFIND(A, 7, s, R) therefore
shows that the procedure succeeds.

Now we consider the run-time analysis. The sum of sizes of all
leaf clusters is O(n). Because each leaf cluster has at most a constant
number of faces, therefore, solutions can be sought in each of the
leaf clusters in a total of O(n) time.

1006

STOC 20, June 22-26, 2020, Chicago, IL, USA

For each integer i € [0, 1/¢], the annuli of decomposition D; are
disjoint. Because the sum of sizes of clusters is O(n log n), the sum
of sizes of intersections of clusters with annuli of D; is O(nlogn).
Moreover, note that the total size of the e7-nets we pick within any
annulus of width O(r) is O(1/¢). Therefore O(¢ "!nlog n) is a bound
on the sum of sizes of all intersections R on which ROOTEDFIND is
called. Therefore in order to obtain a near-linear time bound for
FIND, it suffices to prove a near-linear time bound for ROOTEDFIND.

5.1.6 RoOTEDFIND. It remains to describe and analyze the pro-
cedure ROOTEDFIND(4, 7, s, R). We use a construction of Park and
Phillips [66] together with approximation techniques of Rao [71].

Let T be a shortest-path tree of R, rooted at s. Delete from the
graph every vertex whose distance from s exceeds (1 + €)r, and all
incident edges, merging faces as before. This includes deleting ver-
tices that cannot be reached from s in R. Let R denote the resulting
graph. Note that a cycle C in R that satisfies Properties 2 and 3 (see
Section 5.1.5) must also be in R.

According to a basic fact about planar embeddings (see e.g. [50]),
in the planar dual R* of R, the set of edges not in T form a spanning
tree T*. Each vertex of T* corresponds to a face in R and therefore
has an associated weight. The procedure arbitrarily roots T*, and
finds the leafmost vertex fo such that the combined weight of all
the descendants of f, is greater than W /2. The procedure then
designates fi as the infinite face of the embedding of R.

LEmMA 27. For any nontree edge e, the fundamental cycle of e
with respect to T encloses (with respect to foo) at most weight W /2.

Park and Phillips describe a construction, which applies to any
spanning tree of a planar graph with edge-costs and face-weights,
and this construction is used in RooTEDFIND. Each undirected edge
of R corresponds to two darts, one in each direction. Each dart is
assigned the cost of the corresponding edge. A dart corresponding
to an edge of T is assigned zero weight. Let d be a nontree dart.
Define wy to be the weight enclosed (with respect to fo) by the
fundamental cycle of d with respect to T. Define the weight of d,
denoted w(d), to be wy if the orientation of d in the the fundamental
cycle is counterclockwise, and —w,; otherwise. We refer to this
graph as the weight-transfer graph.

LEMMA 28 (PARK AND PHiILLIPS). The sum of weights of darts of
a counterclockwise cycle C is the amount of weight enclosed by the
cycle.

We adapt an approximation technique of Rao [71]. (His method
differs slightly.) The procedure selects a collection of candidate
cycles; if any candidate cycle has quotient at most 3.294, the pro-
cedure is considered to have succeeded. We will show that if R
contains a cycle with properties 1-3 (see Section 5.1.5) then one of
the candidate cycles has quotient at most 3.29.

Let a, f be two parameters in [0, 1] to be determined. Recall that
W is the sum of weights. We say a dart d is heavy if w(d) > pW.
For each heavy dart, the procedure considers as a candidate the
fundamental cycle of d.

We next describe the search for a cycle in the weight-transfer
graph minus heavy darts. Following a basic technique (see [54, 62]),
we define a modified cost per dart as cost(d) = cost(d) — Aw(d). A
cycle has negative cost (under this cost assignment) if and only

STOC 20, June 22-26, 2020, Chicago, IL, USA

Figure 3: This diagram illustrates the structure of a cycle
arising in the algorithm. The cycle is nearly simple but in-
cludes a path and its reverse, where one endpoint of the path
is the root s.

if its ratio of cost to enclosed weight is less than A. Note that the
actual quotient of such a cycle may be much larger than A since we
must divide by the min of the weight inside and the weight outside
the cycle. Still, the information we get from such a cycle will be
sufficient for getting a cycle that has quotient not much larger than
A.

