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Abstract

Three-dimensional (3D) NAND flash memory-based solid state drives (SSDs)
have been widely adopted in cyber-physical systems, due to its performance
benefits and scalability. Although 3D flash rapidly increases storage capacity
by stacking flash cells in the vertical direction, it faces severe retention errors
as well. Periodic refreshing, while effectively mitigating the retention issues,
seriously degrades the storage performance and the endurance of 3D NAND
flash memory.

To address the above challenge, we propose partial-refresh (PR), a novel
lightweight data refresh scheme for 3D NAND flash memory in cyber-physical
systems. PR leverages LDPC detectability to identify cells that are more vul-
nerable to errors. By moving these susceptible bits to new pages, we avoid
copying an entire page, reduce the refresh cost, and prolong the SSD lifetime.
Our experimental results show that, on average, a PR-aware flash memory im-
proves refresh performance by 28.2% and extends the SSD lifetime by 4.6% over
the state-of-the-art while preserving the high data reliability.
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1. Introduction

In the cyber-physical systems (CPS), massive data processing sets higher
demands on the I/O performance and reliability of modern applications [1, 2,
3, 4]. The three-dimensional (3D) NAND flash memory based solid state drives
(SSDs) have gained tremendous popularity in CPS, since 3D flash offers higher
speed performance and withstands greater shock than traditional hard disk
drives (HDDs). However, due to the multidimensional pathes of charge leakage
through vertical oxides and lateral spacers in 3D flash, charge loss is much more
severe than that in planar flash, resulting in early retention loss, a phenomenon
that was recently observed by Luo et al. [5]. That is, the number of retention
errors arises dramatically soon after page programming and then stabilizes for
a relative long duration. Data retention error has emerged as one of the major
obstacles in manufacturing high storage capacity and high reliability 3D flash
memory [6].

To meet the high reliability demand, flash pages widely adopt error cor-
rection code (ECC), e.g., low-density parity-check (LDPC), to correct up to k
corrupted bits per page. Adopting a stronger ECC increases the error detection
and correction capability and thus prolongs the SSD lifetime. However, in-
creasing parity bits introduces higher implementation overhead while achieving
diminishing lifetime improvement [7, 8].

A simple yet effective approach for mitigating retention errors is to refresh
flash pages to retain data integrity, i.e., it may periodically read the data out,
correct possible errors, and then remap the stored data or reprogram the cell
in-place before the retention induced errors exceed the ECC error correction
capability [7, 8, 9]. However, refresh faces several drawbacks: (1) The refresh
requests often originate from the flash translation layer (FTL) so that they
may block the normal I/O requests and prevent the SSD from achieving high



performance guarantee for modern applications [7]. (2) The refresh-induced
writes consume more program/erase (P/E) cycles of NAND flash memory, and
thus degrade the corresponding lifetime of the NAND flash based SSDs.

The existing studies on the flash refresh method can be categorized into two
types. One type is to minimize the refresh frequency. Seif et al. [10] reduced
refresh frequency by accommodating the temperature impact. Luo et al. [11]
separated the hot and cold data so that the refresh frequency of hot data can
be reduced. Di et al. [12] minimized the refresh frequency by prioritizing the
allocation of high endurance blocks to the data with long retention demand.
Liu et al. [9] relaxed the retention of data with shorter retention requirements,
and thus reduced the refresh frequency. These studies improved the SSD life-
time, but the refresh operation at each refresh interval remains costly. The
other type is to optimize the refresh process. Cai et al. [8] proposed in-place
reprogramming of cells that have more charge to recover the retention-induced
leaked electrons. However, recharging a 3D flash page is problematic as it tends
to disturb more neighboring pages.

To address the above challenge, we propose partial-refresh (PR), a nov-
el lightweight data refresh scheme for 3D flash memory in dependable cyber-
physical systems, that addresses the deteriorated data retention challenge by
leveraging LDPC detectability to identify susceptible cells that are more vulner-
able to errors. By only moving these susceptible bits to new pages, a PR-aware
FTL avoids copying the whole page, reduces the refresh cost and prolongs the
flash memory lifetime. Our experimental results show that, on average, the PR-
aware FTL improves refresh performance by 28.2% and extends the SSD lifetime
by 4.6% over the state-of-the-art while preserving the high data reliability.

In the remaining of this refresh optimization paper, Section 2 reviews the
background of refresh in 3D flash and the motivation of this work, and then
Section 3 elaborates our proposed partial-refresh approach for 3D NAND flash
memory based storage system. Section 4 lists the experimental settings and
analyzes the results afterwards. We summarize the related work follow in Section

5. We next present limitations in Section 6. At last, we conclude this article in



Section 7.

