
Leveraging Partial-Refresh for Performance and
Lifetime Improvement of 3D NAND Flash Memory in

Cyber-Physical Systems

Jinhua Cuia,∗, Youtao Zhangb, Liang Shic, Chun Jason Xued, Jun Yangb,
Weiguang Liua, Laurence T. Yanga,e

aHuazhong University of Science and Technology
bUniversity of Pittsburgh

cEast China Normal University
dCity University of Hong Kong
eSt. Francis Xavier University

Abstract

Three-dimensional (3D) NAND flash memory-based solid state drives (SSDs)

have been widely adopted in cyber-physical systems, due to its performance

benefits and scalability. Although 3D flash rapidly increases storage capacity

by stacking flash cells in the vertical direction, it faces severe retention errors

as well. Periodic refreshing, while effectively mitigating the retention issues,

seriously degrades the storage performance and the endurance of 3D NAND

flash memory.

To address the above challenge, we propose partial-refresh (PR), a novel

lightweight data refresh scheme for 3D NAND flash memory in cyber-physical

systems. PR leverages LDPC detectability to identify cells that are more vul-

nerable to errors. By moving these susceptible bits to new pages, we avoid

copying an entire page, reduce the refresh cost, and prolong the SSD lifetime.

Our experimental results show that, on average, a PR-aware flash memory im-

proves refresh performance by 28.2% and extends the SSD lifetime by 4.6% over

the state-of-the-art while preserving the high data reliability.

Keywords: 3D flash memory, retention error, refresh, LDPC, write

∗Corresponding author
Email address: cjhnicole@gmail.com (Jinhua Cui)

Preprint submitted to Journal of Systems Architecture October 23, 2019

© 2019 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1383762119304928
Manuscript_c27ae636851bd9b52b95110ad4109d00

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1383762119304928

amplification

2010 MSC: 68-02, 68M01

1. Introduction

In the cyber-physical systems (CPS), massive data processing sets higher

demands on the I/O performance and reliability of modern applications [1, 2,

3, 4]. The three-dimensional (3D) NAND flash memory based solid state drives

(SSDs) have gained tremendous popularity in CPS, since 3D flash offers higher

speed performance and withstands greater shock than traditional hard disk

drives (HDDs). However, due to the multidimensional pathes of charge leakage

through vertical oxides and lateral spacers in 3D flash, charge loss is much more

severe than that in planar flash, resulting in early retention loss, a phenomenon

that was recently observed by Luo et al. [5]. That is, the number of retention

errors arises dramatically soon after page programming and then stabilizes for

a relative long duration. Data retention error has emerged as one of the major

obstacles in manufacturing high storage capacity and high reliability 3D flash

memory [6].

To meet the high reliability demand, flash pages widely adopt error cor-

rection code (ECC), e.g., low-density parity-check (LDPC), to correct up to k

corrupted bits per page. Adopting a stronger ECC increases the error detection

and correction capability and thus prolongs the SSD lifetime. However, in-

creasing parity bits introduces higher implementation overhead while achieving

diminishing lifetime improvement [7, 8].

A simple yet effective approach for mitigating retention errors is to refresh

flash pages to retain data integrity, i.e., it may periodically read the data out,

correct possible errors, and then remap the stored data or reprogram the cell

in-place before the retention induced errors exceed the ECC error correction

capability [7, 8, 9]. However, refresh faces several drawbacks: (1) The refresh

requests often originate from the flash translation layer (FTL) so that they

may block the normal I/O requests and prevent the SSD from achieving high

2

performance guarantee for modern applications [7]. (2) The refresh-induced

writes consume more program/erase (P/E) cycles of NAND flash memory, and

thus degrade the corresponding lifetime of the NAND flash based SSDs.

The existing studies on the flash refresh method can be categorized into two

types. One type is to minimize the refresh frequency. Seif et al. [10] reduced

refresh frequency by accommodating the temperature impact. Luo et al. [11]

separated the hot and cold data so that the refresh frequency of hot data can

be reduced. Di et al. [12] minimized the refresh frequency by prioritizing the

allocation of high endurance blocks to the data with long retention demand.

Liu et al. [9] relaxed the retention of data with shorter retention requirements,

and thus reduced the refresh frequency. These studies improved the SSD life-

time, but the refresh operation at each refresh interval remains costly. The

other type is to optimize the refresh process. Cai et al. [8] proposed in-place

reprogramming of cells that have more charge to recover the retention-induced

leaked electrons. However, recharging a 3D flash page is problematic as it tends

to disturb more neighboring pages.

To address the above challenge, we propose partial-refresh (PR), a nov-

el lightweight data refresh scheme for 3D flash memory in dependable cyber-

physical systems, that addresses the deteriorated data retention challenge by

leveraging LDPC detectability to identify susceptible cells that are more vulner-

able to errors. By only moving these susceptible bits to new pages, a PR-aware

FTL avoids copying the whole page, reduces the refresh cost and prolongs the

flash memory lifetime. Our experimental results show that, on average, the PR-

aware FTL improves refresh performance by 28.2% and extends the SSD lifetime

by 4.6% over the state-of-the-art while preserving the high data reliability.

In the remaining of this refresh optimization paper, Section 2 reviews the

background of refresh in 3D flash and the motivation of this work, and then

Section 3 elaborates our proposed partial-refresh approach for 3D NAND flash

memory based storage system. Section 4 lists the experimental settings and

analyzes the results afterwards. We summarize the related work follow in Section

5. We next present limitations in Section 6. At last, we conclude this article in

3

Section 7.

2. Background and Motivation

2.1. Refresh in 3D Flash Memory

Instead of shrinking flash cell size continuously in conventional planar flash

memory, 3D NAND flash memory achieves density improvement and lithography

cost reduction through die stacking [6]. However, data retention errors have

emerged as the severe reliability issue for high efficiency 3D NAND flash memory.

Due to the multidimensional pathes of charge leakage through vertical oxides

and lateral spacers in 3D flash, charge loss is much more serious than that of

planar flash memory. One simple and efficient way to guarantee long-term data

integrity is to frequently trigger the data refresh method, which periodically

reads data out, corrects, and then remaps or in-place reprograms the stored

data to avoid data lost [7, 8, 9]. Although guaranteeing flash data integrity, the

data refresh method seriously degrades the I/O performance and the endurance

of flash based storage system, especially in 3D flash memory. The deteriorated

refresh cost comes from two sources:

1) Longer refresh latency at each refresh interval. Since 3D flash memo-

ry achieves density improvement through die stacking in the vertical direction,

the page count in 3D flash block is greater than planar flash block. This phe-

nomenon, referred as the “big block” problem [13, 14], is widely observed in 3D

flash memory. For example, Intel presented the 3D flash chip with 6000+ pages

per block [15], while planar flash chips usually have 64 or 256 pages per block.

