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A B S T R A C T

Fast time-scale voltage regulation is needed to enable high penetration of renewables in power distribution
networks. A promising approach is to control the reactive power injections of inverters to maintain the voltages.
However, existing voltage regulation algorithms require the exact knowledge of line parameters, which are not
known for most distribution systems and are difficult to infer. In this work, by utilizing the convexity results of
voltage regulation problem, we design an input convex neural network to learn the underlying mapping between
the power injections and the voltage deviations. By using smart meter data, our proposed data-driven approach
not only accurately fits the system behavior, but also provides a tractable and optimal way to find the reactive
power injections. Various numerical simulations demonstrate the effectiveness of the proposed voltage control
scheme.

1. Introduction

Voltage regulation in distribution networks has played an important
role to maintain acceptable voltage magnitudes at all buses. The higher
penetration of distributed energy resources (DERs), for example rooftop
PV and electric vehicles, could lead to fast voltage fluctuations in dis-
tribution networks [1]. To complement slow time-scale control of dis-
crete devices such as tap-changing transformers and switched capaci-
tors, reactive power injections via the inverter-based distributed
resources are often proposed for fast time-scale voltage regulations [2].

Research efforts on inverter-based voltage regulations have focused
on approaching the control problem through an optimization frame-
work [3–5]. By formulating it as an Optimal Power Flow (OPF) problem
with either voltage deviations objectives [3,5,6] or constraints [7,8],
the optimal reactive power injections can be solved via linearized
power flow equations or convex relaxation. A significant amount of
research efforts has been devoted to this problem and it has been shown
to be convex for many systems. Recent advances also extended the
centralized control strategies into distributed algorithms with con-
vergence guarantees [6,7,9], and considered uncertainties brought by
DERs [10].

However, a fundamental challenge is that distribution networks
often suffer from a lack of observability, while system parameters are
often unknown or hard to estimate in real systems [11,12]. Yet accuate

topology and parameter information are necessities for almost all ex-
isting voltage regulation algorithms [13]. This requires additional to-
pology and parameter learning steps before any control actions can be
taken. Considering the fact that topology of distribution networks are
changing through time, probing network topology and parameters
usually require PMU data which are not available in most systems.

To mitigate such burdens on system identification, in [14], a con-
troller is proposed by using linearized system model estimated from
advanced metering data. While in [15], a reinforcement learning based
controller is directly applied to learn the voltage regulation policy
based on power system measurements. However, the optimality and
feasibility of such controller are not discussed, and do not leverage the
large body of literature on the convexity of the voltage regulation
problem. Indeed, in the research community of machine learning and
especially reinforcement learning, “learning to control” remains to be a
challenging problem when considering physical model constraints and
optimality guarantees [16,17].

In this work, we focus on the problem of optimal reactive power
compensation for voltage regulation of distribution networks with unkown
topology and parameters, and we are interested in how to use a structured
neural network to realize voltage regulations with optimality guaran-
tees. As the cornerstone for deep learning and artificial intelligence,
neural networks have shown strong capabilities in function approx-
imation, and have been applied in various tasks such as regression and
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classification [18]. Yet due to the composition of nonlinear functions,
normal neural networks are hard to be directly applied for decision-
making or solving optimization problem. We tackle the modeling ac-
curacy and control tractability tradeoff by building on the input convex
neural networks (ICNN) in [19,20] to both represent unknown dis-
tribution systems and to find optimal reaction power injections.

ICNN bridges the strong learning and modeling capabilities of deep
neural networks with physical insights of voltage regulation by solving
a constrained convex optimization problem. With specifically designed
neural network architecture, the output of ICNN is guaranteed to be
convex with respect to the neural network’s inputs, which is a good fit
in solving convex optimization problem. As shown in Fig. 1, in the
training stage, ICNN is making use of system operating states mea-
surements to learn the unknown, nonlinear mappings from active and
reactive power injections to nodal voltage deviations; in the voltage
regulation stage, ICNN serves as the model to be optimized over, and is
guaranteed to find the optimal reactive power injections by design. By
leveraging the convexity results [3] of voltage regulation problem, the
proposed method can be used as a plug-and-play component for dis-
tribution system operations, which does not require explicit topology
learning nor parameter inference techniques, while always satisfying
reactive power capacity constraints.