2. Background and Motivation

2.1. Refresh in 3D Flash Memory

Instead of shrinking flash cell size continuously in conventional planar flash
memory, 3D NAND flash memory achieves density improvement and lithography
cost reduction through die stacking [6]. However, data retention errors have
emerged as the severe reliability issue for high efficiency 3D NAND flash memory.
Due to the multidimensional pathes of charge leakage through vertical oxides
and lateral spacers in 3D flash, charge loss is much more serious than that of
planar flash memory. One simple and efficient way to guarantee long-term data
integrity is to frequently trigger the data refresh method, which periodically
reads data out, corrects, and then remaps or in-place reprograms the stored
data to avoid data lost [7, 8, 9]. Although guaranteeing flash data integrity, the
data refresh method seriously degrades the I/O performance and the endurance
of flash based storage system, especially in 3D flash memory. The deteriorated
refresh cost comes from two sources:

1) Longer refresh latency at each refresh interval. Since 3D flash memo-
ry achieves density improvement through die stacking in the vertical direction,
the page count in 3D flash block is greater than planar flash block. This phe-
nomenon, referred as the “big block” problem [13, 14], is widely observed in 3D
flash memory. For example, Intel presented the 3D flash chip with 6000+ pages
per block [15], while planar flash chips usually have 64 or 256 pages per block.
We evaluated flash block size effect on the refresh performance with the planar
and 3D flash. Fig. 1 presents the comparison of the refresh latency among the
planar and 3D flash under different block sizes. The first column of each trace
represents a planar flash memory with 256KB block size, and other two columns
represent 3D flash chips with different block sizes, i.e. 16MB and 64MB, respec-
tively. As shown in Fig. 1, the refresh cost is proportional to the flash block

size. This is because the overhead to perform the refresh method mainly comes



Table 1: Refresh frequency under different life stages in 3D flash memory chip

P/E cycles (K) |refresh frequency

0-1 year
1-2 month
2-4 week

from live page copying. And in 3D flash memory the size of one block increases
largely, therefore 3D flash blocks are more likely to contain more valid data,

which takes more time to perform the time-consuming refresh operation.
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Figure 1: The refresh latency comparison among planar and 3D flash under different block

sizes.

2) Increased refresh frequency. Due to the multidimensional pathes of charge
leakage through vertical oxides and lateral spacers in 3D flash, charge loss is
much more serious than that of planar flash memory. Therefore, the refresh
method in 3D flash memory is triggered more frequently. Such frequent refresh
will be the dominant source of 3D flash memory write amplification (WA). The
increased refresh frequency leads to the deteriorated refresh cost in 3D flash
memory. Table 1 collected from [16], shows the supported retention time of 3D
NAND flash memory chip in different stages. When the 3D flash memory chip
has been erased with 4K P/E cycles, the retention time will decrease to days.
Therefore, the frequent and time-consumed refresh is the serious challenge in
3D NAND flash-based storage system.

While preceding discussion shows that refresh seriously degrades the I/0

performance and the endurance of 3D flash memory, a limitation of the existing



work focus on addressing this urgent 3D refresh issue. To reduce the refresh
overhead, redesigning a novel lightweight data refresh scheme for 3D flash is a

better choice.

2.2. Motivation

Fig. 2 illustrates the threshold voltage distribution of two-bit-per-cell MLC
flash, where the different amount of charge is used to differentiate the four
states, i.e., ER (or erased, 11), P1 (01), P2 (00), and P3 (10) state, respectively.
Each state can further divide into two regions, including the trusted region (TR)
and the dominating overlap region (DOR). DOR is sensitive to different types
of circuit-level noises, i.e. program disturb noise [17], read disturb noise [18],
retention noise [18], and P/E cycling noise [19]. The data in DOR maybe shift
to the adjacent state, resulting in unintentionally changing the data stored in
one page. These error-prone cells in DOR are also referred to as susceptible

cells, while cells in TR are called as non-susceptible cells.
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Figure 2: Threshold voltage distribution of MLC flash.

When refresh is invoked at each refresh interval, each valid page content is
read out individually. All the bits of a valid page will be read into the flash
controller, and error bits will be corrected by the ECC engine, and then all the
bits will be redirected into a free flash page. As shown in Fig. 2, the probability
of a non-susceptible cell occurring is far beyond a susceptible cell. Assume the
data page size of 3D MLC flash is 16KB, and the total number of new error
bits appears to be 394 after 1-week retention loss, while the number of the new

error bits will be 300 after 2-week retention loss [16]. When refresh happens at



the first week, all the 131072 bits in this page will be read out, and 394 error
bits (from 600 susceptible bits) are corrected in the SSD controller, and then all
bits are programmed to a new place. We can see other 130678 bits are read out
and then copied back without modifying, which contributes to the most part
of the refresh latency. If refreshing only occurs to susceptible cells, the refresh
cost will be tremendously reduced, and the endurance of flash memory can be
correspondingly extended.

If we want to refresh susceptible cells to address this urgent refresh issue in
the 3D NAND flash based storage system, three important aspects should be
taken into consideration:

1) How to identify the susceptible cells? Each flash page consists of a group
of flash cells, and some cells are not sensitive to retention errors, whereas others
are error-prone. An appropriate strategy should be designed to distinguish these
two type cells, i.e., how to find the borders of the dominating overlap region
(e.g., V1 and V;) in Fig. 27

2) How to refresh these susceptible cells? After identifying susceptible cells,
we should determine where to store these susceptible data, and how to organize
them in the new place. Furthermore, the mapping table controlled by FTL
should be modified to adapt to the new structure.

3) How to read out the full data after refreshing susceptible cells? After
refreshing susceptible data, the raw data is composed of two part, the first part
is in the old refreshed block, and the second part is in the new page. How to
access this data when we want to read them? In addition, how to deal with the

increased read cost after refreshing susceptible cells?