We evaluated flash block size effect on the refresh performance with the planar

and 3D flash. Fig. 1 presents the comparison of the refresh latency among the

planar and 3D flash under different block sizes. The first column of each trace

represents a planar flash memory with 256KB block size, and other two columns

represent 3D flash chips with different block sizes, i.e. 16MB and 64MB, respec-

tively. As shown in Fig. 1, the refresh cost is proportional to the flash block

size. This is because the overhead to perform the refresh method mainly comes

4

Table 1: Refresh frequency under different life stages in 3D flash memory chip

P/E cycles (K) refresh frequency

0-1 year

1-2 month

2-4 week

from live page copying. And in 3D flash memory the size of one block increases

largely, therefore 3D flash blocks are more likely to contain more valid data,

which takes more time to perform the time-consuming refresh operation.

m d s r s r c h s r c 1 s r c 2 s t g t s u s r w d e v w e b A V G
0 . 0
0 . 5
1 . 0
1 . 5

Re
fre

sh
 La

ten
cy

 2 D f l a s h 3 D f l a s h / 1 6 M B 3 D f l a s h / 6 4 M B

Figure 1: The refresh latency comparison among planar and 3D flash under different block

sizes.

2) Increased refresh frequency. Due to the multidimensional pathes of charge

leakage through vertical oxides and lateral spacers in 3D flash, charge loss is

much more serious than that of planar flash memory. Therefore, the refresh

method in 3D flash memory is triggered more frequently. Such frequent refresh

will be the dominant source of 3D flash memory write amplification (WA). The

increased refresh frequency leads to the deteriorated refresh cost in 3D flash

memory. Table 1 collected from [16], shows the supported retention time of 3D

NAND flash memory chip in different stages. When the 3D flash memory chip

has been erased with 4K P/E cycles, the retention time will decrease to days.

Therefore, the frequent and time-consumed refresh is the serious challenge in

3D NAND flash-based storage system.

While preceding discussion shows that refresh seriously degrades the I/O

performance and the endurance of 3D flash memory, a limitation of the existing

5

work focus on addressing this urgent 3D refresh issue. To reduce the refresh

overhead, redesigning a novel lightweight data refresh scheme for 3D flash is a

better choice.

2.2. Motivation

Fig. 2 illustrates the threshold voltage distribution of two-bit-per-cell MLC

flash, where the different amount of charge is used to differentiate the four

states, i.e., ER (or erased, 11), P1 (01), P2 (00), and P3 (10) state, respectively.

Each state can further divide into two regions, including the trusted region (TR)

and the dominating overlap region (DOR). DOR is sensitive to different types

of circuit-level noises, i.e. program disturb noise [17], read disturb noise [18],

retention noise [18], and P/E cycling noise [19]. The data in DOR maybe shift

to the adjacent state, resulting in unintentionally changing the data stored in

one page. These error-prone cells in DOR are also referred to as susceptible

cells, while cells in TR are called as non-susceptible cells.

 Vth

P
ro

b
a
b

ili
ty

 d
e
n
s
ity

 f
u
n
c
ti
o
n

ER

State

(11)

P1

State

(01)

P2

State

(00)

P3

State

(10)

Dominating

overlap region

Trusted region

 V1 V5 V2 ...

Figure 2: Threshold voltage distribution of MLC flash.

When refresh is invoked at each refresh interval, each valid page content is

read out individually. All the bits of a valid page will be read into the flash

controller, and error bits will be corrected by the ECC engine, and then all the

bits will be redirected into a free flash page. As shown in Fig. 2, the probability

of a non-susceptible cell occurring is far beyond a susceptible cell. Assume the

data page size of 3D MLC flash is 16KB, and the total number of new error

bits appears to be 394 after 1-week retention loss, while the number of the new

error bits will be 300 after 2-week retention loss [16]. When refresh happens at

6

the first week, all the 131072 bits in this page will be read out, and 394 error

bits (from 600 susceptible bits) are corrected in the SSD controller, and then all

bits are programmed to a new place. We can see other 130678 bits are read out

and then copied back without modifying, which contributes to the most part

of the refresh latency. If refreshing only occurs to susceptible cells, the refresh

cost will be tremendously reduced, and the endurance of flash memory can be

correspondingly extended.

If we want to refresh susceptible cells to address this urgent refresh issue in

the 3D NAND flash based storage system, three important aspects should be

taken into consideration:

1) How to identify the susceptible cells? Each flash page consists of a group

of flash cells, and some cells are not sensitive to retention errors, whereas others

are error-prone. An appropriate strategy should be designed to distinguish these

two type cells, i.e., how to find the borders of the dominating overlap region

(e.g., V1 and V5) in Fig. 2?

2) How to refresh these susceptible cells? After identifying susceptible cells,

we should determine where to store these susceptible data, and how to organize

them in the new place. Furthermore, the mapping table controlled by FTL

should be modified to adapt to the new structure.

3) How to read out the full data after refreshing susceptible cells? After

refreshing susceptible data, the raw data is composed of two part, the first part

is in the old refreshed block, and the second part is in the new page. How to

access this data when we want to read them? In addition, how to deal with the

increased read cost after refreshing susceptible cells?

3. Proposed Design Solution

To address these aforementioned issues, a novel partial-refresh scheme is

proposed in the 3D NAND flash based storage system. We first outline the

system architecture of the proposed partial-refresh scheme and then elaborate

its major components. At last, we present the overhead analysis.

7

3.1. Overview

Partial Read

Host System

Host Interface Logic

Flash Memory Interface Logic

Flash Translation Layer

Susceptible
Cell

Detector

Partial
Data

Refresh

Partial-
aware
GC

NAND Flash Memories

H
os

t
N

A
N

D
 f

la
sh

-b
as

ed
 S

S
D

SSD Controller

Normal W/R/E

Figure 3: An overview of the partial-refresh scheme.

Fig. 3 presents an overview of the partial-refresh enabled flash-based SSD

organization, where partial-refresh is embedded in the SSD controller at the

SSD side. The SSD controller is responsible for processing the I/O requests

from the host side and managing the address space inside the SSD, maximizing

the performance and lifetime, and its major firmware is the flash translation

layer. Atop of the SSD controller, the host interface logic as shown in Fig. 3

provides the interface-level compatibility with HDDs, whereas beneath the SSD

controller, the flash memory interface logic issues operations (read/write/erase)

to the underlying flash memories. The partial-refresh scheme exploits the sus-

ceptible cells vulnerabilities in refreshing for both performance and lifetime im-

provement, and it is composed of these four components: (1) susceptible cell

detector (SCD), (2) partial data refresh (PDR), (3) partial-aware garbage col-

lection (PGC), and (4) partial read command. SCD identifies cell strength

based on the threshold voltage distribution. PDR reduces refresh-induced write

latency by exploiting non-susceptible cells retention time. PGC promotes the

partial-refreshed pages to the traditional pages, reducing the longer read la-

8

tency of partial-refreshed pages than that of normal pages. To implement the

practical partial-refresh scheme, we also implemented the special command, the

partial read operation (pread) to access the partial-refreshed data pages. Note

that the proposed partial-refresh scheme is primarily designed for 3D flash to

address the deteriorated refresh cost, but it can also be used for conventional

planar flash memory.

