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Abstract—Solid state drives (SSDs) are constructed with multiple level parallel organization, including channels, chips, dies, and planes.

Among these parallel levels, plane level parallelism, which is the last level parallelism of SSDs, has the most strict restrictions. Only the
same type of operations that access the same address in different planes can be processed in parallel. In order to maximize the access
performance, several previous works have been proposed to exploit the plane level parallelism for host accesses and internal operations
of SSDs. However, our preliminary studies show that the plane level parallelism is far from well utilized and should be further improved.
The reason is that the strict restrictions of plane level parallelism are hard to be satisfied. In this article, a from plane to die parallel
optimization framework is proposed to exploit the plane level parallelism through smartly satisfying the strict restrictions all the time.

In order to achieve the objective, there are at least two challenges. First, due to that host access patterns are always complex, receiving
multiple same-type requests to different planes at the same time is uncommon. Second, there are many internal activities, such as
garbage collection (GC), which may destroy the restrictions. In order to solve above challenges, two schemes are proposed in the SSD
controller: First, a die level write construction scheme is designed to make sure there are always N pages of data written by each write
operation. Second, in a further step, a die level GC scheme is proposed to activate GC in the unit of all planes in the same die. Combing
the die level write and die level GC, write accesses from both host write operations and GC induced valid page movements can be
processed in parallel at all time. To further improve the performance of SSDs, host write operations blocked by GCs are suggested to be
processed in parallel with GC induced valid page movements, bringing lesser waiting time cost of host write operations. As a result, the
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GC cost and average write latency can be significantly reduced. Experiment results show that the proposed framework is able to
significantly improve the write performance without read performance impact.

Index Terms—SSD, parallelism, storage, scheduling, performance improvement

1 INTRODUCTION

SOLID state drives (SSDs) are widely adopted in modern
computer systems, ranging from embedded systems,
personal computers, to large servers in data centers. SSDs
have many advantages, such as shock resistance, high ran-
dom access performance, and low power consumption [1].
An SSD usually consists of multiple channels with each
channel having multiple chips, each chip having multiple
dies, and each die having multiple planes [2], [3]. To achieve
high performance, the prior studies strive to exploit the par-
allelism at channel/chip/die/plane levels so that multiple
accesses, such as reads, writes, and erases, can be processed
in different parallel units simultaneously [4], [5], [6].
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However, the parallelism at the last level, referred to as
plane level parallelism, exhibits strict restrictions — for two
operations that can be issued simultaneously to two different
planes, they not only need to be of the same type (i.e., read or
write) but also need to have the same in-plane address (i.e.,
the same offset within each plane), making it challenging to
explore as shown in recent studies [7], [8], [9], [10], [11], [12].
For example, to concurrently write two planes, their write
points need to be aligned. Unfortunately, a host often sends
uneven numbers of write requests to different planes [9] and
the activities originated from SSDs (e.g., garbage collection
operations) are often imbalanced across different planes [9],
[13]. Such asynchronicity leads to sub-optimal exploration of
plane level parallelism and prevents modern SSDs from
achieving further performance improvement.

To exploit plane level parallelism, Tavakkol et al. pro-
posed TwinBlk to write data to the different planes in a die in
a round-robin fashion [11] such that concurrent writes can be
issued to different planes at the same time. However, the
write points from different planes may be mis-aligned due to
(1) single-page write operations; (2) GC or wear leveling
activities originated inside the SSD [9], [13], [14], [15], dis-
abling the concurrent writes in these cases. To reduce GC-
induced write point mis-alignment, Shahidi et al. proposed
ParaGC to activate GC from all planes of the same die at the
same time [9], which opportunistically exploits the plane
level parallelism when all the pages at the same address of
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different planes are valid. TwinBlk can concurrently activate
multiple GCs by choosing multiple blocks with the same off-
set in different planes. It cannot process all valid page move-
ments in parallel when not all paired pages are valid.
Superpage enabled SSDs [1], [16], [17] strip requests to all
planes in a die, which increases the number of sequential
writes as well as concurrent write opportunities. However,
activating GC in one plane introduces mis-aligned free
blocks so that subsequent requests can not be processed in
parallel. In summary, a major limitation of existing studies is
that they explore plane level parallelism passively, making it
difficult to satisfy the access restrictions all the time. In par-
ticular, it is challenging to construct multi-plane command
after GC and/or wear leveling mis-align the write points in
different planes.

In this paper, we propose SPD, an SSD from plane to die
parallel optimization framework, to fully exploit the plane
level parallelism of SSDs for performance improvement. We
summarize our contributions as follows.

e We propose SPD to treat all planes (e.g., NV planes) in
a die as a single unit so that a die write results in N
page writes while a die read fetches N or fewer
pages. Similarly, internal activities, e.g., GC, get trig-
gered for N blocks from different planes that have
the same in-plane block address. To our best knowl-
edge, this is the first work on actively maintaining
aligned write points for multiple planes in a die com-
bining writes from both host and internal activities
for all the time;

e  We then propose die level write construction and die
level GC schemes to fully exploit the plane level paral-
lelism enabled by SPD. The write construction scheme
is to construct write operation with N pages of data
and issue them to a die at once; The die level GC
scheme is to process valid page movements, aligning
the write points of all planes in the same die.

e To further improve the write performance, we pro-
pose SPD+, which is designed to process host write
operations blocked by die level GCs in parallel with
GC induced valid page movements. Therefore, host
write operations are able to be completed with lesser
waiting time.

e We evaluate the proposed approach using a signifi-
cantly extended SSDSim [10] and compare it to the
state-of-the-arts. The experimental results show that
proposed approach is able to significantly improve
write performance of SSDs without read perfor-
mance impact.

The rest of this paper is organized as follows: In Section 2,
the background is presented. In Section 3, the problem state-
ment is presented. In Section 4, the SPD framework is pre-
sented. In Sections 5 and 6, the experiment setup and
evaluations are presented. In Section 7, related works are
discussed. Finally, the work is concluded in Section 8.

2 BACKGROUND

In this section, we briefly discuss the background, including
SSD organization, advanced SSD commands, parallelism,
and garbage collection (GC).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

SSD Controller | Chip o | | Chip 4 Die 0 || Die1

7777777777 —

! | o X X

[ FrL |8 \

! w“:|Chi1||Chi |
& || _Alloc i 5 \ gllefllelle
8| < i i sis|l &=
E'l[_]we?r 1 |Ch1-p2||Ch1-p6| SNEINE|S
o i Leveling I = \
% || [ Garbage = | Chip 3 | | Chip 7 | \

| Collection Ji| < I T N ; !

I ,5 \\ -

Buffer ; . \

J - Solid State Drive

System

Fig. 1. The organization of SSDs.

2.1 SSD Organization

A modern SSD usually consists of multiple channels with
each channel containing multiple flash chips. Within each
flash chip, there are multiple dies with each die containing
multiple planes. Fig. 1 illustrates the organization of a typical
SSD that has 4 channels, 2 chips per channel, 2 dies per chip,
and 2 planes per die. The SSD parallelism can be exploited at
channel/chip/die/plane levels, which have one major focus
of previous studies for performance improvement [2], [13],
[18]. To manage the flash memory as well as to explore the
parallelism, an SSD controller comprises several compo-
nents, including flash translation layer (FTL), data allocation
(DA), wear leveling (WL), garbage collection (GC).

The FTL is to manage the mapping between logical
addresses and physical addresses. Based on the operation
granularity, there are three types of mapping schemes, i.e.,
page mapping [4], block mapping [19], and hybrid mapping
[20] [21], [22]. In this work, we assume the widely adopted
page mapping as it tends to have its better performance. The
data allocation is to determine the allocations of chan-
nel, chip, die and plane for write operations. The wear
leveling is to distribute written data evenly to flash pages
for prolonging the SSD lifetime [23], [24]. Since flash memory
cannot reprogram a programmed flash page before execut-
ing an erase operation to reclaim the whole block, modern
SSDs widely adopt out-of-place-update scheme for data
updating. To reclaim invalid pages, GC is activated while the
number of free pages drops below a predefined threshold.