The remainder of the paper is organized as follows. In Section 2 we
introduce the power flow model and the voltage regulation problem
formulation; in Section 3 we present the setup for our specifically de-
signed ICNN, and describe how to apply such neural networks into
learning and voltage control; simulations on IEEE 13-bus and 123-bus
distribution illustrate the performance of proposed scheme; concluding
remarks are presented in Section 5.

2. Modeling and Problem Formulation

2.1. Power System Model and Voltage Regulation Problem

Consider a power distribution network consisting of a set
� = N{1, ..., } of buses and a set � � �∈ × of distribution lines con-
necting buses. For each bus i, denote Vi as the voltage magnitude and θi
as the voltage phase angle; let pi and qi denote the active and reactive
power injections; let = +s p jqi i i be the complex power injection at bus
i. The corresponding active and reactive power injection vectors are
denoted as = ⋯ = ⋯p p p q q qp q[ ] , [ ]N T N T1 2 1 2 . For each line

�∈i k( , ) , denote line admittance = −y g jbik ik ik with bik > 0, gik > 0 as
the real and imaginary parts of the admittance matrix element Yik. For
each bus �∈i , its power injection is governed by

∑= − − + −
=

p V V g θ θ b θ θ( cos( ) sin( ))i
k

N

i k ik i k ik i k
1 (1a)

∑= − + −
=

q V V g θ θ b θ θ( sin( ) cos( )).i
k

N

i k ik i k ik i k
1 (1b)

The focus of this paper is to address the voltage fluctuations due to
higher penetration level of DERs in distribution networks. By making
use of the power electronics interfaces of DERs such as PV inverters, the
reactive power injections qi can be controlled within certain limits. By
changing reactive power injections, the goal is to maintain voltage
magnitude Vi within a small distance from the nominal value Vi,0 for all
buses (e.g., plus/minus 5%). Formally, we can cast voltage regulation as
the following optimization problem:

∑ −
=

α V Vmin | |
i

N

i i i
q 1

,0
(2a)

≤ ≤q q qs.t. (2b)

Power Flow Equations (1) (2c)

where αi is a weighted parameter which can be adjusted by the system
operator. The constraints in (2b) capture the hard constraints on
available reactive power injections on each bus i. The constraints in (2c)
capture the power flow models. The active power p is considered as an
exogenous input vector which is not controlled.

Even when the distribution network is known exactly, e.g., the
network topology and {gik, bik} values are available, directly solving (2)
is still not trivial, because the problem is not convex due to the non-
linear relationship between bus voltage magnitudes and powers. In the
next subsection, we will briefly review previous results showing that it
is possible to reformulate voltage regulation as a convex optimization
problem. However, practical concerns on the knwoledge of distribution
networks have impeded their applications.

2.2. Convexification and Practical Challenges

For each line �∈i k( , ) , denote = +s p jqik ik ik as the complex power
flow and = +z r jxik ik ik as the line impedance. The DistFlow equa-
tions [21] model the distribution network flow as

�

∑− = − −
∈

p p r l pk ik ik ik
l k l

kl
:( , ) (3a)

�

∑− = − −
∈

q p x l qk ik ik ik
l k l

kl
:( , ) (3b)

= − + + +V V r p x q r x l2( ) ( )k i ik ik ik ik ik ik ik
2 2 2 2 (3c)

=
+

l
p q

V
.ik

ik ik

i

2 2

2 (3d)

By further making the following relaxation for (3d)

≥
+

l
p q

Vik
ik ik

i

2 2

2 (4)

which can be written as a second-order cone constraint, the relaxed
constratins together with the voltage regulation objective is then a
Second Order Cone Program (SOCP) [3].

