
ELP2IM: Efficient and Low Power Bitwise Operation
Processing in DRAM
Xin Xin1, Youtao Zhang2, and Jun Yang 1

1Electrical and Computer Engineering Department, University of Pittsburgh

2Department of Computer Science, University of Pittsburgh

xix59@pitt.edu, zhangyt@cs.pitt.edu, juy9@pitt.edu

ABSTRACT
Recently proposed DRAM based memory-centric architec-
tures have demonstrated their great potentials in addressing
the memory wall challenge of modern computing systems.
Such architectures exploit charge sharing of multiple rows
to enable in-memory bitwise operations. However, existing
designs rely heavily on reserved rows to implement com-
putation, which introduces high data movement overhead,
large operation latency, large energy consumption, and low
operation reliability.

In this paper, we propose ELP2IM, an efficient and low
power processing in-memory architecture, to address the
above issues. ELP2IM utilizes two stable states of sense
amplifiers in DRAM subarrays so that it can effectively re-
duce the number of intra-subarray data movements as well as
the number of concurrently opened DRAM rows, which ex-
hibits great performance and energy consumption advantages
over existing designs. Our experimental results show that
the power efficiency of ELP2IM is more than 2× improve-
ment over the state-of-the-art DRAM based memory-centric
designs in real application.

1. INTRODUCTION
Modern system performance is hindered by memory sub-

system, known as "the memory wall", due to the high cost
of data movement [1, 2]. Particularly, for big-data appli-
cations, the limited bandwidth of the off-chip bus between
memory and processor cannot meet the increasing demand of
data. A significant amount of power during data movement
is consumed, leading to system energy inefficiency. To tackle
this problem, near-data processing (NDP) has been proposed
as a solution. In DRAM-based NDP, logic units (LU) are
built close to but outside DRAM arrays. Examples of NDP
include HMC [3, 4], Automata [5] and DRISA [6]. NDP
delivers good performance due to the removal of volume data
movement and high processing speed in LUs. However, high
speed of LUs is attributed to their high complexity, which
usually occupy large die area and decreases the density of
memory. For example, the adder in DRISA takes 51% of
area, and the routing matrix in Automata occupies about 30%
of the chip [5]. Complex LUs on a separate layer of an HMC
are constrained by not only area but also power consump-
tion. Moreover, large area of LUs increases the complexity
of DRAM technology, as LUs and DRAM cells are usually

not compatible in technology process [7].
Alternatively, true in-memory computing, a.k.a. processing-

in-memory (PIM), directly integrates logic functions into
memory arrays. PIM keeps integrity of memory and realizes
high-bandwidth calculation with light area overhead. Note
that NDP and PIM are not contradicting approaches. PIM
embeds operations inside memory array, offloading those
logic from NDP design. Recently, a DRAM-based PIM archi-
tecture, termed Ambit [8], has been proposed for bulk bitwise
operations. It implements basic logic operations based on
an inter-cell charge sharing mechanism, which can exploit
full internal bandwidth inside DRAM. It provides great op-
portunities to accelerate applications with large amount of
bitwise operations [9, 10, 11]. Nevertheless, we observed that
its performance is still impeded by several aspects.

First, each logic operation in Ambit requires triple-row
activation (TRA) which imposes high power consumption
that challenges inherent power constraint, e.g. tFAW , and re-
duces bank level parallelism [12, 13]. The frequent copies
among different memory rows in each logic operation gen-
erally double or even triple the number of row activation in
one access. In other words, when a memory array is per-
forming a logic operation, there is little to no power left for
other banks to perform regular memory accesses. Second,
each logic operation in Ambit requires many commands, or
long latency, giving that each command in DRAM is already
a long-latency operation. For example, an XOR operation
requires 7 commands (or DRAM cycles), totaling ∼363ns
(DDR3-1600 [14]). Third, Ambit requires to reserve a group
of rows, typically 8, near sense amplifiers for each calculation.
Even though those reserved rows can be used for storing data,
it is still necessary to migrate them when Ambit switches to
calculation mode. Those are additional capacity and latency
overhead in the array. Fourth, charge sharing among the cells
opened by TRA can become unreliable with process varia-
tion and bitline coupling effect. This is because those cells
may not have equal capacitance which could lead to less than
ideal charge sharing [15]. Finally, the coupling effect worsen
the situation by narrowing the sensing margin, as we will
quantify in our experiments.

To address the aforementioned problems, we propose a new
technique by creating a new state, termed pseudo-precharge
state, in DRAM access. In this state, bitline voltage is regu-
lated by sense amplifier (SA) instead of the precharge logic.
Logic operation can be implemented by using the regulated

303

2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/20/$31.00 ©2020 IEEE
DOI 10.1109/HPCA47549.2020.00033

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

bitline to access the next source cell.
Pseudo-precharge based approach offers two benefits: First,

it provides the opportunity to implement an in-place logic
operation, which completes the calculation directly in the
destination cells, instead of the reserved cells. Thereby, it
reduces data copy to the reserved cells, which further di-
minishes operation cycles and the reserved rows. For the
basic logic operation, we shorten the average latency by up to
1.23×. Second, based on the method, charge sharing in each
cycle just involves one cell, which is similar to the regular
DRAM access. Thereby, it reduces the number of row acti-
vations and can maintain the same sensing margin as regular
DRAM. In real applications, we save up to 2.45× row acti-
vations, thereby expanding bank level parallelism by 2.45×.
Significant improvement in reliability is also achieved. The
contributions of this paper are summarized as follows:

• We present a lightweight mechanism to implement bulk
bitwise operation in DRAM, termed ELP2IM, which
efficiently reduces the number of commands for each
kind of logic operation.

• ELP2IM not only lowers the power consumption, but
also relieves power constraint problem by reducing the
number of activated rows of each command.

• ELP2IM also significantly saves the reserved space,
only retaining one reserved row, and improves the oper-
ation reliability.

• We propose two strategies considering different sizes
of DRAM subarray. We also categorize six primitives
for ELP2IM, and further improve the performance by
better scheduling of those primitives.

2. BACKGROUND AND RELATED WORK

2.1 Overview of DRAM
A DRAM chip traditionally adopts hierarchical structure

from cell matrices to subarrays and to banks. While one
subarray horizontally consists of many cell matrices, a bank
has multiple subarrays connected using the global bitlines.
Each bank can be operated by the memory controller inde-
pendently. Each cell matrix comprises a large number of cells
which are built by an access transistor and a capacitor (1T1C).
Multiple cells are connected by a local bitline with a sense
amplifier (SA) which also acts as a row buffer [8, 16].

Figure 1(a) illustrates the internal structure of one column
in the cell matrix. The SA is constructed as a latch using
two CMOS inverters, which has two voltage inputs (at node
1 and 2) and one enable EN signal. As we discuss next, we
provide different voltages at node 1 and 2 at different times to
enable the precise memory access. The precharge unit (PU) is
powered by a Vdd/2 source and controlled by the EQ signal.
The DRAM bitline usually possesses a noticeable parasitic
capacitor, which exhibits large impact on access speed.

Figure 1(b) indicates an access sequence in DRAM. It can
be divided into two states: precharge and activate [17]. In the
precharge state, the PU is enabled to set both the bitline pair
and the SA to Vdd/2. The activate state can be further divided
into three phases — access, sense, and restore. In the access

Figure 1: (a) Concise structure of a DRAM column, (b)
Basic states (or phases) in a DRAM access, (c) SA sup-
ply voltage controller, (d) Precharge unit with separate
control signals

phase, the wordline is enabled to share the charges in the cell
capacitor with the bitline, which leads to a voltage variation
on the bitline. In the sense phase, the SA is enabled to sense
the slight variation on the bitline. Finally, in the restore phase,
the SA continuously charges the bitline and the cells until
their voltage reaches Vdd or Gnd. The DRAM subarray may
return to the precharge state afterwards.