Next, we elaborate the major components in the partial-refresh scheme of

3D NAND flash-based storage system.

3.2. Susceptible Cell Detector

The design goal of susceptible cell detector (SCD) is to detect susceptible

cells. When decoding data into the SSD controller, SCD leverages LDPC de-

tectability to identify cells that are more vulnerable to the different types of

errors.

In the process of LDPC decoding data, three steps are needed, which are

memory sensing, data transferring, and LDPC decoding, respectively. In the

read process of current LDPC method [20], it invokes the soft-decision memory

sensing first with one sensing level (between adjacent flash states), and then

transfers the data content to the controller. If the decoding fails, LDPC repeats

the three steps with extra one sensing level until decoding succeeds or fails

with the full-strength sensing levels (e.g., 7 sensing levels). In each sensing

level, a set of preset quantization voltage levels (e.g., V1, V2 and others in

Fig. 2) is applied. The set of quantization voltage levels selected determines

the log-likelihood-ratio (LLR) values in LDPC, which further affects the LDPC

error correction capability. Considerable prior works devoted to optimizing the

selection strategy of quantization voltage for LDPC-coded NAND flash memory

[21, 22, 23]. In our work, SCD focuses on leveraging LDPC detectability to

identify cells that are more vulnerable to the different types of errors, and the

quantization voltage levels are set by the default LDPC code employed in the 3D

NAND flash based storage system. SCD starts directly with the full-strength 7

sensing levels, since the raw bit error rate (RBER) is so high that the refresh

9

Table 2: An example of the soft-decision sensing with different regions

region probability (%) trusted region? overlap region? susceptible?

I 23.97 X

II 2.55 X X

III 22.55 X

IV 2.63 X X

V 22.45 X

VI 2.7 X X

VII 23.15 X
Note: region represents the divided threshold voltage interval with the sensing levels.

operation is triggered to guarantee data integrity, and the conventional iterative

read-retry process is time-consuming.

During the memory sensing stage, the read reference voltage Vref is first set

to the quantization voltage level V1 as illustrated in Fig. 2, and then applying

it to the wordline which contains the data to be read, checking the relationship

between Vref and the voltage of flash cell Vth. If Vref is above Vth, it falls into

the trusted region of ER state, otherwise, we need further sensing. Then the

read reference voltage Vref is further raised to V2, and checking the relationship

between Vth and Vref as shown above. Clearly, with this level-by-level manner,

we can find out whether the voltage of flash cell falls into a trusted region of one

flash state or an overlap region of two adjacent flash states. The flash memory

cell is a susceptible cell only if its threshold voltage belongs to an overlap region,

otherwise, it is a non-susceptible memory cell. After memory sensing, all the

sensed results of one data page will be transferred to the flash controller through

flash-to-controller bus.

During LDPC decoding, the LDPC decoder starts to correct the error bits.

Since the susceptible cells do not necessarily cause the bit errors, LDPC decoder

corrects some of susceptible bits that have gone wrong. Compared with the non-

susceptible cells in the trusted region, the probability of the susceptible cells in

10

the overlap region is very low. According to the region probability of one LDPC

sensing example [21] in Table 2, susceptible cell rate can be nearly 7.88%. Thus,

susceptible cell rate will be higher than the raw bit error rate. But compared

with all cells, susceptible cell rate is still lower.

3.3. Partial Data Refresh

Basic partial data refresh mechanism. To enable the proposed partial-

refresh scheme, there are several important modifications in the implementation

of the refresh command. The partial data refresh (PDR) will periodically remap

susceptible cells in each flash page to a new location, otherwise it accumulates

many retention errors. As shown in Fig. 4, the operational flow of the PDR

scheme is like below: (1) When the flash refresh occurs at each refresh interval,

the SSD’s firmware selects a victim block that needs to be refreshed. (2) After

that, valid pages are read out and corrected all the errors by ECC engine in

the SSD controller. (3) With the assist of SCD, all the susceptible cells are

detected. We store the logical page number (LPN) of each victim page, and the

susceptible data and its offset within the victim data page into a small memory,

named as the virtual shadow memory (VSM), controlled by SSD controller. To

prevent susceptible data loss, we leverage capacitor-backed RAM in SSD [24] as

the VSM. The SSD’s firmware maintains more susceptible cells to merge a new

flash write, such that susceptible cells can be cached durably and mapped to a

better choice. (4) A certain number of susceptible data and its offset in the VSM

forms a virtual cache line, in the purpose of generating a new flash write. The

virtual cache line is a certain amount of data stored in the VSM, and it is exactly

the same size as one flash page, e.g., 16KB. When a flash write occurs, a new free

flash block is selected as a combination block to service susceptible data, and one

virtual cache line in the VSM is sequentially programmed to the free page on

the combination block. Thus, the copied data during the refresh operation, are

extremely reduced. We recommend that PDR selects the combination block from

other idle flash planes (or even other idle flash chips, exploiting chip idleness),

for the purpose of improving the latter partial read (pread) performance.

11

Select block

Read one page Page num ++

is susceptible cell?

is last page? Yes
No

Cell num ++

is last cell?

Yes

No

Error correct

Cache it in the VSM

≥Page size?
Program cache data

Yes
No

Yes

No

Figure 4: Flow diagram of the partial-refresh-aware design.

Adaptive partial data refresh mechanism. In the above basic partial data

refresh mechanism, the fewer refresh-induced programmed data to the SSD,

tends to prolong the SSD lifetime. This is because SSD specifies a fixed of P/E

cycle as an endurance limit, and with the less program counts to flash memory,

the remaining lifetime in the SSD is longer. On the other hand, after refreshing

data pages partially, the combination pages are used to store susceptible data

and its offset, and at the same time, the previous refreshed page is still valid.

Although the percentage of susceptible data is much lower, the basic partial data

refresh mechanism may leave less free pages available for new writes and thus

invoke GC frequently, in the long term. Hence, the main idea of the adaptive

partial-refresh mechanism is to adapt the partial-refresh to the available space

of an SSD. Conservatively, when the available free space drops to a certain level,

e.g., 20% of the SSD, we must disable partial-refresh, and SSD operates normally

with the conventional refresh operation. Only when SSD have sufficient free

storage space, we perform the partial-refresh scheme, affecting GC performance

only slightly.

