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ABSTRACT

We present a quasi-polynomial time classical algorithm that esti-
mates the partition function of quantum many-body systems at
temperatures above the thermal phase transition point. It is known
that in the worst case, the same problem is NP-hard below this
point. Together with our work, this shows that the transition in
the phase of a quantum system is also accompanied by a transition
in the hardness of approximation. We also show that in a system
of n particles above the phase transition point, the correlation be-
tween two observables whose distance is at least Q(log n) decays
exponentially. We can improve the factor of logn to a constant
when the Hamiltonian has commuting terms or is on a 1D chain.
The key to our results is a characterization of the phase transition
and the critical behavior of the system in terms of the complex
zeros of the partition function. Our work extends a seminal work
of Dobrushin and Shlosman on the equivalence between the decay
of correlations and the analyticity of the free energy in classical
spin models. On the algorithmic side, our result extends the scope
of a recent approach due to Barvinok for solving classical counting
problems to quantum many-body systems.
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1 INTRODUCTION

At low temperatures, the main characteristics of many-body sys-
tems in condensed matter physics or quantum chemistry are cap-
tured in the structure of the ground state of their Hamiltonian.
The computational complexity of estimating the ground state en-
ergy has been extensively studied through numerous works. In
particular, it has been shown that in the worst case, for many phys-
ically relevant systems including even a two-local Hamiltonian on
a one-dimensional (1D) chain, estimating the ground state energy
is QMA-complete [1]. On the other hand, there is a host of classi-
cal algorithms for efficiently estimating the ground state energy
in certain restricted instances. For examples, the ground state of
a gapped Hamiltonian on a 1D chain can be estimated reliably
[2]. Also, weaker approximation algorithms are known when the
Hamiltonian is on a lattice or it has a dense interaction graph [8].

While at low temperatures the system is in the vicinity of the
ground space, at finite temperatures, the state of the system is a
mixture of different excited states. In thermal equilibrium, a quan-
tum system characterized by a local Hamiltonian H is in the Gibbs
(or thermal) state p = exp(-fH)/Zz(H), where § is the inverse
of temperature and Zg(H) = tr[exp(—fH)] is the partition func-
tion of the system. A natural equivalent to the ground state en-
ergy at finite temperatures is the free energy which is defined as
Fg(H) = —1/Blog Zg(H). As the temperature decreases (f — o),
the free energy approaches the ground energy of the Hamiltonian.
Many useful statistical properties of the system including the free
energy and other quantities such as the entropy can be obtained
from the partition function and its derivatives. However, exactly
evaluating the partition function is known to be #P-hard. Hence,
in order to characterize the finite-temperature behavior of the sys-
tem, it is crucial to have efficient algorithms that approximate this
quantity.

Our starting point for finding such approximation algorithms is
based on the observation that the phenomenon of the thermal phase
transition is an obstacle for finding efficient algorithms. Consider a
quantum many-body system that consists of n qudits interacting
according to a local Hamiltonian H. As the temperature of this
system increases, meaning f§ — 0, the Gibbs state p approaches
the maximally mixed state 1/d™. Thus, in this case, finding the
partition function is trivial since Zg_(H) = d " On the other hand,
this problem becomes significantly harder at lower temperatures.
In particular, as § — oo, the Gibbs state approaches the ground
space of the Hamiltonian H and the free energy Fg(H) approaches
the ground energy which is known to be QMA-hard to estimate.
Hence, we see that the computational hardness of estimating the
partition function (or equivalently the free energy) depends on the
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inverse temperature § and goes through a transition from being
trivial to QMA-hard as f increases.

In statistical physics, however, another transition occurs as f
increases, namely, the transition in the phase of the system. At the
thermal phase transition point, certain physical properties of the
system undergo an abrupt change. An example of such a transition
is when a magnetic material that consists of a network of interacting
spins goes from the ferromagnetic to the paramagnetic phase. In the
ferromagnetic phase (the ordered phase), most spins are pointing
in the same direction and their net magnetic effect is non-zero,
whereas in the paramagnetic phase (the disordered phase), the spins
are distributed equally in opposite directions making their net
magnetic effect zero. A distinction between these phases is the
presence of long-range correlations in the ordered phase and the
decay of correlations in the disordered phase. This transition does
not happen gradually as f§ varies. On the contrary, the phase of the
system changes suddenly at some critical inverse temperature fi.
known as the phase transition point.