2.2 Related Work
Recently, several DRAM based PIM designs, such as such

as Rowclone, Ambit, Dracc, ROC etc., have been proposed
[8, 18, 19, 20]. They implement bulk bitwise operation intra-
subarray with high throughput and efficiency.

2.2.1 RowClone
RowClone [18] implements data copy between different

rows in the same subarray. When DRAM completes the re-
store phase, the SA can retain the state if precharge is not en-
abled. Therefore, row-to-row data copy can be implemented
by sequentially activating the target row after completing
the restore phase of the source row. This row copy method
contains two back-to-back activate states and one precharge
state, referred as an Activate-Activate-Precharge (AAP) prim-
itive in [18]. The AAP is close to 2× latency of a regular
Activate-Precharge (AP) access, as activate state occupies
a large proportion of the access time. To reduce the AAP
latency, Ambit adds an extra row decoder for the reserved
rows. Thereby, two rows in the same subarray but belong to
different decoder domains can be activated simultaneously.
This separated row decoder strategy offers the opportunity
to overlap the two Activates in AAP, hence, significantly
saving the time. To distinguish from AAP, we define the over-
lapped Activate-Activate-Precharge as oAAP in this article.
Although the overlapped AAP (oAAP) is only 4 ns longer
than AP (49 ns), it aggravates the burden on charge pump,
which drives the wordlines.

2.2.2 Ambit
Ambit exploits the analog operation of DRAM technology

to perform bitwise operations. The critical step in the mech-

304

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

anism is to activate three DRAM cells on the same bitline
at the same time [8], termed Triple-Row Activate (TRA).
Thereby, if any two (or all) of the three cells, termed A, B,
and C, are ‘1’s, the voltage on the bitline will be above Vdd/2
after charge sharing. Otherwise, the voltage will drop below
Vdd/2 when only one or none of them is ‘1’. The result can be
written as: R = AB + BC + AC. If we define C = 1 in advance,
the operation will perform A OR B. Likewise, A AND B
can be performed with C = 0. For completeness, the NOT
operation is implemented in a modified dual-connected cell,
where one additional access transistor is attached. Benefit-
ing from the high parallel actions of DRAM cells in a row,
logic computation of large bit-vectors could be significantly
accelerated.

Directly implementing TRA with cell A, B, and C is infea-
sible because general row decoder cannot activate three rows
simultaneously. This also destroys the original data. There-
fore, Ambit requires a group of reserved rows with special
row decoder for TRA. For example, to implement an OR
operation, it first copies two variables A and B to the reserved
rows. Then it copies C, which is ‘1’ as a preceding definition
for OR logic. Finally, it calculates the result via TRA. This
process involves four cycles in total. For more complex logic,
it will consume more cycles. Therefore, performance of
Ambit is impeded by the redundant data movement process,
which copies A, B, and C before the true calculation.

In addition, Ambit also suffers from power constraint, re-
liability, and overhead of reserved rows, which has been
introduced in Section 1.

2.2.3 Other related works
Deng et al. modify several subarray rows with extra transis-

tors to improve the performance of Ambit based accelerator
for CNN calculation [19]. However, the multiple cycles of
an operation still hinder the speed. For example, it takes
13 cycles to complete an ADD calculation, which amounts
to ∼ 630ns with 49ns cycle time [8]. In addition, the addi-
tional transistors reduces area efficiency, which also increases
design complexity for DRAM fabrication process.

Li et al. propose a DRAM-based configurable accelerator,
termed Drisa [6]. Different from previous works, Drisa com-
pletes logic operation by directly integrating logic gates in
subarray, thereby, exploiting the full internal bandwidth. For
the design of logic part, it presents several strategies, such as
NOR gate, mixed gates, and even adders. The area overhead
varies based on the complexity of integrated logic gates. In
the case studies, the author claims the NOR or mixed de-
sign is more efficient. But even for the simplest NOR based
design, it still increases 24% area overhead.

2.3 Structure Comparison
Among the aforementioned studies, we choose Ambit as

the representative design for bitwise operation, because of
its relatively good efficiency and less modifications. Fig-
ure 2 provides a general view of regular DRAM, Ambit, and
ELP2IM. Compared to the structure of regular DRAM [21],
Ambit requests a special row decoder, which can simultane-
ously pull up triple wordlines, to serve the reserved the rows,
termed B-group. In the B-group, the last four rows are mod-
ified into the two dual-contact cells, which provide buffers

for NOT operation. There is less modification in ELP2IM.
Only one dual-contact-cell row, controlled by a small driver,
is attached in each array.

Figure 2: Structure of regular DRAM(a), Ambit(b), and
ELP2IM(c)

Our design is built on open-bitline architecture, because
all modern DRAM utilizes the open-bitline to achieve high
density [22]. The detailed analysis of modification and related
overhead will be discussed in Section 5.2.

3. DESIGN OF ELP2IM
In this paper, we propose ELP2IM, a pseudo-precharge

approach, to complete logic operations through direct charge
sharing with bitlines, which greatly reduces the latency and
lowers the power consumption of DRAM based PIM oper-
ations. We next motivate the design with two observations,
elaborate the design details, and analyze different execution
strategies.

3.1 Observations

Figure 3: (a) Pseudo-precharge state, (b) Bitline over-
write effect

3.1.1 Pseudo-precharge States
We exploit two stable yet non-traditional DRAM states,

referred to as pseudo-precharge states. As shown in Fig-
ure 1(b), the supply voltage of an SA is switched periodically
with the help of a voltage controller (Figure 1(c)). In particu-
lar, the SA has its input voltages switched from Vdd and Gnd
at node 1 and 2, respectively, at activation state to the same
Vdd/2 at prechage state. Having Vdd/2 supply voltage helps
to suppress the leakage power and improve the subsequent
sensing accuracy.

Similar to that in recent studies [23], we study the SA
workflow and observe that, if in precharge state, only one of
the two supplies shifts back to Vdd/2 while the other keeps
its voltage level, the output of SA adjusts accordingly due
to rail-to-rail output character of the CMOS inverters [24].
That is, the SA stays at a stable state. Figure 3(a) shows an
example, during activate state, bitline and bitline are charged
to Vdd and Gnd respectively. If only Vdd shifts to Vdd/2,
then bitline will follow the change, while bitline will remain
the same. To distinguish this voltage shifting process from
precharge state, we term it as pseudo-precharge state.

305

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

Figure 4: OR Operation of two cases: ‘1’+‘0’ (Case 1) and ‘0’+‘0’ (Case 2)

Since the voltage shifting technique is compatible with
regular CMOS circuit design and incurs small overhead, it has
been adopted as structure optimization to suppress leakage
induced power in latches or registers [23,25,26]. Instead of
reducing power consumption, we leverage this technique to
assist logic operation in DRAM, and what we change is only
the control sequence for the voltage shift of SA.

3.1.2 Overwrite Process
Our other observation is on a stable yet non-traditional

cell write operation. During precharge state, if only bitline is
charged to Vdd/2, while bitline keeps its value, the following
accessed cell will be overwritten by the bitline value. Since
the bitline capacitor (Cb) is generally much larger (2∼4×)
than the cell capacitor (Cc) [27, 30], it dominates the bitline
voltage level during charge sharing. Figure 3(b) shows an ex-
ample, where logic ‘1’ on bitline is reserved during precharge.
In the next activate state, the accessed cell is overwritten by
‘1’. Note, to enable the overwriting process, we need to mod-
ify the precharege unit, as shown in Figure 1(d) — we split
the EQ signal to two such signals, EQ and EQb, such that we
can control each side independently.