The procedure seeks a negative-cost cycle in this graph. Using
the algorithm of Klein, Mozes, and Weimann [51], this can be done
in O(nlog? n) time on a planar graph of size n.

Suppose the algorithm does find a negative-cost cycle C.1fC
encloses at most aW weight then C is a candidate cycle. (In this case,
the denominator in the actual quotient of C is not much smaller.)

Otherwise, the procedure proceeds as follows. (Here, the de-
nominator is much smaller, so we would like to fix C so that it
encloses much less weight, but the cost does not increase by much.)
It first modifies the cycle to obtain a cycle Cy that encloses the same
amount of weight and that includes the vertex s. This step consists
in adding to C the shortest path from s to C and the reverse of this
shortest path. Because the shortest path is in R, this increases the
cost of the cycle by at most 2(1 + €)z. (The new cycle will be easier
to fix. This is the main idea that allows us to improve the previous
approximation factor of 3.5 to below 3.3.)

The new cycle Cp might not be a simple cycle: it has the form
illustrated in Figure 3: it is mostly a simple cycle but contains a
path and its reverse, such that s is an endpoint of the path. We refer
to such a cycle as a near-simple cycle.

Next the algorithm iteratively modifies the cycle so as to reduce
the weight enclosed without increasing the cost. In each iteration,
the algorithm considers the current cycle C; as a path starting and
ending at s, and identifies the last dart xy with w(xy) > 0 in this
path. The algorithm then finds the closest ancestor u of x in T
among vertices occurring after y in the current path. The algorithm
replaces the x-to-u subpath of the current path with the x-to-u path
in T. Because the x-to-u path in T is a shortest path, this does not
increase the cost of the current path. It reduces the enclosed weight
by at most the weight of xy. This process repeats until the enclosed
weight is at most aW.

Here we restate the process, which we call weight reduction:

while C; encloses weight more than aW
write C; = sP1xyPa2s

1007

Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

where xy is a positive-weight dart and P, contains no such dart
let u be the closest ancestor of x in T among vertices in Py

let Cij+1 = sP1P3s where P3 is the x-to-u pathin T

leti=i+1

LEMMA 29. The result of each iteration is a near-simple cycle. The
enclosed weight is reduced by less than fW.

5.1.7 Analysis. We will show that if R contains a cycle C with
properties 1-3 (see Section 5.1.5) then one of the candidate cycles
considered by the procedure has quotient at most 3.29A. The details
are deferred to the full version.

5.2 Proof of Theorem 4: An Exact Algorithm
for Sparsest Cut with Running Time
o(n3/*w)

In this section, we provide an exact algorithm for Sparsest Cut and

the Minimum Quotient problems running in time o(n®2w log(C)).

This improves upon the algorithm of Park and Phillips [66] run-

ning in time O(n®W log(C)). We first need to recall their approach

(see [66] for all details).

The approach of Park and Phillips [66] works as follows. It works
in the dual of the input graph and thus looks for a cycle C min-
imizing €(C)/min(w(Inside(C)), w(Outside(C))), where €(C) is the
sum of length of the dual of the edges of C and w(Inside(C)) (resp.
w(Outside(C))) is the total weight of the vertices of G whose corre-
sponding faces in G* are in Inside(C) (resp. Outside(C)). Park and
Phillips show that the approach also works for the sparsest cut
problem. Their algorithm is as follows:

Step 1. Construct an arbitrary spanning tree T and order the
vertices with a preorder traversal of T which is consistent
with the cyclic ordering of edges around each vertex.
Step 2. For each edge (u, v) of G*, create two directed edges
e1 = (u,v) and ez = (v, u) and assume u is before v in the
ordering computed at Step 1. Define the length of e; and ey to
be the length of the dual edge of e, define the weight of e; to
be the total weight of vertices enclosed by the fundamental
cycle induced by e (for the edges of T the weight is 0) and
the weight of ez to be minus the weight of e;.
Step 3. Construct a graph G as follows: for each vertex v
of G¥, for each weight y € [W], create a vertex (v, y). For
each directed edge (u,v) € G*, for each y € [W], create
an edge between vertices (u,y) and (v, y + w({u, v))) where
w((u, v)) is the weight of the edge (u, v) as defined at Step
2. The length of the edge created is equal to the length of
(u,v).
Let P be the set of all shortest paths P, 4 from (u,0) to (u,y) in
G for y € [W/2], for each vertex u € G*. Let P* be a shortest path
of # that achieves min, cg+ ye[w/2] {(Pu,y)/y- Park and Phillips
show that P* corresponds to a minimum quotient cut of G. The
running time O(n?W log C) of the algorithm follows from applying
a single source shortest path (SSSP) algorithm for each vertex (u, 0)
of G. Since G has O(nW) vertices, these n SSSP computations can
be done in time O(n*W log C).

The Improvement. We now show how to speed up the above
algorithm. Consider taking an O(+/n)-size balanced separator S of

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut

G*. We make the following observation: either P* intersects S, in
which case it is only needed to perform a single source shortest
path computation from each vertex (u, 0) of G, where u € S, or
P* does not intersect S and in which case we can simply focus on
computing the minimum quotient cut on each side of the separator
separately (treating the other side as a single face of weight equal
to the sum of the weights of the faces in the side).
More precisely, our algorithm is as follows:

Step 1. Compute an O(+/n)-size balance separator S of G*,

that separates G* into two components Si, Sz both having

size |S1],|S2| < 2n/3;

Step 2. Compute G and perform an SSSP computation from

each vertex (u,0) € G where u € S and let P; be the shortest

path Py y from (u,0) to (u,y) for u € S,y € [W/2] that

minimizes £(Py,y)/y.

Step 3. For i € 1,2, create the graph G; with vertex set S;

and where the face containing S5_; has weight equal to the

sum of the weights of the faces in S3_;.

Step 4. Returns the minimum quotient cut among Py, P{, P;.

The correctness follows from our observation: if P* intersects

S then, by [66], Step 2 ensures that P corresponds to a minimum
quotient cut, otherwise P* is strictly contained within S$; or S; and
in which case the following argument applies. Assuming P* lies
completely within Si, then the graph G; where the face containing
Sz has weight equal to the sum of the weight of faces in Sy contains
a minimum quotient cut of value at most the minimum quotient cut
of G since the cut places all the vertices of Sy on one side. Hence, an
immediate induction shows that the minimum quotient cut among
the cuts induced by the paths P, P}, P; is optimal. The running
time follows from a direct application of the master theorem.

ACKNOWLEDGMENTS

P. Klein is supported by NSF Grant CCF-1841954, and V. Cohen-
Addad supported by ANR-18-CE40-0004-01.

REFERENCES

[1] Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Kiinnemann. 2017.
Fine-Grained Complexity of Analyzing Compressed Data: Quantifying Improve-
ments over Decompress-and-Solve. In 58th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017.
192-203.

Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska
Williams, and Or Zamir. 2016. Subtree Isomorphism Revisited. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016. 1256-1271.

Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. 2018. More
consequences of falsifying SETH and the orthogonal vectors conjecture. In Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. 253-266.

Amir Abboud, Keren Censor-Hillel, and Seri Khoury. 2016. Near-Linear Lower
Bounds for Distributed Distance Computations, Even in Sparse Networks. In
Distributed Computing - 30th International Symposium, DISC 2016, Paris, France,
September 27-29, 2016. Proceedings. 29-42.

Amir Abboud, Vincent Cohen Addad, and Hussein Houdrouge. 2019. Sub-
quadratic High-Dimensional Hierarchical Clustering. NeurIPS (2019).

Amir Abboud and Seren Dahlgaard. 2016. Popular Conjectures as a Barrier for
Dynamic Planar Graph Algorithms. In IEEE 57th Annual Symposium on Foun-
dations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA. 477-486.