Data structure in the VSM. In the context of the partial-refresh scheme,

susceptible data are stored in the VSM. Compared with non-susceptible bits,

susceptible bits are extremely sparse. In order to store them efficiently, each

susceptible bit information is composed of the offset address within each code-

word, and the bit value, as shown in Fig. 5. Let N denote the page length, and

12

M is the codeword length. Then for one page, VSM contains no more than
N

M
codeword, and we can achieve log2M+1 bits field for each susceptible bit. To

set a fixed size of the offset address, a redundancy entry of the first bit in each

codeword is employed, e.g. 001 and 000 entry, as illustrated in Fig. 5. Note

that no matter the first bit in each codeword is erroneous or not, we record it in

the VSM, thus offset address length of susceptible bits can be set as the fixed

size, log2M. The 2th bit is stored as 010, where 01 is the offset address value

and 0 is the susceptible bit value corrected by ECC engine. And the 7th bit,

which is also susceptible cell, is stored as 101, because offset address from this

second codeword is 10, and the bit value is still 1.

1 1 0 0 0 1 0page data

(N=128K) 2th 5th

0 1 0 1 0new page 0 0 0 1 0 10

One entry

1

codeword(M=4)

susceptible bit

1th 7th

offset address bit value

Figure 5: Illustration of the susceptible bits storage scheme.

Since a certain amount of susceptible data and its offset in the VSM forms

a virtual cache line to generate a new flash write, the susceptible data of one

victim page may across the virtual cache line in the VSM, generating two or

more flash write operations. To prevent the susceptible data of the victim page

from storing in more than one combination page, we delay these susceptible

data for a while into the next virtual cache line, and choose other susceptible

data where its data page has lower susceptible data rate than that of the victim

page. And towards the end of the virtual cache line, if we can not find the

susceptible data with the appropriate amount of storage space in the VSM, we

fill them with zeros directly.

The partial-refresh aware mapping table. To enable the partial-refresh

scheme, we design an enhanced mapping mechanism. When a new flash write

13

operation is generated, susceptible data and its offset in the virtual cache line

of the VSM are encoded with LDPC codes. FTL then determines the physical

address of this encoded data based on the cached mapping table. In the partial-

refresh scheme, the PPN is still valid, and the susceptible data are programmed

to a new location.

To this end, we maintain a cached primary mapping table and a cached sec-

ondary mapping table, as shown in Fig. 6. If data is without the partial-refresh

operation, the cached primary mapping table maps an LPN to a PPN, as the

traditional mapping strategy (1-to-1 mapping). If data is a partial-refreshed

data, the cached primary mapping table additionally maps a PPN to an addi-

tional physical page number (APN), with the help of the LPN information in the

VSM (1-to-2 mapping). And each entry is indexed by APN and has two fields,

{APN, offset}. The offset tracks the offset address within each combination

page. Note that, if we continuously perform the partial-refresh operation on the

partial-refreshed data, the same LPN will be written to more than 2 physical

pages. Instead of developing some expensive methods to prevent 1-to-n address

mapping (n > 3), we take a simple method which flips the refresh type. That

is, if one block has been partial-refreshed or was the combination block, at the

refresh interval it would service a conventional refresh command.

LPN

Cached Primary

Mapping Table

PPN

APN

... ...
1024 202

DRAM

1 200
2 2

4 201
3 3

Flash

200 512
PPN

Cached Secondary

Mapping Table

201 512
202 512

0

1

2

n

...

3

Figure 6: Illustration of the enhanced mapping table.

14

We add the cached secondary mapping table in the mapping table, which

increases DRAM capacity for maintaining larger mapping table, and the the-

oretical and empirical research demonstrates that the effects of large mapping

table on storage performance are negative. But in the practical design of SS-

D firmware, on-demand map loading [25] or hybrid mapping [26] schemes are

widely used to reduce the mapping table size. Therefore, the entry count in the

mapping table is not going to be large, and the storage overhead introduced in

the mapping table is negligible.

3.4. Partial-read Operation

The pread command. The partial-refreshed data is composed of two part-

s: the original old data page in the partial-refreshed block, and the remapped

susceptible data in the combination page. Partial-refresh-supporting SSD must

handle this read command differently from normal reads, thereby, we need to

implement a novel special read command. Existing stroage interface of SSD,

such as SATA or SAS [27], supports the user-defined command to further opti-

mize the storage system. In this work, we implemented the pread operation by

utilizing the legacy read command. As shown in Fig. 7, the special pread com-

mand is composed of two sub-reads, which is enabled by utilizing the normal

page read command to access the original old data page in the partial-refreshed

block (first sub-read), and the partial-page read command to access the suscep-

tible data from the combination block (second sub-read). The partial-page read

command designed by the previous work [28], is used to read only part of a page,

not an entire page. Both the page read operation and partial-page read opera-

tion are combined into one pread command. Such pread command sequence is

practical, because some existing advance commands, e.g., multi-plane read op-

erations, are similarly issued. The access finish time of pread is determined by

the access finish time of the slowest sub-read, even if another sub-read can fin-

ish early. After accessing data from two locations, susceptible data is integrated

into the raw data content. It checks the offset value in the secondary mapping

table to acquire the needed susceptible data in the combination page. After

15

that, we check the offset value in each susceptible entry to substitute raw old

data with the susceptible bit value. Then data are processed by the decoding

engine, and the pread operation completes. Note that the pread command can

be implemented in the storage interface of SSD that supports the user-defined

command, thus, no hardware changes are required.

command start address address address end

page read(baseline)

partial-page read

RSV: reserved PPI: Partial-page index

pread

page read partial-page read

1 byte 1 byte24 bits

RSV page index block index

PPI page index block index

start command address end command

Figure 7: The pread command format.

Separating hot/cold data. Since reading partial-refreshed data tends to in-

troduce the longer read latency than reading traditional data, the data hotness

identification strategy is implemented to enhance refresh performance. We cat-

egorize data hotness according to their read ratio after programming, i.e., data

that most statistical information is read, is treated as read-hot one [29]. Note

that the hotness identification technique is orthogonal to our proposed designs

and can be replaced with other state-of-the-art hotness metrics. During each

refresh interval, the valid pages are read out, only if one page is regarded as read-

hot, it invokes the traditional refresh strategy. Otherwise, the proposed partial-

refresh design invokes to exploit the non-susceptible cells. Therefore, with the

data hotness information, we can prevent partial-refreshing the frequently-read

data pages, which will introduce severe performance degradation.

3.5. Partial-aware Garbage Collection

Since above partial-refresh scheme contributes to different page types, e.g.,

normal or partial-refreshed pages, a new partial-aware GC strategy is proposed

to enhance the default greedy GC:

16

To select a victim block for GC, we consider both the number of valid pages

and their refresh type. We select the block that has fewer valid partial-refreshed

pages as the victim block with priority. This is because, if copying the same num-

ber of valid pages in two types of flash blocks, the number of partial-refreshed

pages is smaller, then the GC latency is shorter. When page copying, we should

also consider their refresh type. For the victim block with valid partial-refreshed

pages, the valid data come from two different positions, which are both the cur-

rent victim block and another combination block. These partial-refreshed pages

still accumulate retention errors after partial refreshing. To prevent these pages

from suffering too many errors, we promote these valid partial-refreshed pages

to traditional pages using the pread operation, and set the partial susceptible

data in the corresponding combination page to invalid. Once all the suscepti-

ble bits in one combination page are invalid, the state of the combination page

becomes invalid.