In addition, modern SSDs widely equip a built-in Ran-
dom Access Memory (RAM), referred to as the SSD buffer,
within SSD controller for temporarily storing hot data and
metadata. Since the access latency of RAM is much smaller
than that of flash memory, buffer-equipped-SSDs can pro-
vide much better performance for data hit in the buffer [25],
[26], [27], [28].

2.2 Parallelism and Advanced Commands
The hierarchical SSD architecture provides four level paral-
lelism, from channel, chip, die to plane. For channel and
chip level parallelism, data can be processed in different
chips in parallel. The parallelism of these two levels is natu-
rally supported by SSDs while that of the rest two levels are
supported by advanced commands [9], [10], [12], [18], [29].
The die and plane level parallelism is also referred to as
internal parallelism [3].

For die level parallelism, operations issuing to the same
chip but different dies can be processed in parallel with
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interleaving command [9], [10]. There is no restriction on
when to use the interleaving command. For the last level
parallelism, plane level parallelism may be exploited to fur-
ther improve performance through processing operations
concurrently on different planes of the same die. Due to cir-
cuit restrictions [7], as shown in the open NAND flash inter-
face (ONFI) standard specification [8], the plane level
parallelism can be exploited when satisfying the two opera-
tion type and in-plane address restrictions of multi-plane
command. A multi-plane command improves plane utilization
as it operates multiple planes within the same die in parallel
and only takes the time to finish one operation. However,
when the restrictions can not be met, it processes different
planes sequentially to the requested operation. In particular,
an operation processed on one plane blocks other planes of
the same die from servicing other operations.

2.3 Garbage Collection

Within flash memory, pages can not be updated in place [7].
In order to solve this issue, data is always updated out of
place by programming updated data in another block and
invalidating original version. Invalid pages can not be reused
until they are erased. With the increasing of invalid pages’
number and reduction of free pages’ number, garbage collec-
tion (GC) is triggered for reclaiming invalid pages [1], [13].
The process of GC can be described as follows: First, a victim
block is selected; Second, valid pages in the victim block are
read and wrote to free pages in other blocks; Third, the vic-
tim block is erased. During this process, valid page move-
ment is performed page by page, which is able to introduce
significant time cost of SSD system while the incoming host
requests are blocked and delayed [13].

To solve such a problem, a simple and effective approach,
termed greedy GC, has been proposed and widely used to
reduce the time cost of valid page movement [22], [30].
Greedy GC is designed to minimize the cost of valid page
movement by selecting block with minimum number of
valid pages. Thus, the total GC induced time cost can be min-
imized so that fewer host requests are blocked and delayed,
increasing the performance of SSDs. In this work, greedy GC
also is considered as a typical GC algorithm while other GC
algorithms [31], [32], [33] also can be applied in proposed
approach without loss of generality.

3 PROBLEM STATEMENT

In this section, we study the challenges in exploiting the plane
level parallelism, which comes mainly from the restrictions of
the multi-plane command [9], [18]. For clarity, we focus on write
operations as they are much slower than read operations and
thus have larger impact on the overall performance.

We next conduct a study on the operations to an SSD
with each die consisting of two planes. Without losing gen-
erality, the non-GC operations that access the same die may
be categorized to the following four cases.

Case 1: The operations are issued to one plane only (Single
Write). Such write operations introduce unaligned
write points across different planes;

Case 2: Two different types of operations are issued to the

two planes of the same die. Due to the operation
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type restriction, the operations are not allowed to
be processed in parallel;
Case 3: Two same type operations with unaligned in-
plane addresses are issued to two planes of the
die (Unaligned Writes). Due to the address restric-
tion, the operations cannot be processed in paral-
lel either;
Two same type operations with aligned in-plane
addresses are issued to two planes (Parallel
Writes), which can be processed in parallel with
the support of multi-plane command.

Among these four cases, Case 2 can not be avoided due
to the circuit restriction of multi-plane command while mixed
types of operations being issued to different planes of the
same die. Then, the numbers of operations falling in Case 1,
Case 3 and Case 4 are collected and reported in Fig. 2. The
experiment setting details can be found in the experiment
section. We have two observations from the results: (i) plane
level parallelism is far from well utilized; (ii) a large per-
centage of write operations issued to the die are unaligned
write operations, which can be exploited for performance
improvement.

To solve the issue of unaligned write points across planes,
anaive solution is to write data at the aligned points greedily
[10]. However, if the current write points are unaligned, writ-
ing data at the aligned points lead to wasted space. For exam-
ple, we assume there are two planes per die, one block per
plane, and six pages per block, as shown in Fig. 3a. In Fig. 3a-
(1), the current write points are unaligned. Traditionally, if
two write operations, W1 and W2, are issued to the two
planes in the same die, they will be processed sequentially. If
they are written to the aligned pages, a free page in Plane 1
would be wasted, as shown in Fig. 3a-(2). In this work, we
strive to design a write construction scheme to align the write
points in each die.

Apart from host requests, internal SSD activities, e.g., GC,
also introduce non-negligible performance impact from the
unaligned write points across planes [13], [14]. Given a die
with multiple planes, if one plane activates GC, the other
planes cannot be accessed before this GC finishes. To solve
this problem, Shahidi et al. proposed to activate GCs in all
planes at a time so that GC induced time cost can be over-
lapped [9]. To avoid significant parallel GC induced write
amplification, ParaGC proposed to select a block containing
most invalid pages in a plane first. Then, if the number of
invalid pages in the paired block resided in the paired plane
is large too, these two blocks can be reclaimed by GCs simul-
taneously. Otherwise, only one block is processed by GC.
However, such a solution faces two issues: First, since the

Case d:
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number of valid pages in paired blocks are different, ParaGC
may lead to unaligned write points across different planes
after valid page movements. For example, in Fig. 3b, after
moving valid pages in each plane in Fig. 3b-(1), new write
points (WP in the figure) become unaligned, as shown in
Fig. 3b-(2). Second, if only one block is occupied by GC,
write points will be unaligned while this block is erased and
switched as a free block and its paired block still has not been
reclaimed. That is, to maintain aligned write points at all
time, we need to construct multi-plane oriented writes for
both of host requests and GC induced operations.

4 SPD: FRoMm PLANE TO DIE PARALLELISM
EXPLORATION

4.1 Overview

To maximize plane level parallelism, the access addresses of
writes on all planes in the same die should be aligned at all
time. In this work, we propose SPD, an SSD from plane to die
framework, to exploit the plane level parallelism for perfor-
mance improvement by smartly maintaining aligned write
points across multi-planes in each die at all time.

Basically, SPD takes the following strategies to achieve
the objective, as shown in Fig. 4. The basic SPD design adds
three new components — a die level write construction, a
die level GC and a combination scheme. The die level write
construction is designed to maintain aligned write points
for host writes. The die level GC is designed to maintain
aligned write points for GC induced page movements. Note
that for other activities, such as WL, they also can adopt the
same design principle of GC. For simplicity, only GC is
taken as an example in this paper due to its non-negligible
performance impact on SSDs. The combination scheme is
proposed to process write operations and GC related valid
page movements in parallel so that write operations from
host system can be processed with less waiting time.