Remark 2.1. The relaxed voltage control problem with regulation
objective (2a), reactive power injection constraint (2b), power flow
constraints (3a)-(3c) and (4) is convex. Under many circumstances, this
relaxation is tight, see [3,4].

Fig. 1. Proposed data-driven method for distribution networks with unknown
topology. An input convex neural network is fitted to learn the mapping from
power injections to voltage deviations, and then an optimization problem is
solved to find the best reactive injections.
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In order to further simplify the analysis of the original voltage
control problem (2), many linearized power flow models are adopted,
while Simplified Distflow model is widely used [5,22], which sets lik to
be zeros, and approximates −V Vi k

2 2 by −V V2( )i k :

�

∑− = −
∈

p p pk ik
l k l

kl
:( , ) (5a)

�

∑− = −
∈

q q qk ik
l k l

kl
:( , ) (5b)

− = +V V r p x q .i k ik ik ik ik (5c)

Similarly, by replacing (2c) with the linearized version (5), we are
also able to solve the voltage regulation as a convex optimization
problem. However, considering the increasing variability of load and
generation in distribution networks, voltage regulation based on line-
arized approximation model (5) may not be accurate enough to re-
present the true distribution network models, while the resulting con-
trol signals of reactive power injections may not be optimal when
applied in the real distribution networks.

In summary, to solve voltage regulation as a convex optimization,
all these aforementioned approaches require the exact information on
line parameters (e.g., line impedances) and network topology.
Unfortunately, due to the lack of observability of distribution systems,
directly learning the topology is hard without PMU data [11,12].

2.3. Practical Design Requirements

Given the practical challenges of voltage regulation, we want to
design an optimal controller that satisfies following requirements:

• The controller must learn an accurate representation of the power
injections to nodal voltage magnitudes;

• Such representation is easy to be integrated into the optimization
framework.

Intuitively, we are trying to design and find functions
− = =V V f i Np q( , ), 1, ..., ,i i i,0 which could accurately represent the

relationship from active and reactive power injections to nodal voltage
magnitude deviation. By leveraging historical smart meter data to fit fi,
we want to see if the fitted model could represent the underlying grid.
More importantly, if fi is a convex function from p, q to −V V ,i i,0 then
the following problem

∑ −
=

α V Vmin | |
i

N

i i i
q 1

,0
(6a)

≤ ≤q q qs.t. (6b)

− =V V f p q( , )i i i,0 (6c)

is still a tractable convex optimization problem. Note that we integrate
voltage magnitude deviations constraint (6c) into the voltage regulation
framework, which is a general formulation to make sure once fi is
convex, (6) is a convex optimization problem. Such formulation is
comparable to previous formulations by either treating voltage mag-
nitude deviations as the optimization objective [4] or as box con-
straints [7,10].

Because of the convexity results [3], restricting fi to be convex leads
to optimal solutions. In the next section, we will describe how we de-
sign the learning model fi based on neural networks, which not only
efficiently learns the mapping from active and reactive power injections
to the voltage magnitude deviations more powerfully than a linear
model, but is also guaranteed to be a convex function.

3. Input Convex Neural Networks

In this section, starting from the standard neural networks

architecture, we illustrate how to construct a neural network whose
outputs are convex with respect to inputs. We then show how to apply
such input convex neural networks (ICNN) in the task of voltage reg-
ulation in distribution networks, and describe a practical algorithm to
find optimal reactive power injections under reactive power capacity
constraints.

3.1. Neural Networks for Function Fitting

For a standard setup of neural networks (NN) model, the multi-layer
network is composed of an input layer x, m hidden layers =z l m, 1, ...,l
with parameters = =θ W b i m: { , } 1, ..., ,l l and an output y. For notation
simplicity, we use hθ(x) to denote the neural networks with input x and
parameters θ. For the computation at layer l, in addition to the matrix
multiplication using Wl and bl, activation function gi( · ) has also been
widely adopted to increase the nonlinearity from input to output. For
instance, rectified linear unit (ReLU) is a popular choice with

=g x x( ) max(0, ). Given input x, a neural network is implementing the
following computation