Does the computational hardness of estimating the partition
function also undergo an abrupt change at the same transition
point? This question has been studied in the classical Ising or hard-
core model, and the answer is known to be affirmative. For these
systems, there are efficient algorithms for estimating the partition
function when f < f. [40, 45] whereas by a result of Sly and Sun
[41, 42] the same problem is NP-hard under a randomized reduction
for f > .

Hence, it appears that the thermal phase transition poses a barrier
to obtaining efficient algorithms, and we need a framework for
characterizing this phenomenon. There are at least two methods
for such purpose. One, which is the basis of our algorithm, stems
from analyzing the locus of the complex zeros of the partition
function. Another seemingly different method involves the decay
of correlations in the Gibbs state of the system. In this work, we
study the interface between the decay of correlations and locus of
complex zeros and investigate their algorithmic implications. One
central theme of our work is to establish an equivalence between
these two concepts. From a physics perspective, this unifies two
different characterizations of the phase transition phenomenon.
From a computational point of view, this shows that these two
distinct frameworks for developing approximation algorithms for
the partition function indeed cover the same range of temperatures.

2 MAIN RESULTS

2.1 Algorithm for Quantum Partition Function

Recall that the classical Ising model is identified as a weighted graph
whose edges have weights J;; € R and each vertex i takes a spin
value s; € {+1}. For this model, the partition function at inverse
temperature f is the sum Zg = Y5 ¢ ere1} e PLi~j Jiisisi oyer
different spin configurations. In physics, such a model is identi-
fied using the Hamiltonian H = }};.; JijZiZ; where Z = ((1) _01)
and Z; is the tensor product of Z at vertex i with identity matri-
ces elsewhere. This partition function can be equivalently formu-
lated as Zg(H) = tr[exp(~fH)]. For a quantum many-body system
with Hamiltonian H, the partition function is defined similarly
as Zg(H) = trlexp(—BH)] = Xk exp(-BEy), where each Ej is an
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eigenvalue of the Hamiltonian H. These eigenvalues are also called
the energy levels of the Hamiltonian H.

If f is real, the terms exp(—fEy) are all strictly positive, and
hence the partition function Zg(H) is strictly positive itself. How-
ever, this changes when f is allowed to be complex. In that case, the
terms exp(—fEy) acquire complex phases that when added together
might cancel each other and make the partition function zero. We
call the solutions of Zg(H) = 0 for § € C the complex zeros of the
partition function.

The significance of these zeros becomes more clear if one looks
at the free energy Fg(H). The zeros of Zg(H) are the singularities
of log Zg(H) = —BFg(H). Since Zg(H) # 0 when f is real, we see
that all these singularities are located in the complex plane and the
free energy is analytic near the real axis. As the number of particles
n grows, the number and location of these points change. Perhaps
rather surprisingly, some of these singularities approach the real
axis in the limit of a large number of particles n — oo. The first point
on the positive real axis where these zeros converge in the large n
limit is called the critical inverse temperature and denoted by S,
(see Figure 1). This critical temperature separates different phases
of matter and important quantities such as the free energy become
non-analytic in the vicinity of ;. The study of these complex zeros
in connection with the phase transition phenomenon in classical
Ising models was initiated by Lee and Yang [31] and later extended
by Fisher [20]. This approach is one of the few rigorous methods
available in the theory of phase transitions.

Complex zeros can also be studied in relation to designing ap-
proximation algorithms. For instance, one can go beyond partition
functions and consider complex roots of high-degree polynomials
that appear in combinatorics such as estimating the permanent of
a matrix. Recently, there has been a surge of interest in studying
these complex zeros in theoretical computer science due to their
algorithmic applications. In particular, a new approach based on
the truncated Taylor expansion introduced by Barvinok [5] directly
connects the locus of the complex zeros to approximation algo-
rithms for counting problems. In this work, we extend the scope of
this method by applying it to quantum many-body systems.