Amir Abboud and Virginia Vassilevska Williams. 2014. Popular Conjectures Imply
Strong Lower Bounds for Dynamic Problems. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014. 434-443.

Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. 2016. Approx-
imation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter

[2

=

[6

=

[7

[

o
&

1008

[9]

[10

(1]

=
&

(13

(14

[15

=
&

(17

(18

[19

[20

[21

[22

[23

[24]

[25

[26

[27

[28

[29

[30

STOC 20, June 22-26, 2020, Chicago, IL, USA

in Sparse Graphs. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016. 377-391.

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. 2014. Con-
sequences of Faster Alignment of Sequences. In Automata, Languages, and Pro-
gramming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I. 39-51.

James Abello, Panos M Pardalos, and Mauricio GC Resende. 2013. Handbook of
massive data sets. Vol. 4. Springer.

Josh Alman and Ryan Williams. 2015. Probabilistic Polynomials and Hamming
Nearest Neighbors. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. 136-150.

Sanjeev Arora, Satish Rao, and Umesh Vazirani. 2009. Expander flows, geometric
embeddings and graph partitioning. Journal of the ACM (JACM) 56, 2 (2009), 5.
Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. 2016. Tight Hardness
Results for Maximum Weight Rectangles. In 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy.
81:1-81:13.

Arturs Backurs and Piotr Indyk. 2015. Edit Distance Cannot Be Computed in
Strongly Subquadratic Time (unless SETH is false). In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015. 51-58.

Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. 2017. Better approximations
for tree sparsity in nearly-linear time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2215-2229.

Gill Barequet and Sariel Har-Peled. 2001. Polygon Containment and Translational
Min-Hausdorff-Distance Between Segment Sets are 3SUM-Hard. Int. J. Comput.
Geometry Appl. 11, 4 (2001), 465-474. https://doi.org/10.1142/S0218195901000596
MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin, and
CIiff Stein. 2018. Fast algorithms for knapsack via convolution and prediction. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing.
ACM, 1269-1282.

Sandeep N Bhatt and Frank Thomson Leighton. 1984. A framework for solving
VLSI graph layout problems. J. Comput. System Sci. 28, 2 (1984), 300-343.

Karl Bringmann. 2014. Why Walking the Dog Takes Time: Frechet Distance Has
No Strongly Subquadratic Algorithms Unless SETH Fails. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014. 661-670.

Karl Bringmann, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. 2018.
Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless
APSP can). In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018.
1190-1206.

Karl Bringmann and Sebastian Krinninger. 2018. A note on hardness of diameter
approximation. Inf. Process. Lett. 133 (2018), 10-15. https://doi.org/10.1016/j.ipl.
2017.12.010

Sergio Cabello. 2017. Subquadratic Algorithms for the Diameter and the Sum of
Pairwise Distances in Planar Graphs. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19. 2143-2152.

Gunnar Carlsson and Facundo Mémoli. 2010. Characterization, stability and
convergence of hierarchical clustering methods. Journal of machine learning
research 11, Apr (2010), 1425-1470.

Keren Censor-Hillel, Seri Khoury, and Ami Paz. 2017. Quadratic and Near-
Quadratic Lower Bounds for the CONGEST Model. In 31st International Sympo-
sium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria.
10:1-10:16.

Panagiotis Charalampopoulos, Pawe? Gawrychowski, Shay Mozes, and Oren
Weimann. 2019. Almost Optimal Distance Oracles for Planar Graphs. In STOC,
to appear.

Michael Cochez and Hao Mou. 2015. Twister tries: Approximate hierarchical
agglomerative clustering for average distance in linear time. In Proceedings of
the 2015 ACM SIGMOD international conference on Management of data. ACM,
505-517.

Vincent Cohen-Addad, Seren Dahlgaard, and Christian Wulff-Nilsen. 2017. Fast
and Compact Exact Distance Oracle for Planar Graphs. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017. 962-973.

Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michat Wiodarczyk. 2019.
On problems equivalent to (min,+)-convolution. ACM Transactions on Algorithms
(TALG) 15,1 (2019), 14.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,
Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2012. Distributed
Verification and Hardness of Distributed Approximation. SIAM J. Comput. 41, 5
(2012). https://doi.org/10.1137/11085178X

Sanjoy Dasgupta. 2016. A Cost Function for Similarity-based Hierarchical Clus-
tering. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory

https://doi.org/10.1142/S0218195901000596
https://doi.org/10.1016/j.ipl.2017.12.010
https://doi.org/10.1016/j.ipl.2017.12.010
https://doi.org/10.1137/11085178X

STOC 20, June 22-26, 2020, Chicago, IL, USA

[31]

[32]

[33

™
&

[35

[36]

[37]

[38]

[39

[40

[41]

[42]

[43]

[44]

[45]

[46]

[47

[48]

[49

o
=

[51]

of Computing (Cambridge, MA, USA) (STOC 2016). ACM, New York, NY, USA,
118-127. https://doi.org/10.1145/2897518.2897527

Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey
Pupyrev, and Alon Shalita. 2016. Compressing graphs and indexes with recursive
graph bisection. arXiv preprint arXiv:1602.08820 (2016).

Michael Elkin. 2006. An Unconditional Lower Bound on the Time-Approximation
Trade-off for the Distributed Minimum Spanning Tree Problem. SIAM J. Comput.
36, 2 (2006). https://doi.org/10.1137/S0097539704441058

Kyle Fox, Philip N. Klein, and Shay Mozes. 2015. A Polynomial-time Bicriteria
Approximation Scheme for Planar Bisection. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015. 841-850. https://doi.org/10.1145/2746539.2746564
Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The elements of
statistical learning. Vol. 1. Springer series in statistics New York, NY, USA:.
Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. [n.d.]. Networks can-
not compute their diameter in sublinear time. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2012. http://portal.
acm.org/citation.cfm?id=2095207&CFID=63838676&CFTOKEN=79617016

Anka Gajentaan and Mark H. Overmars. 2012. On a class of O(nz) problems in
computational geometry. Comput. Geom. 45, 4 (2012), 140-152. https://doi.org/
10.1016/j.comgeo.2011.11.006

Naveen Garg, Huzur Saran, and Vijay V. Vazirani. 1999. Finding Separator Cuts in
Planar Graphs within Twice the Optimal. SIAM J. Comput. 29, 1 (1999), 159-179.
https://doi.org/10.1137/S0097539794271692

Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren
Weimann. 2018. Voronoi Diagrams on Planar Graphs, and Computing the Diam-

eter in Deterministic O(nS/ 3) Time. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018. 495-514.

Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen.
2018. Better Tradeoffs for Exact Distance Oracles in Planar Graphs. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018. 515-529.

Mohsen Ghaffari and Bernhard Haeupler. [n.d.]. Distributed Algorithms for
Planar Networks II: Low-Congestion Shortcuts, MST, and Min-Cut. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, 2016. https://doi.org/10.1137/1.9781611974331.ch16

Mohsen Ghaffari and Bernhard Haeupler. 2016. Distributed Algorithms for Planar
Networks I: Planar Embedding. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016.
29-38.

Mohsen Ghaffari and Merav Parter. 2017. Near-Optimal Distributed DFS in Planar
Graphs. In 31st International Symposium on Distributed Computing, DISC 2017,
October 16-20, 2017, Vienna, Austria. 21:1-21:16.

John C Gower and Gavin JS Ross. 1969. Minimum spanning trees and single
linkage cluster analysis. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 18, 1 (1969), 54-64.

Bernhard Haeupler, D. Ellis Hershkowitz, and David Wajc. 2018. Round- and
Message-Optimal Distributed Graph Algorithms. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC 2018, Egham, United
Kingdom, July 23-27, 2018. 119-128.

Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Low-Congestion
Shortcuts without Embedding. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016.
451-460.

Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Near-Optimal Low-
Congestion Shortcuts on Bounded Parameter Graphs. In Distributed Computing
- 30th International Symposium, DISC 2016, Paris, France, September 27-29, 2016.
Proceedings. 158-172.

