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Abstract—This article presents an energy-efficient electrocor-
ticography (ECoG) array architecture for fully-implantable brain
machine interface systems. A novel dual-mode analog signal pro-
cessing method is introduced that extracts neural features from
high-γ band (80–160 Hz) at the early stages of signal acquisition.
Initially, brain activity across the full-spectrum is momentarily
observed to compute the feature weights in the digital back-end
during full-band mode operation. Subsequently, these weights are
fed back to the front-end and the system reverts to base-band mode
to perform feature extraction. This approach utilizes a distinct
optimized signal pathway based on power envelope extraction,
resulting in 1.72× power reduction in the analog blocks and up
to 50× potential power savings for digitization and processing (im-
plemented off-chip in this article). A prototype incorporating a 32-
channel ultra-low power signal acquisition front-end is fabricated
in 180 nm CMOS process with 0.8 V supply. This chip consumes
1.05μW (0.205μW for feature extraction only) power and occupies
0.245 mm2 die area per channel. The chip measurement shows bet-
ter than 76.5-dB common-mode rejection ratio (CMRR), 4.09 noise
efficiency factor (NEF), and 10.04 power efficiency factor (PEF). In-
vivo human tests have been carried out with electroencephalogra-
phy and ECoG signals to validate the performance and dual-mode
operation in comparison to commercial acquisition systems.

Index Terms—Analog signal processing, brain signal acquisition,
brain-machine interfaces, electrocorticography (ECoG), feature
extraction, high-density array, ultra-low power.

I. INTRODUCTION

A PPROXIMATELY 330,000 people are living with chronic
spinal cord injury (SCI) in the US alone, and currently
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Fig. 1. Existing architectures for multi-channel feature extraction in brain-
machine interfaces based on (a) analog and (b) digital signal processing.

there are no biomedical approaches capable of restoring motor
function after SCI. Recent advances in neurophysiology and
nanoscale electronics have made it possible to realize fully
implantable brain-machine interfaces (BMIs) for medical appli-
cations. Large-scale miniaturized ECoG arrays are considered to
be a promising signal platform for fully implantable BMIs due
to their signal stability, high signal-to-noise ratio (SNR) and
spatial resolution [1], [2]. However, these favorable attributes
often come at the expense of excessive power consumption.
Therefore, energy efficient BMI architectures inspired by prior
studies of human motor control are of high interest to make such
invasive BMIs a clinical reality.

It is perceived that the primary motor cortex, M1, encodes
high-level kinematic parameters for upper and lower extremity
movements (i.e., duration and speed), and interacts with subcor-
tical/spinal networks that execute low-level motor control (i.e.,
muscle activation or movement trajectories) [3]–[7]. High spa-
tiotemporal resolution ECoG recordings from M1 contain rich
movement information related to upper and lower extremities in
γ-band [8]–[11]. In particular, high-γ (80-160 Hz) band exhibits
consistent changes in power levels during movement and idle
states [3], and thus these patterns can be utilized as the central
neural features to enable practical BMIs for prosthetic control
in SCI patients.

Shown in Figs. 1(a)–(b) are general block diagrams of the
analog- and digital-based multi-channel architectures, each
comprised of an N-channel front-end, a multiplexer, and a
mixed-signal and digital back-end.

The analog-based architecture utilizes analog signal process-
ing (ASP) to form an M-element neural-feature vector based
on spectral decomposition [12]–[14]. Although this approach
reduces the signal bandwidth and lowers the sampling rate (fs) of
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the mixed-signal and digital back-ends, it has several limitations
at the circuit- and architecture-level. For example, an analog
neural spectral-processing integrated circuit is implemented
in [12] for M = 4 that amplifies and processes neuronal activity
with variable bandwidth and power filtering characteristics. The
signal chain includes a power-hungry tunable heterodyning am-
plifier based on a dual-nested chopper architecture, which suffers
from a limited input impedance and requires an anti-alias filter.
An analog energy extractor for local field potential is introduced
in [13] for M = 6, which allows for a compact design and
low power consumption. However, this approach offers limited
degree of freedom to control the selectivity and sensitivity of the
transfer characteristics of the filters used as part of the energy
extractor. [14] reports a single-channel neural recording proto-
type, capable of extracting sub-banded energy across four (M =
4) different frequency bands. This architecture utilizes a power-
hungry variable gain amplifier to satisfy the dynamic range and
settling requirements of discrete-time signal conditioning and
digitization. To avoid anti-aliasing in the sampled-data system,
it allows for limited tuning of each sub-band parameters which
are controlled by the clock frequency. Moreover, a complex
switching matrix can be employed to share the bulky energy
extractors in multi-channel acquisition, which is not amenable
to large-scale neural recording.

The digital-based multi-channel architecture implements the
neural feature extraction entirely in the digital back-end [15], as
shown in Fig. 1(b). This approach requires higher fs compared
to the analog-based architecture due to a significantly larger
bandwidth of raw ECoG signal, resulting in higher dynamic
power dissipation. Although power and clock gating techniques
can be applied to reduce the power consumption, it is still
advantageous to avoid the data-processing power bottleneck by
limiting the signal bandwidth before multiplexing/digitization.

