
New Hardness Results for Planar Graph Problems in P and an
Algorithm for Sparsest Cut

Amir Abboud

IBM Almaden Research Center

Almaden, U.S.A.

amir.abboud@gmail.com

Vincent Cohen-Addad

Sorbonne Universités, UPMC Univ

Paris 06, CNRS, LIP6

Paris, France

vcohenad@gmail.com

Philip N. Klein

Brown University

Providence, U.S.A.

klein@brown.edu

ABSTRACT
The Sparsest Cut is a fundamental optimization problem that has

been extensively studied. For planar inputs the problem is in P and

can be solved in Õ(n3) time if all vertex weights are 1. Despite a

significant amount of effort, the best algorithms date back to the

early 90’s and can only achieve O(logn)-approximation in Õ(n)
time or 3.5-approximation in Õ(n2) time [Rao, STOC92]. Our main

result is an Ω(n2−ε) lower bound for Sparsest Cut even in planar

graphs with unit vertex weights, under the (min,+)-Convolution
conjecture, showing that approximations are inevitable in the near-

linear time regime. To complement the lower bound, we provide a

3.3-approximation in near-linear time, improving upon the 25-year

old result of Rao in both time and accuracy.

Our lower bound accomplishes a repeatedly raised challenge by

being the first fine-grained lower bound for a natural planar graph

problem in P. Moreover, we prove near-quadratic lower bounds un-

der SETH for variants of the closest pair problem in planar graphs,

and use them to show that the popular Average-Linkage proce-

dure for Hierarchical Clustering cannot be simulated in truly sub-

quadratic time.

At the core of our constructions is a diamond-like gadget that

also settles the complexity of Diameter in distributed planar net-

works. We prove an Ω(n/logn) lower bound on the number of

communication rounds required to compute the weighted diameter

of a network in the CONGEST model, even when the underlying

graph is planar and all nodes are D = 4 hops away from each other.

This is the firstpoly(n)+ω(D) lower bound in the planar-distributed
setting, and it complements the recent poly(D, logn) upper bounds
of Li and Parter [STOC 2019] for (exact) unweighted diameter and

for (1 + ε) approximate weighted diameter.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis.

KEYWORDS
Algorithm, Planar graphs, Sparsest cut

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00

https://doi.org/10.1145/3357713.3384310

ACM Reference Format:
Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein. 2020. New Hard-

ness Results for Planar Graph Problems in P and an Algorithm for Sparsest

Cut. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing (STOC ’20), June 22–26, 2020, Chicago, IL, USA. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3357713.3384310

1 INTRODUCTION
Cuts in Planar Graphs. The Sparsest Cut problem is among the

most fundamental optimization problems. It is NP-hard and one of

the most important problems in the field of approximation algo-

rithms; through the years, it has led to the design of new, powerful

algorithmic techniques (e.g. theO(
√
logn)-approximation of Arora,

Rao, and Vazirani [12]), and is also increasingly becoming a key-

stone of divide-and-conquer strategies for a variety of problems

arising in graph compression [31], clustering [30], and beyond. The

goal is to cut the graph into two roughly balanced parts while

cutting as few edges as possible.

This paper studies this problem in planar graphs where it is

solvable in (weakly) polynomial time, in part because the cut can

be shown to be a cycle in the dual of the graph. Let us mention two

motivating reasons. First, finding sparse cuts in planar graphs is of

high interest in applications such as network evaluation [74], VLSI

design [18, 55], and more [59]. For instance, sparse cuts are used to

identify portions of road networks that may suffer from congestion,

or to design good VLSI layouts. A second motivation comes from

finding optimal separators, a ubiquitous subtask in planar graph

algorithms. The classic result of Lipton and Tarjan [60] shows that

any bounded-degree planar graph has a balanced vertex separator

of sizeO(
√
n), but this bound may be suboptimal in many cases (see

for example [74]). In such non-worst-case instances, algorithms for

finding better separators could speed up many algorithms.

There are two common ways to define the value (or sparsity) of

a cut: we divide its cost by either the weight of the smaller of the

two sides, or their product. The former definition is more standard

and easier to work with in planar graphs; we will refer to it as MQC,

defined below. We will refer to the other one, that asks to find asks

to find the cut S that minimizes
cost(S)

w (S)·w (V−S) simply as Sparsest

Cut.

Definition 1 (The Minimum Quotient Cut Problem (MQC)).

Given a graph G = (V ,E) with edge costs c : E 7→ R+ and vertex
weightsw : V 7→ R+, find the cut (S,V − S), S ⊆ V minimizing the
quotient:

quotient(S) :=
cost(S)

min{w(S),w(V − S)}

996

https://doi.org/10.1145/3357713.3384310
https://doi.org/10.1145/3357713.3384310

STOC ’20, June 22–26, 2020, Chicago, IL, USA Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

where cost(X) :=
∑

(u,v)∈E
u∈X ,v<X

c(u,v) andw(X) =
∑
u ∈X w(u).

The study of Sparsest Cut in planar graphs dates back to Rao’s

first paper in the 80’s [70], and to subsequent works by Rao [71]

and by Park and Phillips [66]. The first exact algorithm was by Park

and Phillips and had a running time of Õ(n2W) whereW is the

sum of the vertex weights. Here the Õ(·) notation hides logarithmic

factors in n, W , and C the sum of edge costs. Note that in the

“unweighted” case of unit vertex weights,W = n and this upper

bound is Õ(n3). They also showed that the problem is weakly NP-

Hard, and therefore cannot be solved exactly in Õ(poly(n)) time.

Rao’s work gave a 3.5-approximation for MQC in Õ(n2) time, and

an O(logn) approximation in Õ(n) time.

Since then, there has been progress on related problems such

as the Minimum Bisection problem where we want to find the cut

of minimum cost that is balanced, i.e. w(S) = w(V − S) = W /2.

Rao [70] showed that an approximation algorithm for MQC can

be used to approximate Minimum Bisection in the following bi-

criteria way: we return a cut with at most two-thirds of the vertex

weight on each side and with cost that is O(logn) times the cost of

the minimum bisection. Garg et al. [37] gave a different algorithm

with similar bicriteria guarantees where the cost is only a factor

of 2 away from the optimal. This involves iterative application

of the exact algorithm of Park and Phillips. More recently, Fox et

al. [33] gave a polynomial-time bicriteria approximation scheme

for Minimum Bisection but the algorithm runs in time npoly(1/ε).
Still, almost no progress has been made on Sparsest Cut since

the early 90’s. In the most interesting regime of near-linear running

times, Rao’s O(logn)-approximation is the best known, and there

is no exact algorithm running in time õ(n2W). The gaps are large,

but the most pressing question is:

OpenQuestion 2. Can Sparsest Cut in planar graphs be solved
exactly in near-linear time?

Given that the upper bound is longstanding, it is natural to try to

use the recent tools of fine-grained complexity in order to resolve

this question negatively. Can we show that a linear time algorithm

would refute SETH or one of the other popular conjectures? This is

challenging because this field has not been successful in proving

any conditional lower bound for a planar graph problem in P, not
to mention a natural and important problem like Sparsest Cut.

Nonetheless, our main result is a quadratic conditional lower bound

even for the unit-vertex-weight version of Sparsest Cut where the

upper bound is cubic, and it also applies for MQC and Minimum

Bisection. The lower bound is based on the hypothesis that the

basic (min,+)-Convolution problem requires quadratic time. This

hardness assumption was recently highlighted by Cygan et al. [28]

after being used in other papers [15, 17, 52, 53]. It is particularly

appealing because it implies both the 3-SUM and the All-Pairs

Shortest Paths conjectures, and therefore also all the dozens of

lower bounds that follow from them (see [28, 77]).

Theorem 3. If for some ε > 0, the Sparsest Cut, the Minimum
Quotient Cut, or the Minimum Bisection problems can be solved in
O(n2−ε) time in planar graphs of treewidth 3 on n vertices with unit
vertex-weights and total edge cost C = nO (1), then the (min,+)-
Convolution problem can be solved in O(n2−ε) time.

After settling the high-order question it is easier to direct our en-

ergies into decreasing the gaps. A natural next question is whether

there could be a cubic lower bound, which would completely settle

the exact case. We show that this is not the case; a natural use of

O(
√
n)-size separators in the right way inside the Park and Phillips

algorithm reduces the running time to n2.5. Figuring out the exact

exponent remains an important open question. It seems that new

algorithmic techniques will be required to bring the upper bound

down to O(nW), yet we do not know of hard instances that seem

to require super-quadratic time.

Theorem 4. The Sparsest Cut and Minimum Quotient Cut prob-
lems in planar graphs on n vertices with total vertex-weightW and
total edge costs C can be solved in O(n3/2W log(CW)) time.

Since near-linear time algorithms are the most desirable, perhaps

the next most pressing question is whether the O(logn) approxi-
mation of Rao is the best possible:

Open Question 5. Is there an O(1)-approximation algorithm for
MQC in near-linear time?

Our main algorithmic result in this work is a near-linear time

3.3-approximation algorithm for MQC, showing that constant fac-

tors are indeed possible. Surprisingly, we also beat the previous

3.5-approximation in Õ(n2) time both in time and accuracy. Our

algorithm combines several techniques with new ideas; the main ad-

vantage comes from finding and utilizing a node that is guaranteed

to be close to the optimal cycle rather than on it.

Theorem 6. TheMinimumQuotient Cut problem in planar graphs
on n vertices with total vertex-weightW and total edge cost C can be
approximated to within a factor of 3.3 in time n logO (1)(CWn).

New Hardness Results in Planar Graphs. Theorem 3 finally re-

solves a repeatedly raised challenge in fine-grained complexity: Are
there natural planar graph problems in P for which we can prove
a conditional ω(n) lower bound? The list of problems with such

lower bounds under SETH or other conjectures is long, exhibiting

problems on graphs [78], strings [9, 14], geometric data [13, 19, 36],

trees [2, 20], dynamic graphs [7, 48], compressed strings [1], and

more
1
. Perhaps the most related results are the lower bounds for

problems on dynamic planar graphs [6] but those techniques do not
seem to carry over to the more restricted setting of (static) graphs.

Indeed, the above question has been raised repeatedly, even after

[6], including in the best paper talk of Cabello at SODA 2017 [22].

The search for an answer to this question has been remarkably fruit-

ful from the viewpoint of upper bounds; Cabello’s breakthrough

(a subquadratic time algorithm for computing the diameter of a

planar graph) came following attempts at proving a quadratic lower

bound (such a lower bound holds in sparse but non-planar graphs

[73]), and the techniques introduced in his work (mainly Abstract

Voronoi Diagrams) have led to major breakthroughs in planar graph

algorithms (see [25, 27, 38, 39]).

Strong lower boundswere found for some restricted graph classes

such as graphs with logarithmic treewidth [8] (e.g. a quadratic lower

bound for Diameter); but these are incomparable with planar graphs.

For some problems such as subgraph isomorphism there are lower

1
For a more extensive list see the survey in [77].

997

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut STOC ’20, June 22–26, 2020, Chicago, IL, USA

bounds even for trees [2], a restricted kind of planar graphs; how-

ever these problems are not in P when the graphs are planar but

not trees. Many hardness results are known for geometric problems

on points in the plane (e.g. [13, 16, 36]); while related in flavor, the

techniques are specific to the euclidean nature of the data and it is

not clear how to extract lower bounds for natural graph problems

out of these results.

The main challenge, of course, is in designing planar gadgets and
constructions that are capable of encoding fine-grained reductions.