Bernhard Haeupler, Jason Li, and Goran Zuzic. 2018. Minor Excluded Network
Families Admit Fast Distributed Algorithms. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC 2018, Egham, United
Kingdom, July 23-27, 2018. 465-474.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and Strengthening Hardness for Dynamic Problems
via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015. 21-30.

Karthik C. S. and Pasin Manurangsi. 2019. On Closest Pair in Euclidean Metric:
Monochromatic is as Hard as Bichromatic. In 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California,
USA. 17:1-17:16.

Philip N. Klein and Shay Mozes. [n.d.]. Optimization Algorithms for Planar
Graphs. Draft chapters available at http://planarity.org.

Philip N. Klein, Shay Mozes, and Oren Weimann. 2010. Shortest paths in directed
planar graphs with negative lengths: A linear-space O(n log? n)-time algorithm.
ACM Trans. Algorithms 6, 2 (2010), 1-18. https://doi.org/10.1145/1721837.1721846

1009

[52

[53

[54

o
2

[56

[57

(58]

(59

[60

=N
=

[62

[63

[64]

[65

=
20,

=<
=

(71

[72

[73

[74

[75

=
oY

[77

[78

Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

Marvin Kinnemann, Ramamohan Paturi, and Stefan Schneider. 2017. On the
Fine-Grained Complexity of One-Dimensional Dynamic Programming. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland. 21:1-21:15. https://doi.org/10.4230/LIPIcs.
ICALP.2017.21

Eduardo S Laber, Wilfredo Bardales, and Ferdinando Cicalese. 2014. On
lower bounds for the maximum consecutive subsums problem and the (min,+)-
convolution. In 2014 IEEE International Symposium on Information Theory. IEEE,
1807-1811.

Eugene L Lawler. 2001.
Courier Corporation.
Charles E Leiserson. 1980. Area-efficient graph layouts. In 21st Annual Symposium
on Foundations of Computer Science (sfcs 1980). IEEE, 270-281.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of
massive datasets. Cambridge university press.

Jason Li. 2018. Distributed Treewidth Computation. CoRR abs/1805.10708 (2018).
arXiv:1805.10708 http://arxiv.org/abs/1805.10708

Jason Li and Merav Parter. 2019. Planar Diameter via Metric Compression. In
STOC, to appear.

Richard J Lipton and Robert Endre Tarjan. 1977. Applications of a planar separator
theorem. In 18th Annual Symposium on Foundations of Computer Science (sfcs
1977). IEEE, 162-170.

Richard J Lipton and Robert Endre Tarjan. 1979. A separator theorem for planar
graphs. SIAM J. Appl. Math. 36, 2 (1979), 177-189.

William B March, Parikshit Ram, and Alexander G Gray. 2010. Fast euclidean
minimum spanning tree: algorithm, analysis, and applications. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 603-612.

Nimrod Megiddo. 1979. Combinatorial Optimization with Rational Objective
Functions. Math. Oper. Res. 4, 4 (1979), 414-424. https://doi.org/10.1287/moor.4.
4.414

Fionn Murtagh. 1983. A survey of recent advances in hierarchical clustering
algorithms. Comput. §. 26, 4 (1983), 354-359.

Fionn Murtagh. 1992. Comments on "Parallel Algorithms for Hierarchical Clus-
tering and Cluster Validity’. IEEE Trans. Pattern Anal. Mach. Intell. 14, 10 (1992),
1056-1057. https://doi.org/10.1109/34.159908

Danupon Nanongkai, Atish Das Sarma, and Gopal Pandurangan. [n.d.]. A tight
unconditional lower bound on distributed randomwalk computation. In Proceed-
ings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC, 2011. https://doi.org/10.1145/1993806.1993853

J. K. Park and C. A. Phillips. 1993. Finding minimum-quotient cuts in planar
graphs. In STOC. 766-775.

Viresh Patel. 2010. Determining edge expansion and other connectivity measures
of graphs of bounded genus. In European Symposium on Algorithms. Springer,
561-572.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
David Peleg and Vitaly Rubinovich. [n.d.]. A Near-Tight Lower Bound on the
Time Complexity of Distributed MST Construction. In 40th Annual Symposium
on Foundations of Computer Science, FOCS, 1999. https://doi.org/10.1109/SFFCS.
1999.814597