3. Proposed Design Solution

To address these aforementioned issues, a novel partial-refresh scheme is
proposed in the 3D NAND flash based storage system. We first outline the
system architecture of the proposed partial-refresh scheme and then elaborate

its major components. At last, we present the overhead analysis.



3.1. Overview
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Figure 3: An overview of the partial-refresh scheme.

Fig. 3 presents an overview of the partial-refresh enabled flash-based SSD
organization, where partial-refresh is embedded in the SSD controller at the
SSD side. The SSD controller is responsible for processing the 1/O requests
from the host side and managing the address space inside the SSD, maximizing
the performance and lifetime, and its major firmware is the flash translation
layer. Atop of the SSD controller, the host interface logic as shown in Fig. 3
provides the interface-level compatibility with HDDs, whereas beneath the SSD
controller, the flash memory interface logic issues operations (read/write/erase)
to the underlying flash memories. The partial-refresh scheme exploits the sus-
ceptible cells vulnerabilities in refreshing for both performance and lifetime im-
provement, and it is composed of these four components: (1) susceptible cell
detector (SCD), (2) partial data refresh (PDR), (3) partial-aware garbage col-
lection (PGC), and (4) partial read command. SCD identifies cell strength
based on the threshold voltage distribution. PDR reduces refresh-induced write
latency by exploiting non-susceptible cells retention time. PGC promotes the

partial-refreshed pages to the traditional pages, reducing the longer read la-



tency of partial-refreshed pages than that of normal pages. To implement the
practical partial-refresh scheme, we also implemented the special command, the
partial read operation (pread) to access the partial-refreshed data pages. Note
that the proposed partial-refresh scheme is primarily designed for 3D flash to
address the deteriorated refresh cost, but it can also be used for conventional
planar flash memory.

Next, we elaborate the major components in the partial-refresh scheme of

3D NAND flash-based storage system.

3.2. Susceptible Cell Detector

The design goal of susceptible cell detector (SCD) is to detect susceptible
cells. When decoding data into the SSD controller, SCD leverages LDPC de-
tectability to identify cells that are more vulnerable to the different types of
errors.

In the process of LDPC decoding data, three steps are needed, which are
memory sensing, data transferring, and LDPC decoding, respectively. In the
read process of current LDPC method [20], it invokes the soft-decision memory
sensing first with one sensing level (between adjacent flash states), and then
transfers the data content to the controller. If the decoding fails, LDPC repeats
the three steps with extra one sensing level until decoding succeeds or fails
with the full-strength sensing levels (e.g., 7 sensing levels). In each sensing
level, a set of preset quantization voltage levels (e.g., Vi, V, and others in
Fig. 2) is applied. The set of quantization voltage levels selected determines
the log-likelihood-ratio (LLR) values in LDPC, which further affects the LDPC
error correction capability. Considerable prior works devoted to optimizing the
selection strategy of quantization voltage for LDPC-coded NAND flash memory
[21, 22, 23]. In our work, SCD focuses on leveraging LDPC detectability to
identify cells that are more vulnerable to the different types of errors, and the
quantization voltage levels are set by the default LDPC code employed in the 3D
NAND flash based storage system. SCD starts directly with the full-strength 7

sensing levels, since the raw bit error rate (RBER) is so high that the refresh



Table 2: An example of the soft-decision sensing with different regions

region | probability (%) | trusted region? | overlap region? | susceptible?
I 23.97 v
II 2.55 v v
11T 22.55 v
I\Y 2.63 v v
A% 22.45 v
VI 2.7 v v
VII 23.15 v
Note: region represents the divided threshold voltage interval with the sensing levels.

operation is triggered to guarantee data integrity, and the conventional iterative
read-retry process is time-consuming.

During the memory sensing stage, the read reference voltage Vs is first set
to the quantization voltage level V; as illustrated in Fig. 2, and then applying
it to the wordline which contains the data to be read, checking the relationship
between V. s and the voltage of flash cell V. If Vier is above Vyy, it falls into
the trusted region of ER state, otherwise, we need further sensing. Then the
read reference voltage Vi e¢ is further raised to V,, and checking the relationship
between Vi and Vi, es as shown above. Clearly, with this level-by-level manner,
we can find out whether the voltage of flash cell falls into a trusted region of one
flash state or an overlap region of two adjacent flash states. The flash memory
cell is a susceptible cell only if its threshold voltage belongs to an overlap region,
otherwise, it is a non-susceptible memory cell. After memory sensing, all the
sensed results of one data page will be transferred to the flash controller through
flash-to-controller bus.

During LDPC decoding, the LDPC decoder starts to correct the error bits.
Since the susceptible cells do not necessarily cause the bit errors, LDPC decoder
corrects some of susceptible bits that have gone wrong. Compared with the non-

susceptible cells in the trusted region, the probability of the susceptible cells in
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the overlap region is very low. According to the region probability of one LDPC
sensing example [21] in Table 2, susceptible cell rate can be nearly 7.88%. Thus,
susceptible cell rate will be higher than the raw bit error rate. But compared

with all cells, susceptible cell rate is still lower.