While this has already been accomplished in other contexts such

as NP-hardness proofs or in parameterized complexity, those tech-

niques do not work under the more strict efficiency requirements

that are needed for fine-grained reductions. From the perspective of

lower bounds, the main contribution of this paper is in coming up

with a planar construction that exhibits the super-linear complexity

of basic problems like Sparsest Cut. By extracting the core gadget

from this construction and building up on it we are able to prove

lower bounds for other, seemingly unrelated problems on planar

graphs.

Notably, our constructions are not only planar but also have

very small treewidth of two or three, but crucially not one since

our problems become easy on trees. This might be of independent

interest.

Closest Pair of Sets and Hierarchical Clustering. Hierarchical Clus-
tering (HC) is a ubiquitous task in data science and machine learn-

ing. Given a data set of n points with some similarity or distance

function over them (e.g. points in Euclidean space, or the nodes of

a planar graph with the shortest path metric), the goal is to group

similar points together into clusters, and then recursively group

similar clusters into larger clusters. Perhaps the two most popular

procedures for HC are Single-Linkage and Average-Linkage. Both

are so-called agglomerative HC algorithms (as opposed to divisive)
since they proceed in a bottom-up fashion: In the beginning, each

data point is in its own cluster, and then the most similar clusters

are iteratively merged - creating a larger cluster that contains the

union of the points from the two smaller clusters - until all points

are in the same, final cluster.

The difference between the different procedures is in their notion

of similarity between clusters, which determines the choice of clus-

ters to be merged. In Single-Linkage the distance (or dissimilarity)
is defined as the minimum distance between any two points, one

from each cluster. While in Average-Linkage we take the average

instead of the minimum. It is widely accepted that Single-Linkage

is sometimes simpler and faster, but the results of Average-Linkage

are often more meaningful. Extensive discussions of these two pro-

cedures (and a few others, such as Complete-Linkage where we take

the max, rather than min or average) can be found in many books

(e.g. [10, 34, 56, 75]), surveys (e.g. [23, 63, 64]), and experimental

studies (e.g. [68]).

Both of these procedures can be performed in nearly quadratic

time and a faster, subquadratic implementation is highly desir-

able. Some subquadratic algorithms that try to approximate the

performance of these procedures have been proposed, e.g. [5, 26].

However, it is often observed that an exact implementation is at

least as hard as finding the closest pair (of data points), since they

are the first pair to be merged. Indeed, if the points are in Euclidean

space with ω(logn) dimensions, the Closest Pair problem requires

quadratic time under SETH [11, 49], and therefore these procedures

cannot be sped up without a loss.

But what if we are in the planar graph metric? This argument

breaks down because the Closest Pair problem is trivial in planar

graphs (the minimum weight edge is the answer). Moreover, the

Single-Linkage procedure can be implemented to run in near-linear

time in this setting, since it reduces to the computation of a mini-

mum spanning tree [43]. In fact, subquadratic algorithms are known

for many other metrics that have subquadratic closest pair algo-

rithms such as spaces with bounded doubling dimension [61], and

efficient approximations are known when the closest pair can be

approximated efficiently [5]. This naturally leads to the question:

Open Question 7. Can Average-Linkage be computed in sub-
quadratic time in any metric where the closest pair can be computed
in subquadratic time?

Surprisingly to us, it turns out that the answer is no. In this paper

we prove a near-quadratic lower bound under SETH for simulating

the Average-Linkage and Complete-Linkage procedures in planar

graphs, by proving a lower bound for variants of the closest pair of
sets problem which are natural problems of independent interest:

We are given a planar graph on n nodes that are partitioned into

O(n) sets and the goal is to find the pair of sets that minimizes the

sum (or max) of pairwise distances. An O(n2) upper bound is easy

to obtain from an all-pairs shortest paths computation.

Theorem 8. If for some ε > 0, the Closest Pair of Sets problem,
with sum-distance or max-distance, in unweighted planar graphs on
n nodes can be solved in O(n2−ε) time, then SETH is false. Moreover,
if for some ε > 0 the Average-Linkage or Complete-Linkage algo-
rithms on n node planar graphs with edge weights in [O(logn)] can
be simulated in O(n2−ε) time, then SETH is false.

Diameter in Distributed Graphs. Our final result is on the com-

plexity of diameter in planar graphs in the CONGESTmodel. This is

the central theoretical model for distributed computation, where the
input graph defines the communication topology: in each round,

each of the n nodes can send an (logn)-bit message to each one

of their neighbors. The complexity of a problem is the worst case

number of rounds until all nodes know the answer.

In the CONGEST, a problem is considered tractable if it can

be solved in poly(D, logn) time, where D is the diameter of the

underlying unweighted network
2
(i.e. the hop-diameter). Many

basic problems such as finding a Minimum Spanning Tree (MST)

and distance computations have been shown to be intractable [4, 21,

24, 29, 32, 35, 65, 69]. For example, no algorithm can decide whether

the diameter of the network is 3 or 4 inno(1) rounds [35]. That is, the
Diameter problem itself cannot be solved in poly(diameter) time.

While (sequential
3
) algorithms for planar graphs have been an

extensively studied subject for the past three decades, only recently

have they been considered in the distributed setting [42, 44–47, 57].

This study was initiated by Ghaffari and Hauepler [40, 41] who also

demonstrated its potential: While MST has an Ω(
√
n) lower bound

in general graphs [29], the problem is tractable on planar graphs.

2
Note that Ω(D) rounds are usually required; some nodes cannot exchange any infor-

mation otherwise.

3
This seems to be the standard term for not distributed algorithms.

998

STOC ’20, June 22–26, 2020, Chicago, IL, USA Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

All previous lower bound constructions are far from being planar,

and it is natural to wonder: Do all problems
4
become tractable in

the CONGEST when the network is planar?
5

In this paper, we provide a negative answer with a simple ar-

gument ruling out any f (D) · no(1) distributed algorithms even in

planar graphs. A very recent breakthrough of Li and Pater showed

that the diameter problem in unweighted planar graphs is tractable
in the CONGEST [58]. We show that theweighted case is intractable.
Our lower bound is only against exact algorithms which is best-

possible since Li and Parter achieve a (1 + ε)-approximation in the

weighted case with Õ(D6) rounds.

Theorem 9. The number of rounds needed for any protocol to
compute the diameter of a weighted planar network of constant hop-
diameter D = O(1) on n nodes in the CONGEST model is Ω(n

logn).

Our technique for showing lower bounds in the CONGESTmodel

is by reduction from two-party communication complexity and is

similar to the one in previous works. For general graphs, there

are strong Ω(n/log2 n) lower bounds for computing the diameter

even in unweighted, sparse graphs of constant diameter [4, 21, 35].

Our high-level approach is similar, but a substantially different

implementation is needed in order to keep the graph planar. In

fact, we design a simple but subtle, diamond-like gadget for this

purpose (see Section 3). The other lower bounds in the paper were

obtained by building on top of this simple construction and they

show that this gadget may really be capturing the difficulty in

many planar graph problems. In particular, the lower bounds for

closest pair of sets, which are the most complicated in this paper,

are achieved by combiningO(n) copies of this gadget together in an

“outer construction” that also has the same structure of this gadget.

2 SPARSEST CUT, MINIMUM QUOTIENT CUT
AND MINIMUM BISECTION

We now provide formal definitions of the Sparsest Cut, Minimum

Quotient Cut and Minimum Bisection problems. Consider a planar

graph G = (V ,E) with edge costs c : E 7→ R+ and vertex weights

w : V 7→ R+. Given a subset of vertices S , we define the cut induced
by S as the set of edges with one extremity in S and the other in

V −S . We will slightly abuse notation by referring to the cut induced

by S as the cut of S . We let

cost(S) =
∑

(u,v)∈E
u∈S,v<S

c(u,v)

and, with a slight abuse of notation, w(S) =
∑
v ∈S w(v). Given a

subset of vertices S , we define the sparsity of the cut induced by S as

the ratio cost(S)/(w(S) ·w(V − S)). The Sparsest Cut problem asks

for a subset S ofV that has minimum sparsity over all cuts induced

by a subset S ⊂ V . This is not to be confused with the General

Sparsest Cut which is APX-Hard in planar graphs
6
.

4
Here, we mean decision problems. It is easy to show that problems with a large output

such as All-Pairs-Shortest-Paths are not tractable even in trivial networks.

5
Note that even NP-Hard problems might become tractable in this model, since the

only measure is the number of rounds, not the computation time at the nodes. For

example, in the LOCAL model where we do not restrict the messages to be short, all

problems can be solved inO (D) rounds.
6
There, there is a weighted demand between pair of vertices and the goal is to find a

subset S such that the cut induced by S minimizes the ratio of cut(S) to the amount

of demand between pairs of vertices in S and V − S .

The quotient of a cut S is defined to be cost(S)/(min{w(S),w(V −

S)}). The Minimum Quotient Cut problem asks for a cut with mini-

mum quotient. The Minimum Bisection problem asks for a subset S
such thatw(S) = w(V)/2 and that minimizes cost(S).

2.1 Proof of Theorem 3: Lower Bounds
In this section, we aim prove a conditional lower bound of Ω(n2−ε)
for the unit vertex-weight case of all three problems: the Spars-

est Cut, the Minimum Quotient Cut, and the Minimum Bisection

problems. We will first provide a reduction for the case of non-unit

vertex-weight and then show how to adapt it to the unit vertex-

weight case.

Our lower bounds are based on the hardness of the (min,+)-
Convolution Problem, defined as follows, which is conjectured to

require Ω(n2−ε time, for all ε > 0.

Definition 10 (The (min,+)-Convolution Problem). Given
two sequences of integersA = ⟨a1, . . . ,an⟩, B = ⟨b1, . . . ,bn⟩, the out-
put is a sequenceC = ⟨c1, c2, . . . , cn⟩ such that ck = min

0≤i≤k ak−i+1+
bi .

To prove our conditional lower bounds we will show reduc-

tions from the following variant called (min,+)-Convolution Upper

Bound, which was shown to be subquadratic-equivalent to (min,+)-
Convolution by Cygan et al. [28]. Namely, there is an O(n2−ε)
algorithm for some constant ε > 0 for the (min,+)-Convolution

Upper Bound problem if and only if there is an O(n2−ε
′

) for the

(min,+)-Convolution problem, for some ε ′ > 0.

Definition 11 (The (min,+)-Convolution Upper Bound Prob-

lem). Given three sequences of positive integersA = ⟨a1,a2, . . . ,an⟩,
B = ⟨b1,b2, . . . ,bn⟩, and C = ⟨c1, c2, . . . , cn⟩, verify that for all
k ∈ [n], there is no pair i, j such that i + j = k and ai + bj < ck .

The Reduction. The construction in each of our three reductions

is the same, and the analysis is a little different in each case. There-

fore, we will present all three in parallel. Given an instance A,B,C
of the (min,+)-Convolution Upper Bound problem, we build an in-

stanceG for the Sparsest Cut, Minimum Quotient Cut or Minimum

Bisection problems as follows.

Let T =
∑n
i=1 ai + bi + ci and β = 4Tn2. The graph G will have

two special vertices u and v of weights 10n and 11n respectively. It

will also have three paths PA, PB , PC that connect u and v and will

encode the three sequences as follows.

• The path PA has a vertex vai for each ai in A, of weight
1. We connect vai to vai+1 with an edge of cost β + ai for
each 1 ≤ i < n. Moreover, we connect van to u with an

edge of cost β + an and v to va1 with an edge eA of cost

1210n2(2β +T).
• The path PB is defined in an analogous way. We create a

vertex vbi of weight 1 for each bi in B and connect it with

an edge of cost β + bi to vbi+1 for each 1 ≤ i < n, and we

connect vbn to u with an edge of cost β + bn and v to vb1
with an edge eB of cost 1210n2(2β +T).

