
Priority-Based PCIe Scheduling for
Multi-Tenant Multi-GPU Systems

Chen Li , Yifan Sun , Lingling Jin, Lingjie Xu,
Zheng Cao , Pengfei Fan, David Kaeli , Sheng Ma ,

Yang Guo, and Jun Yang

Abstract—Multi-GPU systems are widely used in data centers to provide

significant speedups to compute-intensive workloads such as deep neural network

training. However, limited PCIe bandwidth between the CPU and multiple GPUs

becomes a major performance bottleneck. We observe that relying on a traditional

Round-Robin-based PCIe scheduling policy can result in severe bandwidth

competition and stall the execution of multiple GPUs. In this article, we propose a

priority-based scheduling policy which aims to overlap the data transfers and GPU

execution for different applications to alleviate this bandwidth contention. We also

propose a dynamic priority policy for semi-QoS management that can help

applications to meet QoS requirements and improve overall multi-GPU system

throughput. Experimental results show that the system throughput is improved by

7.6 percent on average using our priority-based PCIe scheduling scheme as

compared with a Round-Robin-based PCIe scheduler. Leveraging semi-QoS

management can help to meet defined QoS goals, while preserving application

throughput.

Index Terms—Multi-GPU, multi-tenant, PCIe scheduling
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1 INTRODUCTION

RECENTLY, as GPUs have quickly become standard computing
devices in datacenter systems, cloud computing vendors are start-
ing to deploy multi-GPU systems on the cloud and deliver GPUs
“as a service” [1], [2]. In cloud-based multi-GPU systems, a typical
configuration is to allocate each user (tenant) with a certain number
of dedicated GPUs, while virtualizing the CPU and the PCIe con-
nection, so they can be shared by multiple users [3], [4], [5].

Typical GPU workloads follow the “copy-then-execute” model.
The execution on the GPU side cannot start until data is fully cop-
ied from the CPU to the GPU. As shown in Fig. 1, the PCIe band-
width between a CPU and a GPU remains constant moving a
single GPU system to a multi-GPU architecture, leading to serious
bandwidth competition among multiple GPUs when communicat-
ing with the CPU, which further delays the start of GPU execution.

By default, the communication traffic from the CPU to the
attached GPUs is scheduled in a Round-Robin (RR) manner. RR
scheduling attempts to guarantee fairness among all GPUs, but
introduce the delay of keymemory packets and impact the through-
put of the corresponding GPU execution. Observed from produc-
tion multi-GPU systems, this bandwidth competition causes severe
performance degradation, especially for memory-bound work-
loads. Moreover, multi-tenant system users cannot manage their
own data movement as each user is treated agnostically. Therefore,
it is necessary to schedule the PCIe traffic associated with different
GPUs to improve the overall system throughput.

In this paper, we exploit a priority-based PCIe scheduling
policy and describe semi-QoS application management on CPU-
GPU communication to improve multi-GPU throughput. Mem-
ory transfer commands with smaller data sizes are prioritized at
runtime to achieve higher throughput. If a task has a specified
QoS goal, but the goal is estimated that it will not be met, the
task’s priority level is escalated to meet the requirement. Experi-
mental results show that system throughput is improved by 7.6
percent on average with priority-based PCIe scheduling com-
pared with the Round-Robin-based PCIe scheduling. The semi-
QoS management can also meet defined QoS goals, achieving a
5.3 percent performance improvement as compared with RR
PCIe scheduling.

2 MOTIVATION

Current commercial multi-GPU systems consist of four to eight
GPUs interconnected with a PCIe or NVLink fabric. Traditionally,
four GPUs share a host CPU and a PCIe bus. Every two GPUs are
connected to a PCIe switch which also connects to the root complex
of the PCIe bus, as shown in Fig. 2. Constrained by the inter-GPU
or CPU-GPU communication bandwidth, a multi-GPU system can-
not scale performance linearly as the increasing number of GPUs.
The low bandwidth and high latency associated with the current
inter-GPU/CPU-GPU fabric can be a bottleneck for the system
performance.