8.8. Partial Data Refresh

Basic partial data refresh mechanism. To enable the proposed partial-
refresh scheme, there are several important modifications in the implementation
of the refresh command. The partial data refresh (PDR) will periodically remap
susceptible cells in each flash page to a new location, otherwise it accumulates
many retention errors. As shown in Fig. 4, the operational flow of the PDR
scheme is like below: (1) When the flash refresh occurs at each refresh interval,
the SSD’s firmware selects a victim block that needs to be refreshed. (2) After
that, valid pages are read out and corrected all the errors by ECC engine in
the SSD controller. (3) With the assist of SCD, all the susceptible cells are
detected. We store the logical page number (LPN) of each victim page, and the
susceptible data and its offset within the victim data page into a small memory,
named as the virtual shadow memory (VSM), controlled by SSD controller. To
prevent susceptible data loss, we leverage capacitor-backed RAM in SSD [24] as
the VSM. The SSD’s firmware maintains more susceptible cells to merge a new
flash write, such that susceptible cells can be cached durably and mapped to a
better choice. (4) A certain number of susceptible data and its offset in the VSM
forms a virtual cache line, in the purpose of generating a new flash write. The
virtual cache line is a certain amount of data stored in the VSM, and it is exactly
the same size as one flash page, e.g., I6KB. When a flash write occurs, a new free
flash block is selected as a combination block to service susceptible data, and one
virtual cache line in the VSM is sequentially programmed to the free page on
the combination block. Thus, the copied data during the refresh operation, are
extremely reduced. We recommend that PDR selects the combination block from
other idle flash planes (or even other idle flash chips, exploiting chip idleness),

for the purpose of improving the latter partial read (pread) performance.
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Figure 4: Flow diagram of the partial-refresh-aware design.

Adaptive partial data refresh mechanism. In the above basic partial data
refresh mechanism, the fewer refresh-induced programmed data to the SSD,
tends to prolong the SSD lifetime. This is because SSD specifies a fixed of P/E
cycle as an endurance limit, and with the less program counts to flash memory,
the remaining lifetime in the SSD is longer. On the other hand, after refreshing
data pages partially, the combination pages are used to store susceptible data
and its offset, and at the same time, the previous refreshed page is still valid.
Although the percentage of susceptible data is much lower, the basic partial data
refresh mechanism may leave less free pages available for new writes and thus
invoke GC frequently, in the long term. Hence, the main idea of the adaptive
partial-refresh mechanism is to adapt the partial-refresh to the available space
of an SSD. Conservatively, when the available free space drops to a certain level,
e.g., 20% of the SSD, we must disable partial-refresh, and SSD operates normally
with the conventional refresh operation. Only when SSD have sufficient free
storage space, we perform the partial-refresh scheme, affecting GC performance
only slightly.

Data structure in the VSM. In the context of the partial-refresh scheme,
susceptible data are stored in the VSM. Compared with non-susceptible bits,
susceptible bits are extremely sparse. In order to store them efficiently, each
susceptible bit information is composed of the offset address within each code-

word, and the bit value, as shown in Fig. 5. Let N denote the page length, and
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M is the codeword length. Then for one page, VSM contains no more than %
codeword, and we can achieve log, M+1 bits field for each susceptible bit. To
set a fixed size of the offset address, a redundancy entry of the first bit in each
codeword is employed, e.g. 001 and 000 entry, as illustrated in Fig. 5. Note
that no matter the first bit in each codeword is erroneous or not, we record it in
the VSM, thus offset address length of susceptible bits can be set as the fixed
size, logy M. The 2th bit is stored as 010, where 01 is the offset address value
and 0 is the susceptible bit value corrected by ECC engine. And the 7th bit,
which is also susceptible cell, is stored as 101, because offset address from this

second codeword is 10, and the bit value is still 1.
codewgrd(M=4)

page data [T R0 1 [0]0 1] 0] |
(N=128K) Tif, 2th-~ Sth-.. \7th

OnE\.entry
newpage [0]0]1 o|1|0|0|_|0|1|0|1|
offset address bit value

Dsusceptible bit

Figure 5: Illustration of the susceptible bits storage scheme.

Since a certain amount of susceptible data and its offset in the VSM forms
a virtual cache line to generate a new flash write, the susceptible data of one
victim page may across the virtual cache line in the VSM, generating two or
more flash write operations. To prevent the susceptible data of the victim page
from storing in more than one combination page, we delay these susceptible
data for a while into the next virtual cache line, and choose other susceptible
data where its data page has lower susceptible data rate than that of the victim
page. And towards the end of the virtual cache line, if we can not find the
susceptible data with the appropriate amount of storage space in the VSM, we
fill them with zeros directly.
The partial-refresh aware mapping table. To enable the partial-refresh

scheme, we design an enhanced mapping mechanism. When a new flash write
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operation is generated, susceptible data and its offset in the virtual cache line
of the VSM are encoded with LDPC codes. FTL then determines the physical
address of this encoded data based on the cached mapping table. In the partial-
refresh scheme, the PPN is still valid, and the susceptible data are programmed
to a new location.