For die level write construction, SPD exploits the SSD
buffer to choose IV dirty pages and writes them back to one
die simultaneously. This helps to convert one die access to
N page writes at the aligned in-plane address. This is
referred to as Die-Write. Similarly, the read access to the
die is referred to as Die-Read. Note that Die-Read only
needs to read required number of pages, which does not
introduce any read amplification. For die level GC, it is acti-
vated at the multiple planes of the same die at the same
time. During the process of die level GC, all writes induced
from the valid page movements also is processed in the unit
of N page writes to maintain the aligned write points. After
moving all valid pages to new free pages, erase operations
are executed in parallel to reclaim victim blocks with same
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in-plane address. This is referred to as Die-GC. NN is set to
two in the following discussion while we evaluate different
N values in the experiments. Since GC process is time-con-
suming, host write operations blocked by Die-GC (called as
access conflict in this paper) are able to be significantly
delayed, causing write performance degradation. To mini-
mize Die-GC induced access conflict, we combine Die-
Write and Die-GC together for processing host write oper-
ations and GC induced valid page movements in parallel.
Therefore, host write operations can be processed with
lesser waiting time, bringing better write performance. We
will elaborate the details of these three components in fol-
lowing sections.

4.2 Die Level Write Construction

Given that multi-plane commands would be disabled if the in-
plane addresses are mis-aligned, the basic idea of die level
write construction is to maintain aligned write points all the
time by write the same amount of data synchronously to all
planes in the same die. That is, (1) the amount of data issued
to a die should be a multiple of NV pages, assuming there are
N planes in a die; and (2) the starting locations of data
should be aligned for all the planes in the same die. With
this scheme, whenever there are multiple write operations
issued to a die, they can be processed in parallel.

SPD exploits SSD buffer to assist die level write construc-
tion. An SSD bulffer evicts a multiple of NV dirty pages from
one die at a time such that these pages can be written using
Die-Write. For data allocation, we adopt a round-robin
plane allocation scheme within a die [11], which evenly dis-
tributes IV dirty pages to different planes at each cycle. The
data allocation at higher levels can either be static or
dynamic, as discussed in Section 2.1. In the following discus-
sion, we assume static allocation at the channel, chip, and die
levels, which is simple and has been widely equipped in real
SSD devices.

4.2.1 Buffer Supported Die-Write

Fig. 5 illustrates how the SSD buffer assisted Die-Write
works. Fig. 5a shows how the SSD buffer is organized. It
maintains a die queue that keeps a list of dirty pages for each
die in the system. The pages in each list are linked together
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using LRU algorithm. The data evicted from the buffer are
written to their corresponding dies. To balance the number
of writes sent to different dies, SPD adopts round-robin to
choose the next die from which its LRU pages are evicted.

For the example, in Fig. 5b, the SSD has four dies, each
die has two planes, and the current turn is Die 0. When the
SSD bulffer is full and there is a host requirement for insert-
ing five dirty pages to the buffer, SPD chooses the victim
dies with at least two dirty pages (i.e., two is the number of
planes in a die) and evicts the dirty pages from each selected
die. In the example, it first chooses Die 0 and then skips Die
1 as the latter does not have enough dirty pages. It continu-
ously chooses Die 2 and Die 3 and then evicts two pages
from Die 0, 2, and 3, respectively.

From this example, the write points of all planes are effec-
tively aligned. The proposed scheme may evict one more
dirty page than the number of dirty pages from the host.
Since one Die-Write takes the same amount of time as one
page write, the scheme is able to speed up the storage access
if there exist several dirty pages evicted to the same die. But if
only one dirty page from the host, evicting one more dirty
page can align the write points without introducing addi-
tional time cost. In addition, since all Die-Writes opera-
tions can be scheduled in parallel by leveraging the parallel
architecture of SSDs, SPD avoids the access conflicts on the
same die [3], [18]. Due to that we always evict the pages at
LRU positions, the write amplification also can be minimized.

Since the addresses of requested data are fixed, die level
read operations cannot be constructed the same way at that
for Die-Write. In this work, Die-Read only read the
requested data, i.e., if there exist read operations with
aligned access locations, they can be issued to the die in par-
allel; otherwise, only single page read gets processed next.
The goal of Die-Read is to maximize the number of multi-
plane command supported read operations without introduc-
ing read amplification.

4.2.2 Implementation and Analysis

To assist die level write constructions, SPD enhances the
SSD buffer management to expose more parallel processing
opportunities. Different from traditional buffer manage-
ment scheme, SPD needs to evict a multiple of NV dirty pages
from one die queue. In this work, the N pages of dirty data
at the head of LRU are selected for eviction. SPD does not
require an extra built-in buffer and thus does not introduce
extra space demand. However, SPD requires a minimal
of M x N x Size_of_Page-byte buffer for smooth buffer
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management where M is the number of dies in an SSD, and
each die has N planes. For example, for a 512 GB SSD, with
32 dies, two planes in each die and 4 KB page size, the mini-
mal size of buffer should be 256 KB, which can be satisfied
by most existing SSD products.

In addition, to maintain such die queues, more space
overhead is introduced. First, total 32 queue heads are
required and each queue head points to the the LPN of a
page. Each LPN requires 4 bytes and the total space cost of
all queue heads is 128 bytes. Second, another pointer is set
to locate current active die queue, where pages are going to
be evicted in the next eviction innovation. Since there at
most are 32 die queues, this pointers needs 5 bits space cost.
Third, each die queue should set one counter to record the
number of pages linked in this queue. In worst case, all
pages in the buffer are linked in one die queue. That is, each
counter requires 17 bits and total space cost of counters is 68
bytes. In summary, less than 197 bytes are needed to main-
tain these die queues.

Another issue that SPD needs to consider is the power
interruption induced data loss, which is often mitigated by
integrating a super capacitor [34], [35], [36], [37], [38].

4.3 Die Level GC

A GC process includes three steps: victim block selection [1],
[14]; valid page movement; and victim block erase. The dom-
inate cost of a GC comes from valid page movement [13].
The design goal of Die-GC is to speed up the GC process
with minimal GC cost. For this purpose, SPD activates GC at
all planes in the same die at the same time with carefully
selected victim blocks. By adopting Die-Write instead of
sequential page writes, SPD improves reclaim effectiveness
by reducing the most timing cost. We elaborate the details as
follows.

4.3.1 GC Process

Fig. 6 shows an example for Die-GC. Within each die, N
stripped blocks from N planes — one from each plane and all
the selected blocks share the same in-plane address, are
grouped together as aligned block, which is set as the mini-
mal granularity of Die-GC. That is, different to the traditional
GC process, Die-GC should be modified while aligned block
is taken as the minimal granularity. Totally, there exist four
steps: First, we adopts the greedy based victim block selection
[1], [13], where the aligned block with maximal number of
invalid pages is selected. With this scheme, the time cost of
valid page movement will be minimized. Such scheme can
be realized without any modification. Since traditional GC
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process scans the states (valid /invalid /free) of all pages in a
block and finds a victim block which contains maximal num-
ber of invalid pages, proposed Die-GC is realized by sum-
ming the number of valid pages of blocks in each aligned
block. Based on the summed number, victim aligned block is
selected. Second, SPD uses Die-Read (in Section 4.2.1) to
read the valid pages to the SSD buffer, where N page slots are
required to store valid pages from victim blocks. Third, after
reading N pages of valid data, SPD groups the N pages of
data to construct a Die-Write operation and then writes the
valid data back to the die. Finally, when all the valid pages
are written back, the N aligned blocks can be erased in paral-
lel. Given SPD reclaims N blocks from one GC invocation,
the GC gets triggered less frequently than that of the tradi-
tional one. However, since each GC erases and reclaims two
blocks after one invocation, the total number of erase opera-
tions during the whole lifetime of SSDs can be increased
while the frequency of triggering GC can not be significantly
reduced, causing lifetime degradation of SSDs. In the experi-
ment, the impact on lifetime is going to be evaluated and
presented.

For the example shown in Fig. 6, let us assume the two
aligned blocks 0 from two planes are selected as the victim
blocks. According to Die-GC, the valid pages in these two
blocks are read and written with Die-Read and Die-
Write, respectively.

Stepl: Read page 0 from plane 0 and page 1 from plane 1
to the SSD buffer. Since they are not aligned, they
are read sequentially.