3.6. Overhead Analysis

Partial-refresh, while improving flash-based storage system performance and

prolonging the endurance of flash chip, introduces storage overhead and firmware

overhead.

1) Storage Overhead. Partial-refresh needs following extra storage space to

save the metadata:

• Partial-refresh keeps a VSM in memory as shown in Section 3.3 to tem-

porarily store some susceptible data, in the purpose of generating a new

flash write. For partially refreshing each victim page, we store its LPN

and all the susceptible data in the VSM. The 32-bit LPN is used for up-

dating relevant information in the enhanced mapping table, where 32-bit

page address is sufficiently large for a 128GB SSD with 16KB 3D flash

pages. And each susceptible data in the VSM, i.e. a susceptible entry, is

composed of a log2M -bit offset address within each ECC codeword and

a 1-bit value, when M denotes the ECC codeword length. If n is the

17

number of susceptible data, the maximum storage overhead for storing

the affected susceptible data in VSM should be n × (32+log2M +1)-bit.

But in practice, in the purpose of generating a new flash write, the size of

all cached susceptible entries in the VSM should be larger than one page

size. Therefore, we conservatively set the size of the VSM to several page

sizes, e.g. 4×16KB.

• Partial-refresh keeps an enhanced mapping table, as shown in Fig. 6, to

identify the partial-refreshed data in the internal DRAM of an SSD. In the

enhanced mapping table, we first need a 1-bit flag to differentiate partial-

refreshed data and non-partial-refreshed data. Then, in the 32-bit page

address, we need a 32-bit flag in the secondary mapping table to indicate

the APN address, which is the same size as the PPN. And, we also need a

20-bit flag to track the offset address within each combination page, which

is sufficiently large for a 16KB page. Since in the practical design of the

enhanced mapping table, we leverage the on-demand map loading policy

to reduce the mapping table, and the storage overhead introduced in the

enhanced mapping table is negligible.

2) Firmware Overhead. We need the processes involved in the susceptible

cell detector, partial data refresh and partial-aware garbage collection. The

overhead of these simple processes is quite negligible.

4. Analysis and Experiments

4.1. Methodology

We evaluate partial-refresh on a trace-driven SSD simulator, SSDsim [30].

We simulate a 128GB capacity 32-layer 3D NAND flash-based SSD, and its key

parameters are listed in Table 3. The simulated 3D flash has four channels, and

each of which consists of one flash chip. And in each flash chip, there are total

2192 blocks, where each block is composed of 1024 16KB pages. The latency for

read, program and erase operation is 75 µs, 1,050 µs, and 10,000 µs, respectively.

18

Table 3: Key parameters of 3D flash configuration

Parameter Value Parameter Value

capacity 128GB page size 16KB

channel 4 OP ratio 7%

chip per channel 1 WL Dynamic

die per chip 1 DA scheme CWDP

plane per die 4 sensing time 75 µs

block per plane 548 program time 1050 µs

page per block 1024 erase time 10000 µs

P/E 4K GC threshold 10%

The maximum P/E cycle count is specified at 4K for the simulated 3D NAND

flash based SSD.

Partial-refresh is simulated by mapping several susceptible data from dif-

ferent logical pages to a physical page that has to be read and written. To

implement the partial-refresh scheme, the average susceptible ratio (the frac-

tion of bytes that are susceptible in one page) is set to be 7.88% [21]. And we

disable partial-refresh when the ratio of available free blocks to total blocks in

the simulated SSD drops to 20%.

The workloads. We using 9 real-world enterprise server traces at Microsoft

Research Cambridge to evaluate the proposed scheme [31]. In order to trig-

ger refresh commands, we perform a linear extrapolation to shorten the data

retention time according to Table 1, since the tracing duration is about one

week.

Schemes for comparison. In the subsequent experiments, the following

schemes are implemented:

• FCR. The most recent work FCR that optimizes refresh operation [8]. We

adopt this scheme as the baseline scheme. All the experimental results

were normalized to FCR.

• EC-Cache. This is a read optimization scheme that is close to our de-

19

sign, which caches the positions and valid values of detected errors with

the assist of LDPC [32]. Both EC-Cache and our proposed partial-refresh

scheme exploit the LDPC powerful detectability for performance improve-

ment.

• PR. This is the proposed partial-refresh scheme for both performance and

lifetime improvement of 3D flash-based SSDs, by leveraging LDPC de-

tectability to identify cells that are more vulnerable to errors.

4.2. Performance Improvement

Refresh latency: Fig. 8 compares the refresh latency for different schemes.

From the Fig. 8, PR significantly reduces the average refresh latency by 28.21%

over FCR. The refresh performance improvement comes from: (1) During each

partial-refresh interval, SCD starts sensing data with full-strength memory sens-

ing levels. But conventional the read process invokes the memory sensing with

one sensing level, and higher RBER leads to more iterative read-retry process.

Therefore, the read response time in the partial-refresh is reduced; (2) Due to

tremendously reduced write latency in each partial-refresh interval, the write

response time is reduced. In summary, PR achieves the largest write latency

reduction, i.e., 30.95% in rsrch, and the smallest reduction, i.e., 24.71% in src2.

Note that, since EC-Cache only optimize the read operation for the data that

are frequently read, it has the comparable refresh latency quality as that in FCR.

Overall, these results clearly demonstrate the effectiveness of PR in improving

refresh performance.

m d s r s r c h s r c 1 s r c 2 s t g t s u s r w d e v w e b A V G
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

. R
efr

es
h T

im
e

 F C R E C - C a c h e P R

Figure 8: Comparing the refresh latency under different workload traces.

20

To fully understand the performance improvement in the proposed partial-

refresh scheme, Fig. 9 reports the partial ratio in the partial-refresh scheme,

where the partial ratio is defined as the fraction of page counts that are partial-

refreshed in the total refreshed page counts. As we can see that the refresh

latency reduction compared to FCR is larger when the partial-refreshed page

ratio is higher. This is because with the higher partial-refreshed page ratio,

the more write time in the refresh interval is reduced, thereby improving better

refresh performance. For example, the partial-refreshed page ratio is 24.37% in

rsrch, while PR achieves the maximum refresh latency reduction by 30.95% over

FCR.

m d s r s r c h s r c 1 s r c 2 s t g t s u s r w d e v w e b A V G
0
5
1 0
1 5
2 0
2 5

Pa
rtia

l R
ati

o(%
)

 P R

Figure 9: Percentage of partial-refreshed pages in the partial-refresh scheme.

Average response time: To demonstrate partial-refresh impact on the I/O

performance, we also compare the average response time as shown in Fig. 10.