To this end, we maintain a cached primary mapping table and a cached sec-
ondary mapping table, as shown in Fig. 6. If data is without the partial-refresh
operation, the cached primary mapping table maps an LPN to a PPN, as the
traditional mapping strategy (1-to-1 mapping). If data is a partial-refreshed
data, the cached primary mapping table additionally maps a PPN to an addi-
tional physical page number (APN), with the help of the LPN information in the
VSM (1-to-2 mapping). And each entry is indexed by APN and has two fields,
{APN, offset}. The offset tracks the offset address within each combination
page. Note that, if we continuously perform the partial-refresh operation on the
partial-refreshed data, the same LPN will be written to more than 2 physical
pages. Instead of developing some expensive methods to prevent 1-to-n address
mapping (n > 3), we take a simple method which flips the refresh type. That
is, if one block has been partial-refreshed or was the combination block, at the

refresh interval it would service a conventional refresh command.

DRAM . Flash._
" Cached Primary S 5 3
Mapping Table
LPN | PPN 1
1 200 I | 2
2 2 | 3
3 3
4 201 H Cached Secondary
: : Mapping Table :
1024 | 202 H PPN | APN i
— 200 512
—1 201 512
20 50 i n

Figure 6: Illustration of the enhanced mapping table.
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We add the cached secondary mapping table in the mapping table, which
increases DRAM capacity for maintaining larger mapping table, and the the-
oretical and empirical research demonstrates that the effects of large mapping
table on storage performance are negative. But in the practical design of SS-
D firmware, on-demand map loading [25] or hybrid mapping [26] schemes are
widely used to reduce the mapping table size. Therefore, the entry count in the
mapping table is not going to be large, and the storage overhead introduced in

the mapping table is negligible.

3.4. Partial-read Operation

The pread command. The partial-refreshed data is composed of two part-
s: the original old data page in the partial-refreshed block, and the remapped
susceptible data in the combination page. Partial-refresh-supporting SSD must
handle this read command differently from normal reads, thereby, we need to
implement a novel special read command. Existing stroage interface of SSD,
such as SATA or SAS [27], supports the user-defined command to further opti-
mize the storage system. In this work, we implemented the pread operation by
utilizing the legacy read command. As shown in Fig. 7, the special pread com-
mand is composed of two sub-reads, which is enabled by utilizing the normal
page read command to access the original old data page in the partial-refreshed
block (first sub-read), and the partial-page read command to access the suscep-
tible data from the combination block (second sub-read). The partial-page read
command designed by the previous work [28], is used to read only part of a page,
not an entire page. Both the page read operation and partial-page read opera-
tion are combined into one pread command. Such pread command sequence is
practical, because some existing advance commands, e.g., multi-plane read op-
erations, are similarly issued. The access finish time of pread is determined by
the access finish time of the slowest sub-read, even if another sub-read can fin-
ish early. After accessing data from two locations, susceptible data is integrated
into the raw data content. It checks the offset value in the secondary mapping

table to acquire the needed susceptible data in the combination page. After

15



that, we check the offset value in each susceptible entry to substitute raw old
data with the susceptible bit value. Then data are processed by the decoding
engine, and the pread operation completes. Note that the pread command can
be implemented in the storage interface of SSD that supports the user-defined

command, thus, no hardware changes are required.

1 Ibyte 24 Ibits 1 Ibyte

command .<address address address>.

page read(baseline) [ RSV | pageindex [ blockindex |

partial-page read [ PPl | pageindex [ blockindex |
RSV: reserved PPI: Partial-page index

page'read partial—[')age read

.stancommand Qaddress .end command

Figure 7: The pread command format.

Separating hot/cold data. Since reading partial-refreshed data tends to in-
troduce the longer read latency than reading traditional data, the data hotness
identification strategy is implemented to enhance refresh performance. We cat-
egorize data hotness according to their read ratio after programming, i.e., data
that most statistical information is read, is treated as read-hot one [29]. Note
that the hotness identification technique is orthogonal to our proposed designs
and can be replaced with other state-of-the-art hotness metrics. During each
refresh interval, the valid pages are read out, only if one page is regarded as read-
hot, it invokes the traditional refresh strategy. Otherwise, the proposed partial-
refresh design invokes to exploit the non-susceptible cells. Therefore, with the
data hotness information, we can prevent partial-refreshing the frequently-read

data pages, which will introduce severe performance degradation.

3.5. Partial-aware Garbage Collection

Since above partial-refresh scheme contributes to different page types, e.g.,
normal or partial-refreshed pages, a new partial-aware GC strategy is proposed

to enhance the default greedy GC:

16



To select a victim block for GC, we consider both the number of valid pages
and their refresh type. We select the block that has fewer valid partial-refreshed
pages as the victim block with priority. This is because, if copying the same num-
ber of valid pages in two types of flash blocks, the number of partial-refreshed
pages is smaller, then the GC latency is shorter. When page copying, we should
also consider their refresh type. For the victim block with valid partial-refreshed
pages, the valid data come from two different positions, which are both the cur-
rent victim block and another combination block. These partial-refreshed pages
still accumulate retention errors after partial refreshing. To prevent these pages
from suffering too many errors, we promote these valid partial-refreshed pages
to traditional pages using the pread operation, and set the partial susceptible
data in the corresponding combination page to invalid. Once all the suscepti-
ble bits in one combination page are invalid, the state of the combination page

becomes invalid.