Fig. 3 shows the performance degradation due to the PCIe band-
width contention between CPUs and GPUs. We run two deep neu-
ral network models ResNet50 [6] and DeepInterest [6] and multiple
instances of each (tasks), totaling eight tasks in all possible combina-
tions. Each task executes either the training of ResNet50 orDeepInter-
est on one GPU. Different tasks are bound to different CPU cores to
avoid interference. We have two key observations from Fig. 3. First,
since tasks are independent of each other, and we intentionally allo-
cate them on different CPU cores and GPUs, so most of the slow-
down will be due to contention of CPU-GPU PCIe bandwidth,
resulting in performance degradation of both ResNet50 and DeepIn-
terest training, as each execution needs to wait for the data transfer.
Second, workloads have different sensitivities to PCIe contention.
DeepInterest is more sensitive, while ResNet50 is not. The slowdown
of ResNet50 is around 5 percent over an isolated execution, even
when seven instances are executing concurrently, whileDeepInterest
sees more than a 20 percent degradation with one instance compet-
ing with seven ResNet50 instances. On average, we observe a 18.1
percent slowdown forDeepInterest. We conclude that the contention
on the PCIe connection significantly degrades the performance of
multi-tenant multi-GPU systems, especially for bandwidth-sensi-
tive workloads. Delivering an improved PCIe scheduling policy is
mandated to reduce such contention.

Existing PCIe connections in multi-GPU systems adopt a RR
scheduling policy. For each data transfer request, the DMA engine
breaks down data transfers into smaller packets and buffers them
in the network interface. The PCIe arbiter selects a packet from a
different application to transfer during each time slot. Assuming
two applications have a similar amount of data to transfer to their
GPU, an RR-based PCIe connection would complete the data trans-
fer in approximately the same time, which is about twice the time
of a single data transfer without contention. Consequently, the
GPUs start executing kernels at approximately the same time, leav-
ing their computing pipelines idle during the data transfer.
Instead, if we only transfer the data from one application first, the
GPU can start executing the kernel for this application earlier. As
the GPU is executing the application, the PCIe connection can trans-
fer the data for the other applications, overlapping transfers and
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execution. Ideally, this approach can effectively hide the data-trans-
fer latency across multiple GPUs and improve resource utilization
over the execution ofmultiple iterations.

Previous work has focused on software and hardware mecha-
nisms to address Non-Uniform Memory Access (NUMA) bottle-
necks on GPUs. Arunkumar et al. [7] proposed MCM-GPU, which
integrates multiple GPU modules on a package to provide high
bandwidth for inter-GPU traffic. Milic et al. [8] described links that
are dynamically and adaptively reconfigurable, in order to optimize
the inter-socket bandwidth. They also provide caching of remote
data in L2 cache to reduce the effect of NUMA bottleneck. Young
et al. [9] proposed CARVE that caches remote data in GPUmemory
to improve the NUMA performance of multi-GPU systems. All this
prior work is focused on the bottleneck of inter-GPU communica-
tion for single applications. To our knowledge, this is the first paper
to address the multi-tenant execution problem through better PCIe
scheduling, as commonly seen in cloud infrastructures.

3 DESIGN

3.1 Baseline Round-Robin Scheduling Design

The baseline multi-GPU system in this paper consists of four GPUs
connected to one host CPU, which is among the most widely
adopted architecture in commercial multi-GPU servers. The data
transfer between CPU and GPU is managed by the DMA engine. A
memory copy command fromCPU to GPU can be divided intomul-
tiple data packets. Each packet on the PCIe link is labeled with the
destination GPU (IDD) and the packet type (IDT ). To transfer data
from the CPU to GPUs via the DMA engine and PCIe switches,
packets are first mapped to a particular virtual channel (VC) accord-
ing to its traffic class (TC) as shown in Fig. 4. TC can be calculated
according to

TC ¼ NTIDD þ IDT ; (1)

where NT is the total number of packet types. TCs are directly
mapped to different VCs by

VC ¼ TCmodNVC: (2)

The RR policy is set as the VC arbitration policy in the PCIe switch.
All VCs have the same priority so that packets from different VCs
are fetched and handled one-by-one in the RR order. Although the
TC could be defined by users, we assign the TC for each memory

transfer command using the driver, in order to support transparent
multi-tenant management.