Inspired by our work in [3], this paper presents a scalable
dual-mode array architecture which exploits ultra-low power
(ULP) ASP to extract relevant neural features of ECoG signals
to enable prosthetic control in implantable BMIs. The rest of
this paper is organized as follows. Section II discusses the
system-level specifications and implications of neural feature
extraction. Section III presents the proposed dual-mode array
architecture. Section IV describes the circuit design and analysis.
Section V presents experimental results including electrical and
human neurological measurements. Section VI concludes the
paper.

II. SYSTEM-LEVEL CONSIDERATIONS AND IMPLICATIONS

In this section, we discuss important challenges in state-
of-the-art ECoG-based implantable BMIs and investigate the
system-level specifications and implications.

First, the input-referred integrated RMS noise from the front-
end amplifier should fall below the cortical background noise
(∼5–10 μV) to allow for high-fidelity signal acquisition [16].
Second, to reduce the power-line 50/60-Hz interference, the
common-mode rejection ratio (CMRR) of the amplifier is
desired to be larger than 70 dB [17]. Third, for multi-channel
acquisition with a common-reference electrode that has com-
parable impedance to channel electrode’s, the input impedance

Fig. 2. Example of the experimental setup and signal processing steps used
for recording of motor cortical activity with ECoG grid during a causal walking
task. Data from knee gyroscope, ECoG data in its raw, γ-band filtered and power
envelopes (Pγ ) are shown. A close-up of Pγ and knee gyro signals is illustrated
for comparison during individual gait cycles [3]. Reprinted with permission from
Oxford University Press.

must be large enough (>>1 MΩ) to avoid any signal attenuation
and CMRR degradation. Finally, to satisfy the thermal
dissipation requirement in the vicinity of the brain, it is crucial
to reduce the overall power consumption of the multi-channel
neural recording to keep the temperature increase below 1◦ C.

An effective approach to extend the longevity in battery-
powered implantable BMIs is to exploit the unique character-
istics of ECoG signal. It has been observed that power spec-
tral density of ECoG signals attenuates with frequency [18],
and therefore, it spans a wide dynamic range (∼48 dB across
2–200 Hz). While spectral equalization helps reduce the dy-
namic range, relax the resolution requirement and achieve
power-saving in the front-end and mixed-signal blocks, there is
still a major bottleneck due to the mandated compute-intensive
and power-hungry statistical data processing in the digital back-
end. [3] studied the important signal characteristics of raw
ECoG and power envelopes during walk and idle states. Fig. 2
shows raw ECoG, γ-band, and its power envelopes (Pγ). As
can be seen, changes in Pγ exhibit distinguishable amplitude-
modulated voltage variations between walk and idle states which
occur in time scale of seconds, implying that both sampling
rate and resolution requirements can be significantly relaxed for
such signals compared to raw ECoG. These attributes suggest
that extracting neural features early in the signal chain using
a distinct signal pathway is highly beneficial to minimize the
system power dissipation, leading to an energy-efficient neural
recording architecture.

III. PROPOSED DUAL-MODE ARRAY ARCHITECTURE

Given that power envelopes of γ-band can be used to decode
movement intentions [3], it is sensible to use a single enve-
lope detector in the analog domain to produce low-bandwidth
features for clustering and classification in the digital back-
end. However, based on prior work [8]–[11], a specific fre-
quency range within γ-band needs to be identified by human
training and data collection/processing of raw ECoG for de-
coding. Therefore, the front-end circuitry should be capable of
acquiring raw ECoG signal and extracting the power envelopes
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Fig. 3. Proposed dual-mode array architecture: (a) Overall system diagram
(b) dual-mode front-end module.

within this identified frequency range. This notion calls for
a dual-mode approach to neural recording with two distinct
regimes of operation: (1) full-band (FB) mode for raw ECoG
signal acquisition with moderate-resolution (8–10 bits) and
high sampling rate fs,FB ( >13 kS/s), and (2) base-band (BB)
mode for power envelope extraction with low-resolution (3–4
bits) and significantly reduced sampling rate fs,BB (>260 S/s).
Initially, brain activity across the full-spectrum is momentarily
observed during FB mode operation to compute the feature
weights in the digital back-end. Subsequently, these weights
are fed back to the front-end and the system reverts to BB
mode to perform feature extraction. While an implantable high-
density ECoG-based BMI needs the FB data for training, cali-
bration and validation purposes, it will primarily operate in BB
mode for prosthetic control which accounts for majority of the
time.

Fig. 3(a) shows the proposed dual-mode array architec-
ture. The 32-channel signal acquisition system consists of a
32-element dual-mode front-end (DMFE) array, FB/BB time-
multiplexers (MUXs), a programmable-gain instrumentation
amplifier (InAMP), and FB/BB output buffers (Buffs), a serial
peripheral interface (SPI) and a digital circuitry (DIG). The
system communicates with the back-end (i.e., DSP or host PC)
via SPI, which provides access to internal registers to update
feature weights, and select operation mode (FB/BB) or acquisi-
tion method (either channel-specific or multiplexed). The latter
option is employed to acquire signals from one specific channel
or all channels during each operation mode.