Step2: Group the two valid pages together to construct a
Die-Write operation and written them back to
the current aligned write point of both planes at
block j. The current write points are marked using
red arrows in the figure.

Step3: Then, read page 2 from plane 0 and plane 1 to the
SSD buffer. These two pages are read in parallel as
they have aligned addresses.

Step4: Repeat step (2) for the last two valid pages.

Stepb: Then, erase the two victim blocks in parallel. From
the above discussion, Die-GC significantly reduces
GC cost because it maintains aligned write points
in the die such that many strip reads and writes
can operate in parallel.

An exception for the above scheme happens when the
total number of valid pages in the victim aligned blocks is
odd. In this case, the last Die-Write cannot be constructed
due to the lack of one more valid page, causing the write
points of different planes misaligned after GC while the last
Die-Write is carried out with only one valid page inside.
To address this issue, the last Die-Write operation is con-
structed by the remaining valid page in victim block and one
dirty page in the write buffer (as discussed in Section 4.2).

4.3.2 Implementation, Analysis, and Discussion

We next elaborate the implementation overhead of SPD. We
identify the construction of Die-Write as the most critical
component in SPD. Given that SPD transfers more data to
the write buffer in the controller, it demands larger data
storage. Considering the worst that all dies are activated
with the die level GC, each die needs at least NV pages in the
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write buffer. For a typical SSD setting as presented in
Section 4.2, the required buffer size for Die-GC is 256 KB
for a 512 GB two-plane SSD and 512 KB for a 512 GB four-
plane SSD at least. In summary, the storage requirement is
modest for modern SSDs.

4.4 Combining Die Level Writes and GC

Both of Die-Write and Die-GC can be used to improve
the write performance by fully exploiting the plane level
parallelism. However, if there is a die being occupied by
Die-GC, constructed Die-Writes towards this die will be
delayed and wait for the completion of Die-GC. As shown
in Fig. 7, there are four Die-Writes accessing current die,
where a Die-GC is being processed in two blocks. In this
case, these four Die-Writes have to be delayed until the
completion of Die-GC. The bottom of Fig. 7 shows the time
flow of Die-GC and Die-Writes. All these four Die-
Writes suffer from a long waiting time caused by Die-GC.
Such a GC induced conflict between Die-GC and Die-
Write is regarded as access conflict in this work. In order
to minimize the impact from access conflict between Die-
Write and Die-GC, the most straightforward method is to
process Die-Write with higher priority and postpone
Die-GC. However, such a method may make Die-GC
induced writes starve. Therefore, to avoid the starvation of
Die-GC induced writes, we propose a combination scheme,
which aims to reduce the waiting time of Die-Write with-
out destroying the aligned write points.

4.4.1 Combination Scheme

As shown in top part of Fig. 8, there are eight valid pages in
victim blocks (light blue boxes), and eight dirty page (gray
boxes) generated write operations, which can be processed
in parallel by constructing Die-GC and Die-Writes,
respectively. Totally there are three steps (Step 0 to Step 2),
which are processed in sequence order. For Die-Writes,
which arrive during the process of Die-GC, they have to be
delayed before the completion of Die-GC, causing write
performance degradation.

To minimize the waiting time of Die-Writes, Die-GC
is divided into two parts, including valid page movements
and erase operations, where valid page movements are
processed by constructing new Die-Writes. To solve this
problem, in the bottom of Fig. 8, valid pages in victim blocks
and dirty pages from buffer are combined to construct new
Die-Writes. In this case, we assume there are three and
five valid pages in two victim blocks, respectively. The
whole combination scheme can be divided into three steps
(Step 3 to Step 5 in Fig. 8). For Step 3, one victim block is
selected to execute valid page movements while the paired
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transferred into this buffer space (two page space is
required while a die contains two planes), where two pages
can be constructed as a Die-Writes. Based on the imple-
mentation of Die-Write and Die-GC, proposed combina-
tion scheme can be realized without introducing additional
implementation overhead.

Algorithm 1. Optimizing Access Conflict between Die-GC
and Die-Writes

Time Flow

—
Die-Write Die-GC

Fig. 8. Combining Die-Writes and Die-GC for Minimizing the Impact from
Access Conflict (light blue box indicates GC related operations and gray
box indicates dirty page generated write operations).

block is used to service write operations. Totally, three write
operations from the buffer can be written in parallel with
valid page movements of GC as three Die-Writes. Simi-
larly, in Step 4, valid page movements in another victim
block are realized while additional five dirty pages from the
buffer are being wrote to the paired block. Since write points
of all planes in the same die are aligned, the new Die-
Writes are constructed and processed in parallel via access-
ing aligned write points. Lastly, in Step 5, two erase opera-
tions are executed in parallel as a Die-GC that does not
contain valid page movements. For the time cost of this com-
bination scheme, although the total time cost is the same as
the original scheduling case (the top part in Fig. 8), the time
cost of write operations from host system can be reduced
while they are being processed in parallel with GC process.

4.4.2 Pseudocode Analysis

To explain more details, a combination scheme based algo-
rithm is presented in Algorithm 1. Initially, we assume there
are two planes in a die. Before evicting dirty pages to a corre-
sponding die, the following algorithm is used to check
whether these evicted dirty pages can be processed in parallel
with valid page movements in GCs. If there is a Die-GC being
processed in a die and some dirty pages are going to be
evicted from buffer (Line 1), the combination scheme is acti-
vated. Otherwise, proposed Die-GC and Die-Write are
processed as presented in above sections (Line 11-14). For the
combination scheme, the numbers of valid pages and evicted
pages should be larger than 0 (Line 2, 6) so that at least one
valid page in victim block can be read out and constructed as
anew Die-Write with an evicted dirty page from the buffer
(Line 3, 7). After that, this new Die-Write containing valid
page and dirty page is written back to the aligned write points
(Line 4, 8). This process is repeatedly executed until all valid
pages have been moved out or there is no more dirty pages
being evicted from buffer. After that, Die-GC is resumed
(Line 10). If there still exist some valid pages in victim blocks,
paired valid pages are read out and written back in parallel
based on the design of Die-GC. Otherwise, two erase opera-
tions are processed in parallel, such as the Step 5 in Fig. 8.

4.4.3 Implementation and Analysis

To implement proposed combination scheme, the Die-GC
required buffer space is used to maintain one dirty page in
the buffer, and then another valid page from victim block is

Input:
Assume that there are two victim blocks in a die, Blk_.0 and
Blk_1;
Die_GC" indicates a die is occupied by Die-GC;
Die_Write: indicates a write operation distributed to a die with
Die-GC;
Blk1_VP and Blk2_VP: indicates the number of valid pages in
two blocks.
Output:
if Die_.GC # NULL and Die_Write # NULL then
while BIk0_VP # 0 and Die_Write # NULL do
DieWrite_Generation(Valid Page, Dirty Page);
Processing_New_DieWrite;
end while
while Blk1_VP # 0 and Die_Write # NULL do
DieWrite_Generation(Valid Page, Dirty Page);
Processing_-New_DieWrite;
end while
Processing_DieGC
11: else if Die_.GC # NULL then
12: Processing_-DieGC,
13: else if Die_Write # NULL then
14:  Processing_-DieWrite;
15: end if

—_
SN

5 EXPERIMENT SETUP

5.1 Simulated SSD Devices

Due to that the proposed scheme needs firmware support of
SSDs, in this work, we use a popular trace driven simulator,
SSDsim [10], to evaluate the effectiveness of the proposed
framework. In order to simulate a state-of-the-art SSD,
SSDsim is significantly extended based on ONFI [8]. During
the evaluation, a 512 GB SSD is simulated, and page map-
ping and greedy based GC scheme are adopted [3], [10].
The threshold value for GC activation is set to 7 percent [9].
To triggering GC process, SSD is warmed up by filling SSD
with valid and invalid data ahead. The warming up process
contains two steps: first, each plane of the SSD is randomly
filled with data from 93 to 95 percent to trigger GC immedi-
ately, of which 80 percent are valid; second, the evaluated
workload is pre-processed in the SSD to validate read data
[13]. The over-provisioning ratio is set to 25 percent, which
complies with the setting in previous work [9]. For the data
allocation scheme, the most widely used Channel-Chip-Die-
Plane scheme is adopted. The experiment settings represent
an aged state-of-the-art SSD. Other details are presented in
Table 1.