We first state the condition on the location of zeros that we use in
our approximation algorithm. Under this condition, it is guaranteed
that the inverse temperature §§ at which the partition function is
estimated is connected to § = 0 by a path in the complex plane that
avoids the complex zeros along its way with a significant margin.
Even though this algorithm works for any such path, we restrict
our attention to the physically-relevant case when this zero-free
region contains the real ff-axis. Hence, we define:

DEFINITION 1 (VICINITY OF REAL f AX1S). The §-neighborhood of
the interval [0, 8] for some § € RY is a region of the complex plane
defined as Qs 5 = {z € C: 32" € [0, f], |z = 2’| < 8} (see Figure 1
for an example of such a region).

DEFINITION 2 (ANALYTICITY CONDITION). For a system of n par-
ticles with a local Hamiltonian H, we define:
(1) A S-neighborhood Qs g of the interval [0, B] (see Defini-
tion 1) is called zero-free if VB’ € Qg g, the partition function
Zg (H) # 0 and moreover, | log Zg/(H)| < O(n).
(2) Equivalently, the free energy Fg(H) is called 5-analytic along
[0, B] if Qs, g is a zero-free region.
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Figure 1: The location of complex zeros of the partition func-
tion, the critical point f., and the zero-free region near the
real axis (as in Definition 2). The free energy is analytic in
this region.

While the condition |log Zg(H)| < O(n) is satisfied on the real
B axis, it may not hold in the complex plane close to the zeros
of Zg(H). If the partition function is a polynomial, which is the
case for the classical Ising model, this condition follows when f is
constantly far from the complex zeros. In general, though, we need
to include this as an independent assumption.

DEFINITION 3. An approximation algorithm for the partition func-
tion Zg(H) takes as input the description of the local Hamiltonian H,
the inverse temperature 3, and a parameter ¢ and gives an estimate
Zﬂ(H) with e-multiplicative error, i.e.

Zp(H) - Zp(H)| < eZg(H). (1)

This is, up to unimportant constants, equivalent to finding an e-
additive error forlog Zg(H) or Fg(H).

We now state our first result which shows that the framework
of the truncated Taylor expansion [5] can be naturally extended to
also estimate quantum partition functions.

THEOREM 4. There is a deterministic classical algorithm that takes
a local Hamiltonian H and a number ¢ as inputs, runs in time
nOU0e(n/€) and outputs a value within e-multiplicative error of the
partition function Zg(H) at inverse temperature f§ as long as the free
energy is d-analytic along the [0, f] line (see Definition 2) for some
6 =0(1).

The result of Theorem 4 allows us to approximate the partition
function, as long as Zg(H) is evaluated for § inside the zero-free
region Qs g. Hence, the main challenge in designing an approxima-
tion algorithm is to find the zero-free region or the critical point f;
for a Hamiltonian H. This can be achieved in certain systems such
as the classical Ising model by using their specific structure [7, 33].
In general, though, it is a hard problem to exactly find this region
given an arbitrary Hamiltonian. One can compare this with when
a 1D quantum system is assumed to have a constant spectral gap.
Under this condition, there is an efficient algorithm for estimating
the ground energy. However, it has been shown that validating this
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condition, i.e. determining if a Hamiltonian is gapped or not, is
undecidable in the worst case [16].

In our next result, we show that the partition function can be
approximated using Theorem 4 at high constant temperatures. In
particular, we show that for any geometrically-local Hamiltonian
H, there exists a zero-free disk of radius fy around f = 0 for some
constant iy < fc which depends only on the geometric parame-
ters of H. Here, we say a Hamiltonian is geometrically local if the
local terms in H act on neighboring qudits that are located on a
D-dimensional lattice A ¢ ZP.

THEOREM 5. There exists a real constant o such that for all € C
with |B| < Po, the partition function Zg(A) of a geometrically-local
Hamiltonian H does not vanish and | log |Zﬁ(A)|‘ < O(n).

As mentioned earlier, without assuming a specific structure on
the family of Hamiltonians, extending the zero-free region beyond
Bo in Theorem 5 seems implausible. Hence, an alternative approach
is to show the absence of zeros at a given f by assuming the validity
of other conditions such as the decay of correlations. This along
with other results in this direction is the subject of the next section.