8.6. Quverhead Analysis

Partial-refresh, while improving flash-based storage system performance and
prolonging the endurance of flash chip, introduces storage overhead and firmware
overhead.

1) Storage Overhead. Partial-refresh needs following extra storage space to

save the metadata:

e Partial-refresh keeps a VSM in memory as shown in Section 3.3 to tem-
porarily store some susceptible data, in the purpose of generating a new
flash write. For partially refreshing each victim page, we store its LPN
and all the susceptible data in the VSM. The 32-bit LPN is used for up-
dating relevant information in the enhanced mapping table, where 32-bit
page address is sufficiently large for a 128GB SSD with 16KB 3D flash
pages. And each susceptible data in the VSM, i.e. a susceptible entry, is
composed of a log, M-bit offset address within each ECC codeword and
a 1-bit value, when M denotes the ECC codeword length. If n is the

17



number of susceptible data, the maximum storage overhead for storing
the affected susceptible data in VSM should be n x (82+log,M +1)-bit.
But in practice, in the purpose of generating a new flash write, the size of
all cached susceptible entries in the VSM should be larger than one page
size. Therefore, we conservatively set the size of the VSM to several page

sizes, e.g. 4x16KB.

Partial-refresh keeps an enhanced mapping table, as shown in Fig. 6, to
identify the partial-refreshed data in the internal DRAM of an SSD. In the
enhanced mapping table, we first need a 1-bit flag to differentiate partial-
refreshed data and non-partial-refreshed data. Then, in the 32-bit page
address, we need a 32-bit flag in the secondary mapping table to indicate
the APN address, which is the same size as the PPN. And, we also need a
20-bit flag to track the offset address within each combination page, which
is sufficiently large for a 16KB page. Since in the practical design of the
enhanced mapping table, we leverage the on-demand map loading policy
to reduce the mapping table, and the storage overhead introduced in the

enhanced mapping table is negligible.

2) Firmware Overhead. We need the processes involved in the susceptible

cell detector, partial data refresh and partial-aware garbage collection. The

overhead of these simple processes is quite negligible.

4. Analysis and Experiments

4.1. Methodology

We evaluate partial-refresh on a trace-driven SSD simulator, SSDsim [30].

We simulate a 128GB capacity 32-layer 3D NAND flash-based SSD, and its key

parameters are listed in Table 3. The simulated 3D flash has four channels, and

each of which consists of one flash chip. And in each flash chip, there are total

2192 blocks, where each block is composed of 1024 16KB pages. The latency for

read, program and erase operation is 75 us, 1,050 s, and 10,000 us, respectively.
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Table 3: Key parameters of 3D flash configuration

Parameter Value Parameter Value
capacity 128GB | page size 16KB
channel 4 OP ratio ™%

chip per channel | 1 WL Dynamic
die per chip 1 DA scheme |CWDP
plane per die 4 sensing time |75 us
block per plane |548 program time | 1050 us
page per block |1024 erase time 10000 us
P/E 4K GC threshold | 10%

The maximum P/E cycle count is specified at 4K for the simulated 3D NAND
flash based SSD.

Partial-refresh is simulated by mapping several susceptible data from dif-
ferent logical pages to a physical page that has to be read and written. To
implement the partial-refresh scheme, the average susceptible ratio (the frac-
tion of bytes that are susceptible in one page) is set to be 7.88% [21]. And we
disable partial-refresh when the ratio of available free blocks to total blocks in
the simulated SSD drops to 20%.

The workloads. We using 9 real-world enterprise server traces at Microsoft
Research Cambridge to evaluate the proposed scheme [31]. In order to trig-
ger refresh commands, we perform a linear extrapolation to shorten the data
retention time according to Table 1, since the tracing duration is about one
week.

Schemes for comparison. In the subsequent experiments, the following

schemes are implemented:

e FCR. The most recent work FCR that optimizes refresh operation [8]. We
adopt this scheme as the baseline scheme. All the experimental results

were normalized to FCR.

e EC-Cache. This is a read optimization scheme that is close to our de-
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sign, which caches the positions and valid values of detected errors with
the assist of LDPC [32]. Both EC-Cache and our proposed partial-refresh
scheme exploit the LDPC powerful detectability for performance improve-

ment.

e PR. This is the proposed partial-refresh scheme for both performance and
lifetime improvement of 3D flash-based SSDs, by leveraging LDPC de-

tectability to identify cells that are more vulnerable to errors.

4.2. Performance Improvement

Refresh latency: Fig. 8 compares the refresh latency for different schemes.
From the Fig. 8, PR significantly reduces the average refresh latency by 28.21%
over FCR. The refresh performance improvement comes from: (1) During each
partial-refresh interval, SCD starts sensing data with full-strength memory sens-
ing levels. But conventional the read process invokes the memory sensing with
one sensing level, and higher RBER leads to more iterative read-retry process.
Therefore, the read response time in the partial-refresh is reduced; (2) Due to
tremendously reduced write latency in each partial-refresh interval, the write
response time is reduced. In summary, PR achieves the largest write latency
reduction, i.e., 30.95% in rsrch, and the smallest reduction, i.e., 24.71% in src2.
Note that, since EC-Cache only optimize the read operation for the data that
are frequently read, it has the comparable refresh latency quality as that in FCR.
Overall, these results clearly demonstrate the effectiveness of PR in improving

refresh performance.