• The path PC is defined differently: the indices are ordered

in the opposite direction and the numbers are flipped. We

create a vertex vci of weight 1 for each ci in C but connect

each vci to vci+1 with an edge of cost β + T − ci for each

999

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut STOC ’20, June 22–26, 2020, Chicago, IL, USA

...

...
u v

...
vc1

vbn

van

vcn

vb1

va1
an−1

bn−1

c1

a1

b1

cn−1

Figure 1: The graph generated in our reduction. Dashed
edges are edges of weight 1210n2(2β +T).

1 ≤ i < n. And this time we connect vc1 to u with an edge

eC of cost 1210n2(2β +T) and vcn to v with an edge of cost

β + cn .

It is easy to see that the resulting graph is planar and has treewidth

at most 3. See also Figure 1. The total weight in our construction

isW = 24n because there are 3n vertices of weight 1 and the two

special vertices u,v have weight 21n.

Correctness of the Reductions. To analyze the reduction, we start

by proving two lemmas about the structure of the optimal solution

in each of the three problems in the instances we generate. To build

intuition, observe that in our construction any cut that does not

separate u and v is far from being balanced and therefore will not

be an optimal solution. Another observation is that the weights of

the edges {eA, eB , eC } is practically infinite and therefore they will

not be cut by an optimal cut.

Lemma 12. The Minimum Quotient Cut, the Sparsest Cut, and the
Minimum Bisection cut intersect each of PA, PB , PC exactly once and
do not intersect any edge of {eA, eB , eC }.

Proof. We start with the Minimum Bisection, which is the sim-

plest case since the cut is forced to have exactlyW /2 weight on

each side. By picking edges (va1 ,va2), (vb1 ,vb2), and (vc2 ,vc3), we
indeed obtain a cut that breaks the graph into two connected com-

ponents of the same weight. The value of the cut is then at most

β +a1+β +b1+β +T −c2 ≤ 3β +2T . However, any cut intersecting
{eA, eB , eC } has cost at least 1210n

2(2β +T) and so the (optimal)

Minimum Bisection does not intersect {eA, eB , eC }. Moreover, it is

easy to see that the Minimum Bisection Cut must separate u fromv
as otherwise, the cut is not balanced. Thus the Minimum Bisection

intersects each of PA, PB , PC at least once. Finally, suppose it inter-

sects them more than once. The cost is thus at least 4β , while by
picking edges (va1 ,va2), (vb1 ,vb2), and (vc2 ,vc3), the cost achieved
is at most 2T + 3β . By the choice of β , we have 2T + 3β < 4β and so

the Minimum Bisection intersects each of PA, PB , PC exactly once.

We then argue that theMinimumQuotient cutQ and the Sparsest

Cut S do not intersect any edge of {eA, eB , eC }. Indeed, any cut U
that intersect an edge {eA, eB , eC } has cost at least 1210n

2(2β +
T) and so induces a Quotient Cut of value at least 1210n2(2β +
T)/(12n) = 110n(2β +T) and a cut of Sparsity at least 1210n2(2β +
T)/(12n)2 = 10(2β +T). Now, consider the cut separating a1 from
the rest of the graph. This cut has cost at most 2β +T . Thus, it forms

a quotient cut of value at most 2β +T and a cut of sparsity at most

(2β +T)/12n. This induces a cut that is both of smaller sparsity and

of smaller quotient value than any cut involving any of {eA, eB , eC }.
It follows that Q and S do not intersect {eA, eB , eC }.

We now show that both Q and S separate u from v . Consider a
cutU that has both u and v on one side. This cut needs to contain

at least two edges and so has cost at least 2(β + 1). It thus induces
a quotient cut of value at least 2(β + 1)/3n and a cut of sparsity

at least 2(β + 1)/(22n · 3n). On the other hand, consider a cut Y
obtained by picking an edge from each of PA, PB , PC . The cost

of this cut is at most 3β + 2T , which induces a quotient cut of

value at most (3β + 2T)/(10n) and of sparsity (3β + 2T)/(10n)2.
Since β = 4Tn2, we have that (3β + 2T)/(10n) < (2β + 1)/(3n) and
(3β + 2T)/(10n)2 < 2(β + 1)/(20n · 3n), as long as n > 1. Therefore,

Q and S separate u from v and so intersect at least one edge from

each of PA, PB , PC .
Finally, by Theorem 2.2 in [66] and Proposition 2.3 in [67], we

have that the minimum quotient cut and the sparsest cut are simple

cycles in the dual of the graph. Picking two edges of PA (or of PB , or
PC) together with at least one edge of PB and of PC would induce

a non-simple cycle in the dual of the graph and so a non-optimal

cut. Therefore, we conclude that the minimum quotient cut and

sparsest cut uses exactly one edge of PA, one edge of PB , and one

edge of PC . □

Lemma 13. If the Minimum Quotient Cut, the Sparsest Cut, or
the Minimum Bisection intersects edges (vai ,vai+1), (vbj ,vbj+1) and
(vck ,vck+1), thenv and the vertices in {va1 , . . . ,vai }, {vb1 , . . . ,vbj },
and {vck+1 , . . . ,vcn }, are on one side of the cut while the remaining
vertices are on the other side.

Proof. By Lemma 12, the Minimum Quotient Cut, the Sparsest

Cut and the Minimum Bisection intersect each of PA, PB , PC exactly

once. Thus, if one of them intersect edges (vai ,vai+1), (vbj ,vbj+1)

and (vck ,vck+1), then vai remains connected to v through the path

{va1 , . . . ,vai } and so all the vertices in {v,va1 , . . . ,vai } are in the

same connected component. The remaining vertices of PA remains

connected to u. A similar reasoning applies to vb and vc and yields
the lemma. □

From these two lemmas it follows that the only way that an

optimal cut can be completely balanced (i.e. has weightW /2 = 12n
on each side) is by cutting three edges (vai ,vai+1), (vbj ,vbj+1) and

(vck ,vck+1), where i + j = k . This is the crucial property of our

construction. To see why it is true, note that i + j + (n − k) vertices
go to the side of v while (n − i) + (n − j) + k vertices go to the side

of u, and so to achieve balance it must be that:

i + j − k + n +w(v) = k − i − j + 2n +w(u)

which simplifies to i + j = k because of our choice of w(u) = 10n
andw(v) = 11n. Moreover, the cost of this cut is exactly (3β +T) +
(ai +bj − ck) which is less than (3β +T) if and only if ai +bj < ck .
The correctness of the reductions follows from the following claim.

Claim 14. There is no k ∈ [n] and a pair i, j such that i + j = k
and ai + bj < ck , if and only if either of the following statements is
true:

• the Minimum Quotient Cut has value at least (3β +T)/12n,
• the Sparsest Cut has value at least (3β +T)/(12n2), or
• the Minimum Bisection has value at least (3β +T).

Proof. Consider first the Minimum Bisection. By Lemma 12,

the Minimum Bisection intersects each of PA, PB , PC exactly once.

1000

STOC ’20, June 22–26, 2020, Chicago, IL, USA Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

Thus, combined with Lemma 13, we have that the if the Minimum

Bisection intersects an edge (vck ,vck+1) for some k , then it must

intersect (vai ,vai+1), and (vbj ,vbj+1) such that j + i = k to achieve

balance. Therefore, the cut has value 3β + ai +bk−i +T − ck which

is at least 3β +T if and only if there is no i, j such that i + j = k and

ai + bj < ck .
We now turn to the cases of MinimumQuotient Cut and Sparsest

Cut. For the first direction, assume that there is a triple i, j,k where

k = i + j such that ai + bj < ck . In this case, we have a cut of

quotient value less than (3β+T)/(12n) and a cut of sparsity less than
(3β +T)/(12n)2 obtained by taking edges (vai ,vai+1), (vbj ,vbj+1)

and (vck ,vck+1).
For the other direction, let us first focus on the Minimum Quo-

tient Cut Q . By Lemma 12, Q contains one edge from each of

PA, PB , PC say (vai ,vai+1), (vbj ,vbj+1) and (vck ,vck+1). First, if i +

j , k , by Lemma 13, we have that the cut has quotient value at least

(3β+ai +bj +T −ck)/(12n−1)which is at least (3β+1)/(12n−1). By
the choice of β , we have that 3β/12n > 10T and so, (3β + 1)/(12n −
1) ≥ (3β +T)/12n.

Thus, we may assume that i + j = k . By Lemma 13, we hence

have that the quotient value of the cut is less than (3β +T)/(12n) if
and only if ai +bj < ck . This follows from the fact that the quotient

value of the cut is (3β + ai + bi +T − ck)/(12n) which is less than

(3β +T)/(12n) if and only if ai + bj < ck .
The argument for the Sparsest Cut is similar. Again, by Lemma 13,

the sparsest cut contains one edge from each of PA, PB , PC , say
(vai ,vai+1), (vbj ,vbj+1) and (vck ,vck+1). Similarly, if i + j = k , we

have that the sparsity of the cut is less than (3β +T)/(12n)2 if and
only if ai + bj < ck , since the sparsity of the cut is (3β + ai + bi +

T − ck)/(12n)
2
.

Finally, if i+ j , k then the sparsity of the cut is at least (3β+ai +
bj +T − ck)/((12n − 1)(12n + 1)) which is at least (3β + 1)/((12n −

1)(12n+ 1)). By the choice of β , we have that 3β/((12n)2 − 1) > 10T
and so, (3β + 1)/(12n − 1) ≥ (3β +T)/12n. □

A Unit-Vertex-Weight Reduction. Intuitively, we are able to re-

move the weights because the total weightW is O(n). To show

this more precisely, we note that the above reduction makes use

of vertices of weight 1, except for u and v which are of weight 10n
and weight 11n respectively. Now, place a weight of 1 on u and

v and add vertices u1, . . . ,u10n−1 and connect them with edges

of length 1210n2(2β +T) to u and add vertices v1, . . . ,v11n−1 and
connect them with edges of length 1210n2(2β + T) to v . For the
same argument used in Lemma 12, the Minimum Quotient cut, the

Sparsest Cut, and the Minimum Bisection do not intersect any of

these edges and so the above proof can be applied unchanged.

3 LOWER BOUND FOR DIAMETER IN
CONGEST

In this section we prove Theorem 9 and present the simple gadget

that is at the core of our lower bounds.

Proof of Theorem 9. The proof is by reduction from the two-

party communication complexity of Disjointness: There are two

players, Alice and Bob, each has a private string of n bits, A,B ∈

{0, 1}n and their goal is to determine whether the strings are dis-

joint, i.e. for all i ∈ [n] either A[i] = 0 or B[i] = 0 (or both). It is

known that the two players must exchange Ω(n) bits of communi-

cation in order to solve this problem [72], even with randomness,

and we will use this lower bound to derive our lower bound for

distributed diameter.

Let A,B ∈ {0, 1}n be the two private input strings in an instance

(A,B) of Disjointness. We will construct a planar graph G on O(n)
nodes based on these strings and show that a CONGEST algorithm

that can compute the diameter of G in T (n) rounds implies a com-

munication protocol solving the instance (A,B) in O(T (n) logn)
rounds. This is enough to deduce our theorem.