2.2 Correlation Decay in the Gibbs State

Another signature of the thermal phase transition is the appearance
of long-range order in the system. In the example of a magnetic
system, below the phase transition in the ordered phase, distant
spins are correlated and point in the same direction, whereas in
the disordered phase, the correlations between disjoint parts of the
system decay exponentially with their distance. More precisely, we
define the exponential decay of correlations as:

DEFINITION 6 (CORRELATION DECAY CONDITION). The Gibbs state
pp(H) of a geometrically-local Hamiltonian H at inverse temperature
P exhibits an exponential decay of correlations if for any two disjoint
observables O1 and O, there exist constants & and ¢ such that

|tr [pﬁ(H)OlOz] —tr [Pﬁ(H)Ol] tr [pﬁ(H)Oz] |
< c|O; |0z e~ 4ist (O 02)/ &

)

What is the relation between the decay of correlations and the
complex zeros of the partition function? Note that the former in-
volves correlations in the system at a real temperature while the
latter concerns the complex temperature features of the partition
function. Could it be that these two apparently distinct characteri-
zations are indeed equivalent?

Besides its physical significance, the correlation decay property
is also crucially used in many approximation algorithms both in
classical [45] and quantum [9] settings. Hence, we see that there
are two different approaches for estimating the partition function:
using the absence of complex zeros versus relying on the decay
of correlations. A third approach is to use Markov chain Monte
Carlo (MCMC) sampling algorithms for this purpose. An important
question is whether the range of temperatures that these widely
different approaches cover is the same.

The equivalence between the exponential decay of correlations
(fast mixing in space) and fast convergence of MCMC algorithms
(fast mixing in time) has been established before for classical sys-
tems [18, 44]. Here, we consider the equivalence between the ab-
sence of complex zeros and the exponential decay of correlations.



STOC 20, June 22-26, 2020, Chicago, IL, USA

This question has been recently raised in [33] where one direction
of this equivalence was proved for the special case of the classical
Ising model [33]. Here, we study this question in the context of
quantum many-body systems.

We build on a work of Dobrushin and Shlosman [17] who proved
this equivalence for arbitrary translationally-invariant classical sys-
tems. We are not aware of any application of the proof techniques in
this paper or [17] that appear in the recent results on approximate
counting problems. Hence, the methods developed here might be
of independent interest.

Before stating our result, we need to generalize the definition of
the zero-free (or analytic) region in Definition 2 to a multivariable
setting. Given a local Hamiltonian H = 3, | H;, we define complex
variables z1, . .., z;, such that each z; roughly equals f plus some
small complex deviation. Hence, instead of working with functions
of fH such as exp(—fH), we consider functions of >,/ z;H; as in
exp(— X, ziH;). For a fixed inverse temperature  and maximum
deviation 6, we denote the set of such tuples (z1, . .., zm) by I's g.
By varying f from zero to some constant f and taking the union of
the corresponding Ts g, the set Qs g is obtained.

As discussed earlier, the critical temperature f. corresponds to
the thermal phase transition point, where complex zeros of the
partition function approach the real axis. Note that even with devi-
ations, we do not want any of the variables z; to exceed .. More
precisely, we have the following definition:

DEFINITION 7 (VICINITY OF REAL f3 AXIS, MULTIVARIATE VERSION).
Let Ty g be the set {(z1,...,2m) : Vi € [m],z; € C,|z; — B < 5}
We define ch’ﬁ to be QS,ﬁ =U B eR* Fg’ﬁ,.

B <p/(1+5)

We also define the perturbed Gibbs state as follows.

DEFINITION 8 (COMPLEX PERTURBED GIBBS STATE). The §-
perturbed Gibbs state of a local Hamiltonian H = 3" H; at inverse
temperature f3 is defined as

e—Z;ﬁl z;H;

pz(H) = m, Z=(z1,...,z2m) €5 p (3)

where Ty, g is defined in Definition 7.