During the evaluation, a DRAM bulffer is configured in the
SSD. We set the buffer size to be 1%o of the footprint of the
evaluated workload [25], [40], which helps to prevent setting
a large buffer from generating biased results in evaluation.
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TABLE 1 TABLE 2
Parameters of the Simulated SSD [9], [39] The Characteristics of Evaluated Workloads

sp 512 GB;16 Channels; 8 Chips/Channel; 1 Die/Chip; 2 Workloads W/RRatio® FP® R V! W V! RS WS
Configuration 1%/ Die;2048 Blocks/Plane; 236 Pages/Blocks 4 KB Fpg 679% 135 69 152 112 116
— - - PRN_O 93.7% 293 3.0 20.5 248 11.6
Timing 0.075 ms for page read; 1.5 ms for page write; 3.8 ms PRN 1 32.1% 516 314 109 242 114
Parameters  for block erase; 25 ns for byte transfer. RSR 0 90’7% 0‘31 18 14, 6 1 5'0 126
STG:O 76.9% 028 74 9.3 33.6 126
PROJ_0O 82.9% 158 72 56.5 219 357
The default data organization of die lists in the buffer is PROJ_3 4.89% 186 216 28 119 299
designed based on the scheme of the Element-Level Parallel- SRC2_0 88.6% 052 19 136 122 11.0
ism Optimization (EPO) [41]. EPO evicts dirty pages from TS 0 82.6% 057 49 159 175 118
buffer based on its die location so that the utilization of die FRXY_0 97.06% 0.17°027 o8 96 62
WDEV_0 79.9% 034 32 9.2 16.5 121

level parallelism can be maximized. The data are organized in
LRU for each die list of the buffer.

5.2 Evaluated Workloads

The workloads studied in this work include a subset of MSR
Cambridge Workloads from servers [42]. These workloads
are widely used in previous works for studying SSD perfor-
mance [9], [14], [18], [43]. The characteristics of workloads
are presented in Table 2. Each workload is characterized by
three metrics: W/R Ratio, FP, R.V, W_V, R.S and W_S.
W /R Ratio represents the write and read operation ratios,
FP is the footprints of each workload, R_V is the total
amount of read data, W_V represents the total amount of
written data, R_.S represents the average size of read
requests, and IV_S is the average size of write requests.

5.3 Evaluated Schemes:
Seven schemes are implemented to show the effectiveness
of SPD.

Baseline-D. This scheme is implemented to represent the
traditional SSD design [10]. The buffer management of Base-
line-D adopts EPO to exploit die level parallelism through
adding dirty pages to different die lists based on their die
locations [41]. With this organization, dirty data evicted
from write buffer can be distributed to different dies so that
die level parallelism can be exploited;

Baseline-P. This scheme is similar to Baseline-D. The dif-
ference is that Baseline-P evicts dirty data based on their
plane locations to further exploit plane level parallelism. In
this case, dirty pages accessing different planes within the
same die are evicted at a time. Baseline-P evenly distributes
dirty pages to different planes to better exploit plane level
parallelism, which is similar to the previous studies [18], [44];

TwinBlk. This scheme is designed based on the work pro-
posed by Tavakkol et al. [11], which aims to align write points
of all planes in a die via round-robin policy. In this case, sev-
eral host requests can be processed in parallel when write
points are aligned. During GC process, the adopted round-
robin policy is designed to align write points of active blocks
in victim blocks as well, aiming to move valid pages with the
support of multi-plane command,;

SuperPage. This scheme is implemented based on [17],
[45], which groups pages into one super page that is set as
the smallest access granularity of flash memory. Such a
large-granularity accessing approach can fully exploit plane
level parallelism by writing pages to all planes in a die at
any time. Differing from our proposed work, if there exist

5 W/R Ratio: Write and Read Requests Ratio.

FP: FootPrint (GB).

R_V/W_V: Read/Write Data Volume (GB).
R_S/W_S: Average Read/Write Request Size (KB).

an update operation, the paired data in other planes should
be read out first if they are valid. Later, the read data and
updated data are constructed as one new super page, and
then are written to the die with the support of multi-plane
command.

ParaGC. This scheme is designed by Shahidi et al. [9],
which aims to align valid page movement during GC to
minimize the GC cost. Differing from TwinBlk, ParaGC
aligns write points of active blocks through sequentially
moving valid pages to one active block until write points of
all planes are aligned. After that, with cache assistance, all
valid pages can be written back to active blocks with the
support of multi-plane command;

SPD. This is the proposed framework, which includes
Die-Write and Die-GC.

SPD+. This is the proposed framework, which includes
Die-Write, Die-GC and the combination scheme.

6 EXPERIMENT RESULTS AND ANALYSIS

In this section, basic SPD is evaluated with two scenarios
based on whether GC is triggered. For the first scenario with-
out triggering GC, it is evaluated to show the advantages of
the proposed Die-Write scheme. For the second scenario
with triggering GC, it is evaluated to show the effectiveness
of SPD, including Die-Write and Die-GC. In addition, the
Die-GC is also evaluated in term of its cost and lifetime
impact. Then, proposed SPD+ is evaluated and compared
with basic SPD scheme to identify its effectiveness. Since
SPD+ is designed to solve the access conflict between Die-
Write and Die-GC, there is only one scenario with trigger-
ing GC. Finally, the impact of different buffer sizes and
results on SSD with 4 planes per die are presented.

6.1 Experiment Results Without GC

1) Write Latency Evaluation: Fig. 9 shows the results of write
latency for the six schemes. Note that, since ParaGC is
designed to optimize GC process, the results of ParaGC in
this part are same to that of Baseline-D. The results show that
SPD achieves write latency reduction for all evaluated work-
loads. For example, for HM_0, PRN_0, PROJ_3, SRC2_0 and
PRXY_0, the write latency is reduced by more than 15 percent
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Fig. 9. Write latency reduction.

compared with Baseline-D. These results show that deploy-
ing Die-Write to maintain aligned write points for the mul-
tiple planes in a die is important in improving the access
performance. In Fig. 10, we collected the percentages of write
operations processed by multi-plane command. The results
show that the proposed Die-Write is able to maintain
aligned write points for all write operations. However, this is
not a promise for the other schemes.

To obtain more details, we compare SPD with other three
schemes, Baseline-P, TwinBlk and SuperPage. Two observa-
tions can be concluded from the results: First, compared
with these three schemes, SPD achieves the best write per-
formance. Baseline-P is proposed to distribute the same
type requests to all planes evenly. However, the address
restriction is not taken into consideration. As a result, Base-
line-P only achieves little write latency reduction, which is
only up to 1.4 percent. TwinBlk aims to align write points of
all planes in the same die as well. However, the write points
still may be unaligned due to the unaligned accesses on
planes of the same die. On average, TwinBlk achieves 7.8
percent write latency reduction compared with Baseline-D.
As shown in Fig. 10, the percentages of write operations
processed by multi-plane command for Baseline-P is similar
to that of Baseline-D. For TwinBIk, the percentage is largely
increased compared with Baseline-D. SuperPage also can
fully exploit plane level parallelism at any time by con-
structing super page on a die. However, such a super page
would introduce write amplification and cause write traffic.
Before constructing an update operation related super page,
read operations are required to read out all valid pages
resided in original super page. Therefore, compared with
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Fig. 10. Percentages of write operations processed by multi-plane
command.
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TABLE 3
Read Latency Results Without GC
Baseline-D  Baseline-P  TwinBlk SuperPage ParaGC SPD

Reduction 0 0.049% 0.011% 0.304% 0% 0.096%

Baseline-D, although SuperPage can achieve 10.4 percent
write latency reduction, SPD still outperforms SuperPage at
the performance improvement.