The nodes V of G are partitioned into two types: nodes VA that

“belong to Alice” and nodes VB that “belong to Bob”. For each coor-

dinate i ∈ [n] we have two nodes ai ∈ VA and bi ∈ VB . In addition,

there are four special nodes: ℓ, r ∈ VA and ℓ′, r ′ ∈ VB . In total, there

are |VA | + |VB | = 2n + 4 nodes in G.
Let us first describe the edges E ofG before defining their weights

w : E → G. The edges are independent of the instance (A,B) but
their weights will be defined based on the strings. Every coordinate

node ai , for all i ∈ [n], has two edges: one left-edge (which will be

drawn to the left of ai in a planar embedding) connecting it to ℓ,

and one right-edge connecting it to r . Similarly for Bob’s part of

the graph, every coordinate bi has a left-edge to ℓ
′
and a right-edge

to r ′. Finally, there is an edge connecting ℓ with ℓ′ and an edge

connecting r with r ′.
One way to embed G in the plane is as follows: The nodes

a1, . . . ,an ,b1, . . . ,bn are ordered in a vertical line with a1 at the
top. In between an and b1 we add some empty space in which we

place the other four nodes in G such that ℓ, ℓ′ are to the left of the

vertical line and r , r ′ are to the right, and the four nodes are placed

in a rectangle-like shape with ℓ, r on top and ℓ′, r ′ on the bottom.

The final shape (see Figure2) looks like a diamond (especially if

we rotate it by 90 degrees) with ℓ, ℓ′ on top and r , r ′ on the bottom.

It is important to observe that the hop-diameter D of this graph is

a small constant, D = 3. A crucial property ofG for the purposes of

reductions from two-party communication problems is that there

is a very small cut between Alice’s and Bob’s parts of the graph:

there are only two edges that go from one part to the other ((ℓ, ℓ′)

and (r , r ′)).
The main power of this gadget comes from the weights, defined

next. SetM = 4 (but it will be useful to think ofM as a large weight).

w(ℓ, ℓ′) = M

w(r , r ′) = M

w(ai , ℓ) =

{
i ·M, if A[i] = 0

i ·M + 1, if A[i] = 1

w(ai , r) =

{
(n + 1 − i) ·M, if A[i] = 0

(n + 1 − i) ·M + 1, if A[i] = 1

w(bj , ℓ
′) =

{
(n + 1 − j) ·M, if B[j] = 0

(n + 1 − j) ·M + 1, if B[j] = 1

w(bj , r
′) =

{
j ·M, if B[j] = 0

j ·M + 1, if B[j] = 1

The key property of this construction is that every pair of nodes

inG will have distance less than (n+2)·M except for pairs ai ,bj with

1001

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut STOC ’20, June 22–26, 2020, Chicago, IL, USA

ℓ r

...

...

a1

an

b1

bn

Figure 2: Our basic construction. For the Diameter CON-
GEST lower bound, the nodes ℓ and r are each split into an
edge. The complexity of handling this gadget comes from a
careful choice of the weights that makes ai and bi “interact”
for all i ∈ [n], while the other pairs are not effective.

i = j. And for these special pairs ai ,bi the distance will be exactly
(n + 2) ·M plus 0,1, or 2, depending on A[i],B[i]; thus the diameter

of G will be affected by whether A,B are disjoint. Achieving this

kind of property is the crux of most reductions from Disjointness

to graph problems. Next we formally show such bounds on the

distances in G.

Claim 15. The weighted diameter ofG is (n+2)·M+2 if there exists
an i ∈ [n] such that A[i] = B[i] = 1 and it is at most (n + 2) ·M + 1
otherwise.

Proof. The proof is by a case analysis on all pairs of nodes x ,y
in G. We start with the less interesting cases, and the final case is

the interesting one (which will depend on A,B).

• If x = ai and y ∈ {ℓ, ℓ′, r , r ′} then the path of length one

or two from x to y has weight d(x ,y) ≤ n · M + 1 + M =
(n + 1) ·M + 1.

• Similarly for Bob’s side, if x = bj and y ∈ {ℓ, ℓ′, r , r ′} then
d(x ,y) ≤ n ·M + 1 +M = (n + 1) ·M + 1.

• If x = ai and y = bj but i , j then the shortest path

goes through the cheaper of the two ways (left or right).

Specifically, the left path (ai , ℓ, ℓ
′,bj) has weight (i − j +n +

2) ·M + α for some α {0, 1, 2} (that depends on the strings:

α = A[i] + B[j]), and the right (ai , r , r
′,bj) path has weight

(j − i + n + 2) · M + α . Thus, if i < j we choose the left

path, and if i > j we choose the right path. In either case,

d(x ,y) ≤ (n + 1) ·M + 2.
• If x = ai and y = aj then we again have that i , j (or else
x = y) and the shortest path goes through the cheaper of the

two ways (left or right). Specifically, the left path (ai , ℓ,aj)
has weight (i + j) ·M + α for some α {0, 1, 2}, and the right

(ai , r ,aj) path has weight (2n + 2 − i − j) · M + α . Thus, if
i + j < n + 1 we choose the left path, if i + j > n + 1 we

choose the right path, and if i + j = n + 1 then both options

are equally good. In either case, d(x ,y) ≤ (n + 1) ·M + 2.
• The case that x = bi and y = bj is analogous.
• Now comes the final case of x = ai and y = bi . These
are the special pairs corresponding to the coordinates and

their distances are larger than all the other distances in the

graph. This happens because the two paths (left or right)

have the same weight and are equally “bad”. This weight is

(n + 2) · M + α where α ∈ {0, 1, 2} is equal to A[i] + B[i].
Therefore, if A,B are disjoint, then for all i ∈ [n] we have
A[i]+B[i] ≤ 1 and so d(ai ,bi) ≤ (n+2) ·M +1. Otherwise, if
there is an i ∈ [n] such that A[i] = B[i] = 1 then d(ai ,bi) =
(n + 2) ·M + 2 which will be the furthest pair in the graph.

Finally, observe that any path from x to y that uses more

than three edges cannot be shortest, since its weights will

be at least (n + 3) ·M andM > 3.

□

Thus we have constructed a graphG from the strings (A,B) such
that diameter of G is at most (n + 2) · M + 1 if and only if (A,B)
are disjoint. To conclude the proof we describe how a CONGEST

algorithm for Diameter leads to a two-party communication proto-

col. Assume there is such an algorithm for Diameter with a T (n)
upper bound on the number of rounds. To use this algorithm for

their two-party protocol, Alice and Bob look at their private inputs

and construct the graph G from our reduction. Note that all edges

in Alice’s part are known to Alice and all edges in Bob’s part are

known to Bob. The “common” edges which have one endpoint in

each side are known to both players since they do not depend on

the private inputs. Then, they can start simulating the algorithm. In

each round, each node x sends anO(logn)-bit message to each one

of its neighbors y. For the messages sent on “internal” edges (x ,y),
having both endpoints belong to Alice or to Bob, the players can

readily simulate the message on their own without any interaction.

This is because all information known to x during the CONGEST

algorithm will be known to the player who is simulating x . For the
two non-internal edges (ℓ, ℓ′), (r , r ′) the two players must exchange

information in order to continue simulating the nodes. This can

be done by exchanging four messages of length O(logn) at each
round. At the end of the simulation of the algorithm, some node

will know the diameter ofG and will therefore know whether (A,B)
are disjoint. At the cost of another bit, both players will know the

answer. The total communication cost is T (n) ·O(logn). □

4 LOWER BOUNDS FOR CLOSEST PAIR OF
SETS AND HIERARCHICAL CLUSTERING

In this section we prove a lower bound on the time it takes to

simulate the output of the Average-Linkage algorithm, perhaps

the most popular procedure for Hierarchical Clustering, in planar

graphs, thus proving Theorem 8. We build on the diamond-like

gadget from the simple lower bound for diameter. The constructions

will combine many copies of these gadgets into one big graph that

is also diamond-like.

4.1 Preliminaries for the Reductions
The starting point for the reductions in this section is the Orthogo-

nal Vectors problem, which is known to be hard under SETH [76]

and the Weighted Clique conjecture [3].

Definition 16 (Orthogonal Vectors). Given a set of binary
vectors, decide if there are two that are orthogonal, i.e. disjoint.

We consider two variants of the closest pair problem.

1002

STOC ’20, June 22–26, 2020, Chicago, IL, USA Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

Definition 17 (Closest Pair of Sets with Max-distance).

Given a graph G = (V ,E), a parameter ∆, and disjoint subsets of the
nodes S1, . . . , Sm ⊆ V , decide if there is a pair of sets Si , Sj such that

Max-Dist(Si , Sj) = max

u ∈Si ,v ∈Sj
d(u,v) ≤ ∆.

In the second variant we look at the sum of all pairs within

two sets, rather than just the max. This definition is used in the

Average-Linkage heuristic and it is important for its success.

Definition 18 (Closest Pair of Sets with Sum-distance).

Given a graph G = (V ,E), a parameter ∆, and disjoint subsets of the
nodes S1, . . . , Sm ⊆ V , decide if there is a pair of sets Si , Sj such that

Sum-Dist(Si , Sj) = Σu ∈Si ,v ∈Sjd(u,v) ≤ ∆.

We could also look at the Min-distance. However, it is easy to ob-

serve that the corresponding closest pair of sets problem is solvable

in near-linear time. It is enough to sort all the edges and scan them

once until a non-internal edge is found. Interestingly, there is also a

popular heuristic for hierarchical clustering based on Min-distance,

called Single Linkage, and it known that Single-Linkage can be

computed in near-linear time in planar graphs.

4.2 Reduction with Max-Distance and
Complete Linkage

We start with a simpler reduction which works only in the Max-

distance case. The reduction to Sum-distance will be similar in

structure but more details will be required.

Theorem 19. Orthogonal Vectors on n vectors in d dimensions can
be reduced to Closest Pair of Sets with Max-distance in a planar graph
on O(nd) nodes with edge weights in [O(d)]. The graph can be made
unweighted by increasing the number of nodes to O(nd2).

Proof. Letv1, . . . ,vn ∈ {0, 1}d be an input instance for Orthog-

onal Vectors and we will show how to construct a planar graph G
and certain subsets of its nodes from it. For each vector vk ,k ∈ [n]
we have a set of 2d nodes Sk = {uk,1, . . . ,uk,d } ∪ {u ′k,1, . . . ,u

′
k,d }

in G. Each coordinate vk [j] is represented by two nodes uk, j and
u ′k, j . In addition, there are two extra nodes in G that we denote ℓ

and r . Thus,G contains the 2nd + 2 nodes S1 ∪ · · · ∪Sn ∪ {ℓ, r }. The
edges ofG are defined in a diamond-like way as follows. Every node

uk, j or u
′
k, j is connected with a left-edge to ℓ and with a right-edge

to r . Thus, G is planar.

The crux of the construction is defining the weights, and it will

be done in the spirit of our gadget from the diameter lower bound.

SetM = 4 as before, and for each k ∈ [n] and j ∈ [d] we define:

w(uk, j , ℓ) =

{
j ·M, if vk [j] = 0

j ·M + 1, if vk [j] = 1

w(u ′k .j , ℓ) =

{
(2d + 1 − j) ·M, if vk [j] = 0

(2d + 1 − j) ·M + 1, if vk [j] = 1

w(uk .j , r) =

{
(2d + 1 − j) ·M, if vk [j] = 0

(2d + 1 − j) ·M + 1, if vk [j] = 1

w(u ′k .j , r) =

{
j ·M, if vk [j] = 0

j ·M + 1, if vk [j] = 1

Note that all weights are positive integers up to O(logn).

Claim 20. For any two sets Sa , Sb we have that

Max-Dist(Sa , Sb) =

{
≤ (2d + 1) ·M + 1, if va ,vb are orthogonal
(2d + 1) ·M + 2, otherwise.