Norm. Refresh Time
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Figure 8: Comparing the refresh latency under different workload traces.
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To fully understand the performance improvement in the proposed partial-
refresh scheme, Fig. 9 reports the partial ratio in the partial-refresh scheme,
where the partial ratio is defined as the fraction of page counts that are partial-
refreshed in the total refreshed page counts. As we can see that the refresh
latency reduction compared to FCR is larger when the partial-refreshed page
ratio is higher. This is because with the higher partial-refreshed page ratio,
the more write time in the refresh interval is reduced, thereby improving better
refresh performance. For example, the partial-refreshed page ratio is 24.37% in
rsrch, while PR achieves the maximum refresh latency reduction by 30.95% over

FCR.
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Figure 9: Percentage of partial-refreshed pages in the partial-refresh scheme.

Average response time: To demonstrate partial-refresh impact on the I/0
performance, we also compare the average response time as shown in Fig. 10.
From Fig. 10, PR achieves response time reduction by 21.39% when compared
with FCR. The average response time is affected by both the read response
time (or called the read latency) and the write response time (or called the
write/program latency). The performance improvement in PR comes from the
reduced program latency during the partial-refresh stage. Meanwhile, the LDPC
decoding time is also reduced in PR when compared with FCR, thereby read
latency is also reduced. Since EC-Cache has the comparable refresh latency as
that in FCR, it also has the comparable average response time as that in baseline
FCR.

Write latency: To verify that PR does reduce the program latency effectively,

Fig. 11 compares the average write response time (read performance compari-
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Figure 10: The average response time comparison.

son is explained later). From Fig. 11, PR achieves 26.38% average write response
time reduction, compared to FCR. As can be observed, our proposal can success-
fully reduce the write latency, compared to the baseline FCR proposal. This is
because, in each partial-refresh interval, we only program the susceptible data
to new pages, leading to the reduced program latency dramatically. While in
the traditional refresh operation, all the valid data (regardless of susceptible da-

ta or the large percentage of non-susceptible data) should be refreshed to new

pages.
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Figure 11: The average write response time comparison.

4.8. Lifetime Improvement

Lifetime: Fig. 12 compares the the lifetime of flash chip when adopting differ-
ent schemes. On average, PR achieves about 4.64% flash lifetime improvement
over FCR. This is because PR reduces the number of write operations when partial
refreshing the blocks with valid data. The more valid pages in partially refresh-

ing the workload has, the larger the lifetime improvement is. Since all valid
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pages in partial refreshing are rewriting in the separate combination blocks, PR

shows slightly better lifetime improvement than FCR.

Lifetime(days)

Figure 12: Comparing flash chip lifetime.

Write amplification: Write amplification is another factor that impacts the
lifetime of flash chip. With the larger write amplification factor, the lifetime of
flash chip is shorter. Fig. 13 shows the effects on write amplification comparing
among FCR, EC-Cache and PR. On average, PR reduces the average write am-
plification by 3.80% over FCR. PR achieves the largest reduction, i.e., 6.40% in
web, and the smallest reduction, i.e., 1.89% in srcl. On the one hand, since PR
reduces the amount of data moved drastically, the number of writes is largely
reduced. On the other hand, since the fewer write counts on flash chips, it tends
to trigger GC with lower frequency. Therefore, the number of GC-induced page

copying is also reduced, and the write amplification is further reduced in PR.
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Figure 13: Write amplification for each benchmark.

Erase counts: We next evaluate the number of erase operations over all the
workloads when adopting different schemes. Flash memory manufacturers spec-

ify a fixed of P/E cycle as an endurance limit. If one scheme consumes more
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erase counts after runtime, the remaining lifetime in the flash-based device is
shorter. As shown in Fig. 14, PR reduces the number of erase operations by
5.42%. EC-Cache has the comparable erase count quality as that in FCR, be-
cause it only improves the read performance for the frequently read data. In the
partial refresh period of the PR scheme, all the preceding valid data content are

still valid, erase operation is not triggered, therefore the erase count is reduced.
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Figure 14: The number of erase comparison.

4.4. Read Overhead Analysis

At last, we studied the overhead of PR. Although PR technique shows its bet-

ter performance and lifetime improvement than the traditional refresh method,
it introduces one main overhead: additional read counts due to the pread com-
mand, which might reduce the read performance.
Read latency: We report the average read response time comparison in Fig.
15. Compared with FCR, the read overhead in PR is low, i.e. 6.68% on average.
The comparable read performance comes from the data hotness identify strat-
egy is also implemented in PR, the frequently-read data pages in the selected
refresh block will not invoke the partial-refresh design, which prevents introduc-
ing severe read performance degradation. Compared with the traditional FCR,
EC-Cache achieves significant read performance improvement. This is because
EC-Cache is used to optimize the read operation for the data that are frequently
read.