Second, for several workloads, TwiBlk only achieves simi-
lar performance improvement to that of Baseline-D, such as
RSR 0, STG_0, TS_0 and PRXY_0. This can be explained
from the results in Fig. 10, where the percentage of write
operations supported by multi-plane command is limited. The
reason is that TwinBlk cannot guarantee aligned write
points for all planes all the time.

For read latency, the average read latency improvement
compared with Baseline-D is presented in Table 3. The results
show that read latency is similar among the six schemes. The
key reasons are from two aspects: first, read requests of all
evaluated schemes are processed with highest priority [3],
[31], [46], [47]; second, Die-Read is designed to only read
requested pages, which are barely located in the same in-
plane addresses. In conclusion, the proposed Die-Read is
same to that of normal read operations without introducing
read amplification. Note that, in SuperPage, read operations
always are executed with the support of multi-plane command,
but only required data is transferred out for time cost saving.

2) Plane Utilization: Plane Utilization is defined to present
the average number of planes being occupied in parallel. In
order to obtain plane utilization, the number of planes being
accessed is counted when each buffer eviction process is
completed. Fig. 11 shows the plane utilization (Bars) and the
maximal number of planes being accessed in parallel (Dots
+Line) for the six schemes. The results have a matching pat-
tern with the write performance improvement in Fig. 9. SPD
can significantly increase the plane utilization through dou-
bling the number of parallel planes with satisfying the
restrictions of multi-plane command. On average, the plane
utilization is increased by 34.5 percent compared with Base-
line-D. For the maximal number of planes accessed in paral-
lel, all planes of the SSD can be accessed in parallel for most
workloads. Similarly, SuperPage also can achieve the maxi-
mal plane level parallelism, whose plane utilization is aver-
agely increased by 32.9 percent compared with Baseline-D.
However, for Baseline-D, Baseline-P and TwinBIlk, there still
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Fig. 11. The plane utilization and maximal number of planes being
accessed in parallel.
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exists a large gap compared with SPD. In conclusion, Die-
Write is not only able to increase plane utilization, but also
can make a full use of all planes of the SSD.

3) Buffer Hit Ratio: Differently from previous work, Die-
Write may need to evict more data from the buffer to align
the write points. In this case, it may have impact to the hit
ratio of buffer. Fig. 12 presents the results of buffer hit ratios
for the six schemes. The results show that SPD has little
impact to the hit ratio of buffer. The average buffer hit ratio
is reduced by only 1.92 percent, which is negligible. The rea-
son for the slight reduction is that Die-Write is designed
with following principles: first, it always only need to evict
one more dirty page, which is critical in aligning write
points; second, the buffer is designed to only evict the cold
dirty data from the LRU position.

6.2 Experiment Results With GC
Fig. 13 shows the results of write latency with GC triggered.
The results show that SPD is able to significantly reduce the
write latency for all workloads. The write latency is reduced
by 48.61, 47.65, 42.05, 28.19, and 28.58 percent compared with
Baseline-D, Baseline-P, TwinBlk, SuperPage, and ParaGC, on
average. The significant improvement comes from three
aspects: First, SPD constructs aligned write access to reduce
write latency, which has been verified in Section 6.1. Second,
the GC cost is further reduced through moving all valid pages
with the support of Die-Write. Third, total GC count is
noticeably reduced by reclaiming two planes at once time,
and write amplification is avoided compared with SuperPage.
To understand more details, the total GC costs are
presented in Fig. 14. The results show that first, TwinBlk
generally has much higher cost than SuperPage and ParaGC.
On average, compared with Baseline-D, total GC costs of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 9, SEPTEMBER 2020

Baseline-D Baseline-P TwinBlk SuperPage ParaGC SP!

_3x10*
N X
2
S
4
22x10
£
=
81x10“
3 ;
S !
= o i s
S e?@) Q.? ARV AR W oY D S 8
7
& SO O LS & &
FTEFEE &I LS F&
Fig. 14. Total GC cost of evaluated schemes.
TABLE 4
Read Latency Results With GC
Baseline-D  Baseline-P  TwinBlk SuperPage ParaGC SPD
Reduction 0 0.052% -0.042% 4.173% 1.144% 1.203%

SuperPage and ParaGC are reduced by 22.4 and 30.8 percent
while TwinBlk only reduces the total GC cost by 6.9 percent.
For SuperPage, it reclaims two blocks at once time to reduce
GC cost, but the total GC count can be increased when update
operation would read other valid pages for constructing a
new super page, consuming free space more rapidly. More
details about GC cost is presented in Section 6.3. For ParaGC,
it activates GCs in paired planes only when the number of
free pages in the other plane is smaller than 7 percent. In this
case, it can avoid introducing high GC cost while moving
valid pages. In addition, ParaGC proposed to align write
points during the process of valid page movement so that
valid pages in the same position of paired planes can be read
and written in parallel. However, for TwinBIk, it activates
paired GCs without considering the number of valid pages in
the paired planes. In this case, more valid pages from paired
planes may be moved during GC process. In addition,
TwinBlk adopted round-robin policy. If current write points
are not aligned, valid pages having same position in different
planes still can not be read and written in parallel. Therefore,
for some workloads, the total GC cost of TwinBlk is larger
than Baseline-D. Second, even though SPD also activates GC
at the all planes at the same time, it is proposed to regard the
whole die as the smallest access unit and all the write opera-
tions during GC are processed via Die-Write. Moreover,
parallel access in SPD is constructed without introducing
write amplification, avoiding triggering more GCs. As a
result, the total GC cost is reduced by 36.4 percent, on average.
In conclusion, SPD achieves the best write performance com-
pared with all other related works.

For read latency, results of read latency improvement
with considering GC are presented in Table 4. Similarly, the
read latency is similar among each scheme. The reason also
comes from the highest priority of read request, which can
be processed without delay [31], [46]. The results show that
SPD has no impact to read access with significant write per-
formance improvement.

6.3 GC Evaluation
In this part, Die-GC is evaluated. First, the average GC cost
and the number of triggered GC in different schemes are
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Fig. 15. Average GC cost breakdown of evaluated schemes.

evaluated. Second, the number of erase operations induced
by GC is collected to show its impact on the lifetime of SSDs.

1) Average GC Cost: Average GC costs are collected in
Fig. 15. In the Figure, the average GC cost is broken into four
parts: read cost, write cost, transfer cost and erase cost. Read
cost is the cost in reading valid pages from the victim block;
write cost is the cost in writing the valid data to free pages;
transfer cost is the cost in transferring the valid data among
planes or between controller and chips; and erase cost is the
time cost in erasing the victim block. The results show that
the write cost takes the dominate part of the total cost [18].
This is because write latency of flash memory is several times
of read latency. In addition, there are always a large number
of valid page movement during GC. There are three observa-
tions from the results: First, SPD has the less GC cost com-
pared with TwinBlk and ParaGC. Clearly, the reduced GC
cost is from the Die-Write used in Die-GC, which is trig-
gered to write dirty pages back to the multiple planes in par-
allel. For TwinBIk, it also trigged GC in the paired planes.
However, TwinBlk adopted round-robin policy for write
operations among planes, which is not able to always align
the write points. In this case, many valid pages written back
may be processed sequentially. Second, the GC cost of SPD is
similar to that of Baseline-D and Baseline-P. As presented in
the technique part, Die-GC is designed to reclaim several
blocks in one GC. Several block reclaiming costs are similar
with single block reclaiming cost in Baseline-D and Baseline-
P due to that we carefully select victim blocks among planes
as a single unit and use Die-Write to speed up the process.
Third, SuperPage can achieve the minimal GC cost compared
with other schemes. The reason is that, SuperPage can aggres-
sively invalidate pages in a block, reducing the total number
of valid pages in a block. This is because each update opera-
tion can invalidate all paired pages for maintaining consistent
states (valid or invalid) of all pages in a super page.