For DRAM subarrays that have short bitlines, e.g., due to
small capacity [28,29], Cb may be close to, or even smaller
than, Cc, which prevents the overwriting process as we dis-
cuss above. In this paper, we are to develop a simple strategy
to enable reliable data overwrite by comparing the difference
between bitline and bitline. We will elaborate the details in
Section 4.

In summary, the above two observations expose stable
yet non-traditional states and memory operations in DRAM,
which provide promising opportunities that can be exploited
to speed up DRAM based processing-in-memory operations.

3.2 The Basic Idea
Intuitively, ELP2IM takes a two step approach to exploit

the pseudo-precharge states and overwrite operation — it
first regulates the charge level of bitline capacitor (Cb) in the
pseudo-precharge state; and then leverages the regulated Cb

to influence the next cycle DRAM access (overwrite or not),
thereby completes logic operations.

Figure 4 illustrates how to implement a ‘two-cycle’ (not
two normal memory cycles) OR operation with two specific
examples, ‘1’+‘0’ and ‘0’+‘0’ operations in case 1 and 2
respectively. The initial values saved in the two cells are ‘1’
and ‘0’ in case 1 (‘0’ and ‘0’ in case 2). For case 1, logic ‘1’
is accessed in the activate state during the first cycle. Then
a pseudo-precharge state is inserted, where the Gnd of SA
is switched to Vdd/2. As explained in section 3.1, under
this condition, the bitline can hold its voltage level of Vdd.
In the following precharge state, only bitline is charged to
Vdd/2 by PU, which is similar to the second observation.
Thereby, in activate state of the second cycle, the accessed
cell is overwritten by the reserved bitline value. For case
2, logic ‘0’ is accessed in the activate state during the first
cycle. In the next state, bitline is driven to Vdd/2, because ‘0’
will be regulated to Vdd/2 by the pseudo-precharge approach.
In the following precharge state, bitline is charged to Vdd/2
by PU. Thereby, at the beginning of the second cycle, both
bitline and bitline are Vdd/2. The second cell can be regularly
sensed.

Other cases, such as ‘0’+‘1’ and ‘1’+‘1’, can be explained
in the same way. To sum up, if logic ‘1’ is accessed from the
first cycle, the cell in the second cycle will be overwritten.
Otherwise, the second cell can be regularly accessed. This
procedure is corresponded to an OR logic and the final result
is restored to the second cell.

Similarly, the AND operation can be conducted by drop-
ping Vdd to Vdd/2 and retaining Gnd in the pseudo-precharge
state. Therefore, logic ’0’ read from the first cycle can over-
write the second cycle cell. Otherwise, logic ‘1’ from the first
cycle will be charged to Vdd/2, which will not influence the
cell access in the second cycle. For completeness, we build
the dual-connected cell at the bottom of a column for NOT
operation, the same design as in Ambit.

One character of this pseudo-precharge based method is
that the charge sharing in each cycle just involves one cell,

306

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

which is similar to the regular access. This character guar-
antees a proper sense margin during access phase, thereby
ensuring the reliability. It also reduces the number of acti-
vated rows per cycle, thereby saving the power and reserved
rows induced by multiple rows activation in previous work.
Another character of pseudo-precharge based method is that
it offers the opportunity to complete an AND or OR opera-
tion with just ‘two-cycle’. This can be applied to optimize
the operation cycles for compound logic, such as XOR and
XNOR, thereby reducing the average latency for bitwise op-
eration. These advantages in the aspects of reliability, power,
and latency will be further indicated in the article.

3.3 Implementing the Logic Operations
As discussed above, in the ‘two-cycle’ access, irregular

control sequence is inserted in the first cycle, as shown in
figure 4. Hence, we propose an activate-pseudo_precharge-
precharge (APP) primitive to implement the first cycle. Dif-
ferent from the regular activate-precharge (AP) access, APP
actually divides the precharge state into two parts: First reg-
ulating bitline with the shifted SA voltage. Then charging
bitline via PU. We find pseudo-precharge time is 20∼30%
longer than precharge time, and more detail analysis will be
indicated in section 6.1. In the article, we take the conser-
vative timing parameter (30%). In summary, the ‘two-cycle’
access (termed, APP-AP sequence) is only∼18% longer than
two regular cycles access (termed, AP-AP sequence), based
on DDR3-1600.

The APP-AP can process an OR (or AND) logic operation
where one operand shares the same address with the destina-
tion, which can be represented by A=f(A,B). For destination
and operands occupying different addresses, C=f(A,B), we
leverage the Rowclone mechanism to first copy one operand
to the destination row (C=A), then executing the APP-AP
sequence (C=f(C,B)). As mentioned above, the Rowclone
copy operation can be completed by either AAP or oAAP.

Figure 5: Three execution strategies and related primi-
tive sequence for basic AND and OR operations. (a), (b),
and (c) are related to (d), (e), and (f), respectively.

Here we present three execution strategies for basic AND
and OR operations. As shown in Figure 5(a), the first one is
the APP-AP sequence for the type of A=f(A,B). Figure 5(d)

illustrates the related timing sequence of AAP-AP. For type of
C=f(A,B), there are two strategies. As shown in Figure 5(b),
an AAP-APP-AP sequence can be applied to implement logic
operation within one decoder domain. The corresponding
timing sequence is shown in Figure 5(e). In Figure 5(c),
an oAAP-APP-oAAP sequence can be applied to complete
logic operation with the help of reserved dual-connected row,
which owns a separate wordline driver. The corresponding
timing sequence is shown in Figure 5(f).

Among these three strategies, APP-AP has the smallest
latency, but limited by the A=f(A,B) equation type. Latency
of AAP-APP-AP is longer than oAAP-APP-oAAP, but saving
the power of activating extra wordlines and transferring data.
Therefore, AAP-APP-AP can be applied to a high throughput
mode, where DRAM bank-level parallelism is limited by
power constraint. oAAP-APP-oAAP can be designed for
reduced latency mode, which explores the reserved row to
accelerate DRAM logic operations.

4. IMPROVEMENT OF ELP2IM
The proposed ELP2IM introduced above still depends on

the precondition that Cb is significantly lager than Cc. To ac-
celerate DRAM operation, many designs prefer short bitline
to reduce access latency [28, 29, 30]. Under this condition,
Cb/Cc becomes smaller, which could harm the reliability
of ELP2IM and even induce errors. Here we introduce an
alternate strategy to avoid the influence of the ratio (Cb/Cc).

We further explore approaches to reduce the operation
latency of ELP2IM. By leveraging the row-buffer decoupling
approach [31], we overlap the pseudo-precharge state with
precharge state. By trimming down the redundant operation,
we reduce the latency of activation state.

4.1 Alternative Strategy

Figure 6: (a) Regular strategy, (b) alternative strategy of
the Pseudo-precharge state, precharge state, and access
phase in APP. (Note that the bitline pair in figure is not
the physical layout in open-bitline architecture)

For ELP2IM with small Cb, the worst case for an OR
operation is that ELP2IM reads logic ‘1’ first and then senses
logic ‘0’, which is the case of ‘1’+‘0’. Similarly, the worst
case for an AND operation is ‘0’×‘1’. Figure 6(a) shows the
pseudo-precharge, precharge, and access phases in the worst
case of OR operation. It accesses ‘1’ in the first cell, and
the pseudo-precharge retains ‘1’ on bitline. After precharge,
it enables the second cell, which stores ‘0’, to perform the

307

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

charge sharing between Cb (‘1’) and Cc (‘0’). Taking it to
an extreme condition, where Cb < Cc, the charge sharing
will produce a voltage level below Vdd/2, leading to a wrong
result of the OR operation.