From Fig. 10, PR achieves response time reduction by 21.39% when compared

with FCR. The average response time is affected by both the read response

time (or called the read latency) and the write response time (or called the

write/program latency). The performance improvement in PR comes from the

reduced program latency during the partial-refresh stage. Meanwhile, the LDPC

decoding time is also reduced in PR when compared with FCR, thereby read

latency is also reduced. Since EC-Cache has the comparable refresh latency as

that in FCR, it also has the comparable average response time as that in baseline

FCR.

Write latency: To verify that PR does reduce the program latency effectively,

Fig. 11 compares the average write response time (read performance compari-

21

m d s r s r c h s r c 1 s r c 2 s t g t s u s r w d e v w e b A V G
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

. A
vg

. L
ate

nc
y

 F C R E C - C a c h e P R

Figure 10: The average response time comparison.

son is explained later). From Fig. 11, PR achieves 26.38% average write response

time reduction, compared to FCR. As can be observed, our proposal can success-

fully reduce the write latency, compared to the baseline FCR proposal. This is

because, in each partial-refresh interval, we only program the susceptible data

to new pages, leading to the reduced program latency dramatically. While in

the traditional refresh operation, all the valid data (regardless of susceptible da-

ta or the large percentage of non-susceptible data) should be refreshed to new

pages.

m d s r s r c h s r c 1 s r c 2 s t g t s u s r w d e v w e b A V G
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

. W
rite

 La
ten

cy

 F C R E C - C a c h e P R

Figure 11: The average write response time comparison.

4.3. Lifetime Improvement

Lifetime: Fig. 12 compares the the lifetime of flash chip when adopting differ-

ent schemes. On average, PR achieves about 4.64% flash lifetime improvement

over FCR. This is because PR reduces the number of write operations when partial

refreshing the blocks with valid data. The more valid pages in partially refresh-

ing the workload has, the larger the lifetime improvement is. Since all valid

22

pages in partial refreshing are rewriting in the separate combination blocks, PR

shows slightly better lifetime improvement than FCR.

m d s r s r c h s r c 1 s r c 2 s t g t s u s r w d e v w e b A V G
0 K2 K
4 K6 K
8 K1 0 K
1 2 K

Lif
eti
me
(da
ys
) F C R E C - C a c h e P R

Figure 12: Comparing flash chip lifetime.

Write amplification: Write amplification is another factor that impacts the

lifetime of flash chip. With the larger write amplification factor, the lifetime of

flash chip is shorter. Fig. 13 shows the effects on write amplification comparing

among FCR, EC-Cache and PR. On average, PR reduces the average write am-

plification by 3.80% over FCR. PR achieves the largest reduction, i.e., 6.40% in

web, and the smallest reduction, i.e., 1.89% in src1. On the one hand, since PR

reduces the amount of data moved drastically, the number of writes is largely

reduced. On the other hand, since the fewer write counts on flash chips, it tends

to trigger GC with lower frequency. Therefore, the number of GC-induced page

copying is also reduced, and the write amplification is further reduced in PR.

m d s r s r c h s r c 1 s r c 2 s t g t s u s r w d e v w e b A V G
1 . 0

1 . 5

2 . 0

Wr
ite

 Am
plif

ica
tio

n

 F C R E C - C a c h e P R

4 . 3 9 4 . 3 1

Figure 13: Write amplification for each benchmark.

Erase counts: We next evaluate the number of erase operations over all the

workloads when adopting different schemes. Flash memory manufacturers spec-

ify a fixed of P/E cycle as an endurance limit. If one scheme consumes more

23

erase counts after runtime, the remaining lifetime in the flash-based device is

shorter. As shown in Fig. 14, PR reduces the number of erase operations by

5.42%. EC-Cache has the comparable erase count quality as that in FCR, be-

cause it only improves the read performance for the frequently read data. In the

partial refresh period of the PR scheme, all the preceding valid data content are

still valid, erase operation is not triggered, therefore the erase count is reduced.

m d s r s r c h s r c 1 s r c 2 s t g t s u s r w d e v w e b A V G
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

. E
ras

e C
ou

nt

 F C R E C - C a c h e P R

Figure 14: The number of erase comparison.

4.4. Read Overhead Analysis

At last, we studied the overhead of PR. Although PR technique shows its bet-

ter performance and lifetime improvement than the traditional refresh method,

it introduces one main overhead: additional read counts due to the pread com-

mand, which might reduce the read performance.

Read latency: We report the average read response time comparison in Fig.

15. Compared with FCR, the read overhead in PR is low, i.e. 6.68% on average.

The comparable read performance comes from the data hotness identify strat-

egy is also implemented in PR, the frequently-read data pages in the selected

refresh block will not invoke the partial-refresh design, which prevents introduc-

ing severe read performance degradation. Compared with the traditional FCR,

EC-Cache achieves significant read performance improvement. This is because

EC-Cache is used to optimize the read operation for the data that are frequently

read.

To fully understand the read performance degradation in the proposed partial-

refresh scheme, Fig. 16 reports the percentage of the pread operations in the

24

m d s r s r c h s r c 1 s r c 2 s t g t s u s r w d e v w e b A V G
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

No
rm

. R
ea

d L
ate

nc
y

 F C R E C - C a c h e P R

Figure 15: The average read response time comparison.

partial-refresh scheme. By comparing the results in Fig. 15 and Fig. 16, we

observed that when the percentage of the pread operations is higher, then the

read latency increment compared to FCR is larger. For example, for usr the

pread ratio is 6.01% in PR, while compared to FCR, PR achieves the maximum

read latency increment by 11.10%. This is because the more pread operations

tend to have larger queuing latency, which increases the average read response

time.

m d s r s r c h s r c 1 s r c 2 s t g t s u s r w d e v w e b A V G
0
2
4
6

Pre
ad

 Ra
tio

(%
) P R

Figure 16: Percentage of the pread operations in the partial-refresh scheme.

5. Limitations and Discussions

In this section, we now summarize the limitations of the proposed partial-

refresh scheme and explore some directions for the future work. First, partial-

refresh depends on LDPC, hence partial-refresh-aware SSDs should adopt LDPC

as the default ECC scheme. Fortunately, modern SSD products widely deploy

the powerful LDPC to improve the reliability of SSDs [20, 33]. Second, the en-

hanced mapping table in the partial-refresh-aware SSDs introduce extra storage

25

cost, i.e. consuming more DRAM capacity. As described previously, we can

further leverage on-demand map loading or hybrid mapping schemes to reduce

the mapping table size. Finally, partial-refresh introduces the additional read

counts due to the pread command (as evaluated in 4.4), which requires future

work as below.

In our current work, we implemented a read hotness identification strategy,

and only when one data page is identified as read cold, we invoked the proposed

partial-refresh design. If the read-hot data is misidentified as the read-cold

data, these partial-refreshed data pages can be promoted to the traditional

data pages, which can be improved for better read performance. Also, we can

leverage the current increased capacity of DRAM in the modern SSDs [34] to

selectively cache some partial-refreshed or combination pages, improving better

read performance. We leave the effective design for future work.