Proof. The proof is similar to Claim 15 since the subgraph ofG
induced by two sets Sa , Sb (and the shortest paths between them)

is similar to our construction for the diameter lower bound (with

2d nodes instead of n). The details are deferred to the full version.

□

Thus, solving the closest pair problem on G with ∆ = (2d + 1) ·
M + 1 gives us the solution to Orthogonal Vectors.

The reduction can be made to produce an unweighted graph by

subdividing each edge of weight w into a path of length w . The

created nodes do not belong to any of the sets. The total number of

nodes is O(nd2).
□

Next, we present an argument based on this reduction showing

that the Complete-Linkage algorithm for hierarchical clustering

cannot be sped up even if the data is embedded in a planar graph.

We give a reduction only to the weighted case; the unweighted case

remains open (and seems doable but challenging).

Theorem 21. If for some ε > 0 the Complete-Linkage algorithm on
n node planar graphs with edge weights in [O(logn)] can be simulated
in O(n2−ε) time, then SETH is false.

Proof. To refute SETH it is enough to solve OV on n vectors

of d = O(logn) dimensions in O(n2−ε) time, for some ε > 0. Given

such an instance of OV, we construct a planar graph G such that

the solution to the OV instance can be inferred from a simulation

of the Complete-Linkage algorithm on G.
The graph G is similar to the one produced in the reduction

of Theorem 19 with a few additions described next. First, we add

M ′ = 11d to all the edge weights in G. This does not change any
of the shortest paths, because for all pairs s, t the shortest path has

length exactly one if they are adjacent and exactly two otherwise.

Then, we connect the nodes of each set Si with a path such that

ui, j is connected to ui, j+1 for all j ∈ [d − 1], ui,d is connected to

u ′i,1, and u
′
i, j is connected to u

′
i, j+1 for all j ∈ [d − 1]. All these new

edges have weightM + 1 = 5. As a result, all nodes within Si are at
distance up to 5 · 2d = 10d from each other, but the distance from

any ui, j or u
′
i, j to ℓ or r does not decrease (since the new edges

are at least as costly as the difference between, e.g.,w(ui, j , ℓ) and
w(ui, j+1, ℓ)).

Next, we analyze the clusters generated by an execution of the

Complete-Linkage algorithm on G: we argue that at some point

in the execution, each Si will be its own cluster (except that the

nodes ℓ, r will be included in one of these clusters), and that the

next pair to be merged is exactly the closest pair of sets (in max-

distance). This is because the algorithm starts with each node in

its own cluster, and at each stage, the pair of clusters of minimum

Max-distance are merged into a new cluster. Let the merge-value
of a stage be the distance of the merged cluster, and observe that

this value does not decrease throughout the stages. The first few

merges will involve pairs of adjacent nodes on the new paths we

1003

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut STOC ’20, June 22–26, 2020, Chicago, IL, USA

added, in some order (that depends on the tie-breaking rule of the

implementation, which we do not make any assumptions about),

and the merge value will be 5. After all adjacent pairs are merged,

two adjacent clusters will be merged, increasing the merge-value

to 10. This continues until the merge value gets to 10d , and at this

point, each Si is its own cluster (since their inner distance is at most

10d and their distance to any other node is larger), plus the two

clusters {ℓ}, {r }. Next, the merge value becomesM ′+2dM and each

of the latter two clusters will get merged into one of the Si ’s (could
be any of them). At this point, the max-distance between any pair

of clusters is exactly the max-distance between the corresponding

two sets Sa , Sb . This is because the nodes ℓ, r will not affect the

max-distance. And so if we know the next pair to be merged, we

will know the closest pair and can therefore deduce the solution to

OV.

□

4.3 Reduction with Sum-Distance and Average
Linkage

The issue with extending the previous reductions to the Sum-

distance case is that pairs i, j with i , j will contribute to the

score (even though their distance is designed to be smaller than

that of the pairs with i = j). Indeed, if we look at Sum-Dist(Sa , Sb)
instead of Max-Dist(Sa , Sb) for two vectors a,b we will just get

some fixed value that depends on d plus |a | + |b | (the hamming

weight of the two vectors, i.e. the number of ones). Finding a pair

of vectors with minimum number of ones is a trivial problem, since

the objective function does not depend on any interaction between

the pair. To overcome this issue, we utilize a degree of freedom in

our diamond-like gadget that we have not used yet: so far, the left

and right edges both have a +v[i] term, but now we will gain extra

hardness by choosing two distinct values for the two edges. The

key property of the special pairs i, j, i = j that we will utilize is
not that their distance is larger, but that their left and right paths

are equally long. Thus the shortest path can choose either path

depending on the lower order terms of the weights, whereas for

the non-special pairs the shortest path is constrained by the high

order terms.

The starting point for the reduction will be the Closest Pair prob-

lem on binary vectors with hamming weight. Alman and Williams

[11] gave a reduction from OV to the bichromatic version of this

problem, and very recently a surprising result of C.S. and Manuran-

gasi [49] showed that the monochromatic version (which is often

easier to use in reductions, as we will do) is also hard.

Definition 22 (Hamming Closest Pair). Given a set of binary
vectors, output the minimum hamming distance between a pair of
them.

Theorem 23 ([49]). Assuming OVH, for every ε > 0, there exists
sε > 0 such that no algorithm running in time O(n2−ε) can solve
Hamming Closest Pair on n binary vectors in d = (logn)sε dimen-
sions.

Next we adapt the reduction from Theorem 19 to the sum-

distance case.

Theorem 24. Hamming Closest Pair on n vectors in d dimensions
can be reduced to Closest Pair of Sets with Sum-distance in a planar

graph on O(nd) nodes with edge weights in [O(d)]. The graph can be
made unweighted by increasing the number of nodes to O(nd2).

Proof. The construction of the planar graph G from the set of

vectors will be similar, with one modification in the weights, to the

one in Theorem 19 but the analysis will be quite different.

As before, for each vector vk ,k ∈ [n] we have a set of 2d nodes

Sk = {uk,1, . . . ,uk,d } ∪ {u ′k,1, . . . ,u
′
k,d } in G, and we have two

additional nodes ℓ, r . Each node uk, j or u
′
k, j is connected to both ℓ

and r .
Set M = 4 as before and for each i ∈ [n], j ∈ [d] we define

the edge weights of G as follows. The difference to the previous

reduction is that in the edges to r we add the complement of vk [j]
rather than vk [j] itself.

The proof of the following claim is deferred to the full version.

Claim 25. For any two vectors a,b:

Sum-Dist(Sa , Sb) = f (d,M) + 2 · Ham-Dist(va ,vb)

where f (d,M) = O(Md3) depends only on d andM .

Thus, the closest pair of sets Sa , Sb in G will correspond to the

pair of vectors a,b that minimize Ham-Dist(va ,vb). This completes

the reduction. As before, the graph can be made unweighted by

subdividing the edges into paths. □

Finally, we present a lower bound argument for the Average-

Linkage algorithm in planar graphs. As before, the unweighted case

remains open.

Theorem 26. If for some ε > 0 the Average-Linkage algorithm on
n node planar graphs with edge weights in [O(logn)] can be simulated
in O(n2−ε) time, then SETH is false.

The proof is similar in structure to the proof of Theorem 21, and

is deferred to the full version.

5 ALGORITHMS FOR SPARSEST CUT AND
MINIMUM QUOTIENT CUT

In this section we present our algorithms.

5.1 Proof of Theorem 6: An
O(1)-Approximation for Minimum
Quotient Cut in Near-Linear Time

We will describe the algorithm in the dual graph, where cuts are

cycles. Thus the input is a connected undirected planar graph G
with positive integral edge-costs cost(e) and integral face-weights

w(f). Unless otherwise specified, n denotes the size ofG . We denote

the sum of (finite) costs by P and we denote the sum of weights

byW . Given a cycle C , the total cost of the edges of C is denoted

cost(C), and the total weight enclosed by C is denoted w(C), while
the total weight outside C is denoted by w(C). We denote by λ(C)
the ratio cost(C)/min{w(C),w(C)}. The goal is to find a cycleC that

minimizes λ(C). We give a constant-factor approximation algorithm.

For an overview of the algorithm, please see Section ??.

1004

STOC ’20, June 22–26, 2020, Chicago, IL, USA Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

Overview of the Algorithm. Let C be the cycle C that achieves

the optimal cut. Our algorithm has two main parts, both of which

combine previously known techniques with a novel idea. Roughly

speaking, the goal of the first one is to find a node s that is close
to C , i.e. there is a path of small cost from s to some node in C .
Then, the second part will find an approximately optimal cycle

Ĉ by starting from a reasonable candidate that can be computed

in near-linear time and then iteratively fixing it using the node s .
This idea of finding a nearby node (rather than insisting on a node

that is on the optimal cycle, which incurs an extra O(n) factor) and
then using it to fix a candidate cycle is the crucial one that lets us

improve on the quadratic-time 3.5-approximation Rao [71] both in

terms of time and accuracy (as our fixing strategy turns out to be

more effective).

In more detail, the first part will utilize a careful recursive de-

composition of the graph with shortest-path cycle separators, in

order to divide the graph into subgraphs such that: the total size

of all subgraphs is O(n logn) and we are guaranteed that C will be

in one of them, and moreover, for each subgraph there are O(1/ϵ)
candidate portals s such that one of them is guaranteed to be close

to C (if it is there). In the second part, we build on the construction

of Park and Phillips [66] that uses a spanning tree to define a di-

rected graph with cleverly chosen edge weights so that the sum

of weights of any fundamental cycle of the tree (if all edges have

the same direction) is exactly the total weight of faces enclosed

by the cycle. Then, using ideas from Rao’s algorithm [71] we can

modify the weights further so that any negative cycle Ĉ in the new

graph (which can be found in near-linear time) is almost what we
are looking for. The quotient of Ĉ is defined to be the cost of C
divided by the minimum between the weight inside and outside Ĉ ,
while the construction so far is only looking at the weight inside.
Therefore, our candidate Ĉ could have too much weight inside it,

which makes it far from optimal. The final step, which is also the

most novel, will use a portal s to perform weight reduction steps on

Ĉ without adding much to the cost; in fact, the increase in cost will

depend on the distance from s to the cycle.

5.1.1 Outermost loop. The outermost loop of the algorithm is a

binary search for the (approximately) smallest value λ such that

there is a cycle C for which λ(C) ≤ λ. The body of this loop is a

procedure Find(λ) that for a given value of λ either (1) finds a cycle

C such that λ(C) ≤ 3.29λ or (2) determines that there is no cycle

C such that λ(C) ≤ λ. The binary search seeks to determine the

smallest λ (to within a 1.003 factor, or any 1 + ε) for which Find(λ)
returns a cycle. Because the optimal value (if finite) is between 1/W
and P , the number of iterations of binary search is O(logWP).

5.1.2 Cost loop. The loop of the Find(λ) procedure is a search for

the (approximately) smallest number τ such that there is a cycle C
of cost at most 2τ with λ(C) not much more than λ. The body of this
loop is a procedure Find(λ,τ) that either (1) finds a cycleC such that

λ(C) ≤ (1 + ϵ)3.29λ (in which case we say the procedure succeeds)
or (2) determines that there is no cycle C such that λ(C) ≤ λ and

cost(C) ≤ 2τ . The outer loop tries τ = 1,τ = 1 + ϵ,τ = (1 + ϵ)2

and so on, until Find(λ,τ) succeeds. The number of iterations is

O(log P) where ϵ is a constant to be determined. In proving the

correctness of Find(λ,τ), we can assume that calls corresponding

to smaller values of τ have failed.