The analyticity condition we consider for the result in this section
is stronger than the one used in the approximation algorithm in
Definition 3 and Theorem 4. Previously we only included systems
with open boundary conditions in our analysis, but here we also
need to allow for other boundary conditions. This is not restricted
to the quantum case, and Dobrushin and Shlosman use similar
conditions in their proof for classical systems [17]. The precise
statement of our condition is the following:

DEFINITION 9 (STRONG ANALYTICITY). The free energy of a
geometrically-local Hamiltonian H is strongly §-analytic at § if for
any local operator N > 0 with |N| = 1, there exists a constant ¢ such
that

|log (tr [e‘zt@l Z"H"N])| <en, V(z1,....zm) €T5 5. (4)
Assuming Definition 9, we show that the absence of complex ze-

ros around some real §§ implies the exponential decay of correlations
at that f.
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THEOREM 10 (ANALYTICITY IMPLIES DECAY OF CORRELATIONS).
Let pg(H) be the Gibbs state of a geometrically-local Hamiltonian
at inverse temperature f3 in the strong analyticity region Ts,p given
in Definition 9. This state has the decay of correlation property as in
Definition 6 in any of the following cases:

(i.) The distance between the observables O1 and Oy is at least
Q(logn),
(ii.) The Hamiltonian H is the sum of mutually commuting local
terms, or
(iii.) The Hamiltonian H is defined on a 1D chain.

The class of commuting Hamiltonians includes important exam-
ples such as stabilizer Hamiltonians like the Toric code, Color code,
or Levin-Wen model [32].

To see the motivation for the strong analyticity (as in Defini-
tion 9) used in this theorem, first note that when restricted to
classical systems, this condition reduces to the one used in [17].
There the operator N sets the boundary conditions which fixes the
value of certain spins in the system before computing the parti-
tion function, or more generally, finding the Gibbs distribution. A
natural question then is how varying these boundary conditions
affects the distribution. In particular, the uniqueness of the Gibbs
distribution refers to the case that in the limit of a large number
of particles, changing distant spins has a negligible effect on the
distribution of spins in a finite region. Hence, a unique Gibbs dis-
tribution can be defined for such systems. This condition is not
satisfied at all temperatures, and below the critical temperature,
multiple Gibbs distributions exist. Thus, it seems natural to include
the boundary conditions in the partition function when studying
its complex zeros and the critical behavior of the system in general.

For quantum systems, one can think of fixing the boundary spin
values by projecting them onto a specific state or more generally
by post-selecting after a local measurement has been performed.
Hence, tr [exp (- xn, ziHj) N] is the partition function of the
normalized Gibbs state after conditioning on the measurement
outcome associated with N. Notice that, in principle, the state of
the spins after post-selection can be entangled. As we will see, this
causes technical difficulties in extending the classical results to the
quantum regime.

Finally, we mention that the validity of Definition 9 can be shown
in the high temperature regime (f < fy) by a slight modification of
the argument in the proof of Theorem 5.

Proving the converse of Theorem 10 turns out to be more chal-
lenging. Nevertheless, we can give evidence for this direction by
generalizing the result of [17] to classical systems that are not trans-
lationally invariant, and also quantizing certain steps in the proof.
By fully establishing this equivalence, one could rigorously confirm
the physical intuition that a quantum system enters the disordered
phase at the point where the free energy becomes analytic.

THEOREM 11. Let H be a geometrically-local Hamiltonian of a
classical spin system, i.e. the local terms H; are all diagonal in the same
product basis. For this system, the exponential decay of correlations
given in Definition 6 implies the absence of zeros near the real axis as
in Definition 2.

In these results, we consider general Hamiltonians without spe-
cializing to specific models. Tighter results have been obtained
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before for specific models [13, 33, 38]. For instance, [33] proves
that a variant of the decay of correlations property in the clas-
sical Ising model implies analyticity. This is based on a different
framework than ours and uses the self-avoiding walk trees and a
carefully designed recurrence as introduced in [46]. The analysis of
[33] is fine-tuned for the Ising model and implies stronger results
than those we achieve. This includes exactly matching the phase
transition point even with arbitrary boundary conditions. Another
approach, based on truncating a convergent cluster expansion, is
used in [13] to obtain the decay of correlations for hard-core models
on bipartite graphs.