In this case, if there are packets in VCs that are queued, the arbi-
ter forwards one following the VC arbitration policy to the routing
logic in each cycle. The routing logic then directs packets to their
destination GPUs. Since packets being sent to different GPUs are
assigned different VCs, each VC is scheduled in RR. Fairness across
multiple GPU traffic streams can be achieved. However, naive
scheduling will lead to contention on the PCIe interconnect, result-
ing in long GPU stalls.

3.2 Priority-Based Scheduling for Throughput

To mitigate bandwidth contention, we propose a dynamic priority-
based PCIe scheduling policy. The key idea is to hide the memory
transfer latency by overlapping it with kernel execution of different
GPUs. To enable this capability, we increase the priority of some
memory transfers. These memory transfers can be completed with-
out interruption, allowing the associatedGPUkernel can start execut-
ing as soon as the transfer is complete. Low-priority data transfers
can be performed while higher-priority tasks are already in execu-
tion. As data-center workloads often exhibit repeated “copy-then-exe-
cute” patterns, our policy can effectively reduce data transfer
interference among different tenants.

We develop a Throughput-Oriented Scheduler (TOS) in the
driver, as shown on the left side of Fig. 4. TOS uses Strict Priorities
for VC arbitration, where VC7 has the highest priority and VC0 has
the lowest priority. The arbiter always handles requests from high-
est priority VCs first.

We classify packets into two types (NT ¼ 2): 1) request packets
(IDT ¼ 0, read packets and write packets) and 2) response packets
(IDT ¼ 1, read response packets). TOS always gives response pack-
ets higher priority. By granting responses higher priority, data
transfer transactions can be completed sooner, enabling programs
to start running on the GPU sooner.

Priorities are assigned to the packets of different tasks by using
TC/VC remapping. Priorities depend on the size of the remaining
data transfer associated with each memory transfer request issued
by different tasks. Inspired by the idea of “small flow first” in

Fig. 1. PCIe bandwidth bottleneck in multi-GPU systems.

Fig. 2. Multi-GPU topology.

Fig. 3. Slowdown due to PCIe bandwidth contention. (Collected from a multi-GPU
system with 8 NVIDIA Volta GPUs.)

Fig. 4. High-level overview of a PCIe switch (The process of a packet sending from
the CPU side to GPU side).
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network, tasks with fewer data to be transferred are granted higher
priority, which should reduce GPU stall time and achieve higher
execution throughput. A remaining data-transfer size list is man-
aged in the TOS to keep track of the remaining data for each task.
When a new memory transfer command is received, the TOS ranks
the priorities by sorting the remaining data sizes for each task and
updating the TC/VC remapping. For tasks with lower priorities, it
is possible that starvation may happen in some extreme cases.
Thus, we set a threshold x empirically for each VC. If the head
request in the VC is blocked for x cycles, it will be handled immedi-
ately to avoid starvation.

Compared with RR, TOS reduces the bandwidth contention for
all users under multi-tenancy. However, if a task with a strict QoS
requirement is given low priority by the PCIe scheduler, the QoS
goal will be violated due to excessive wait time. In Section 3.3, we
propose a priority switching policy to achieve the QoS goal for
those tasks with lower priority.

3.3 Priority Switching for Semi-QoS Management

Priority-based scheduling will increase the PCIe and GPU utiliza-
tion, and hence improve the throughput of the entire multi-tenant
GPU system. However, in many domains, some applications may
have QoS requirements (e.g., the application should complete
within a deadline). When such a workload is hosted in a multi-GPU
architecture, priority-based PCIe scheduling alone is insufficient
since the QoS taskmay needmore resources than other tasks.

For QoS tasks, the goal of scheduling is to achieve the QoS
target. Once the QoS target can be met, the scheduler will then
attempt to maximize the global throughput. In this work, we
define the latency of each workload as the QoS target. The true
QoS requirement will account for end-to-end latency, which
includes the GPU execution time. We assume the OS will be
able to define a set of partial QoS goals for various resources.
Our scheduling policy will provide semi-QoS management as
part of the QoS management deployed in the OS. In this work,
our partial QoS goal is thus the memory transfer time that is
spent on the PCIe bus.