= +

= + =+ −

z g W x b
z g W z b l m

( );
( ), 2, ...,l l l l l

1 1 1 1

1 1

and the neural network output is the value of the last layer zm. In the
task of supervised learning, back-propagation algorithms based on
gradient descent are used to train a group of {Wl, bl} that minimize the
training loss defined as L(y, hθ(x)) [23]1. Starting from this basic
building blocks of neural networks, many major advancements have
been made in learning complicated, nonlinear functions such as image
classification [18], load forecasts [24] and model-free controller de-
sign [15]. We are interested to see if we could borrow such strong
modeling power into modeling the underlying unknown distribution
grids. Essentially, we want to design specific neural networks such that
the output of hθ(x) is convex with respect to x, which could be then
representing fi in (6c) and be used for solving (6) once the model is
trained.

3.2. ICNN Architecture Design

We adapt the neural networks design from our previous work [20]
and the original input convex neural networks (ICNN) proposed in [19]
to the setting of multi-inputs (e.g., {p, q}) and multi-outputs (e.g.,

− ∀V V i| |,i i,0 ). Specifically, by convexity we mean each dimension of
ICNN’s output is convex with respect to all the dimension of inputs.

The following proposition summarizes the major adaptations we
make to the standard neural networks that guarantee modeling con-
vexity:

Proposition 3.1. The network shown in Fig. 2(a) is a convex function from
inputs to outputs provided that all W2: m are non-negative, and all gl are
convex and non-decreasing functions.

The convexity of the proposed neural network directly follows from
the composition rule of convex functions [25], which states that the
composition of an inner convex function and an outer convex, non-
decreasing function is convex. The restriction on the gl function to be
convex and non-decreasing function is actually not a strong restriction.
Popular activation functions like ReLU function shown in Fig. 2(c) al-
ready satisfies such restriction. Thus with the nonnegative constraints
on W2: m and with the choice of activation functions, we are already
constructing a neural network whose output is convex with respect to
inputs.

To compensate the neural network representability loss due to the
constraints of ≥ =W l m0, 2, ..., ,l we add direct passthrough layers

1 The choice of training loss can be task specific, e.g., cross-entropy loss, mean
squared error.
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=D l m, 2, ...l from input to subsequent layers, and there is no con-
straint on the weights of these links. Such direct links have also been
widely used in the design of deeper neural networks, which have
achieved better performance in various learning tasks [26]. Combined
with layer bias bl, layer i passes its value through ReLU activation
function and goes to next layer +i 1.

Mathematically, for each layer =l m1, ..., , the layerwise computa-
tions are modified as follows

= +z g W x b( );1 1 1 1 (8a)

= + + =−z g W z D x b l m( ), 2, ...,l l l l l l1 (8b)

We note that our neural networks design naturally extends to the
scenario when input x and output y are high-dimensional vectors.
Meanwhile, each dimension of output is convex with respect to all the
inputs. Such property also makes it possible to fit a single ICNN hθ to
model multiple convex functions.

A natural question is related to the function approximation cap-
abilitiy of the proposed ICNN. For instance, once ICNN is used in (6) for
voltage regulation, it should be able to fit the underlying convex
functions from p, q to −V Vi i,0 as accurate as possible. The following
Lemma from [20] guarantees that ICNN is able to fit any convex
functions, which opens the door to integrate ICNN in convex optimi-
zation:

Lemma 3.2. For any Lipschitz convex function over a compact domain,
there exists a neural network with nonnegative weights and ReLU activation
functions that approximates it arbitrary closely.

We refer interested readers to [20] for detailed proof. The sketch of
proof follows from the fact that any continuous, Lipschitz convex
function can be approximated by the maximum of a finite number of
affine functions [27]. Then it is sufficient to show that ICNN can im-
plement any max of affine functions.