To fully understand the read performance degradation in the proposed partial-

refresh scheme, Fig. 16 reports the percentage of the pread operations in the
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Figure 15: The average read response time comparison.

partial-refresh scheme. By comparing the results in Fig. 15 and Fig. 16, we
observed that when the percentage of the pread operations is higher, then the
read latency increment compared to FCR is larger. For example, for usr the
pread ratio is 6.01% in PR, while compared to FCR, PR achieves the maximum
read latency increment by 11.10%. This is because the more pread operations

tend to have larger queuing latency, which increases the average read response

time.
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Figure 16: Percentage of the pread operations in the partial-refresh scheme.

5. Limitations and Discussions

In this section, we now summarize the limitations of the proposed partial-
refresh scheme and explore some directions for the future work. First, partial-
refresh depends on LDPC, hence partial-refresh-aware SSDs should adopt LDPC
as the default ECC scheme. Fortunately, modern SSD products widely deploy
the powerful LDPC to improve the reliability of SSDs [20, 33]. Second, the en-

hanced mapping table in the partial-refresh-aware SSDs introduce extra storage
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cost, i.e. consuming more DRAM capacity. As described previously, we can
further leverage on-demand map loading or hybrid mapping schemes to reduce
the mapping table size. Finally, partial-refresh introduces the additional read
counts due to the pread command (as evaluated in 4.4), which requires future
work as below.

In our current work, we implemented a read hotness identification strategy,
and only when one data page is identified as read cold, we invoked the proposed
partial-refresh design. If the read-hot data is misidentified as the read-cold
data, these partial-refreshed data pages can be promoted to the traditional
data pages, which can be improved for better read performance. Also, we can
leverage the current increased capacity of DRAM in the modern SSDs [34] to
selectively cache some partial-refreshed or combination pages, improving better

read performance. We leave the effective design for future work.

6. Related Work

Our work leverages LDPC detectability to check out vulnerable bits and the
proposed refresh minimization scheme is designed to provide significant gains
in flash performance and lifetime. Our work is inspired and motivated by many
related works.

Big block related proposals. With the recent 3D NAND technical innova-
tions, the capacity of each 3D flash block has been significantly increased which
causes a serious performance degradation at the storage system level. Many pri-
or works focus on this “big block” problem and show that it is much more severe
in 3D flash compared to 2D flash. Partial-erase or sub-block erase operation for
3D NAND flash has been proposed in [14, 35] to boost system performance.
The partial GC mechanisms [27, 36] conducted in the context of planar NAND
flash are proposed to partition GC into multiple operation partitions in order to
avoid channel resource conflicts and reduce GC-induced latency. This motivates
us to investigate the deteriorated refresh-induced latency and lifetime reduction

in 3D NAND flash-based storage system, and we develop a new fine-grained
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partial-refresh mechanism to address the urgent refresh issue in the 3D NAND
flash memory.

Refresh related proposals. Many prior works have focused on flash refresh
operation optimization. Some researches [10, 11, 12, 9] reduce the refresh fre-
quency according to different specific metrics, e.g. temperature, data writing
frequency, improving the lifetime of the flash memory storage. Meanwhile, some
researches reduce the refresh operation time at each refresh interval. Cai et al.
[8] optimized the refresh process itself by selectively re-programming data in-
place, which reduces the traditional remapping-based refresh induced latency.
However, recharging a 3D flash page is unsubstantial since a programmed 3D
flash page is subject to more adjacent disturb errors. Unlike previous works, we
based on the early retention loss phenomenon in 3D flash, and proposed a more
fine-grained lightweight data refresh mechanism to reduce refresh cost.
Exploiting LDPC detectability. Recently, Liu et al. proposed EC-Cache[32],
a read optimization that caches the positions and valid values of errors detected
with the assist of LDPC. EC-Cache records the detected error bits which have
errors, however, we record susceptible bits that include both detected error bits
and these bits that are going to be wrong. With these susceptible bits, partial-
refresh exploits the susceptible cells vulnerabilities in refreshing for performance
and lifetime improvement.

Other performance and lifetime optimization proposals in CPU sub-
systems. Considerable research achievements have been conducted to improve
performance and/or lifetime in CPU subsystems. Prior works proposed many
different scheduling algorithms in CPU subsystems to improve the reliability
for modern MPSoC systems [37, 38, 39, 40], and enhance the high-performance
MPSoC systems [41, 42]. These proposals, however, were designed for CPU
subsystems, and they addressed specific issues e.g., resources scheduling, task
scheduling. Flash memory, however, is quite different from CPU, and it is widely
adopted in the modern secondary storage subsystems as a storage device. Since
flash memory require refresh operations to guarantee long-term data integrity,

in this paper we designed a novel refresh minimization scheme to improve the
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I/0O performance and extends the lifetime of flash memory.

7. Conclusion

This work proposed partial-refresh (PR), a novel refresh minimization scheme
designed for 3D flash memory in cyber-physical systems. By leveraging LDPC
detectability to check out bits that are more vulnerable to errors, a partial-
refresh operation is implemented to copy these susceptible bits to new pages. A
partial-read operation is implemented to handle the read requests that access
the partial-refreshed data, differently from normal read requests. Furthermore,
an efficient implementation of partial-aware garbage collection approach is pre-
sented. Experimental results show that, a PR-aware FTL improves the refresh

performance by 28.2% and extends the lifetime of 3D flash by 4.6%.
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