We introduce a QoS-Oriented Scheduler (QoOS), as shown on
the right side of Fig. 4 to implement semi-QoS management. To
predict whether the memory transfer can complete in time, QoOS
keeps track of the transfer time of each command for the QoS tasks
associated with each GPU on the PCIe interconnect. As the

remaining data size can be collected by the TOS, and the PCIe
bandwidth is known, we can predict the time to send the remain-
ing data for this command. We compute the highest priority using
Equation (3)

Ttrans ¼ BR=BW; (3)

where Ttrans is the time left to transfer the data, BR is the remaining
number of byte to transfer, and BW is the PCIe bandwidth.

Initially, priorities are ranked by data sizes of different tasks, in
order to achieve high throughput for the entire system. For QoS
tasks, we set a deadline for each iteration of the task (recall that we
run multiple iterations of the same workload for testing purposes)
to approximate the QoS requirements in a real scenario.

Once QoOS predicts the Ttrans is too long and will miss the dead-
line, the priority of the current task is raised to the highest level to
try tomeet the QoS goal and updating the TC/VC remapping.

4 PRELIMINARY EVALUATION

We extend MGPUSim [13] to evaluate our priority-based scheduling
Scheme. The modeled multi-GPU system consists of a CPU with four
AMD R9Nano [14] GPUs. In this work, we run two kinds of tasks,
launched by two users to model multi-tenant sharing. For experimen-
tal purposes, a task with a larger data size is assumed to be the QoS
task, while the task with smaller data size is assumed as a non-QoS
task. The deadline of the memory transfer time is set as 3 times the
memory transfer time without bandwidth contention. The 8 work-
loads we used to evaluate the proposed solution are from the
AMDAPPSDK [10], Hetero-Mark suite [11] and clCaffe [12] suites, as
shown in Table 1. We select the problem size to find a good trade-off
between the simulation time and common use-cases of applications.

To explore the concurrent execution of tasks, we generate 28
(8*7/2) combinations in total. Each task is repeatedly launched on
a GPU until the total measured time exceeds 0.3 seconds. To evalu-
ate system throughput, we use the total number of iterations exe-
cuted during 0.3 seconds, normalized to the total number of
iterations running on a single GPU system, as our figure of merit.
The number of total iterations for all workloads is 81.75 on average,
thus it is large enough to avoid the effect of the job arrival skew.

Four PCIe scheduling policies are implemented, including (RR),
Priority scheduling with large data size first (Priority_L), Priority
scheduling with small data size first (Priority_S) and QoS support
of Priority scheduling with small data size first (QoS).

Fig. 5 shows the total multi-GPU throughput for four PCIe
scheduling policies, normalized to RR.Wemake three observations.
First, Priority_S achieves the highest performance and outperforms
RR by 7.6 percent on average. Second, giving high priority to mem-
ory commands that possess a smaller data size is better than giving
high priority to memory commands with larger data sizes, as the
idle time of the GPUs is reduced. Third, although QoS cannot per-
form as well as Priority_S due to QoS requirements, it still outper-
formsRR by 5.3 percent on average.

Fig. 6 shows the performance of two concurrent tasks. Task 1 has
a smaller data size, while task 2 has a larger data size. Both tasks in

TABLE 1
Benchmarks

APP ID Abbr. Workload Size Per Iteration (KB)

1 SC Simple Convolution [10] 328.4
2 MM Matrix Multiplication [10] 128
3 MT Matrix Transpose [10] 1024
4 AES AES-256 Encryption [11] 65.2
5 FIR FIR Filter [11] 256.1
6 KS KMeans Clustering [11] 131.1
7 MP Maxpooling [12] 64
8 RL Relu [13] 32

Fig. 5. Total throughput of the tested multi-GPU system.
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Priority_L perform worse than in RR due to long stall times, waiting
for large datasets to complete the transfer. In Priority_S, although
task 1 can outperform RR by 14.2 percent, the performance of task 2
is decreased by 1 percent due to the low priority of this task. In pri-
ority scheduling policy With QoS support, though there is no com-
plete fairness, both tasks perform better than RR. Moreover, the QoS
achievement rate can be higher.

5 CONCLUSION

In this paper, we propose a runtime-defined priority-based PCIe
scheduling policy to improve system throughput. Experimental
results show that system throughput can be improved by 7.6 percent
on average with the priority-based PCIe scheduling as compared
with the Round-Robin-based PCIe scheduling. In future work, we
will focus on QoS management in multiple nodes with NIC and
NFS/disk access.
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