5.1.3 Recursive decomposition using shortest-path separators. The
procedure Find(λ,τ) first finds a shortest-path tree (with respect to

edge-costs) rooted at an arbitrary vertex r . The procedure then finds
a recursive decomposition ofG using balanced cycle separators with

respect to that tree. Each separator is a non-self-crossing (but not

necessarily simple) cycle S = P1P2P3, where P1 and P2 are shortest
paths in the shortest-path tree, and every edge e not enclosed by S
but adjacent to S is adjacent to P1 or P2. This property ensures that

any cycle that is partially but not fully enclosed by S intersects P1
or P2.

The recursive decomposition is a binary tree. Each node of the

tree corresponds to a subgraph H of G, and each internal node is

labeled with a cycle separator S of that subgraph. The children of a

node corresponding to H and labeled S correspond to the subgraph

H1 consisting of the interior of S and the subgraph H2 consisting

of the exterior. (Each subgraph includes the cycle S itself.) In H1

and H2, the cycle S is the boundary of a new face, which is called a

scar. The scar is assigned a weight equal to the sum of the weights

of the faces it replaced. Each leaf of the binary tree corresponds to

a subgraph with at most a constant number of faces. We refer to

the subgraphs corresponding to nodes as clusters.
One modification: for the purpose of efficiency, each vertex v

on the cycle S that has degree exactly two after scar formation is

spliced out: the two edges e1, e2 incident to v are replaced with a

single edge whose cost is the sum of the costs of e1 and e2. Clearly
there is a correspondence between cycles before splicing out and

cycles after splicing out, and costs are preserved. For the sake of

simplicity of presentation, we identify each post-splicing-out cycle

with the corresponding pre-splicing-out cycle.

Consecutive iterations of separator-finding alternate balancing

number of faces with balancing number of scars. As a consequence,

the depth of recursion is bounded by O(logn) and each cluster

has at most six scars. (This is a standard technique.) Because of the

splicing out, the sum of the sizes of graphs at each level of recursion

is O(n). Therefore the sum of sizes of all clusters is O(n logn).
Let H be a cluster. Because H has at most six scars, there are at

most twelve paths in the shortest-path tree such that any cycle in

the original graph that is only partially in the cluster must intersect

at least one of these paths (these are the two paths P1, P2 from

above). We call this the intersection property, and we refer to these

paths as the intersection paths.

Because each scar is assigned weight equal to the sum of the

weights of the faces it replaced, for any cluster H and any simple

cycleC within H , the cost-to-weight ratio forC in H is the same as

the ratio for C in the original graph G.

5.1.4 Decompositions into annuli. The procedure also finds 1/ϵ
decompositions into annuli, based on the distance from r . The
annulus A[a,b) consists of every vertex whose distance from r lies
in the interval [a,b). The width of the annulus is b − a. Let δ = ϵτ
and let σ = (1 + 2ϵ)τ . For each integer i in the interval [0, 1/ϵ],
the decomposition Di consists of the annuli A[iδ , iδ + σ),A[iδ +
σ , iδ + 2σ),A[iδ + 2σ , iδ + 3σ) and so on. Thus the decomposition

Di consists of disjoint annuli of width σ .

1005

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut STOC ’20, June 22–26, 2020, Chicago, IL, USA

5.1.5 Using the decompositions. The procedure Find(λ,τ) is as
follows:

- Search for a solution in each leaf cluster

- For each integer i ∈ [0, 1/ϵ]
- For each annulus A[a,b) in Di
- For each non-root cluster Q

- For each P that is the intersection of the annulus

with one of the twelve intersection paths of Q
- Form an ϵτ -net S of P (take nodes that are ϵτ apart)

- For each vertex s of S
- Call subprocedure RootedFind(λ,τ , s,R)
where R = intersection of A[a,b) with
the parent of cluster Q

Here RootedFind(λ,τ , s,R) is a procedure such that if there is a

cycle C in R with the properties listed below then the procedure

finds a cycle C such that λ(C) ≤ 3.29λ (in which case we say that

the call succeeds).
The properties are:

(1) λ(C) ≤ λ, and
(2) (1 + ϵ)−1τ < cost(C) ≤ 2τ , and
(3) C contains a vertexv such that the minimum cost of av-to-s

path is at most ϵτ .

In the last step of Find, the procedure takes the intersection of

an annulus with a cluster. Let us elaborate on how this is done.

Taking the intersection with an annulus involves deleting vertices

outside the annulus. Deleting a vertex involves deleting its incident

edges, which leads to faces merging; when two faces merge, the

weight of the resulting face is defined to be the sum of weights of

the two faces. This ensures that the cost-to-weight ratio of a cycle

is the same in the subgraph as it is in the original graph.

We show that Find(λ,τ) is correct as follows. If the search for a

solution in a leaf cluster succeeds or one of the calls to RootedFind

succeeds, it follows from the construction that the cycle found

meets Find’s criterion for success. Conversely, suppose that there

is a cycle C in G such that λ(C) ≤ λ and (1 + ϵ)−1τ < cost(C) ≤ 2τ .
Our goal is to show that Find(λ,τ) succeeds. LetQ0 be the smallest

cluster that contains C . If Q0 is a leaf cluster then the first line

ensures that Find(λ,τ) succeeds. Otherwise, Q0 has a child cluster

Q such that C is only partially in Q . Therefore by the intersection

property C intersects one of the intersection paths P of Q . Let v be

a vertex at which C intersects P . Let s be the point in the ϵτ -net of
P closest to v .

Let α be the minimum distance from r of a vertex of C , and
let β be the maximum distance. Because cost(C) ≤ 2τ , we have

β − α ≤ τ . Let α ′ = min{α , distance of s from r } and let β ′ =
max{β , distance of s from r }. Then β ′−α ′ ≤ τ +ϵτ , so there exists
an integer i ∈ [0, 1/ϵ] and an integer j ≥ 0 such that the interval

[iδ + jσ , iδ + (j + 1)σ) contains both α ′
and β , and therefore the

annulusA[iδ + jσ , iδ + (j + 1)σ) containsC together with thev-to-s
subpath of P . The specification of RootedFind(λ,τ , s,R) therefore
shows that the procedure succeeds.

Now we consider the run-time analysis. The sum of sizes of all

leaf clusters isO(n). Because each leaf cluster has at most a constant

number of faces, therefore, solutions can be sought in each of the

leaf clusters in a total of O(n) time.

For each integer i ∈ [0, 1/ϵ], the annuli of decomposition Di are

disjoint. Because the sum of sizes of clusters is O(n logn), the sum
of sizes of intersections of clusters with annuli of Di is O(n logn).
Moreover, note that the total size of the ϵτ -nets we pick within any

annulus of widthO(τ) isO(1/ϵ). ThereforeO(ϵ−1n logn) is a bound
on the sum of sizes of all intersections R on which RootedFind is

called. Therefore in order to obtain a near-linear time bound for

Find, it suffices to prove a near-linear time bound for RootedFind.

5.1.6 RootedFind. It remains to describe and analyze the pro-

cedure RootedFind(λ,τ , s,R). We use a construction of Park and

Phillips [66] together with approximation techniques of Rao [71].

Let T be a shortest-path tree of R, rooted at s . Delete from the

graph every vertex whose distance from s exceeds (1 + ϵ)τ , and all

incident edges, merging faces as before. This includes deleting ver-

tices that cannot be reached from s in R. Let R̂ denote the resulting

graph. Note that a cycle C in R that satisfies Properties 2 and 3 (see

Section 5.1.5) must also be in R̂.
According to a basic fact about planar embeddings (see e.g. [50]),

in the planar dual R̂∗ of R̂, the set of edges not inT form a spanning

tree T ∗
. Each vertex of T ∗

corresponds to a face in R̂ and therefore

has an associated weight. The procedure arbitrarily roots T ∗
, and

finds the leafmost vertex f∞ such that the combined weight of all

the descendants of f∞ is greater thanW /2. The procedure then

designates f∞ as the infinite face of the embedding of R̂.

Lemma 27. For any nontree edge e , the fundamental cycle of e
with respect to T encloses (with respect to f∞) at most weightW /2.

Park and Phillips describe a construction, which applies to any

spanning tree of a planar graph with edge-costs and face-weights,

and this construction is used in RootedFind. Each undirected edge

of R̂ corresponds to two darts, one in each direction. Each dart is

assigned the cost of the corresponding edge. A dart corresponding

to an edge of T is assigned zero weight. Let d be a nontree dart.

Define wd to be the weight enclosed (with respect to f∞) by the

fundamental cycle of d with respect to T . Define the weight of d ,
denoted w(d), to bewd if the orientation ofd in the the fundamental

cycle is counterclockwise, and −wd otherwise. We refer to this

graph as the weight-transfer graph.

Lemma 28 (Park and Phillips). The sum of weights of darts of
a counterclockwise cycle C is the amount of weight enclosed by the
cycle.

We adapt an approximation technique of Rao [71]. (His method

differs slightly.) The procedure selects a collection of candidate

cycles; if any candidate cycle has quotient at most 3.29λ, the pro-
cedure is considered to have succeeded. We will show that if R̂
contains a cycle with properties 1-3 (see Section 5.1.5) then one of

the candidate cycles has quotient at most 3.29λ.
Let α , β be two parameters in [0, 1] to be determined. Recall that

W is the sum of weights. We say a dart d is heavy if w(d) ≥ βW .

For each heavy dart, the procedure considers as a candidate the

fundamental cycle of d .
We next describe the search for a cycle in the weight-transfer

graph minus heavy darts. Following a basic technique (see [54, 62]),

we define a modified cost per dart as ĉost(d) = cost(d) − λw(d). A
cycle has negative cost (under this cost assignment) if and only

1006

STOC ’20, June 22–26, 2020, Chicago, IL, USA Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

Figure 3: This diagram illustrates the structure of a cycle
arising in the algorithm. The cycle is nearly simple but in-
cludes a path and its reverse, where one endpoint of the path
is the root s.

if its ratio of cost to enclosed weight is less than λ. Note that the
actual quotient of such a cycle may be much larger than λ since we

must divide by the min of the weight inside and the weight outside

the cycle. Still, the information we get from such a cycle will be

sufficient for getting a cycle that has quotient not much larger than

λ.
The procedure seeks a negative-cost cycle in this graph. Using

the algorithm of Klein, Mozes, and Weimann [51], this can be done

in O(n log2 n) time on a planar graph of size n.
Suppose the algorithm does find a negative-cost cycle Ĉ . If Ĉ

encloses at most αW weight then Ĉ is a candidate cycle. (In this case,

the denominator in the actual quotient of Ĉ is not much smaller.)

Otherwise, the procedure proceeds as follows. (Here, the de-

nominator is much smaller, so we would like to fix Ĉ so that it

encloses much less weight, but the cost does not increase by much.)

It first modifies the cycle to obtain a cycleC0 that encloses the same

amount of weight and that includes the vertex s . This step consists

in adding to Ĉ the shortest path from s to Ĉ and the reverse of this

shortest path. Because the shortest path is in R̂, this increases the
cost of the cycle by at most 2(1 + ϵ)τ . (The new cycle will be easier

to fix. This is the main idea that allows us to improve the previous

approximation factor of 3.5 to below 3.3.)