6. Related Work

Our work leverages LDPC detectability to check out vulnerable bits and the

proposed refresh minimization scheme is designed to provide significant gains

in flash performance and lifetime. Our work is inspired and motivated by many

related works.

Big block related proposals. With the recent 3D NAND technical innova-

tions, the capacity of each 3D flash block has been significantly increased which

causes a serious performance degradation at the storage system level. Many pri-

or works focus on this “big block” problem and show that it is much more severe

in 3D flash compared to 2D flash. Partial-erase or sub-block erase operation for

3D NAND flash has been proposed in [14, 35] to boost system performance.

The partial GC mechanisms [27, 36] conducted in the context of planar NAND

flash are proposed to partition GC into multiple operation partitions in order to

avoid channel resource conflicts and reduce GC-induced latency. This motivates

us to investigate the deteriorated refresh-induced latency and lifetime reduction

in 3D NAND flash-based storage system, and we develop a new fine-grained

26

partial-refresh mechanism to address the urgent refresh issue in the 3D NAND

flash memory.

Refresh related proposals. Many prior works have focused on flash refresh

operation optimization. Some researches [10, 11, 12, 9] reduce the refresh fre-

quency according to different specific metrics, e.g. temperature, data writing

frequency, improving the lifetime of the flash memory storage. Meanwhile, some

researches reduce the refresh operation time at each refresh interval. Cai et al.

[8] optimized the refresh process itself by selectively re-programming data in-

place, which reduces the traditional remapping-based refresh induced latency.

However, recharging a 3D flash page is unsubstantial since a programmed 3D

flash page is subject to more adjacent disturb errors. Unlike previous works, we

based on the early retention loss phenomenon in 3D flash, and proposed a more

fine-grained lightweight data refresh mechanism to reduce refresh cost.

Exploiting LDPC detectability. Recently, Liu et al. proposed EC-Cache[32],

a read optimization that caches the positions and valid values of errors detected

with the assist of LDPC. EC-Cache records the detected error bits which have

errors, however, we record susceptible bits that include both detected error bits

and these bits that are going to be wrong. With these susceptible bits, partial-

refresh exploits the susceptible cells vulnerabilities in refreshing for performance

and lifetime improvement.

Other performance and lifetime optimization proposals in CPU sub-

systems. Considerable research achievements have been conducted to improve

performance and/or lifetime in CPU subsystems. Prior works proposed many

different scheduling algorithms in CPU subsystems to improve the reliability

for modern MPSoC systems [37, 38, 39, 40], and enhance the high-performance

MPSoC systems [41, 42]. These proposals, however, were designed for CPU

subsystems, and they addressed specific issues e.g., resources scheduling, task

scheduling. Flash memory, however, is quite different from CPU, and it is widely

adopted in the modern secondary storage subsystems as a storage device. Since

flash memory require refresh operations to guarantee long-term data integrity,

in this paper we designed a novel refresh minimization scheme to improve the

27

I/O performance and extends the lifetime of flash memory.

7. Conclusion

This work proposed partial-refresh (PR), a novel refresh minimization scheme

designed for 3D flash memory in cyber-physical systems. By leveraging LDPC

detectability to check out bits that are more vulnerable to errors, a partial-

refresh operation is implemented to copy these susceptible bits to new pages. A

partial-read operation is implemented to handle the read requests that access

the partial-refreshed data, differently from normal read requests. Furthermore,

an efficient implementation of partial-aware garbage collection approach is pre-

sented. Experimental results show that, a PR-aware FTL improves the refresh

performance by 28.2% and extends the lifetime of 3D flash by 4.6%.

Acknowledgment

This work is supported in part by the National Natural Science Foundation of

China [grant number 61902136, 61932010 and 61672423], and by Fundamental

Research Funds for the Central Universities [grant number 2019kfyXJJS090],

and by National Science Foundation of the United States [grant number CCF-

1718080], and by the National Key Research and Development Program of China

[grant number 2016YFB1000303].

References

[1] Wang, Xiaokang and Yang, Laurence T and Xie, Xia and Jin, Jirong and

Deen, M Jamal, A cloud-edge computing framework for cyber-physical-

social services, IEEE Communications Magazine 55 (11) (2017) 80–85.

[2] Wang, Xiaokang and Yang, Laurence T and Kuang, Liwei and Liu, Xingang

and Zhang, Qingxia and Deen, M Jamal, A tensor-based big-data-driven

routing recommendation approach for heterogeneous networks, IEEE Net-

work 33 (1) (2019) 64–69.

28

[3] Wang, Xiaokang and Yang, Laurence T and Li, Hongguo and Lin, Man

and Han, Jianjun and Apduhan, Bernady O, NQA: A nested anti-collision

algorithm for RFID systems, ACM Transactions on Embedded Computing

Systems 18 (4) (2019) 32.

[4] Manderscheid, Martin and Weiss, Gereon and Knorr, Rudi, Verification

of network end-to-end latencies for adaptive ethernet-based cyber-physical

systems, Journal of Systems Architecture 88 (2018) 23–32.

[5] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, O. Mutlu, Improving 3d nand

flash memory lifetime by tolerating early retention loss and process varia-

tion, Proc. POMACS 2 (3) (2018) 37.

[6] R. Micheloni, 3d flash memories (2016) 29–30.

[7] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, O. Mutlu, Data retention in mlc

nand flash memory: Characterization, optimization, and recovery, in: Proc.

HPCA, 2015, pp. 551–563.

[8] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal,

K. Mai, Flash correct-and-refresh: Retention-aware error management for

increased flash memory lifetime, in: Proc. ICCD, 2012, pp. 94–101.

[9] R.-S. Liu, C.-L. Yang, W. Wu, Optimizing nand flash-based ssds via reten-

tion relaxation, Target 11 (10) (2012) 00.

[10] M. Seif, E. Farjallah, F. Badets, E. Chabchoub, C. Layer, J.-M. Armani,

F. Joffre, C. Anghel, L. Dilillo, V. Gherman, Refresh frequency reduction

of data stored in ssds based on a-timer and timestamps, in: Proc. IEEE

Test Symposium, 2017, pp. 1–6.

[11] Y. Luo, Y. Cai, S. Ghose, J. Choi, O. Mutlu, Warm: Improving nand flash

memory lifetime with write-hotness aware retention management, in: Proc.

MSST, 2015, pp. 1–14.

29

[12] Y. Di, L. Shi, K. Wu, C. J. Xue, Exploiting process variation for retention

induced refresh minimization on flash memory, in: Proc. DATE, 2016, pp.

391–396.

[13] M.-C. Yang, Y.-M. Chang, C.-W. Tsao, P.-C. Huang, Y.-H. Chang, T.-

W. Kuo, Garbage collection and wear leveling for flash memory: Past and

future, in: Proc. SMARTCOMP, 2014, pp. 66–73.

[14] C.-y. Liu, J. Kotra, M. Jung, M. Kandemir, Pen: design and evaluation of

partial-erase for 3d nand-based high density ssds, in: Proc. FAST, 2018,

pp. 67–82.