3.3. Neural Networks and Optimization

When the underlying topology and the line parameters are un-
known, we propose to first learn a convex mapping from {p, q} to
voltage magnitude deviations using an ICNN. Once fitted using col-
lected observations, we are able to use the same ICNN, and integrate it

to (6) to find optimal reactive power injections.
In order to train ICNN and learn its parameters hθ, we need to

minimize the supervised traning loss. For the kth training instance, it is
defined as the mean square error between the ground truth voltage
magnitude deviation vector = − =V V i NV : {| |}, 1, ...,target i

k
i
k
,0 and the

ICNN output:

= ∥ − ∥L h
N

hV p q V p q( , ( , )) 1 ( , ) ,target θ target θ 2
2

(9)

and the update of hθ is based on gradient descent algorithm. In addi-
tion, to take the constraints of W2: m ≥ 0 into account, we need to make
sure the gradient descent update always falls into the feasible regions
(e.g., nonnegative weights). Hence we use a projected gradient algo-
rithm to guarantee the constraint holds [25].

Definition 3.3. The projection of a point y, onto a set X is defined as

= ∥ − ∥
∈

y x yΠ ( ) argmin 1
2X

x X
2
2

(10)

Given a starting point x(0) ∈ X and step-size γ > 0, projected gra-
dient descent (PGD) extends the standard gradient descent settings with
the projection step onto the feasible sets of feasible reactive power. At
iteration t, the algorithm takes the following PGD step:

= − − ∇ ∀ ≥+x x γ x f x tΠ ( ( )), 1t t
X

t t( 1) ( ) ( ) ( ) (11)

which is implemented iteratively until a certain stoppping cri-
terion (e.g., fixed number of iterations or gradient value is smaller than
predefined ϵ) is satisfied. The ICNN weights are then updated as follows

= − − ∇≥h h γ h L hV p qΠ ( ( ( ), ( , ))).θ θ W θ h target θ0m θ2: (12)

In practical implementations where there are large groups of mea-
surements {pk, qk, Vk} with k standing for the index for measurement
index, it is possible to use small batch of training data to do PGD steps
(12). Such practical algorithms, e.g., stochastic gradient descent, can
accelerate training convergence [23]. The training procedure is sum-
marized in Algorithm 1 by using collected training data and stochastic
gradient descent training algorithm.

Once the ICNN training process is finished, we fix model parameters
hθ, and use it as a proxy model for the unknown distribution networks
model =f i N, 1, ...,i in (6c). Since hθ represents the convex mappings
from q to − ∀V V i| |, ,i i,0 we are now ready to solve (6) computationally.
In the similar spirit of ICNN training, where we optimize over network
weights using gradient descent to minimize training loss, in the voltage
regulation setting, we optimize over ICNN inputs q to minimize the
optimization objective ∑ −

=
α V V| |i

N
i i i1 ,0 using gradient descent. Again,

to take the constraints of reactive power injection range into account,
we need to make sure that the gradient descent update always falls into
the feasible reactive power injection regions. By adapting PGD to the
trained ICNN, starting from uncontrolled reactive power =q q,(0) we
take iterative PGD steps on the voltage regulation objective (6a) until
gradient convergence. PGD steps also guarantee the convergence to
optimal solution under the convex settings. The overall algorithm for
ICNN training and finding optimal reactive power injections are de-
scribed in Algorithm 1.

4. Numerical Results

In this section, we evaluate the proposed voltage regulation scheme
on standard distribution networks. Our simulation focus on the IEEE
13-bus and IEEE 123-bus test systems. Linear models, standard neural
networks and the optimal SOCP formulations are used for comparison.

4.1. Simulation Setup

For both 13-bus and 123-bus system, we use AC power flow

Fig. 2. (a). The input convex neural networks (ICNN) architecture design; (b)
the layer computation for ICNN, where we constrain W2: m to be non-negative;
(c). a ReLU nonlinear activation function.
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model (1) to generate 10,000 instances of simulation data composed of
{p, q, V}. We assume both the distribution network topology and line
parameters are not revealed to the optimization algorithm, except when
the optimal SOCP is used as a baseline. We allow plus/minus 20% of
reactive power injections at each node as control inputs. We develop
three algorithms and compare their performances for two test feeders
shown in Fig. 3:

• Linear Model: We consider using a linear model to fit the unknown
dynamics from active and reactive power to the deviations between
nodal voltage and the nominal voltage. Such linearized models have
been widely used in power systems literature [5,10];

• Neural Networks Model: We construct standard three-layer and four-
layer neural networks for the 13-bus and 123-bus cases, respec-
tively. We tune the parameters of neural networks (e.g., number of

neurons, learning rate) and stop the training process once the fitting
performance on validation data converges;

• Input Convex Neural Networks: We keep the number of layers and
matrices =W i k, 1, ...,i the same dimension as those of neural net-
works models, but add direct layers =D i k, 2, ...,i correspondingly.
We constrain network weights W2: k to be non-negative during
training.

To fit the parameters of neural network models, we use mean
squared error as the loss function during training. To solve the voltage
regualtion problem (2), we set =α i k, 1, ...,i in (6) to be 1 in our si-
mulation cases. When α is not equal to 1, we could adapt the optimi-
zation problem using weighted sum of voltage deviation correspond-
ingly. Note that we could also flexibly add reactive power costs to the
objective function (2a), as long as they are convex functions over re-
active power injections. All the implementations are conducted on a
MacBook Pro with 2.4GHz Intel Quad Core i5.

To benchmark the performance of the proposed algorithms under
unknown topology and parameters, we also follow [3] to relax

≥
+

lij
P Q

V
ij ij

i

2 2

2 in the Dist-flow equations, and use the same validation da-

tasets to solve the resulting convex SOCP. We calculate the optimal
reactive power injections along with the resulting voltage profiles. We
use CVX to solve the SOCP and linearized models [28], and use Ten-
sorflow to set up and solve NN and ICNN models [29].

4.2. Estimation Accuracy

We firstly validate that ICNN can be used as a proxy for power flow
equations, and predict the nodal voltage magnitude deviations. By

Require: Learning rate η, Step size γ, Batch size T , Training iterations ntraining, Optimization stopping critertion ε
Ensure: Training dataset {p,q,V}
Ensure: Initial model hθ

# ICNN Training
for iter = 0, ..., ntraining do

# Update parameters for ICNN
Sample batch from historical data:
{pk,qk,Vk}Tk=1 ∼ Px

Update hθ using stochastic gradient descent:
Vk

target = {|Vk
i − Vk

i,0|}, i = 1, ...,N

hθ = hθ − ηΠW2:m≥0

(
hθ − ∇hθ (L(Vtarget), hθ(p,q))

)

end for
Fix ICNN parameters hθ
# Voltage Regulation via ICNN
Get measurements {p,q}, t = 0, q(t) = q
while ∇q(t) (

∑N
i=1 hθ(p,q(t))) > ε do

q(t+1) = q(t) − γΠq(q(t) − ∇q(t) (
∑N

i=1 hθ(p,q(t))))
t ← t + 1

end while
Optimal reactive power injection: q∗ = q(t)

Algorithm 1. ICNN for Voltage Regulation

Fig. 3. Schematic diagram of (a). IEEE 13-bus test feeder and (b). IEEE 123-bus
test feeder. Reference buses: 1 and 149.

Table 1
Comparison between SOCP, Linear model, Neural Networks model, and Input Convex Neural Networks model for IEEE 13-bus and IEEE 123-bus systems.

SImulation Network IEEE 13-Bus IEEE 123-Bus

Model SOCP Linear NN ICNN Linear NN ICNN
Model Fitting MAE - 9.93% 3.45% 3.86% 12.98% 3.56% 4.25%
Regulated voltage out of 3% tolerance 3.46% 8.65% 7.88% 4.71% 21.46% 14.04% 7.51%
Regulated voltage out of 5% tolerance 0.47% 7.89% 6.86% 1.05% 19.19% 9.65% 1.64%
Computation Time (per instance/s) 0.9684 0.2022 0.3137 0.2512 0.2712 0.6297 0.4302
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using 8,000 training instances, the ICNN can predict the voltage de-
viations on the validation instances accurately. As shown in Table 1, the
mean absolute error (MAE) of ICNN fitting are smaller than 4.3% in
both test systems, which are comparable to 3.45% and 3.56% by using
neural networks. This is also illustrated in Fig. 4, where under different
load levels throughout 24 hours, the ICNN can predict all the nodal
voltages accurately. More importantly, linear model’s fitting perfor-
mances are over 2 times worse than the neural networks counterparts.
We later show such fitting errors would also impact the controller
performances.