To solve the problem, we regulate bitline, instead of bitline
in the pseudo-precharge state. Because bitline and bitline
are complementary, it requires to regulate bitline with the
complementary voltage level of bitline. For example, if bit-
line was regulated to Vdd in previous pseudo-precharge state,
bitline should be regulated to Gnd now. If bitline was regu-
lated to Vdd/2, bitline should be regulated to Vdd/2 now. This
complementary state of bitline can be achieved by changing
voltage shift of SA in complement. As shown in Figure 6(b),
the supply voltages of SA are Vdd/2 and Gnd in the pseudo-
precharge state, which are opposite to the Vdd and Vdd/2
in Figure 6(a). In the following precharge state, only bit-
line is charged to Vdd/2 (Figure 6(b)), also opposite to the
precharge state in Figure 6(a). Finally, in the access phase
of Figure 6(b), charge is shared between Vdd/2 (‘1/2’) in Cb
and ‘0’ in Cc, and the resulting voltage level is above ‘0’,
which means voltage on bitline is larger than bitline. Based
on the fact that SA is a differential amplifier, it will generate
a correct result of logic ‘1’ on bitline.

It is provable that other conditions of OR operation, ‘1’+‘1’,
‘0’+‘1’, and ‘0’+‘0’, are still true for this complementary
pseudo-precharge strategy. Symmetrically, AND operation
can also be correctly executed using this strategy.

4.2 Optimizing Operation Sequence

Figure 7: (a) Enable pseudo-precharge and precharge
state simultaneously based on row-buffer decoupling ap-
proach (b) overlapped APP primitive (c) trimmed APP
primitive

4.2.1 Leverage Isolation Architecture
Integrating an isolation transistor on bitline has been widely

exploited in prior work [17,24,30,31], which can significantly
improve the performance of DRAM with limited overhead.
ELP2IM can also gain benefit from these isolation strategies.
Seongil et al. propose a row-buffer decoupling mechanism to
relieve the latency penalty induced by precharge in open-page
policy [31]. In the design, an isolation transistor is attached
between SA and PU. With the isolation transistor, SA and
PU can be enabled at the same time. As shown in 7(a), this
approach can be adopted by ELP2IM to overlap the pseudo-
precharge and precharge state. We define the overlapped APP
primitive as oAPP (Figure 7(b)). Taking advantage of oAPP,
∼21% latency can be saved compared to a regular APP (in
case of DDR3-1600).

4.2.2 Leverage Restore Truncation
During the process of logic operations, many intermediate

data will not be reused. Thereby, it is unnecessary to restore
these data when accessing them. Based on the mechanism

from [32], we trim down the restore phase in activate state.
Specifically, after the sense phase, the pseudo-precharge state
will be directly set up. We define the trimmed APP primitive
as tAPP (Figure 7(c)). Leveraging tAPP, ∼31% latency can
be saved compared to a regular APP (in case of DDR3-1600).

4.2.3 Explore More Buffers
In some cases, there is more than one copy of a vari-

able in one Boolean expression. For example, each variable
in the Boolean median operation, given by the expression
AB+AC+BC, has more than one copy. Because ELP2IM
implements logic expression in the granularity of basic AND,
OR, and NOT operations, any complex logic expression is
required to be decomposed into the basic operations and ex-
ecuted sequentially. This would induce multiple accesses
to one variable. Therefore, it is important to simplify the
Boolean expression to the minimized form and explore more
buffers for the reused data. In the following example of XOR
operation, we elaborate the improvement step by leveraging
oAPP primitive, tAPP primitive and additional buffers.

4.3 Example: XOR operation
Table 1 concludes 6 primitives applied in ELP2IM. The

timing parameters are based on DDR3-1600. In the follow-
ing example, these 6 primitives are permuted to obtain an
optimized operation.

Table 1: Primitives of ELP2IM (DDR3-1600)
Primitive Meaning Time

AP Activate-Precharge 49 ns

AAP Activate-Activate-Precharge 84 ns

oAPP overlapped Activate-Activate-Precharge 53 ns

APP Activate-Pseudoprecharge-Precharge 67 ns

oAPP overlapped Activate-Pseudoprecharge-Precharge 53 ns

tAPP trimmed Activate-Pseudoprecharge-Precharge 46 ns

An exclusive OR (XOR) equation can be expressed as
C=AB+AB, including two AND operations and one OR op-
eration. As ELP2IM can complete the AND and OR with
a ‘three-cycle’ oAAP-APP-oAAP sequence, it takes at most
three oAAP-APP-oAAP sequences, which is ∼519 ns, to
implement XOR operation. In the following analysis, we
show steps how to trim down the latency to ∼297 ns.

To execute C=AB+AB, as shown by the first sequence in
Figure 8(a), we first use an oAAP-APP-oAAP subsequence
to calculate C=AB. In the second step, we leverage another
oAAP-APP-AP to execute R=AB, where R is the reserved
dual-connected row. Thirdly, we use an APP-AP subsequence
to obtain the result C=C+R. However, the AP in the second
step and the APP in the third step both access to R. Thereby,
they can be merged to one APP, as shown in the second se-
quence of Figure 8(a). Now the whole process only includes
7 primitives, which is ∼409 ns. Taking a further step, the
merged APP finally stores the result AB, which is a interme-
diate data in the XOR operation. Therefore, the restore phase
in the APP can be trimmed down, which further reduces the
latency to∼388 ns, as shown in the sequence 3 of Figure 8(a).

Up to now, the optimized operation sequence still accesses
variable A and B two times, as shown by the first and second
oAAP-APP segments in the sequence 3. In order to better
indicate the following optimization, we rearrange sequence
3 to sequence 4 (Figure 8(a)), which maintains the same

308

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

number of primitives. Sequence 5 is the optimized version
of sequence 4, which leverages the row-buffer decoupling
mechanism and substitutes APP with oAPP. It reduces the
XOR operation latency to ∼346 ns. In sequence 5 (or 4),
the second and third primitive both access B. The difference
is that the second primitive copies data B, while the third
one retains data B in form of regulated voltage on bitline. If
there is another buffer, we can merge these two primitives
into one, as shown in sequence 6 of Figure 8(a). Figure 8(b)
shows the layout of data cell (A, B, C) and reserved cell (R0,
R1) on the open-bitline architecture. Figure 8(c) indicates
the commands corresponding to sequence 6. The variables
in the ‘()’ are the rows that the command activates. For
example, oAAP activates two rows, thereby two variables
exist in the ‘()’. Following the ‘()’ is the calculation done
by the command. For an oAPP, the accessed variable will be

regulated to either Vdd/2 (12) or Gnd (0) for an AND operation

(Vdd (1) or Vdd/2 (12) for an OR operation). Therefore, we

mix Boolean variable and number 1
2 in the expression to

indicate the regulation done by the oAPP in Figure 8(c). This
additional buffer based approaching consists 6 primitives,
finally reducing the XOR operation latency to ∼297 ns.

Figure 8: Optimization for primitive sequence of XOR
operation

Note that sequence 6 requires two reserved rows. In the
article, unless otherwise specified, we only utilize sequence 5
as the optimized primitive sequence for XOR operation. One
character of all the primitives in Figure 8(a) is that they only
request single or double row activation during each access.
This is more friendly to the charge pump inside DRAM,
which has limited output power [12].

5. DISCUSSION
In this section, we discuss the modification and related

cost of ELP2IM. There are two types of modifications: con-
trol sequence modification and hardware modification. We
adjust control sequences by integrating new primitives in
memory controller. We discuss the hardware change mainly
in subarray level.