To study the power-saving advantage of the proposed ar-
chitecture in Fig. 3, a simple power analysis is presented. Bi-
ased to operate in subthreshold region, each DMFE includes
a front-end amplifier (AMP) and neural pre-processing (NP 2)
module with power consumption of PU and PNP 2 , respectively.

Following the FB MUX, m stages of post-multiplexing am-
plification/buffering are employed with N-times higher band-
width compared to the front-end amplifier (N denotes the
number of channels). Assuming unity-gain bandwidth product
varies linearly with bias current in weak-inversion, each post-
multiplexing gain stage approximately consumes N · PU (to the
first-order). Assuming a bandwidth reduction factor of η for
the BB operation mode compared to the FB counterpart, the
power consumption of the BB output buffer is approximately
N · (ηPU ). Specifically, neural signals in FB mode and extracted
features in BB mode occupy a bandwidth of ∼200 Hz and
∼4 Hz per channel, respectively, resulting in η ≈ 0.02. More-
over, the total dynamic power dissipation of MUX, ADC and
DSP is represented by PD for FB mode and ηPD for BB mode.
While FB operation requires multiplexing, post-multiplexing
amplification/buffering, digitization and post-processing with
an excessive bandwidth and power consumption, BB operation
achieves significant power-saving in the respective blocks with
minimum power overhead, PNP 2 , in DMFE. To deduce the
power-saving advantage, the ratio of system powers Psys,FB

and Psys,BB in FB and BB modes is calculated, as follows:

Psys,FB

Psys,BB
≈ N · PU (1 +m) + PD

N · [PU (1 + η) + PNP 2 ] + η · PD
(1)

Given fs,BB = ηfs,FB , BB MUX consumes proportionally less
dynamic power compared to FB MUX. Furthermore, the power
consumption of the BB ADC is reduced compared to that of the
FB ADC due to decreased sampling rate and resolution [19].
It is expected that at low-SNR (<5-bit resolution), component
matching and/or minimum realizable capacitance will impose a
limit on power dissipation. However, low-bandwidth processing
still continues to improve the overall system power consumption.
This notion proves to be important for DSP in BB mode as
dynamic powers associated with processing (∝ fk

s,BB where
k denotes the algorithm complexity) and memory accesses
(∝ fs,BB) are reduced significantly [20]. For a quantitative com-
parison, ULP ADCs and DSP from literature are used to evaluate
Eq. (1) for N = 32 and m = 2. Reported ULP ADCs consume as
small as 2.7 nW for 1kS/s with 6-bit resolution (BB ADC) and
97nW for 40kS/s with 10-bit resolution (FB ADC) [21]. On the
other hand, commercially available DSPs (e.g., C5517 by Texas
Instruments) consume milliwatt-level power. Since the desired
input-referred noise typically requires PU to be greater than a
few μW and PNP 2 introduces a small overhead, the second
terms in the numerator and denominator of (1) will dominate
Psys,FB andPsys,BB , and the power-saving advantage will thus
be significant (∼ 1

η = 50). It is noteworthy that an activity-based
mechanism realized in the digital back-end will allow for further
power-cycling of BB mode during extended idling periods (i.e.,
night-time sleep).

To allow differential recording of neural signals with re-
spect to a common-reference electrode from ECoG grid, each
AMP employs a fully-differential topology. Considering that
the differential input impedance of an AMP is approximately
equal to 295 MΩ at 60 Hz (Cin = 18 pF) and assuming 1 kΩ
electrode impedance with N= 32, the input interface CMRR of a
common-reference scheme with similar recording and reference
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Fig. 4. Neural pre-processing module including (a) double-tuned 4th-order filter, (b) multiplier-based envelope detector, and (c) Gm bias tuning and current
division circuitry. (d) Block diagram model of Gilbert cell for noise analysis. (e) Voltage waveforms from each stage of neural pre-processing.

electrode impedance reaches 79.5 dB. However, the overall
CMRR is still limited by the AMP to 76.5 dB as reported in
Section V-A. Two switchable pathways are incorporated for
dual-mode operation. In FB mode, the amplified signals are mul-
tiplexed using the FB MUX with fast reset switches to mitigate
the channel ghosting and eliminate large artifact residues (Sec-
tion IV-B). The multiplexed output is further amplified, digitized
by the FB ADC (off-chip in this work), and processed by the
external digital back-end. In BB mode, NP 2 module performs
feature extraction on amplified neural signals based on the appro-
priate feature weights computed in the back-end (cf. Fig. 3(a) and
(b)). Extracted power envelopes are then multiplexed and digi-
tized by an off-chip BB ADC prior to digital processing. Shaded
in Fig. 3(b), NP 2 module carries out two main operations:
band-pass filtering (BPF) and envelope detection using power
extraction and averaging. A double-tuned fourth-order biquad
realizes the BPF to capture high-γ-band modulations. The center
frequency fc and bandwidth fB (hence, the quality factor Q) of
the BPF are adjusted via AF , AL and AG parameters to achieve
better selectivity, reduced pass-band ripple and high out-of-band
attenuation (Section IV-A). A multiplier-based square-law cir-
cuit performs analog multiplication to obtain signal power and
its conversion gain, Gc, is optimized with respect to the input
level to minimize signal-dependent noise folding and voltage
offsets (Section IV-C). Lastly, a low-pass filter (LPF) with a
corner frequency of fm extracts power envelopes that modulate
high-γ-band signals. To match the characteristic time scale of
ECoG signals during movements, fm is adjusted via Gm,LPF .