4.3. Voltage Regulation Performance

In Figure 4, we show the regulated voltage using ICNN in the IEEE
13-bus case. Under this day’s load profile, we are able to regulate node
4’s voltage magnitude within ± 4% per unit with constrained reactive
power injections (Equation 6b). In Figure 5, we show that the mean and
variance on each bus’s voltage deviations using three models for the 13-
bus feeder. On the one hand, with similar fitting performances, ICNN
outperforms the standard neural network in regulating nodal voltages.
This is due to the fact that neural networks may have many local
minima, and the NN-based controller can not find the optimal reactive
power injections. On the other hand, even though linear model provides
a easier venue for solving optimization problem, it suffers from in-
accurate modeling of the underlying distribution grids, and the regu-
lated bus voltages have greater level of fluctuations. Similar observa-
tions also hold in the 123-bus test case, where in Fig. 6 we show the
nodal voltage comparison using three models, and voltage regulated by

ICNN are constrained to be in a much narrower range. More results on
voltage regulation performances are summarized in Table 1. Under
varying load and power generation profiles, ICNN is able to maintain
over 98.3% of nodal voltages within 5% deviations from nominal vol-
tages, which are comparable to SOCP solutions. On the contrary, linear
fitted models can not scale to larger system, and nearly 20% of voltages
are out of 5% tolerance in the 123-bus case. We note that with more
injections of reactive power, the proposed control scheme can make use
of such injections to achieve better regulation performance.

We also give an analysis on the computation time for each algo-
rithm. Compared to linear model, optimization based on ICNN gen-
erally takes longer time, but it is still able to find the optimal solutions
within the acceptable time range. Note that we are solving the ICNN
optimization problem using our own solver, while solving SOCP and
linear model using the off-the-shelf CVX solver. More importantly, in
the 13-bus case, ICNN-based optimization is faster than SOCP solver,
and it scales to 123-bus case with moderate computation time increases,
while SOCP solver is hard to scale to larger network. An interesting
observation is that it takes longer for NN to find solutions compared to
ICNN, partly due to the fact that gradient-based optimizer is stuck in
some local minima. We will also discuss the performance of proposed
method on distributed case in the future work [30].

5. Conclusion

This paper describes an optimal voltage control algorithm for dis-
tribution networks with unknown topology and models. To close the
gap between unknown models and optimal regulation decision-making,
we proposed to construct a specifically designed neural network, the
input convex neural network, which could be used for both distribution
grid modeling and solving voltage regulation problem in a convex op-
timization framework. Numerical case studies validate that proposed
scheme is able to achieve significantly better voltage regulation per-
formances compared to current state-of-the-art model-based and
learning-based techniques. In the future work, we would like to explore
robust, data-driven voltage regulation framework with the existence of
noises or adversarial data, and investiage more available control op-
tions such as mobilizing the active power resources.
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Fig. 4. Example of voltage regulation over a daily variation for the 13-bus test
feeder. The voltage of bus 4 is shown. With ICNN accurately predicting vol-
tages (red triangle), it could regulate voltage within 4% of nominal values (grey
box) under varying load level throughout the day.

Fig. 5. Comparisons on nodal voltage deviation bar plots of linear-fitted model,
neural network model and input convex neuural network model on IEEE 13-bus
system. On average, the mean voltage deviation for ICNN is 4.3 times better
than linear model, and 2.7 times better than standard NN model.

Fig. 6. Comparisons on 20 randomly selected buses’ nodal voltage deviation
plots of linear-fitted model, neural network model and input convex neuural
network model on IEEE 123-bus system.
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