5.1 Integrating with System
There are 5 new primitives, AAP, APP, oAAP, oAPP, and

tAPP, in Table 1. Memory controller of ELP2IM has to be
integrated with new control modes to support these primi-

tives. The new modes can be implemented by adjusting the
sequence of the three control signals: SA enable control, SA
supply power control, and PU enable control. For example,
APP primitive prolongs the enable time and adjusts the sup-
ply voltages of SA after activate state. In precharge state, it
activates one side of the EQ pair.

For different operations, we adopt different permutations
of the primitives to reduce cycles. This can be realized by
a configurable memory controller, where specific primitive
sequence can be buffered in the controller. The form of the
primitive has been introduced in Figure 8(c),

prmt([dst],src)
where prmt is the type of primitives, dst is the destination

address, src refers to the source address.

5.2 Hardware Cost
Modern DRAM is sensitive to modification, especially,

in the DRAM array cells [22]. Compared to other designs,
ELP2IM induces less modification to DRAM array and re-
duces area overhead.

Figure 9: Hardware cost comparison of regular
DRAM(a), Ambit(b), and ELP2IM(c) in open-bitline ar-
chitecture

Figure 9 shows the cost of array cells in different designs.
Ambit has to retain 6 rows for B-group and 2 rows for C-
group to implement the TRA-based calculation. Specifically,
the 6 rows in B-group occupies 8 physical rows, because it
includes two dual-connected-cell rows. What’s more, the
B-group also lowers the cell density, which means half of the
allocated region will be empty or not used. ELP2IM relieves
this cost since it only allocates 1 dual-connected-cell row.
ELP2IM also has light change in PU, which separates the
control signal of EQ. This will not hurt the array density,
because it only influences the layout of metal layer.

To implement the oAPP primitive, the isolation transistor
has to be attached on each bitline. Based on the evaluation
from [31], the area overhead of isolation transistor is only
∼0.8% with 512×512 matrix size. Combing the 1 reserved
row, the total array overhead of ELP2IM is still 22% less than
Ambit under open-bitline architecture.

Besides the modification in DRAM array, light change in
the peripheral circuit, such as the drive strength enhancement
of Vdd/2 supply and the separate wordline driver for the
reserved row [33], would be required to better support the
logic operation in ELP2IM.

309

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

6. EVALUATION
In the evaluation of ELP2IM, we first conduct circuit-level

simulation to verify the timing and accuracy of logic opera-
tion in ELP2IM. Then we analyze the performance and power
efficiency in basic logic operations. Finally, we implement
three case studies to evaluate the efficiency of ELP2IM in real
applications.

6.1 Circuit-level Simulation
We use H-spice for circuit-level simulation. The parame-

ters are derived from Rambus power model [34,35], which
includes information such as circuit capacitances, resistances,
and transistor dimensions. The timing of control signals in
the circuit agrees with DDR3-1600.

6.1.1 Timing Simulation
In the simulation, we first analyze the timing of pseudo-

precharge state. As the function of pseudo-precharge is simi-
lar to precharge, both intending to charge bitlines (or bitline)
to Vdd/2, they are supposed to take the same time. However,
based on our simulation, pseudo-precharge actually consumes
a longer time. This is because the drive strength of SA is re-
duced when the supply (difference between supply voltages)
is suppressed. Thankfully, the reduction is not significant,
because the transistors in SA, different from the access tran-
sistors in DRAM cell, are built with low threshold (Vth) to
improve sense and restore speed. Based on the fact that the
Vth of transistors in SA is 25∼30% of Vdd [36,37,38], the
drive strength of SA with half Vdd supply is reduced by
11∼23% in our simulation. On the other hand, the SA with
half Vdd supply is used in pseudo-precharge state, which only
charges the bitline. While in activation state, SA with regular
supply is required to charge both bitline and cell capacitor.
Subtracting the portion of charging cell capacitors, pseudo-
precharge state is 13∼20% shorter than the restore time in
activate state and 20∼30% longer than precharge state.

Figure 10: Waveform of ELP2IM in OR, AND operations

Figure 10 shows the waveform of two APP-AP sequences,
which are also critical steps for other complex primitive se-

quences. The first APP-AP executes an OR operation. In
this operation, ELP2IM accesses the first data during activate
state. The data value can be recognized from the small varia-
tion of bitline at the beginning of each activate state. Then
the pseudo-precharge state is switched on. If bitline is ‘0’,
it will be regulated to Vdd/2, otherwise, it will remain ‘1’.
The following precharge state does not influence the voltage
level of bitline, because it only drives the bitline, which is
not shown in the waveform, to Vdd/2. Finally, in the second
activate, the voltage change will not always follow the small
variations induced by the second data cell. It actually com-
plies with the result of an OR operation. The AND operation
is executed in the same way, except ‘1’ will be regulated to
Vdd/2 in pseudo-precharge state.

6.1.2 Reliability Analyzing
The reliability of ELP2IM, Ambit, and regular DRAM un-

der different process variations (PV) is studied. The bitline
coupling effect is also taken into consideration. To conduct
the simulation, we first identify the worst case of each device.
For ELP2IM, bitlines that are pseudo-precharged to Vdd/2
have higher error possibility. For Ambit, inconsistent val-
ues in TRA, such as ‘101’ or ‘010’, tend to form a ‘weak
1’ or ‘weak 0’ after charge sharing, and possibly make the
calculation failed. The worst case for coupling effect un-
der open bitline structure are the data patterns that alternate
between ‘0’ and ‘1’ in wordline direction [39, 40]. Second,
given that PV can be categorized into systematic and ran-
dom variations, it is difficult to determine every parameter
of the circuit is influenced by which variation [41, 42]. We
carry out Monte-Carlo simulations in two extreme conditions,
where variations are all systematic or all random. Any other
condition is the intermediate case between these two.

Figure 11: Error rate of ELP2IM, Ambit, and regular
DRAM

Figure 11 shows the simulation result. ELP2IM exhibits
lower error rate, especially under random PV (Figure 11(a)).
The higher error rate of Ambit can be ascribe into two aspects.
First, TRA approach originally reduces the bitline voltage
sensing margin, because mismatch of the triple activated cells
could induce more voltage deviation. Under systematic PV
(Figure 11(b)), the triple cells are tend to be identical, and
the error rate is suppressed. Second, the TRA may provide
different variation scale on bitline, which aggravates the cou-
pling effects. For example, a ‘weak 0’ could be driven close
to Vdd/2 by its neighbouring ‘strong 1’s, which are gener-
ated by three ‘1’ cells in TRA. In the simulation, the bitline
shared (coupled) capacitor is set to 15% of bitline capaci-
tor [40,43,44]. ELP2IM can avoid the above problems that

310

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

Ambit suffers, because it only accesses one cell during the
charge sharing process. On the other hand, even if the bitline
coupling effect is aggravated in pseudo-precharge state, it can
be avoided by the complementary pseudo-precharge strategy
introduced in section 4.1. In the strategy, ELP2IM regulates
voltage on bitline, which is physically allocated in a different
subarray.

Note that error rate of ELP2IM is still higher than regular
DRAM. This is reasonable, as any modification could break
the original balance and induce inaccuracy. The inaccuracy of
ELP2IMmainly comes from the mismatch of Vdd/2. Because
pseudo-precharge state may set Vdd/2 on bitline, and the
following precharge state will set Vdd/2 on bitline. The two
Vdd/2 voltages are charged via different paths, which may
induce slight mismatch. Therefore, in the design of ELP2IM,
it is important to keep the supply voltage nodes at SA and PU
equal when delivering Vdd/2.

ELP2IM is also facing the challenge of error correction,
which is a common problem faced by all bitwise-operation
based PIMs (no matter using what kind of technologies, such
as SRAM, DRAM, NVM, etc. [6, 45, 46, 47]), because the
traditional error correcting code (ECC) is not compatible with
bitwise logic operation. Further extensive research would
be needed to tackle this problem. However, even without
novel error checking method, bitwise PIM is still a promising
architecture for error tolerant scenarios such as approximate
computing or neural network acceleration.