Satish Rao. 1987. Finding Near Optimal Separators in Planar Graphs. In 28th
Annual Symposium on Foundations of Computer Science. 225-237. https://doi.org/
10.1109/SFCS.1987.26

Satish Rao. 1992. Faster Algorithms for Finding Small Edge Cuts in Planar Graphs
(Extended Abstract). In Proceedings of the 24th Annual ACM Symposium on Theory
of Computing. 229-240. https://doi.org/10.1145/129712.129735

Alexander A. Razborov. 1992. On the Distributional Complexity of Disjointness.
Theor. Comput. Sci. 106, 2 (1992). https://doi.org/10.1016/0304-3975(92)90260-M
Liam Roditty and Virginia Vassilevska Williams. 2013. Fast approximation algo-
rithms for the diameter and radius of sparse graphs. In Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. 515-524.
Aaron Schild and Christian Sommer. 2015. On Balanced Separators in Road
Networks. In Experimental Algorithms - 14th International Symposium, SEA 2015,
Paris, France, June 29 - July 1, 2015, Proceedings. 286-297. https://doi.org/10.1007/
978-3-319-20086-6_22

Hinrich Schiitze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Vol. 39. Cambridge University Press.

Ryan Williams. 2005. A new algorithm for optimal 2-constraint satisfaction and
its implications. Theor. Comput. Sci. 348, 2-3 (2005), 357-365. https://doi.org/10.
1016/j.tcs.2005.09.023

Virginia Vassilevska Williams. 2018. On some fine-grained questions in algo-
rithms and complexity. In Proceedings of the ICM.

Virginia Vassilevska Williams and R. Ryan Williams. 2018. Subcubic Equivalences
Between Path, Matrix, and Triangle Problems. J. ACM 65, 5 (2018), 27:1-27:38.
https://doi.org/10.1145/3186893

Combinatorial optimization: networks and matroids.

https://doi.org/10.1145/2897518.2897527
https://doi.org/10.1137/S0097539704441058
https://doi.org/10.1145/2746539.2746564
http://portal.acm.org/citation.cfm?id=2095207&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095207&CFID=63838676&CFTOKEN=79617016
https://doi.org/10.1016/j.comgeo.2011.11.006
https://doi.org/10.1016/j.comgeo.2011.11.006
https://doi.org/10.1137/S0097539794271692
https://doi.org/10.1137/1.9781611974331.ch16
https://doi.org/10.1145/1721837.1721846
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
http://arxiv.org/abs/1805.10708
http://arxiv.org/abs/1805.10708
https://doi.org/10.1287/moor.4.4.414
https://doi.org/10.1287/moor.4.4.414
https://doi.org/10.1109/34.159908
https://doi.org/10.1145/1993806.1993853
https://doi.org/10.1109/SFFCS.1999.814597
https://doi.org/10.1109/SFFCS.1999.814597
https://doi.org/10.1109/SFCS.1987.26
https://doi.org/10.1109/SFCS.1987.26
https://doi.org/10.1145/129712.129735
https://doi.org/10.1016/0304-3975(92)90260-M
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1145/3186893

	Abstract
	1 Introduction
	2 Sparsest Cut, Minimum Quotient Cut and Minimum Bisection
	2.1 Proof of Theorem 3: Lower Bounds

	3 Lower Bound for Diameter in CONGEST
	4 Lower Bounds for Closest Pair of Sets and Hierarchical Clustering
	4.1 Preliminaries for the Reductions
	4.2 Reduction with Max-Distance and Complete Linkage
	4.3 Reduction with Sum-Distance and Average Linkage

	5 Algorithms for Sparsest Cut and Minimum Quotient Cut
	5.1 Proof of Theorem 6: An O(1)-Approximation for Minimum Quotient Cut in Near-Linear Time
	5.2 Proof of Theorem 4: An exact algorithm for Sparsest Cut with running time O(n3/2 W)

	References