IV. CIRCUIT DESIGN AND ANALYSIS

A. Dual-Mode Front-End Design

Fig. 3(b) shows the block diagram of the proposed DMFE.
Based on our earlier work in [17], the AMP is realized by an op-
erational transconductance amplifier (OTA) within a capacitive

feedback loop, which uses a differential stage with regenerative
load to boost the open-loop gain. The mid-band gain is set to
40 dB and the frequency response exhibits a high-pass corner
of ∼2 Hz and a low-pass corner of ∼200 Hz. All active and
passive components within the AMP are adequately sized to
minimize mismatch and process variations to attain high CMRR.
To improve the common-mode output resistance of tail current
source in the AMP (see Amplifier II in [17]), and hence the
CMRR, supply voltage in this design is increased to 0.8 V to
allow a higher drain-source voltage for a given bias current.

Figs. 4(a)–(b) depicts detailed realization of NP 2 module.
The fourth-order Butterworth BPF is realized by cascading two
biquad Gm − C filters and an interstage LPF buffer with high
corner frequency to avoid loading effect of the second biquad.
The filter characteristics of each biquad section with center
frequency, f0,k, bandwidth, BWk, and mid-band gain, Hmid,k

for k = 1, 2, are derived as follows:

f0,k =
1√

AG,kAL,k(AF,k + 1 +
AF,k

AL,k
)

GmF,k

2πCF
(2)

BWk =
AL,k +AG,k

AG,kAL,k(AF,k + 1 +
AF,k

AL,k
)

GmF,k

2πCF
(3)

Hmid,k ≈ AF,k

1 +
AL,k

AG,k

(4)

where AF,k = Ck/CF , AL,k = 2CL,k/CF and AG,k =
GmF,k/GmB,k for k = 1, 2. While 80–160 Hz is designated
in this work to be the maximum frequency range of interest,
the desired neural features may reside within a narrower range
of this band. Each BPF is designed to allow for the required
flexibility in frequency-range selection by tuning these parame-
ters, which are represented by the ratios of the same physical
quantity. Therefore, they are less prone to process/mismatch
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Fig. 5. Linearity of current divider (ideal versus realized).

variation; an essential feature required in large-scale systems.
On the other hand, GmF,k/CF in (2) and (3) is more susceptible
to the process variation, which is calibrated in an open loop
fashion by varying GmF,k through a tunable bias current (7-bit
current bank), IB,k for k = 1, 2, as shown in Fig. 4(c). While
this digital calibration incurs an area overhead that could be
further addressed by sharing the same bias current locally among
a cluster of channels in favor of reduced die area, it alleviates
the testing time and complexity associated with off-chip current
trimming in large-scale systems.

To control AG,k, the bias current of GmB,k cell is obtained
from a current divider that takes a reference current of IB,k

and produces αkIB,k, where αk denotes the division factor for
k = 1, 2. Bias tuning ofGmB,k is achieved by converting a 4-bit
binary code to a 16-bit thermometer code which is applied to
current divider. Shaded in Fig. 4(c), a digitally controlled current
division circuitry is implemented using parallel PMOS switches,
M1a−1p, a diode-connected transistor,M2a, and a current mirror,
M2b,c. Each switch acts as a small parallel resistor when it is ON
and as an open-circuit with minimal leakage current when it is
OFF. All PMOS switches have an equal output resistance except
for M1a whose drain-source voltage may differ slightly from
M1b−1p. Fig. 5 shows the ideal and realized transfer characteris-
tics of current divider.αk is swept across every digital code from
0000 to 1111, which scales IB,k (∼680 pA) by α varying from
1 to 1/ 16. For a maximum division factor of 1/ 16, the output
current exhibits less than 6% error at∼42.5pA. To accommodate
wide tunability of AF,k and AL,k, each Ck and CL,k is realized
by a 4-bit binary-weighted capacitor bank for k = 1, 2. Since
independent tuning of f0,k and BWk is not viable, a look-up
table is generated off-line based on (2)–(4) for all possible
combinations of AF,k, AL,k and AG,k which spans the entire
solution space. Thereafter, a subset of the solution space which
satisfies the desired specifications for f0,k, BWk, and Hmid,k

for k = 1, 2 is found using brute-force search. Controlled by
the digital back-end, this look-up table approach allows for a
robust mechanism to extract neural features by reconfiguring
the parameters AF,k, AL,k, AG,k, Gc, and Gm,LPF . It is worth
mentioning that only one lookup table is used for all channels
since the same neural features are extracted from each one.