6.2 Performance and Overhead Analysis
We implement ELP2IM, Ambit and Drisa_nor in DDR3-

1600 to evaluate the latency and power consumption when car-
rying out basic logic operations [14]. Note that DDR3-1600
is just an example, other type of DRAM is also compatible
with the aforementioned designs.

Among the three designs, ELP2IM shows the smallest
latency in almost all the basic operations, as shown in Fig-
ure 12(a), which can be attributed to the less commands it
takes. For example, to implement an AND operation, it only
takes 3 primitives, as indicated in section 3.3, while Ambit
requires 4 primitives. Drisa_nor consumes even longer time,
excepting the NOR operation, because it needs to transfer any
other logic to a compound of NOR logic, which induces more
commands. On average, ELP2IM is 1.17× faster than Ambit,
and 1.12× than Drisa_nor. Note that ELP2IM does not gain
much benefit on XOR and XNOR operations, because it only
has one reserved row. If there is one more buffer in ELP2IM,
the improvement can be 1.23× and 1.16× over Ambit and
Drisa_nor.

We estimates power consumption based on spice sim-
ulation and the power parameters collected from Micron
DDR3 DRAM power datasheet [48]. As the logic opera-
tion is conducted inside the subarray, which does not include
read/write process, the background power and activate power
become the main part in power consumption. In Figure 12(b),
Drisa consumes more power as the additional logic gates and
latches greatly increase background power. For ELP2IM, the
activate power of APP increases by ∼31% compared to the
regular AP primitive. For Ambit, the multiple wordlines acti-
vation in TRA also increases power,∼22% for each wordline,
which can be attributed to the low power efficiency of charge

pump. Although in Figure 12(b), ELP2IM does not show
much benefit on power consumption compared to Ambit,
only 3% better, it still retains large potential in saving power.
As it can include more power-saving primitives, such as AAP
and AP, in the calculation. In the following case studies, the
power of ELP2IM is 17%∼27% less than Ambit.

Figure 12: Latency and power of Drisa_nor, Ambit, and
ELP2IM in complementing basic logic

What’s more, the increased part of power consumption in
Ambit is more critical, because it is limited by the power
delivery network and charge pumps, which have limited ca-
pacity to simultaneously drive multi-wordline in different
banks. Therefore, in consideration of power constraint, the
throughput of Ambit will significantly drop below ELP2IM.

For the area overhead, ELP2IM takes even less change than
Ambit, as discussed in the 5.2. While Drisa_nor modifies
DRAM with 24% area overhead, which is a big challenge for
DRAM manufacturing.

To sum up, ELP2IM is the most efficient design in aspects
of latency, power, throughput, and area. Adding logic circuit
directly in subarray level could improve specific operation
in the design of Drisa_nor, but cannot bring general benefit
when compared to ELP2IM and Ambit.

6.3 Improvement for Applications
We build an in-house simulator to calculate the latency,

throughput, and power consumption of ELP2IM on several
applications. We configure a regular DRAM module with
8 banks. The baselines are Ambit, Drisa_nor, and Kaby-
Lake CPU [49]. As shown in case study of Bitmap [50]
and Bitweaving [51], we first implement ELP2IM in the
light-modified DRAM designs, whose main purpose is to
restore data and thereby is sensitive to reserved space over-
head. Therefore, these designs should be close to commodity
DRAM, and the power constraint and power efficiency are
important factors. Secondly, we implement ELP2IM in two
accelerator designs, where DRAM is built in a application-
specific way and performance is the first order consideration.
Thereby, we construct ELP2IM with two reserved rows to
buffer more data and reduce processing latency.

6.3.1 Case Study: Bitmap
Bitmap indices [50] can offer fast analytics in specific

applications for databases. Traditionally, the bulk bitwise
operation occupies a significant time in execution of Bitmap
indices. Thereby, the DRAM-based bitwise accelerators are
promising candidates for Bitmap. Here we impose Bitmap on
an application which tracks the activities of a large number of

311

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

users (16 million). The tracking case is to count the number
of users who were active every week for the past w weeks,
and the number of male users who were active each of the
past w weeks. The case can be divided into two parts: bulk
bitwise operation, which is executed in ELP2IM, and count
operation, which is performed with the help of CPU.

In the case study of Bitmap, we compare ELP2IM with 3
Ambit designs which are configured with different reserved
space. The baseline is the throughput of implementing the
whole case in CPU. We first conduct the experiment without
power constraint, which means DRAM can activate all 8
banks simultaneously (even it is not realistic). Then we set
on power constraint to evaluate the performance again.

Figure 13: (a)System throughput improvement offered
by ELP2IM and Ambit with different configurations of
reserved space, (b)ELP2IM and Ambit device perfor-
mance, excluding CPU, (c)reserved space

The result is shown in Figure 13, where (a) indicates the
whole system performance, and (b) shows the average per-
formance of DRAM device. Figure 13(c) shows the number
of reserved rows in the two designs. We draw three conclu-
sions from the experiment. First, by allocating more reserved
rows, system performance of Ambit is improved, as shown
in Figure 13(a). However, the improvement is not linear with
the increment of reserved rows. The throughput gains a sig-
nificant improvement when the number of reserved rows are
raised from 4 to 6, but the growth is much slower when re-
served rows are increased from 6 to 10. What’s more, we find
that even Ambit is allocated more than 10 reserved rows, it
cannot catch up ELP2IM. Second, under condition of power
constraint, the device throughput of Ambit is greatly reduced,
which drops up to ∼83% (Figure 13(b)). ELP2IM is also in-
fluenced, because the number of activated banks in the same
activate window is now decreased to the half, from 8 to 4.
However, its device throughput only drops 56%, which is
quite close to the ratio of decreased banks, 1/2. Third, even
allocated with different number of reserved rows, the device
throughput of Ambit (Figure 13(b)) tends to be the same un-
der power constraint, implying more reserved space cannot
offer much benefit under such condition.

6.3.2 Case Study: Table Scan
Table scan [52] is a common operation in a memory-

based database management system. It sequentially reads
the database and checks the columns for the validity of a
predicate of a query. It usually takes many cycles to evaluate
simple predicates. For example, a database query Q1 can be

written as the following:

Q1 : SELECT COUNT (∗) FROM R WHERE R.a <C1

where R.a < C1 is a simple LESS THAN predicate. It
involves a significant number of comparison and increment
operations. [51] proposes the BitWeaving method to par-
allelize comparisons for multiple words. It permutes each
word to store it in a memory column. Hence, the same bit in
multiple words can be compared with bulk bitwise operation.

In the Table Scan case study, Drisa_nor is studied in the
comparison with ELP2IM and Ambit. Given Table Scan
is the databases application, where memory capacity is the
major consideration, ELP2IM, Ambit and Drisa_nor (even
Drisa_nor has much area overhead) are regarded as light-
modified designs which are sensitive to the overhead of re-
served rows and under the limitation of power constraint. We
use the same calculation strategy as Bitmap. CPU executes
the count operation in BitWeaving. Ambit, Drisa_nor, or
ELP2IM implements bulk bitwise operations.