[15] T. Tanaka, M. Helm, T. Vali, R. Ghodsi, K. Kawai, J.-K. Park, S. Yamada,

F. Pan, Y. Einaga, A. Ghalam, et al., 7.7 a 768gb 3b/cell 3d-floating-gate

nand flash memory, in: Proc. ISSCC, 2016, pp. 142–144.

[16] Q. Xiong, F. Wu, Z. Lu, Y. Zhu, Y. Zhou, Y. Chu, C. Xie, P. Huang,

Characterizing 3d floating gate nand flash, in: Proc. SIGMETRICES, 2017,

pp. 31–32.

[17] Y. Cai, O. Mutlu, E. F. Haratsch, K. Mai, Program interference in mlc

nand flash memory: Characterization, modeling, and mitigation, in: Proc.

ICCD, IEEE, 2013, pp. 123–130.

[18] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,

F. Trivedi, E. Goodness, L. R. Nevill, Bit error rate in nand flash memories,

in: Proc. IRPS, IEEE, 2008, pp. 9–19.

[19] Y. Cai, E. F. Haratsch, O. Mutlu, K. Mai, Threshold voltage distribution

in mlc nand flash memory: Characterization, analysis, and modeling, in:

Proc. DATE, 2013, pp. 1285–1290.

[20] J. Cui, Y. Zhang, W. Wu, J. Yang, Y. Wang, J. Huang, Dlv: Exploiting

device level latency variations for performance improvement on flash mem-

ory storage systems, IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems 37 (8) (2018) 1546–1559.

30

[21] G. Dong, Y. Zou, T. Zhang, Reducing data transfer latency of nand flash

memory with soft-decision sensing, in: Proc. ICC, 2012, pp. 7024–7028.

[22] Liu, Wenjie and Han, Guojun and He, Ruiquan and Fang, Yi and Cai,

Guofa, Dynamic-Reference-Voltage-based Detection Algorithm for LDPC-

Coded NAND Flash Memory, in: International Conference on Wireless

Communications and Signal Processing, IEEE, 2018, pp. 1–5.

[23] Micheloni, Rino and Marelli, Alessia and Onufryk, Peter Z, System and

method with reference voltage partitioning for low density parity check

decoding, US Patent 9,235,467 (january 2016).

[24] T. Pott, Supercapacitors have the power to save you from data loss,

http://www.theregister.co.uk/2014/09/24/storage supercapacitors/, [On-

line; accessed 24-September-2014] (2014).

[25] A. Gupta, Y. Kim, B. Urgaonkar, DFTL: a flash translation layer employing

demand-based selective caching of page-level address mappings, Vol. 44,

ACM, 2009.

[26] D. Ma, J. Feng, G. Li, Lazyftl: a page-level flash translation layer optimized

for nand flash memory, in: Proc. SIGMOD, 2011, pp. 1–12.

[27] M. Jung, W. Choi, S. Srikantaiah, J. Yoo, M. T. Kandemir, Hios: A host

interface i/o scheduler for solid state disks, in: ACM SIGARCH Computer

Architecture News, Vol. 42, 2014, pp. 289–300.

[28] C.-Y. Liu, J. B. Kotra, M. Jung, M. T. Kandemir, C. R. Das, Soml read:

Rethinking the read operation granularity of 3d nand ssds, in: Proc. ASP-

LOS, 2019, pp. 955–969.

[29] J. Cui, W. Wu, X. Zhang, J. Huang, Y. Wang, Exploiting latency variation

for access conflict reduction of nand flash memory, in: Proc. MSST, 2016,

pp. 1–7.

31

[30] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, S. Zhang, Performance impact

and interplay of ssd parallelism through advanced commands, allocation

strategy and data granularity, in: Proc. ICS, 2011, pp. 96–107.

[31] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, A. Rowstron, Migrat-

ing server storage to ssds: analysis of tradeoffs, in: Proc. EuroSys, 2009,

pp. 145–158.

[32] R.-S. Liu, M.-Y. Chuang, C.-L. Yang, C.-H. Li, K.-C. Ho, H.-P. Li, Ec-

cache: Exploiting error locality to optimize ldpc in nand flash-based ssds,

in: Proc. DAC, 2014, pp. 1–6.

[33] Zhao, Kai and Zhao, Wenzhe and Sun, Hongbin and Zhang, Xiaodong and

Zheng, Nanning and Zhang, Tong, LDPC-in-SSD: Making advanced error

correction codes work effectively in solid state drives, in: Presented as part

of the 11th USENIX Conference on File and Storage Technologies, 2013,

pp. 243–256.

[34] Kang, Mincheol and Lee, Wonyoung and Kim, Soontae, Subpage-aware

solid state drive for improving lifetime and performance, IEEE Transactions

on Computers 67 (10) (2018) 1492–1505.

[35] T.-Y. Chen, Y.-H. Chang, C.-C. Ho, S.-H. Chen, Enabling sub-blocks erase

management to boost the performance of 3d nand flash memory, in: Proc.

DAC, 2016, p. 92.

[36] M. Jung, R. Prabhakar, M. T. Kandemir, Taking garbage collection over-

heads off the critical path in ssds, in: Proc. Distributed Systems Platforms

and Open Distributed Processing, 2012, pp. 164–186.

[37] Zhou, Junlong and Hu, X Sharon and Ma, Yue and Sun, Jin and Wei,

Tongquan and Hu, Shiyan, Improving availability of multicore real-time

systems suffering both permanent and transient faults, IEEE Transactions

on Computers.

32

[38] Zhou, Junlong and Sun, Jin and Zhou, Xiumin and Wei, Tongquan and

Chen, Mingsong and Hu, Shiyan and Hu, Xiaobo Sharon, Resource man-

agement for improving soft-error and lifetime reliability of real-time MP-

SoCs, IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems.

[39] Zhou, Junlong and Wei, Tongquan and Chen, Mingsong and Yan, Jian-

ming and Hu, Xiaobo Sharon and Ma, Yue, Thermal-aware task schedul-

ing for energy minimization in heterogeneous real-time MPSoC systems,

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 35 (8) (2015) 1269–1282.

[40] Liu, Jing and Wei, Mengxue and Hu, Wei and Xu, Xin and Ouyang, Aijia,

Task scheduling with fault-tolerance in real-time heterogeneous systems,

Journal of Systems Architecture 90 (2018) 23–33.

[41] Yang, Tao and Deng, Qingxu and Sun, Lei, Building real-time parallel

task systems on multi-cores: A hierarchical scheduling approach, Journal

of Systems Architecture 92 (2019) 1–11.

[42] Temuçin, Hüseyin and İmre, Kayhan M, Scheduling computation and com-

munication on a software-defined photonic Network-on-Chip architecture

for high-performance real-time systems, Journal of Systems Architecture

90 (2018) 54–71.

33