Fig. 16. The total number of triggered GC.

2) GC Count: Fig. 16 shows the total number of triggered
GCs during runtime. We can find that Die-GC highly
reduces the number of GCs. Therefore, the frequency of trig-
gering GC is reduced. The results show that GC count is
reduced in the range of 32.9 to 50.1 percent, compared with
Baseline-D. As a result, the total GC cost during whole run-
time can be highly reduced as well so that the performance
of SSDs can be improved. For related works, the number of
triggered GCs in Baseline-P is similar to Baseline-D. Both
TwinBlk and ParaGC can reduce the number of triggered
GCs as well. This is because that TwinBlk and ParaGC erase
more blocks in each GC process as well. But for TwinBlk, it
selects victim blocks inefficiently so that its GC counts are
slightly higher in most cases. For a exception, PROJ 0, since
SPD may slightly increase write operations, the total trig-
gered GC count of SPD may be slightly increased. For
SuperPage, since it can cause significant write amplification,
total number of GCs is increased as well.

3) GC Induced Erases: Fig. 17 shows the number of erase
operations for the six schemes. Since TwinBlk, SuperPage,
ParaGC and Die-GC are designed to erase more blocks in
each GC process, the number of erase operations are larger
than that of Baseline for most workloads. The reason is that,
reclaiming blocks from different planes at once time may
trigger premature GCs [48], [49]. However, the results show
that the number of erase operations of Die-GC is much
smaller than TwinBlk, SuperPage and ParaGC. For example,
TwinBlk, in the worst case, introduces more than 102.2 per-
cent erase operations for PRXY_0, compared with Baseline-
D. ParaGC, introduces more than 65.8 percent erase opera-
tions compared with Baseline-D. Worst of all, SuperPage
triggers 177.7 percent erase operations compared with Base-
line-D. Compared with these three related works, SPD intro-
duces fewer erase operations in most cases. On average, the
number of erase operations is reduced by 13.43, 34.23 and

[
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—
N
=
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Fig. 17. The total number of erase operations.
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Fig. 18. The impact of access conflict between Die-write and Die-GC.
The percentages of total time cost of write requests blocked by GCs are
evaluated.

10.04 percent compared with TwinBlk, SuperPage and Par-
aGC. The reason comes from that Die-GC is triggered with
regarding the whole die as the smallest unit without intro-
ducing additional valid page movements. In addition, the
write amplification is also avoided to reduce total GC count.

6.4 Experiment Results of SPD+

In order to evaluate the effectiveness of proposed SPD+, the
impact of access conflict between Die-Write and Die-GC
is measured first, which is the potential of SPD+. In SPD
scheme, write requests in the constructed Die-Write are
identified as blocked write requests while there is a Die-GC
in the accessing die. To indicate the impact of access conflict,
the percentages of blocked write requests’ time cost are eval-
uated and presented in Fig. 18. On average, total time cost of
write requests blocked by GCs accounts for 18.2 percent. The
results presented in Fig. 18 show a matching pattern with
Fig. 13, where the write performance improvements of
PRN_0, PRN_1 and TS_0 are slight while the GC impacts on
PRN_0, PRN_1 and TS_0 presented in Fig. 18 is weak. Take
PRN_1 as an example. In Fig. 18, the total time cost of write
requests blocked by GC of PRN_1 only accounts for 5.1 per-
cent while the achieved write performance improvement of
SPD presented in Fig. 13 is 13.7 percent, which is the minimal
write performance improvement among all workloads.

By adopting the proposed combination scheme, which
constructs Die-Write by grouping evicted page from the
cache and valid page from victim block, the waiting time of
evicted page generated write requests can be significantly
reduced. The results of average write latency of SPD and
SPD+ are evaluated and presented in Fig. 19. On average,
SPD+ can further reduce the average write latency by 23.2

—
~

I SPD KX SPD+H

=)

Write Request Latency (ms)

Fig. 19. The write latencies of SPD and SPD+.
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percent compared with basic SPD scheme. For these work-
loads little affected by access conflict (PRN_0, PRN_1 and
TS _0), the achieved write latency decreases also are slight,
accounting for 0.5, 0.2 and 5.1 percent, respectively. On the
contrary, for PROJ 3, of which the total time cost of write
requests is highly affected by GCs, the achieved write
latency decrease reaches 28.7 percent.

To elaborate the reason of achieved significantly write
performance improvement, the results of average time cost
of write requests blocked by GCs are evaluated and pre-
sented in Fig. 20, where the results of SPD+ are normalized
to SPD. For SPD+, while write requests can be processed in
parallel with valid page movements during GC process, the
waiting time of write requests can be reduced, causing the
average time cost drop. In this figure, one can see that the
average time cost of write requests blocked by GCs is
reduced by 27.1 percent. Similarly, for PRN_1, which is least
affected by GC induced access conflict, the reduced average
time cost of write requests blocked by GCs also is minimal,
only being reduced by 2.2 percent. On the other hand, for
PROJ_3, the achieved average time cost reduction of write
requests blocked by GCs is the maximal one, reaching 31.2
percent. In conclusion, the proposed combination scheme
can be applied to significantly reduce waiting time of write
requests blocked by GCs, making write performance to be
further improved.

For GC evaluation, the total GC time cost, average GC
time cost and GC count of SPD+ are similar to SPD, which
are increased by 0.012, -0.015 and 0.027 percent, respec-
tively. Since proposed SPD+ is designed to schedule write
requests for reducing waiting time, the GC process will not
be affected, and then the metrics of evaluated GC process
are similar to SPD.

For read latency, SPD+ still executes read requests with
highest priority, making the achieved read latency be simi-
lar to SPD. On average, the read latency of SPD+ is reduced
by 0.33 percent compared with SPD.

6.5 Sensitive Studies

1) Buffer Size Impact: In this part, the write intensive work-
load, RSR 0, is selected for buffer size sensitivity study.
Bulffer size is different within different devices. Its impact on
SPD is presented. Fig. 21 shows the results of the normalized
write latencies of the six schemes by varying buffer size from
256 KB to 16 MB. During the evaluation, GC is not triggered
to only understand the impact from different buffer sizes.
Two observations can be concluded from the results. First,
with larger buffer size, the write latencies of all schemes can
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Fig. 21. Write latency with different buffer sizes.

be further reduced. This is because that more dirty pages can
be stored and higher hit ratio can be achieved. Second, com-
pared with other schemes, stable write latency reduction is
achieved by SPD with different buffer sizes. The proposed
framework is designed to align the write point of planes all
the time. It has benefit once there are multiple write opera-
tions issued to a die.

2) Four-Plane SSD Evaluation: In this part, SSD with four
planes per die is evaluated for SPD. For the four planes of a
die, each paired planes can be accessed in parallel with the
support of multi-plane command [1], [10]. The results of write
latencies for Baseline-D, Baseline-P, and SPD are presented
in Fig. 22, where GC is not triggered to evaluate the single
influence from more planes per die. First, Baseline-P has
similar write latency to that of Baseline-D. Four-plane SSD
requires that only paired plane 0&1 or 2&3 can be processed
in parallel. Only a few write operations can be processed
with the support of multi-plane command. Second, for SPD
with four-plane SSD, the write latency is further reduced.
This is because that all four planes are regarded as one unit
in Die-Write. Therefore, more dirty pages can evicted and
written back as Die-Write at the cost of one write opera-
tion when the number of planes in a die increases. On aver-
age, compared with Baseline-D, SPD achieves 43.9 percent
write latency reduction, on average.