Shown in Fig. 4(b), the envelope detector consists of a
four-quadrant multiplier (Gilbert cell) and a source-degenerated
OTA-C filter. Both the multiplier and the OTA-C filter use current
folding technique to limit transistor stacking and operate with

Fig. 6. Frequency response of double-tuned fourth order band-pass and
degenerated low-pass filter.

Fig. 7. Multiplexing operation: (a) Full-band (b) base-band.

low supply voltage. A 4-bit binary-weighted current source is
used to vary Ibias and adjust the conversion gain of the multi-
plier. Transistors M9a,b mirror the current from a 4-bit binary-
weighted current source to allow tunability of transconductance,
Gm,LPF , in the OTA-C filter. To achieve a corner frequency of
a few Hz, source-degeneration and current splitting are applied
to M7a−d to greatly reduce Gm,LPF . The voltage waveforms
at constituent stages of neural pre-processing from a recorded
ECoG signal are shown in Fig. 4(e). Fig. 6 shows the frequency
response of the double-tuned 4th-order biquad filter with a center
frequency of 120 Hz and bandwidth of 80 Hz and degnerated
low-pass filter with a 3-dB corner frequency of 4 Hz.

B. Post-Multiplexing and Interfacing Modules Design

Similar to [17], an external clock is provided to generate non-
overlapping clocks (CLK1−32) with 1/64 duty-cycle for FB/BB
channel multiplexing with an additional option to select individ-
ual channels. In FB mode, a digitally-programmable InAMP is
used to accommodate 20–40 dB of additional post-multiplexing
amplification with 3 dB gain steps. Shown in Fig. 7(a), the
AC-coupling network with approximately 2-Hz highpass cor-
ner frequency is employed between the AMP and InAMP to
filter out the voltage offset introduced by each AMP during
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single-channel acquisition. For multi-channel acquisition, in
order to avoid large transients during channel-multiplexing, a
reset/bootstrap mechanism is introduced to the AC-coupling
network in FB MUX. This is achieved by applying CLKFB

to reset switches during the non-overlapping intervals (TR),
which ensures that the output voltage stays at reference voltage
Vref after each channel switching. To mitigate the long settling
time of AC-coupling network, an auxiliary pair of switches
is used to bootstrap the voltages across the AC-coupling ca-
pacitors to Vref . It is noteworthy that the AC-coupling net-
work is rendered ineffective in multi-channel acquisition due
to the reset/bootstrap operation. Each switch is realized by a
T-network of transmission gates with dummy devices to mitigate
charge-injection and clock-feedthrough effects. Fig. 7(b) indi-
cates the multiplexing operation in BB mode. No additional gain
is required after envelope detection. Nevertheless, a unity-gain
buffer is placed before the BB MUX switch to buffer the high-
impedance output node of envelope detector (Vout,BB) from
the shared multiplexed output node (VMUX,BB). FB/BB output
buffers are used to drive an external ADC in this implementation.

C. Noise Analysis of Multiplier-Based Square-Law Circuit

In this section, noise interactions that happen in the multiplier-
based envelope detector are further studied. The Gilbert-cell
multiplier of Fig. 4(b) is modeled as three transconductors,
Gm1, Gm2 and Gm3 in Fig. 4(d). It is evident that small-signal
multiplication is achieved by applying a small AC signal (i+/i−)
to each bias current of Gm2 and Gm3. The filtered neural signal
and noise contributions from the previous stages are represented
by Vsig and V 2

n , respectively. Due to the non-linear behavior of
analog multiplier, signal and noise at the input undergo multi-
plication that results in an increased noise power. Three major
sources of noise contribution are identified in a multiplier-based
envelope detector [22]: (a) signal-dependent noise due to mixing
between signal and noise, (b) noise self-mixing due to mixing
of noise with itself, and (c) intrinsic circuit noise, which is
the sum of all existing device noise (e.g., thermal and flicker
noise) powers in the envelope detector. Therefore, the total
current noise power at the output of envelope detector I2n,out
is expressed, as follows:

I2n,out = I2n,sig + I2n,n + I2n,ED (5)

where I2n,sig, I2n,n, I2n,ED represent the signal-dependent, self-
mixing, envelope detector current noise powers. As discussed,
high-γ brain signals are observed to be amplitude modulated
(AM) during kinetic movements, which can be thought of as a
carrier signal with an underlying modulating function. This AM
signal is assumed to be a sinusoidal carrier fc at the center of
high-γ-band whose average power, A2

c /2, is equivalent to the
total signal power within the band modulated by a normalized
baseband function, m(t), whose modulation frequency and in-
dex are defined by fm and am, respectively. Hence, the signal
at the input of multiplier is readily expressed, as follows:

Vsig,AM = Ac[1 + amm(t)] cos(2πfct) (6)

Fig. 8. Simulated noise power of each contributing sources (SN: signal-
dependent noise, NN: self-mixing noise, NED : intrinsic noise of envelope
detector.