The new cycle C0 might not be a simple cycle: it has the form

illustrated in Figure 3: it is mostly a simple cycle but contains a

path and its reverse, such that s is an endpoint of the path. We refer

to such a cycle as a near-simple cycle.
Next the algorithm iteratively modifies the cycle so as to reduce

the weight enclosed without increasing the cost. In each iteration,

the algorithm considers the current cycle Ci as a path starting and

ending at s , and identifies the last dart xy with w(xy) > 0 in this

path. The algorithm then finds the closest ancestor u of x in T
among vertices occurring after y in the current path. The algorithm

replaces the x-to-u subpath of the current path with the x-to-u path

in T . Because the x-to-u path in T is a shortest path, this does not

increase the cost of the current path. It reduces the enclosed weight

by at most the weight of xy. This process repeats until the enclosed
weight is at most αW .

Here we restate the process, which we call weight reduction:

while Ci encloses weight more than αW
write Ci = sP1xyP2s

where xy is a positive-weight dart and P2 contains no such dart

let u be the closest ancestor of x in T among vertices in P2
let Ci+1 = sP1P3s where P3 is the x-to-u path in T
let i = i + 1

Lemma 29. The result of each iteration is a near-simple cycle. The
enclosed weight is reduced by less than βW .

5.1.7 Analysis. We will show that if R̂ contains a cycle C with

properties 1-3 (see Section 5.1.5) then one of the candidate cycles

considered by the procedure has quotient at most 3.29λ. The details
are deferred to the full version.

5.2 Proof of Theorem 4: An Exact Algorithm
for Sparsest Cut with Running Time
O(n3/2W)

In this section, we provide an exact algorithm for Sparsest Cut and

the Minimum Quotient problems running in timeO(n3/2W log(C)).
This improves upon the algorithm of Park and Phillips [66] run-

ning in time O(n2W log(C)). We first need to recall their approach

(see [66] for all details).

The approach of Park and Phillips [66] works as follows. It works

in the dual of the input graph and thus looks for a cycle C min-

imizing ℓ(C)/min(w(Inside(C)),w(Outside(C))), where ℓ(C) is the
sum of length of the dual of the edges of C andw(Inside(C)) (resp.
w(Outside(C))) is the total weight of the vertices ofG whose corre-

sponding faces in G∗
are in Inside(C) (resp. Outside(C)). Park and

Phillips show that the approach also works for the sparsest cut

problem. Their algorithm is as follows:

Step 1. Construct an arbitrary spanning treeT and order the

vertices with a preorder traversal of T which is consistent

with the cyclic ordering of edges around each vertex.

Step 2. For each edge (u,v) of G∗
, create two directed edges

e1 = ⟨u,v⟩ and e2 = ⟨v,u⟩ and assume u is before v in the

ordering computed at Step 1. Define the length of e1 and e2 to
be the length of the dual edge of e , define the weight of e1 to
be the total weight of vertices enclosed by the fundamental

cycle induced by e (for the edges of T the weight is 0) and

the weight of e2 to be minus the weight of e1.
Step 3. Construct a graph G as follows: for each vertex v
of G∗

, for each weight y ∈ [W], create a vertex (v,y). For
each directed edge ⟨u,v⟩ ∈ G∗

, for each y ∈ [W], create

an edge between vertices (u,y) and (v,y +w(⟨u,v⟩)) where
w(⟨u,v⟩) is the weight of the edge ⟨u,v⟩ as defined at Step

2. The length of the edge created is equal to the length of

⟨u,v⟩.

Let P be the set of all shortest paths Pu,y from (u, 0) to (u,y) in
G for y ∈ [W /2], for each vertex u ∈ G∗

. Let P∗ be a shortest path
of P that achieves minu ∈G∗,y∈[W /2] ℓ(Pu,y)/y. Park and Phillips

show that P∗ corresponds to a minimum quotient cut of G. The
running timeO(n2W logC) of the algorithm follows from applying

a single source shortest path (SSSP) algorithm for each vertex (u, 0)
of G. Since G has O(nW) vertices, these n SSSP computations can

be done in time O(n2W logC).

The Improvement. We now show how to speed up the above

algorithm. Consider taking an O(
√
n)-size balanced separator S of

1007

New Hardness Results for Planar Graph Problems in P and an Algorithm for Sparsest Cut STOC ’20, June 22–26, 2020, Chicago, IL, USA

G∗
. We make the following observation: either P∗ intersects S , in

which case it is only needed to perform a single source shortest

path computation from each vertex (u, 0) of G, where u ∈ S , or
P∗ does not intersect S and in which case we can simply focus on

computing the minimum quotient cut on each side of the separator

separately (treating the other side as a single face of weight equal

to the sum of the weights of the faces in the side).

More precisely, our algorithm is as follows:

Step 1. Compute an O(
√
n)-size balance separator S of G∗

,

that separates G∗
into two components S1, S2 both having

size |S1 |, |S2 | ≤ 2n/3;
Step 2. Compute G and perform an SSSP computation from

each vertex (u, 0) ∈ G where u ∈ S and let P∗
0
be the shortest

path Pu,y from (u, 0) to (u,y) for u ∈ S , y ∈ [W /2] that

minimizes ℓ(Pu,y)/y.
Step 3. For i ∈ 1, 2, create the graph Gi with vertex set Si
and where the face containing S3−i has weight equal to the

sum of the weights of the faces in S3−i .
Step 4. Returns the minimum quotient cut among P∗

0
, P∗

1
, P∗

2
.

The correctness follows from our observation: if P∗ intersects
S then, by [66], Step 2 ensures that P∗

0
corresponds to a minimum

quotient cut, otherwise P∗ is strictly contained within S1 or S2 and
in which case the following argument applies. Assuming P∗ lies
completely within S1, then the graphG1 where the face containing

S2 has weight equal to the sum of the weight of faces in S2 contains
a minimum quotient cut of value at most the minimum quotient cut

ofG since the cut places all the vertices of S2 on one side. Hence, an

immediate induction shows that the minimum quotient cut among

the cuts induced by the paths P∗
0
, P∗

1
, P∗

2
is optimal. The running

time follows from a direct application of the master theorem.

ACKNOWLEDGMENTS
P. Klein is supported by NSF Grant CCF-1841954, and V. Cohen-

Addad supported by ANR-18-CE40-0004-01.

REFERENCES
[1] Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. 2017.

Fine-Grained Complexity of Analyzing Compressed Data: Quantifying Improve-

ments over Decompress-and-Solve. In 58th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017.
192–203.

[2] Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska

Williams, and Or Zamir. 2016. Subtree Isomorphism Revisited. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016. 1256–1271.

[3] Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. 2018. More

consequences of falsifying SETH and the orthogonal vectors conjecture. In Pro-
ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. 253–266.

[4] Amir Abboud, Keren Censor-Hillel, and Seri Khoury. 2016. Near-Linear Lower

Bounds for Distributed Distance Computations, Even in Sparse Networks. In

Distributed Computing - 30th International Symposium, DISC 2016, Paris, France,
September 27-29, 2016. Proceedings. 29–42.

[5] Amir Abboud, Vincent Cohen Addad, and Hussein Houdrouge. 2019. Sub-

quadratic High-Dimensional Hierarchical Clustering. NeurIPS (2019).
[6] Amir Abboud and Søren Dahlgaard. 2016. Popular Conjectures as a Barrier for

Dynamic Planar Graph Algorithms. In IEEE 57th Annual Symposium on Foun-
dations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA. 477–486.

[7] Amir Abboud and Virginia VassilevskaWilliams. 2014. Popular Conjectures Imply

Strong Lower Bounds for Dynamic Problems. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014. 434–443.

[8] Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. 2016. Approx-

imation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter

in Sparse Graphs. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016. 377–391.

[9] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. 2014. Con-

sequences of Faster Alignment of Sequences. In Automata, Languages, and Pro-
gramming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I. 39–51.

[10] James Abello, Panos M Pardalos, and Mauricio GC Resende. 2013. Handbook of
massive data sets. Vol. 4. Springer.

[11] Josh Alman and Ryan Williams. 2015. Probabilistic Polynomials and Hamming

Nearest Neighbors. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. 136–150.

[12] Sanjeev Arora, Satish Rao, and Umesh Vazirani. 2009. Expander flows, geometric

embeddings and graph partitioning. Journal of the ACM (JACM) 56, 2 (2009), 5.
[13] Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. 2016. Tight Hardness

Results for Maximum Weight Rectangles. In 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy.
81:1–81:13.

[14] Arturs Backurs and Piotr Indyk. 2015. Edit Distance Cannot Be Computed in

Strongly Subquadratic Time (unless SETH is false). In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015. 51–58.

[15] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. 2017. Better approximations

for tree sparsity in nearly-linear time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2215–2229.

[16] Gill Barequet and Sariel Har-Peled. 2001. Polygon Containment and Translational

Min-Hausdorff-Distance Between Segment Sets are 3SUM-Hard. Int. J. Comput.
Geometry Appl. 11, 4 (2001), 465–474. https://doi.org/10.1142/S0218195901000596

[17] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin, and

Cliff Stein. 2018. Fast algorithms for knapsack via convolution and prediction. In

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing.
ACM, 1269–1282.

[18] Sandeep N Bhatt and Frank Thomson Leighton. 1984. A framework for solving

VLSI graph layout problems. J. Comput. System Sci. 28, 2 (1984), 300–343.
[19] Karl Bringmann. 2014. Why Walking the Dog Takes Time: Frechet Distance Has

No Strongly Subquadratic Algorithms Unless SETH Fails. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014. 661–670.

[20] Karl Bringmann, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. 2018.

Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless

APSP can). In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018.
1190–1206.

[21] Karl Bringmann and Sebastian Krinninger. 2018. A note on hardness of diameter

approximation. Inf. Process. Lett. 133 (2018), 10–15. https://doi.org/10.1016/j.ipl.

2017.12.010

[22] Sergio Cabello. 2017. Subquadratic Algorithms for the Diameter and the Sum of

Pairwise Distances in Planar Graphs. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel
Porta Fira, January 16-19. 2143–2152.

[23] Gunnar Carlsson and Facundo Mémoli. 2010. Characterization, stability and

convergence of hierarchical clustering methods. Journal of machine learning
research 11, Apr (2010), 1425–1470.

[24] Keren Censor-Hillel, Seri Khoury, and Ami Paz. 2017. Quadratic and Near-

Quadratic Lower Bounds for the CONGEST Model. In 31st International Sympo-
sium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria.
10:1–10:16.

[25] Panagiotis Charalampopoulos, Pawe? Gawrychowski, Shay Mozes, and Oren

Weimann. 2019. Almost Optimal Distance Oracles for Planar Graphs. In STOC,
to appear.

[26] Michael Cochez and Hao Mou. 2015. Twister tries: Approximate hierarchical

agglomerative clustering for average distance in linear time. In Proceedings of
the 2015 ACM SIGMOD international conference on Management of data. ACM,

505–517.

[27] Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. 2017. Fast

and Compact Exact Distance Oracle for Planar Graphs. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017. 962–973.

[28] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michał Włodarczyk. 2019.

On problems equivalent to (min,+)-convolution. ACM Transactions on Algorithms
(TALG) 15, 1 (2019), 14.