3) Various Mapping Schemes based SSDs: In this part,
demand-based selective caching of page-level address map-
pings, termed DFTL [4], and hybrid mapping scheme are
implemented to show the effectiveness of proposed SPD.
Similar to the settings of above evaluations, GC is not trig-
gered in this evaluation. For DFTL based SPD, mapping
entries evicted from RAM buffer are organized as Die-Write
as well. When mapping entries are supposed to be read from
flash memory, Die-Read is generated to read required

Baseline-D(2-Plane) EEE# Baseline-P(2-Plane) KX SPD(2-Plane)
Il Baseline-D(2-Plame) [ | Baseline-P(4-Plane) [_]SPD(4-Plane)
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Fig. 22. Write latency with 4 planes per die.
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Fig. 23. Write latencies of pure page-level mapping, DFTL and FAST
based evaluated schemes.

mapping entries as well. For hybrid mapping, FAST is imple-
mented as an example [50]. In FAST based SPD, paired log
blocks resided in paired planes are reserved. That is, write
requests can be written into paired log blocks in the form of
Die-Write as well. While merge operation is required,
valid pages in selected paired log blocks and corresponding
data blocks are read out and written to new paired data
blocks by Die-Write.

Take RSR_0 as an example, Fig. 23 shows the write laten-
cies of pure page-level mapping, DFTL and FAST based eval-
uated schemes. Herein, the write latencies of DFTL based
schemes are worse than that of pure page-level mapping
based schemes. For SPD, the write latency of DFTL based
SPD is increased by 22.47 percent compared with pure page-
level mapping based SPD. For FAST based schemes, since
there are additional merge operations caused by FAST map-
ping, the write latencies of FAST based schemes are highly
larger than that of other mappings based schemes respec-
tively. But for FAST based SPD, it still can achieve substantial
write performance improvement compared with other
schemes equipped with FAST. This is because that, not only
host write requests can be processed in parallel, but also
each merge operation can reclaim two log blocks at the time
cost of one merge operation. On average, compared with
Baseline-D equipped with FAST mapping, FAST based SPD
can reduce write latency by 23.43 percent.

4) Hot/Cold Separation based GC: To further reduce GC
time cost, a widely adopted method is to distribute data to
different blocks according to their hotness. Inside SSD, valid
pages in victim block are cold enough, since only hot data
are evicted from buffer and only relatively hot data in flash
blocks tend to be invalidated. To further improve the effi-
ciency of GC process, cold and relatively hot valid pages in
victim blocks are written to different blocks according to
their hotness as well in the revision [51], [52]. To realize
SPD with considering hot/cold separation in GC process,
each plane maintains two active blocks, cold block and hot
block. To separate hot and cold data, the update count
within a fixed time interval is recorded, which is set to 120
minutes according to [53]. Within 120 minutes, most data in
evaluated workloads are updated. Except for valid pages
from GC, host data evicted from buffer are considered as
hot data and written into hot block as well.

The writ latencies of evaluated schemes with and without
hot/cold data separation are collected and presented in
Fig. 24. In this figure, two observations can be concluded.
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First, after applying hot/cold data separation, proposed SPD
and SPD+ still can noticeably reduce write latency. On aver-
age, compared with Baseline-D, SPD+ can reduce write
latency by 57.64 percent. Second, hot/cold data separation
can significantly reduce write latency. Averagely, take Base-
line-D as an example, scheme applied with hot/cold data sep-
aration can reduce write latency by 23.83 percent. The reasons
come from two aspects: first, GC efficiency is improved while
fewer valid pages are moved during GC process; second, total
GC count can be reduced while cold pages are barely moved.

7 RELATED WORKS

In this section, related works on improving the plane level
parallelism and reducing GC impact on performance are
presented, respectively.

(1) Plane Level Parallelism Exploration: In order to improve
plane level parallelism, several previous works have been
proposed. Gao et al. [18] and Jung et al. [44] proposed to
increase the potential of using multi-plane command through
distributing requests belonging to different planes at one
time. Similarly, Abdurrab et al. [29] proposed DLOOP to
modify mapping policy to evenly distribute data across
planes based on a fixed location calculation. However, the
achieved performance is limited since they highly depend
on the access patterns of workloads to match the limitations
of multi-plane command. On the other hand, Tavakkol ef al.
[11] and Hu et al. [10] proposed to align writing points of
planes. Tavakkol et al. [11] proposed to maintain the write
points to distribute writes among planes in round-robin
fashion. However, due to the above mentioned unaligned
access problem, plane level parallelism still can not be fully
exploited. Hu et al. [10] proposed a greedy multi-plane com-
mand. They proposed to allocate new writing points in the
same position. However, this will waste space. Caulfield and
Seong et al. [17] and [45] proposed a new design principle for
fully exploiting plane level parallelism, which groups all
pages residing in the same in-chip location as a large logical
page, termed super page. Such design can boost the perfor-
mance and bandwidth of SSDs at the penalty of lifetime.

Different from all these works, SPD is the first on propos-
ing to align the write points in an active way. Die-Writeis
designed to align the write point all the time. In this case, all
write operations issued to multiple planes in a die can be
processed in parallel. Also, SPD can minimize the impact on
the lifetime of SSDs by grouping pages together more flexible.
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(2) Garbage Collection Impact Minimization: Previous
works aiming at reducing GC impact on performance can
be classified into two groups: The first group proposed to
reduce the time cost of GC activity [13], [54]; For example,
Gao et al. [13] proposed to reduce the time cost of valid page
movement through migrating valid pages to idle chips.
Park et al. [54] proposed a new hotness identification
method for accurately capturing the recency and frequency
of data. The second group proposed to schedule requests or
GCs to reduce the impact on performance of SSDs [12], [14],
[55]. For example, Wu et al. [14] used cache to store requests
conflicted by GC. Jung et al. [55] proposed to advance or
delay GC through moving the time-consuming activity
from busy period to idle period. Choi et al. [12] proposed to
combine host I/O operations with valid pages migration.
However, the aforementioned GC optimization methods
still have not taken unaligned access problem of plane level
parallelism into consideration.

There are two works proposed to reduce GC impact
resulted from unaligned access problem. Shahidi et al. [9]
proposed ParaGC to select paired planes, where GC activi-
ties can be processed in parallel. However, if the paired
planes can not be found, unaligned access problem still
exist. Tavakkol ef al. [11] proposed TwinBlk, which can min-
imize the unaligned access induced impact on GC. TwinBlk
is designed to trigger GCs on all planes of the same die
simultaneously so that symmetric victim blocks on planes
can be reclaimed in parallel. During this process, valid
pages are evenly moved to all planes in round robin policy
for aligning write points of all planes.

Different from these works, SPD uses Die-GC to speed
up the GC process and reduce the GC cost. Die-GC is
designed to select multiple blocks in the unit of die and
adopt Die-Write to speed up the GC process.

8 CONCLUSION

In this work, a from plane to die optimization framework is
proposed to exploit the plane level parallelism, which is the
last level parallelism of SSDs. Three components are
designed in the framework: die level write construction, die
level GC and combination scheme. Different from previous
work, this work is the first which is able to maintain the
aligned write points for the multiple planes for each die at
the time. There are two components designed to align the
write points of all planes in the same die all the time. In this
case, the last level parallelism, plane level parallelism, is fully
exploited to improve the performance of write requests and
internal activities. In addition, the combination scheme is
used to construct new die level write containing dirty page
evicted from cache and valid page in victim block. The com-
bination scheme can largely reduce the waiting time of write
requests blocked by GCs, bringing write latency decrease.
Experiment results show that SPD and SPD+ achieve signifi-
cant write performance improvement and much smaller life-
time impact compared with state-of-the-art works.
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