Figure 14: (a)Throughput improvement over our base-
line CPU offered by Ambit, Drisa_nor, and ELP2IM
for table scan (b)DRAM device performance, (c)reserved
space

In the evaluation, ELP2IM has the highest throughput, as
shown in Figure 14(a), which can be attributed to the small
latency and high bank-level parallelism. What’s more, the
improvement of ELP2IM grows up quickly with the increase
in data width, because in BitWeaving method, the propor-
tion of CPU-implemented counting is reduced when data
width is extended. However, Ambit cannot gain such obvious
improvement because its parallelism is impeded by power
constraint. Figure 14(b) is the average device performance of
Ambit, Drisa_nor, and ELP2IM, excluding the part of CPU.
ELP2IM still maintains the best performance in all the as-
pects. Although Drisa_nor is integrated with the high-speed
logic gates near row buffers, its latency is still the largest.
However, the throughput of Drisa_nor outperforms Ambit,
because Ambit is hindered by the multiple row activates un-
der power constraint. Figure 14(c) indicates that Ambit and
ELP2IM are allocated with 8 rows and 1 row respectively. As
Drisa_nor is attached with additional latches near row buffers,
it does not require reserved rows, but in cost of even more
area. In conclusion, ELP2IM consumes the least resource and
achieves the best performance.

6.3.3 Case Study: CNN
Several studies use bitwise operation to accelerate convolu-

312

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

tional neural network (CNN) applications, such as Dracc [19]
and NID [53, 54]. We perform these two designs as case
studies to evaluate the efficiency of our proposed ELP2IM.
Given that CNN accelerator is more focused on calculation
performance, it would be acceptable for DRAM to be added
with more circuit to break the original limitation in DRAM,
even though at some cost of density [55, 56]. Thereby, we do
not set the limitation of power constraint in the simulation.
For ELP2IM, we exploit the sequence 6 in Figure 8 for XOR
operation. For Ambit, we allocate a large number of reserved
rows, which helps reduce the calculation latency.

Dracc builds in-memory adders by modifying the subarray
with limited number of transistors. Therefore, besides the
bitwise operation, Dracc also realizes word-wise addition in
subarray level. Leveraging the integrated adder, Dracc can
be applied to the ternary weight neural networks (TWNs),
which replaces full precision weights with ternary weights (‘-
1’, ‘0’ or ‘+1’). Thereby, it transfers dot product calculation
to addition operations [57,58]. Dracc also proposes several
operation modes, such as high throughput mode, single frame
mode, and low power mode, to meet different application
requirements.

Table 2: Application in Dracc
Lenet5 Cifar10 Alexnet VGG16 VGG19

Ambit (FPS) 7697.4 6008.4 84.8 4.8 4.1

ELP2IM (FPS) 8329.5 6850.5 96.4 5.4 4.6

Improvement 1.08× 1.14× 1.14× 1.13× 1.13×
Drisa_nor (FPS) 6107.2 3889.7 55.5 3.2 2.7

Improvement 0.79× 0.65× 0.66× 0.68× 0.66×

Dracc implements addition based on Ambit approach. It
divides an addition operation into several basic logic steps,
which can also be realized by ELP2IM and Drisa_nor. In
our simulation, we exploit the three designs to realize the
adder in Dracc separately. We first optimize the command
sequence to achieve the minimum operation cycles. Then we
run TWNs in the high throughput mode of Dracc, which can
fully exploit the hardware resources.

Table 2 shows the result of Dracc based on the three ap-
proaches. Given that there are only 13 commands (including
two new propagation and shift commands, which cannot be
optimized) for the addition operation in Dracc, the space
left for optimization is limited. ELP2IM still improves the
performance by 12% (on average). Note that this improve-
ment is achieved by the shorter latency of ELP2IM, instead
of higher parallelism, as we have removed the limitation of
power constraint. In the opposite, Drisa_nor impedes the
performance by 31%. Depending on the proportion of data
computation and data movement in different neural networks,
the improvement (or reduction) changes.

NID realizes binary CNN inside DRAM. It implements
XOR and count operations, which are the dominant calcula-
tions in binary CNN [59,60], by exploiting Ambit approach.
To implement the count operation, NID firstly permutes each
word and stores it in column-wise. Then it decomposes the
count operation into minimum number of AND and XOR
operations, thereby realizing the count with bulk bitwise oper-
ation. NID is embedded with accumulators and comparators
in peripheral area to assist the processing of other layers, such
as max pooling and normalization.

Table 3: Application in NID
Lenet5 Alexnet Resnet18 Resnet34 Resnet50

Ambit (FPS) 7525.1 227.1 9.5 4.7 1.4

ELP2IM (FPS) 9958.7 252.6 12.4 6.1 1.7

Improvement 1.32 1.11× 1.31× 1.31× 1.25×
Drisa_nor (FPS) 5497.1 205.9 7.1 3.5 1.1

Improvement 0.73× 0.91× 0.74× 0.74× 0.79×

In our experiment, we apply Ambit, ELP2IM, and Drisa_nor
to implement the XOR and count operations in NID. Then
we compare the performance obtained by the three methods,
as shown in table 3. On average, ELP2IM achieves 1.26×
throughput. This can be attributed to the fact that ELP2IM is
initially faster than Ambit in basic logic operations. Thus it is
also faster in the compound Boolean function. The other im-
plicit reason is that ELP2IM is better at optimizing command
sequence, because it contains 6 different primitives, which
makes the optimization quite flexible. Meanwhile, the count
operation in NID contains a large number of cycles, offering
a wide space for optimization. Therefore, ELP2IM achieves
significant improvement in NID. Drisa_nor is neither faster
than Ambit in basic operations nor flexible in the optimiza-
tion of command sequence. Therefore, it loses performance
by 22% on average.

7. CONCLUSION
In conclusion, we present ELP2IM, which provides a solid

improvement for bitwise operation using DRAM technology.
It retains the benefit and breaks the limitation of state-of-the-
art work. It is based on a lightweight pseudo-precharge state,
which offers the opportunity to implement in-place operation
and improves calculation accuracy.

Benefiting from the mechanism, ELP2IM improves the
performance by reducing the number of primitives and intra-
subarray data movement. ELP2IM lowers the power con-
sumption by diminishing the number of simultaneously acti-
vated rows. Meanwhile, ELP2IM achieves such significant
improvement even with less reserved space, relieving the
modification on DRAM.

Our simulation result shows that, in bitmap and table scan
application, ELP2IM achieves up to 3.2× throughput im-
provement in consideration of power constraint. Even with-
out the limitation of power constraint, ELP2IM still achieves
up to 1.26× throughput in CNN applications.

8. ACKNOWLEDGMENTS
This work is supported in part by US National Science

Foundation #1422331, #1535755, #1617071, #1718080,
#1725657, #1910413, The authors thank the anonymous
reviewers for their constructive comments.

9. REFERENCES

[1] O. Villa, et al., “Scaling the Power Wall: A Path to Exascale,” in SC,
2014.

[2] S. McKee, et al., “Reflections on the Memory Wall,” in CF, 2004.

[3] B. Akin, et al., “Data Reorganization in Memory Using 3D-stacked
DRAM,” in ISCA, 2015.

313

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

[4] H. Asghari-Moghaddam, et al., “Chameleon: Versatile and Practical
near-DRAM Acceleration Architecture for Large Memory Systems,”
in MICRO, 2016.

[5] A. Subramaniyan, et al., “Parallel Automata Processor,” in ISCA,
2017.

[6] S. Li, et al., “DRISA: A DRAM-based Reconfigurable In-Situ
Accelerator,” in MICRO, 2017.

[7] Y. Kim, et al., “Assessing merged DRAM/logic technology,” in
INTEGRATION, the VLSI journal, 27, 2, 179-194, 1999.

[8] V. Seshadri, et al., “Ambit: In-memory Accelerator for Bulk Bitwise
Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[9] Boroumand, Amirali, et al., “Google workloads for consumer devices:
Mitigating data movement bottlenecks,” in ASPLOS, 2018.

[10] D. E. Knuth, et al., “The Art of Computer Programming. Fascicle 1:
Bitwise Tricks & Techniques; Binary Decision Diagrams,” 2009.