It is observed that power spectral density of brain signals
follows a ( 1f )

p
characteristic where p = 2 ∼ 4 [18]. Thus, the

total signal power (Af )
p across the high-γ bandwidth fB is

calculated by integration, as follows:

V 2
sig,γ =

∫ fc+0.5fB

fc−0.5fB

(
A

f

)p

df =
Ap

(−p+ 1)
f (−p+1)

∣∣∣
fc+0.5fB

fc−0.5fB

(7)

The average noise power from the front-end circuitry pre-
ceding the multiplier, V 2

n , is obtained by integrating the overall
power spectral density of all noise sources (i.e., thermal and
flicker noise) over fB . As such, the equivalent white power
spectral density, V 2

n /fB , is readily used to calculate the output
noise of the envelope detector across the LPF bandwidth of fm.
Assuming m(t) has zero average value, I2n,sig and I2n,n are thus
derived, as follows:

I2n,sig = 6G2
cV

2
sig,γ [1 + a2mm2(t)]

fm
fB

V 2
n (8)

I2n,n = 3G2
c

fm
fB

(V 2
n )

2 (9)

where Gc

(
= Ibias/(2nVth)

2, where n represents sub-threshold
slope

)
is conversion gain of the multiplier.

The envelope detector average current noise power, I2n,ED, is
found by summing the thermal and flicker noise contributions of
transistors (M1−6), shown in Fig. 4(b), and integrating its noise
power spectral density over the bandwidth fm:

I2n,ED=8kTγ(gm1 + 2gm2 + 2gm3 + gm6)fm+
2Kp

Cox(WL)1

×
[
g2m1 +

Kn(WL)1
Kp(WL)2

(2gm2)
2 +

Kn(WL)1
Kp(WL)3

(2gm3)
2

+
(WL)1
(WL)6

(gm6)
2

] ∫ fm

0.1fm

(
df

f

)
(10)

where Kp and Kn denote the process-dependent flicker noise
constants for PMOS and NMOS devices, respectively. Cox

represents the gate-oxide capacitance per unit area. Shown in
Fig. 8, noise power of each contributing source at the output
of multiplier is plotted for an AM input signal, similar to (6),
with the following parameters: Ac = 50 μV, fc = 120 Hz,
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fm = 4 Hz and am = 0.5. As expected, signal-dependent noise
contribution is much more significant compared to the intrinsic
transistor noise of envelope detector and varies with the input
signal amplitude.

To arrive at the output SNR, one needs to find the average
power of the output signal (I2sig2,out) which can be found by
integration, assuming m(t) has zero average value:

I2sig2,out = lim
T→∞

1

2T

∫ T

−T

(GcV
2
sig,AM )

2
dt

=
3

2
G2

c(V
2
sig,γ)

2
[1 + 6a2mm2(t) + a4mm4(t)] (11)

Omitting small noise contribution of envelope detector for sim-
plicity and assuming 50% duty-cycled square wave for m(t),
output SNR (SNRout) is found as a non-linear function of input
SNR (SNRin) :

SNRout =
I2sig2,out

I2n,out
= SNRin

(1 + a2m)
2
+ 4a2m

4(1 + a2m) + 2
SNRin

fB
fm

(12)

SNRin in (12) is a function of high-γ bandwidth and is derived
from (7), i.e.,

SNRin =
Ap

V 2
n

(Q− 1/2)−(p−1) − (Q+ 1/2)−(p−1)

(p− 1)fp−1
B

(13)

As defined before, Q denotes the BPF quality factor. It is
evident from (13) that lowering Q by reducing fc (i.e., con-
stant bandwidth) to contain only the neural features of interest
provides the highest SNRin. As predicted in [18], SNRin

is expected to degrade with the sharper roll-off (i.e., higher
p value), particularly above 80 Hz. However, the premise of
high-γ AM modulations implies that with higher am, which may
further improve over time with co-adaptation of an implanted
BMI, it is advantageous to perform low-noise analog power
envelope extraction to achieve higher SNR as derived in (12),
while attaining significant power-saving at the system-level.
Two special cases of (12) are considered: (a) low and (b) high
input SNR. For (a), it can be seen that the output SNR becomes
proportional to SNR2

in. However, for (b), it is understood that
with increasing the signal amplitude, the signal-dependent noise
term also increases and therefore, the output SNR is proportional
to SNRin.

D. Transient Analysis of Post-Multiplexing Modules

Since FB MUX operates at significantly higher frequency
compared to BB MUX, subsequent amplification stages in FB
mode must satisfy more stringent settling time and bandwidth
requirements. Given nFB-bit resolution for the FB ADC, the
amplified output voltage is required to reach its full-scale level
within 0.69(nFB + ε)τFB for the conventionally adopted error
margin of 1/2ε LSB (2 ≤ ε ≤ 4). τFB is defined as the time
constant of an equivalent RC circuit modeling the output load of
the post-multiplexing amplification stage in FB mode. Similarly,
for nBB-bit resolution of BB ADC, the amplified output voltage
is required to settle within 0.69(nBB + ε)τBB , where τBB is

Fig. 9. Chip micrograph and custom-designed printed circuit board.

the equivalent time constant in BB mode. The output voltage
settling required in each mode of operation should be succeeded
within a half sampling period, i.e., 0.69(nFB + ε)τFB ≤ 0.5

fs,FB

and 0.69(nBB + ε)τBB ≤ 0.5
fs,BB

. Hence, the ratio of the mini-
mum required bandwidths for FB/BB post-multiplexing stages
is expressed as follows:

(
τBB

τFB

)

min

=
(nFB + ε)fs,FB

(nBB + ε)fs,BB
≈ nFB

nBB

1

η
(14)

(14) signifies that the minimum required bandwidth for post-
multiplexing stages is approximately two orders of magnitude
higher in FB compared to BB mode for ε = 2 and η = 0.02,
given the different settling requirements. This is to be expected,
as time-multiplexed FB operation requires signifcantly higher
sampling rate and resolution than BB operation.