[29] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,

Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2012. Distributed

Verification and Hardness of Distributed Approximation. SIAM J. Comput. 41, 5
(2012). https://doi.org/10.1137/11085178X

[30] Sanjoy Dasgupta. 2016. A Cost Function for Similarity-based Hierarchical Clus-

tering. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory

1008

https://doi.org/10.1142/S0218195901000596
https://doi.org/10.1016/j.ipl.2017.12.010
https://doi.org/10.1016/j.ipl.2017.12.010
https://doi.org/10.1137/11085178X

STOC ’20, June 22–26, 2020, Chicago, IL, USA Amir Abboud, Vincent Cohen-Addad, and Philip N. Klein

of Computing (Cambridge, MA, USA) (STOC 2016). ACM, New York, NY, USA,

118–127. https://doi.org/10.1145/2897518.2897527

[31] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey

Pupyrev, and Alon Shalita. 2016. Compressing graphs and indexes with recursive

graph bisection. arXiv preprint arXiv:1602.08820 (2016).
[32] Michael Elkin. 2006. An Unconditional Lower Bound on the Time-Approximation

Trade-off for the Distributed Minimum Spanning Tree Problem. SIAM J. Comput.
36, 2 (2006). https://doi.org/10.1137/S0097539704441058

[33] Kyle Fox, Philip N. Klein, and Shay Mozes. 2015. A Polynomial-time Bicriteria

Approximation Scheme for Planar Bisection. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,
USA, June 14-17, 2015. 841–850. https://doi.org/10.1145/2746539.2746564

[34] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The elements of
statistical learning. Vol. 1. Springer series in statistics New York, NY, USA:.

[35] Silvio Frischknecht, StephanHolzer, and RogerWattenhofer. [n.d.]. Networks can-

not compute their diameter in sublinear time. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2012. http://portal.

acm.org/citation.cfm?id=2095207&CFID=63838676&CFTOKEN=79617016

[36] Anka Gajentaan and Mark H. Overmars. 2012. On a class of O(n
2
) problems in

computational geometry. Comput. Geom. 45, 4 (2012), 140–152. https://doi.org/

10.1016/j.comgeo.2011.11.006

[37] Naveen Garg, Huzur Saran, and Vijay V. Vazirani. 1999. Finding Separator Cuts in

Planar Graphs within Twice the Optimal. SIAM J. Comput. 29, 1 (1999), 159–179.
https://doi.org/10.1137/S0097539794271692

[38] Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren

Weimann. 2018. Voronoi Diagrams on Planar Graphs, and Computing the Diam-

eter in Deterministic Õ(n5/3) Time. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018. 495–514.

[39] Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen.

2018. Better Tradeoffs for Exact Distance Oracles in Planar Graphs. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018. 515–529.

[40] Mohsen Ghaffari and Bernhard Haeupler. [n.d.]. Distributed Algorithms for

Planar Networks II: Low-Congestion Shortcuts, MST, and Min-Cut. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, 2016. https://doi.org/10.1137/1.9781611974331.ch16

[41] Mohsen Ghaffari and Bernhard Haeupler. 2016. Distributed Algorithms for Planar

Networks I: Planar Embedding. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016.
29–38.

[42] Mohsen Ghaffari andMerav Parter. 2017. Near-Optimal Distributed DFS in Planar

Graphs. In 31st International Symposium on Distributed Computing, DISC 2017,
October 16-20, 2017, Vienna, Austria. 21:1–21:16.

[43] John C Gower and Gavin JS Ross. 1969. Minimum spanning trees and single

linkage cluster analysis. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 18, 1 (1969), 54–64.

[44] Bernhard Haeupler, D. Ellis Hershkowitz, and David Wajc. 2018. Round- and

Message-Optimal Distributed Graph Algorithms. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC 2018, Egham, United
Kingdom, July 23-27, 2018. 119–128.

[45] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Low-Congestion

Shortcuts without Embedding. In Proceedings of the 2016 ACM Symposium on
Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016.
451–460.

[46] Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic. 2016. Near-Optimal Low-

Congestion Shortcuts on Bounded Parameter Graphs. In Distributed Computing
- 30th International Symposium, DISC 2016, Paris, France, September 27-29, 2016.
Proceedings. 158–172.

[47] Bernhard Haeupler, Jason Li, and Goran Zuzic. 2018. Minor Excluded Network

Families Admit Fast Distributed Algorithms. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, PODC 2018, Egham, United
Kingdom, July 23-27, 2018. 465–474.

[48] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol

Saranurak. 2015. Unifying and Strengthening Hardness for Dynamic Problems

via the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015. 21–30.

[49] Karthik C. S. and Pasin Manurangsi. 2019. On Closest Pair in Euclidean Metric:

Monochromatic is as Hard as Bichromatic. In 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California,
USA. 17:1–17:16.

[50] Philip N. Klein and Shay Mozes. [n.d.]. Optimization Algorithms for Planar

Graphs. Draft chapters available at http://planarity.org.

[51] Philip N. Klein, Shay Mozes, and Oren Weimann. 2010. Shortest paths in directed

planar graphs with negative lengths: A linear-spaceO (n log
2 n)-time algorithm.

ACMTrans. Algorithms 6, 2 (2010), 1–18. https://doi.org/10.1145/1721837.1721846

[52] Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. 2017. On the

Fine-Grained Complexity of One-Dimensional Dynamic Programming. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland. 21:1–21:15. https://doi.org/10.4230/LIPIcs.

ICALP.2017.21

[53] Eduardo S Laber, Wilfredo Bardales, and Ferdinando Cicalese. 2014. On

lower bounds for the maximum consecutive subsums problem and the (min,+)-

convolution. In 2014 IEEE International Symposium on Information Theory. IEEE,
1807–1811.

[54] Eugene L Lawler. 2001. Combinatorial optimization: networks and matroids.
Courier Corporation.

[55] Charles E Leiserson. 1980. Area-efficient graph layouts. In 21st Annual Symposium
on Foundations of Computer Science (sfcs 1980). IEEE, 270–281.

[56] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of
massive datasets. Cambridge university press.

[57] Jason Li. 2018. Distributed Treewidth Computation. CoRR abs/1805.10708 (2018).

arXiv:1805.10708 http://arxiv.org/abs/1805.10708

[58] Jason Li and Merav Parter. 2019. Planar Diameter via Metric Compression. In

STOC, to appear.
[59] Richard J Lipton and Robert Endre Tarjan. 1977. Applications of a planar separator

theorem. In 18th Annual Symposium on Foundations of Computer Science (sfcs
1977). IEEE, 162–170.

[60] Richard J Lipton and Robert Endre Tarjan. 1979. A separator theorem for planar

graphs. SIAM J. Appl. Math. 36, 2 (1979), 177–189.
[61] William B March, Parikshit Ram, and Alexander G Gray. 2010. Fast euclidean

minimum spanning tree: algorithm, analysis, and applications. In Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 603–612.

[62] Nimrod Megiddo. 1979. Combinatorial Optimization with Rational Objective

Functions. Math. Oper. Res. 4, 4 (1979), 414–424. https://doi.org/10.1287/moor.4.

4.414

[63] Fionn Murtagh. 1983. A survey of recent advances in hierarchical clustering

algorithms. Comput. J. 26, 4 (1983), 354–359.
[64] Fionn Murtagh. 1992. Comments on ’Parallel Algorithms for Hierarchical Clus-

tering and Cluster Validity’. IEEE Trans. Pattern Anal. Mach. Intell. 14, 10 (1992),
1056–1057. https://doi.org/10.1109/34.159908

[65] Danupon Nanongkai, Atish Das Sarma, and Gopal Pandurangan. [n.d.]. A tight

unconditional lower bound on distributed randomwalk computation. In Proceed-
ings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC, 2011. https://doi.org/10.1145/1993806.1993853

[66] J. K. Park and C. A. Phillips. 1993. Finding minimum-quotient cuts in planar

graphs. In STOC. 766–775.
[67] Viresh Patel. 2010. Determining edge expansion and other connectivity measures

of graphs of bounded genus. In European Symposium on Algorithms. Springer,
561–572.

[68] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[69] David Peleg and Vitaly Rubinovich. [n.d.]. A Near-Tight Lower Bound on the

Time Complexity of Distributed MST Construction. In 40th Annual Symposium
on Foundations of Computer Science, FOCS, 1999. https://doi.org/10.1109/SFFCS.

1999.814597

[70] Satish Rao. 1987. Finding Near Optimal Separators in Planar Graphs. In 28th
Annual Symposium on Foundations of Computer Science. 225–237. https://doi.org/

10.1109/SFCS.1987.26

[71] Satish Rao. 1992. Faster Algorithms for Finding Small Edge Cuts in Planar Graphs

(Extended Abstract). In Proceedings of the 24th Annual ACM Symposium on Theory
of Computing. 229–240. https://doi.org/10.1145/129712.129735

[72] Alexander A. Razborov. 1992. On the Distributional Complexity of Disjointness.

Theor. Comput. Sci. 106, 2 (1992). https://doi.org/10.1016/0304-3975(92)90260-M

[73] Liam Roditty and Virginia Vassilevska Williams. 2013. Fast approximation algo-

rithms for the diameter and radius of sparse graphs. In Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013. 515–524.

[74] Aaron Schild and Christian Sommer. 2015. On Balanced Separators in Road

Networks. In Experimental Algorithms - 14th International Symposium, SEA 2015,
Paris, France, June 29 - July 1, 2015, Proceedings. 286–297. https://doi.org/10.1007/

978-3-319-20086-6_22

[75] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Vol. 39. Cambridge University Press.

[76] Ryan Williams. 2005. A new algorithm for optimal 2-constraint satisfaction and

its implications. Theor. Comput. Sci. 348, 2-3 (2005), 357–365. https://doi.org/10.

1016/j.tcs.2005.09.023

[77] Virginia Vassilevska Williams. 2018. On some fine-grained questions in algo-

rithms and complexity. In Proceedings of the ICM.

[78] Virginia VassilevskaWilliams and R. RyanWilliams. 2018. Subcubic Equivalences

Between Path, Matrix, and Triangle Problems. J. ACM 65, 5 (2018), 27:1–27:38.

https://doi.org/10.1145/3186893

1009

https://doi.org/10.1145/2897518.2897527
https://doi.org/10.1137/S0097539704441058
https://doi.org/10.1145/2746539.2746564
http://portal.acm.org/citation.cfm?id=2095207&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095207&CFID=63838676&CFTOKEN=79617016
https://doi.org/10.1016/j.comgeo.2011.11.006
https://doi.org/10.1016/j.comgeo.2011.11.006
https://doi.org/10.1137/S0097539794271692
https://doi.org/10.1137/1.9781611974331.ch16
https://doi.org/10.1145/1721837.1721846
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
https://doi.org/10.4230/LIPIcs.ICALP.2017.21
http://arxiv.org/abs/1805.10708
http://arxiv.org/abs/1805.10708
https://doi.org/10.1287/moor.4.4.414
https://doi.org/10.1287/moor.4.4.414
https://doi.org/10.1109/34.159908
https://doi.org/10.1145/1993806.1993853
https://doi.org/10.1109/SFFCS.1999.814597
https://doi.org/10.1109/SFFCS.1999.814597
https://doi.org/10.1109/SFCS.1987.26
https://doi.org/10.1109/SFCS.1987.26
https://doi.org/10.1145/129712.129735
https://doi.org/10.1016/0304-3975(92)90260-M
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1007/978-3-319-20086-6_22
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1145/3186893

	Abstract
	1 Introduction
	2 Sparsest Cut, Minimum Quotient Cut and Minimum Bisection
	2.1 Proof of Theorem 3: Lower Bounds

	3 Lower Bound for Diameter in CONGEST
	4 Lower Bounds for Closest Pair of Sets and Hierarchical Clustering
	4.1 Preliminaries for the Reductions
	4.2 Reduction with Max-Distance and Complete Linkage
	4.3 Reduction with Sum-Distance and Average Linkage

	5 Algorithms for Sparsest Cut and Minimum Quotient Cut
	5.1 Proof of Theorem 6: An O(1)-Approximation for Minimum Quotient Cut in Near-Linear Time
	5.2 Proof of Theorem 4: An exact algorithm for Sparsest Cut with running time O(n3/2 W)

	References