[11] K. Wu, et al., “Compressing Bitmap Indexes for Faster Search
Operations,” In SSDBM, 2002.

[12] M. Shevgoor, et al., “Quantifying the relationship between the power
delivery network and architectural policies in a 3D-stacked memory
device.” in MICRO, 2013.

[13] N. Chatterjee, et al., “Architecting an energy-efficient dram system for
gpus,” in HPCA, 2017.

[14] JEDEC. DDR3 SDRAM Standard, JESD79-3D. http://www.jedec.
org/sites/default/files/docs/JESD79-3D.pdf, 2009.

[15] P. Nair, et al., “ArchShield: Architectural Framework for Assisting
DRAM Scaling by Tolerating High Error Rates,” in ISCA, 2013.

[16] T. Zhang, et al., “Half-DRAM: A High-bandwidth and Low-power
DRAM Architecture from the Rethinking of Fine-grained Activation,”
in ISCA, 2014.

[17] K. K. Chang, et al., “Low-cost Inter-linked Subarrays (LISA):
Enabling Fast Inter-subarray Data Movement in DRAM.” In HPCA,
2016.

[18] V. Seshadri, et al., “RowClone: Fast and Energy-efficient in-DRAM
Bulk Data Copy and Initialization,” in MICRO, 2013.

[19] Q. Deng, et al., “DrAcc: A DRAM Based Accelerator for Accurate
CNN Inference,” in DAC, 2018.

[20] X. Xin, et al., “ROC: DRAM-based Processing with Reduced
Operation Cycles,” in DAC, 2019.

[21] T. Zhang, et al., “CREAM: A concurrent-refresh-aware DRAM
memory architecture,” In HPCA, 2014.

[22] S. Lu, et al., “Improving DRAM Latency with Dynamic Asymmetric
Subarray,” in MICRO, 2015.

[23] Fl. Krisztián, et al., “Drowsy caches: simple techniques for reducing
leakage power,” in Computer Architecture News, 2002.

[24] B. Keeth, et al., “DRAM Circuit Design: Fundamental and
High-Speed Topics (2nd ed.,” Wiley-IEEE Press, 2007.

[25] P. Salvador, et al., “Exploiting temporal locality in drowsy cache
policies,” in Proceedings of the 2nd conference on Computing
frontiers, 2005.

[26] F. Brendan, et al., “Drowsy cache partitioning for reduced static and
dynamic energy in the cache hierarchy,” in International Green
Computing Conference Proceedings, 2013.

[27] Y. Hamamoto, et al., “Overview and future challenges of floating body
RAM (FBRAM) technology for 32 nm technology node and beyond,”
in Solid-State Electronics journal, 53, 7, 676-683, 2009.

[28] T. Ting, et al., “23.9 An 8-channel 4.5 Gb 180GB/s 18ns-row-latency
RAM for the last level cache,” In ISSCC, 2017.

[29] Y. H. Son, et al., “Reducing memory access latency with asymmetric
dram bank organizations,” In ISCA, 2013.

[30] D. Lee, et al., “Tiered-latency DRAM: A Low Latency and Low Cost
DRAM Architecture,” in HPCA, 2013.

[31] O. Seongil, et al., “Row-buffer Decoupling: A Case for Low-latency
DRAM Microarchitecture,”In ISCA, 2014.

[32] X. Zhang, et al., “Restore truncation for performance improvement in
future DRAM systems,” in HPCA, 2016.

[33] G. Fredeman, et al., “17.4 A 14nm 1.1 Mb embedded DRAM macro

with 1ns access." In ISSCC, 2015.

[34] DRAM Power Model, https://www.rambus.com/energy/, 2010.

[35] T. Vogelsang, et al., “Understanding the Energy Consumption of
Dynamic Random Access Memories,” in MICRO, 2010.

[36] H. Kang, et al., “A Sense Amplifier Scheme with Offset Cancellation
for Giga-bit DRAM" Semiconductor Technology and Science journal,
7, 2, 67-75, 2007.

[37] S. Chung, et al., “Method and System for DRAM Sensing." US Patent
7,369,425, 2008.

[38] T. Na, et al., “Comparative study of various latch-type sense
amplifiers." IEEE Transactions on VLSI journal, 22, 2, 425-429, 2013.

[39] S. Seyedzadeh, et al., “Mitigating bitline crosstalk noise in dram
memories." In MEMSYS, 2017.

[40] Y. Konishi, et al., “Analysis of coupling noise between adjacent bit
lines in megabit DRAMs." Solid-State Circuits journal, 24, 1, 35-42,
1989.

[41] B. Zhao, et al., “Process variation-aware nonuniform cache
management in a 3D die-stacked multicore processor,” in IEEE
Transactions on Computers journal, 62, 11, 2252-2265, 2013.

[42] A. Agrawal, et al., “Mosaic: Exploiting the spatial locality of process
variation to reduce refresh energy in on-chip eDRAM modules,” in
HPCA, 2014.

[43] Y. Nakagome, et al., “The impact of data-line interference noise on
DRAM scaling," Solid-State Circuits journal, 23, 5, 1120-1127, 1988.

[44] J. Liu, et al., “An experimental study of data retention behavior in
modern DRAM devices: Implications for retention time profiling
mechanisms," Computer Architecture News journal, 41, 3, 60-71,
2013.

[45] C. Eckert, et al., “Neural cache: Bit-serial in-cache acceleration of
deep neural networks," in ISCA, 2018.

[46] S. Li, et al., “Pinatubo: A Processing-in-Memory Architecture for
Bulk Bitwise Operations in Emerging Non-volatile Memories," in
DAC, 2016.

[47] M. Imani, et al., “FloatPIM: In-Memory Acceleration of Deep Neural
Network Training with High Precision," in ISCA, 2019.

[48] Micron, “MT41J256M16HA-125 Data Sheet,”
http://www.micron.com/products/dram/.

[49] 7th Generation Intel Core Processor Family for S Platforms, Vol. 1,
Datasheet. https://www.intel.com/content/www/us/en/
processors/core/7th-gen-core-family-desktop-s-
processor-lines-datasheet-vol-1.html.

[50] C. Chan, et al., “Bitmap Index Design and Evaluation,” in SIGMOD
Rec. journal, 27, 2, 355-366, 1998.

[51] Y. Li, et al., “BitWeaving: Fast Scans for Main Memory Data
Processing,” in SIGMOD, 2013.

[52] W. Thomas, et al., “Vectorizing Database Column Scans with
Complex Predicates,” in ADMS, 2013.

[53] J. Sim, et al., “NID: Processing Binary Convolutional Neural Network
in Commodity DRAM,” in ICCAD, 2018.

[54] H. Kim, et al., “NAND-Net: Minimizing Computational Complexity
of In-Memory Processing for Binary Neural Networks,” in HPCA,
2019.

[55] L. Jinag, et al., “XNOR-POP: A processing-in-memory architecture
for binary Convolutional Neural Networks in Wide-IO2 DRAMs,” in
ISLPED, 2017.

[56] S. Li, et al., “SCOPE: A stochastic computing engine for dram-based
in-situ accelerator,” in MICRO, 2018.

[57] F. Li, et al., “Ternary weight networks.” arXiv preprint
arXiv:1605.04711, 2016.

[58] C. Zhu, et al., “Trained ternary quantization.” arXiv preprint
arXiv:1612.01064, 2016.

[59] A. Renzo, et al., “YodaNN: An ultra-low power convolutional neural
network accelerator based on binary weights,” in ISVLSI, 2016.

[60] C. Matthieu, et al., “Binaryconnect: Training deep neural networks
with binary weights during propagations,” in NIPS, 2015.

314

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 19:38:59 UTC from IEEE Xplore. Restrictions apply.