V. EXPERIMENTAL RESULTS

In this section, electrical and biomedical measurements are
presented. Electrical characterization was done prior to any
biomedical testing to ensure proper functionality and reliable
recording of the system. In-vivo human tests involved EEG
and ECoG measurements. The DMFE array recorded reliably
in all testings and showed on-par performance with commercial
systems while consuming significantly less power.

A. Electrical Measurements

The prototype was fabricated in 180 nm CMOS process. Fig. 9
shows the chip micrograph along with the custom-designed
printed circuit board (PCB). An L-shaped geometry was em-
ployed to accommodate the DMFE array, placing each channel
in the proximity of the pad ring. The pads are located around
the perimeter and incorporates a 2 kV HBM ESD protection
circuitry with a few pA of leakage current. Following a modular
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TABLE I
PERFORMANCE COMPARISON

a Estimated from reported results.
b For operation with 0.6 to 0.8 V supply.

Fig. 10. Measured and simulated results of total gain in different settings and
input-referred noise for a single channel (i.e., AMP and InAMP) in FB mode.

design, two 16-channel DMFE arrays were constructed per-
pendicular to each other with shared building blocks, includ-
ing InAMP, output buffers, digital circuitry and SPI placed at
the intersection. This approach is pursued to allow seamless
integration of more channels with less routing overhead and
inclusion of other common blocks such as low-dropout (LDO)
regulators, ADCs and reference buffers in the finalized design.
Global bias is provided externally and local bias is generated
internally within each module and is tuned via current banks.
The custom-designed PCB includes bias, SPI level shifters (LS),
LDO regulators for chip supply, and pre-amplifier (TI-INA826,
not shown in Fig. 3(a)) before external ADC to meet the dynamic
range requirements. The chip operates at 0.8 V supply voltage
and consumes 59.4 μW in FB and 34.6 μW in BB mode
(excluding bias). Each DMFE consumes 1.05 μW power and
0.245 mm2 area, allocating 0.205 μW power and 0.145 mm2

area for feature extraction only.
To characterize the overall amplification and input-referred

noise in FB mode, an Agilent 33250A waveform generator with
external attenuators and an Agilent E4448A spectrum analyzer
were used. The nominal gain setting of the InAmp provides
an additional 20 dB of gain, with 3 dB steps up to ∼40 dB.
Shown in Fig. 10, the total measured gain in different settings
and input-referred noise are compared with simulation results.
For an InAMP gain setting of 23 dB, an overall gain of 63 dB
and an RMS input-referred noise of 1.49 μV were achieved
across a 2-200-Hz bandwidth. While the lower corner frequency

TABLE II
FRONT-END POWER CONSUMPTION BREAKDOWN

∗ Power consumption of shared blocks is divided
by channel count.

realized by pseudo-resistor is expected to vary across the process
corner, it is simulated and measured to be below 2 Hz, which
helps acquire low-frequency activity of the brain in θ-band
(4–8 Hz). For an input common-mode signal of 100 mVpp,
the measured CMRR and PSRR are better than 76.5 dB and
79 dB, respectively. The calculated dynamic range of AMP for
∼1% total harmonic distortion is 60.2 dB. Table I provides
a performance summary of the DMFE and comparison with
similar prior works. Based on a dual-mode ASP architecture, the
DMFE consumes 1.05 μW of power and occupies 0.245 mm2

of die area per channel while achieving an NEF of 4.09 and a
PEF of 10.04. The DMFE achieves the lowest feature-extraction
power dissipation with superior NEF and PEF compared to prior
works. The power consumption of each block in the front-end is
summarized in Table II. The power dissipation of the AMP is rep-
resented byPU in (1), while the InAMP and FB buffer constitute
the post-amplification stages. The power dissipated by biquads,
interstage buffers, multiplier, degenerated LPF and buffer sum
up to represent PNP 2 . Lastly, BB buffer is used to approximate
ηPU in (1). As indicated, AMP takes a significant portion of the
total power consumption in both BB and FB mode given that the
first-stage amplification requires more power dissipation to min-
imize the input-referred noise. In NP 2 module, the multiplier
introduces voltage offset that can be minimized by increasing
the bias current, and hence raising the power consumption.
Nevertheless, the BB-mode, compared to FB-mode operation,
still achieves approximately twice less power dissipation in the
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TABLE III
SUB-BAND CORRELATION COEFFICIENTS

Fig. 11. MR-CT fused image from Subject B, showing implanted ECoG grid
over arm motor area of the brain.

front-end with the premise that the mixed-signal and digital
back-end would require significantly less power, achieving 50×
power-saving as discussed in Section III.

B. Human Neurological Measurements

The experiments carried out in this study were approved by
the Institutional Review Boards of the University of California,
Irvine and the Rancho Los Amigos National Rehabilitation Cen-
ter, and are considered non-significant risk. Two human subjects
(A and B) provided informed consent to participate in EEG
and ECoG recordings, respectively. Single-channel and multi-
channel acquisition in FB were done for EEG, in conjunction
with commercial systems to validate the performance on Subject
A. Similarly, single-channel and multi-channel ECoG recording
in FB and BB were done at the bedside with Subject B, who
was undergoing epilepsy treatment. A summary of correlation
coefficients from all recordings in each frequency sub-band is
presented in Table III. For brevity, methods and results from
in-vivo ECoG recordings are described in the following sections.

Methods: One male patient undergoing ECoG implantation
for epilepsy surgery evaluation was recruited (Subject B). The
subject had a 4 × 8 mini-grid (Integra LifeSciences, Plainsboro
NJ). Fig. 11 shows the location of implanted electrodes (derived
by co-registering CT and MR brain images). The ECoG grid
placed over the left hemispheric (LH) motor arm area was used to
record brain activity during sleep (baseline) and a flexion task in
FB and BB modes, respectively. Fig. 12 shows the hospital setup
for in-vivo ECoG recording. 32 electrodes from LH grid were
used to record ECoG signals by custom (chip) and commercial
(Biopac EEG100C, NeXus-32) systems, simultaneously. The

Fig. 12. Hospital setup.

chip was battery-powered and Biopac MP150 data acquisition
was used to digitize the analog output. An Arduino provided
the clock (CLK) and reset (RST) signals for the chip. A host PC
was responsible for chip configuration, synchronization between
custom and commercial system outputs, de-multiplexing and
post-processing of ECoG recordings. For FB single-channel and
multi-channel recording, EEG100C and NeXus-32 were used in
parallel with the chip to capture baseline activity, respectively.
The subject was asleep during these experiments. For both
BB single-channel and multi-channel recording, NeXus-32 was
used in parallel with the chip. The subject was verbally instructed
to perform elbow flexion for two 15-second periods with an
idling period of 15 (single-channel) and 10 (multi-channel)
seconds in between. Since NeXus-32 did not natively extract
envelopes, chip-equivalent processing (i.e., band-pass filtering,
power extraction and low-pass filtering) were applied in order
to draw a comparison between the two acquisition systems. As
depicted in Fig. 11, a subset of LH electrodes, which was de-
termined by clinical cortical mapping procedures to correspond
to forearm/elbow flexion, was used to collect brain activity for
analysis during sleep (baseline) and an elbow flexion task. Given
separate reference electrodes for custom chip and NeXus-32, the
split reference was compensated for by common-mode averag-
ing in post-processing [28]. The Pearson correlation was calcu-
lated between the outputs of custom and commercial systems
for comparison. Additionally, correlations were calculated for
physiological sub-bands to further ascertain the accuracy of the
chip in comparison with the commercial system.

Results: FB single-channel and multi-channel record-
ings from custom and commercial systems are shown in
Fig. 13(a)–(b). For BB single-channel, the extracted envelope is
shown in Fig. 14, along with a spectrogram of raw ECoG from
NeXus-32 which exhibits power increase across high-γ-band
during movement. For BB multi-channel recording, a few ex-
tracted envelopes are shown in Fig. 15. Unlike the FB-mode data,
which can be seamlessly compared between the commercial and
custom systems, the comparison of the BB-mode data requires
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Fig. 13. Normalized ECoG time-series data from (a) single-channel recording
and (b) de-multiplexed recording in FB mode.

Fig. 14. Normalized ECoG power envelope time-series data from single-
channel recording in BB mode (top) and spectrogram of raw ECoG from
commercial system (bottom).

Fig. 15. Normalized ECoG power envelope time-series data from de-
multiplexed recording in BB mode (top) and spectrogram of raw ECoG from
commercial system (bottom).

extensive signal processing, as discussed earlier. Considering
that the analog implementation introduces a number of noise
sources (Section IV-C), the digital chip-equivalent operators suf-
fer mainly from insignificant quantization and rounding errors,
giving rise to lower correlations reported for the BB-mode data
as compared to the FB counterpart.

VI. CONCLUSION

A dual-mode array architecture for high-density ECoG im-
plantable BMIs was presented. The 180 nm CMOS chip includes
a 32-channel signal acquisition front-end capable of acquiring
and pre-processing of ECoG signals. Each channel employs a
DMFE which consumes 1.05 μW and 0.245 mm2 area, allocat-
ing 0.205 μW and 0.145 mm2 area for feature extraction only.
In-vivo ECoG recordings have demonstrated the feasibility of
extracting power envelopes during movements using our ULP
dual-mode prototype. Compared to commercial systems, our
chip is capable of acquiring power envelopes with significantly
less power consumption.
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