2.3 Two-Local Hamiltonian and Lee-Yang Zeros

For our last result, we switch gears and focus on a specific family
of 2-local Hamiltonians. We again use the idea of extrapolation, but
this time, our extrapolation parameter instead of f is the strength of
the external magnetic field applied to the system in the z-direction.
The physical motivation is that when the system is subject to a
large external field in a specific direction (the z-direction in our
case), all spins align themselves in that direction, and estimating
the properties of the system becomes trivial. On the other hand,
as we move to smaller fields, the other interaction terms between
the particles gain significance, making the problem non-trivial. Our
result is an approximation algorithm for the quantum XXZ model
with the following Hamiltonian:

DEFINITION 12. The anisotropic XXZ Hamiltonian on an interac-
tion graph G = (V, E) is given by

Hp == ) (J06X + i) + JEZiZ) - ) Zio (5)
(i,))eE iev
We find an approximation algorithm for this model. This is stated
in the following theorem. This model is outside the family of ferro-
magnetic systems considered previously in [11] and to the best of
our knowledge, no efficient algorithm was previously known for
estimating its partition function.

THEOREM 13. There is a deterministic algorithm that runs in
nOUog(n/€) time and outputs an e-multiplicative approximation to
the partition function of the anisotropic XXZ model (see Definition 12)
in the ferromagnetic regime, i.e. when ]l.zjz > |Jijl, and p is an arbi-
trary non-zero constant.

3 PRELIMINARIES

Consider a D-dimensional lattice A ¢ ZP containing n sites with
a d-dimensional particle (qudit) on each site. The Hilbert space is
H = ®i€A H; where H; is the local Hilbert space of site i. For a
region A C A, we denote its size by |A| and its complement by A. The
diameter of A is defined to be diam(A) = sup{dist(x,y) : x,y € A}.
The interaction of these particles is described by a local Hamiltonian
H that has the following form:

H= ZHX.

XCcA

(6)

Each term Hy is a Hermitian operator with operator norm at most
h that is acting non-trivially only on the sites in X. We denote this
by writing supp(Hx ) = X. The local terms Hx do not necessarily
commute with each other. Similarly, we define Hy = Y x4 Hx
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to be the Hamiltonian restricted to a region A C A. We denote
the number of local terms in the Hamiltonian by m and often also
write H = 37, H;. The 1-norm of an operator O is denoted by

|Ol; = tr[VOTO] and its operator norm, i.e. the largest singular
value, by |O].

In order to impose geometric locality on the interactions between
the particles, we consider the interactions that satisfy the following
condition.

DEFINITION 14 (GEOMETRICALLY-LOCAL HAMILTONIANS). A
Hamiltonian H = ) xca Hx such that supp(Hx) = 0 when
diam(X) > R or |X| > « is called a (x, R)-local Hamiltonian. We call
Kk the locality and R the range of H. We use the words geometrically-
local and (k, R)-local interchangeably when k, R are kept constant.

This should be contrasted with the case where supp(Hx) = 0
when |X| > x but there is no restriction on diam(X). In order to
distinguish between these two, we use the terms geometrically-
local versus local throughout this paper. We also focus mostly on
geometrically-local Hamiltonians with a finite range R, but most of
our results also apply to Hamiltonians with interactions that decay
fast enough, for example, with some exponential rate.

REMARK 15. In general, the locality k of a geometrically-local
Hamiltonian on a D-dimensional lattice A can be bounded as k <
O(RD), which is the size of a ball of diameter R. Nevertheless, we treat
both x and R as independent parameters in this paper.

Our approximation algorithm is based on the truncated Taylor
series method which is summarized in the following proposition.
The proof can be found in the full version [21], but also see the
discussion in the next section.

PROPOSITION 16 (TRUNCATED TAYLOR SERIES FOR BOUNDED FUNC-
TIONS AND POLYNOMIALS). We denote a disk of radius b centered at
the origin in the complex plane by Ay, that is Ay, = {z € C: |z| < b}.

(1) Let f(z) be a complex function that is analytic and bounded as

|f(z)] < M when z € Ay, for a constant b > 1. Then the error
of approximating f(z) by a truncated Taylor series of order K
forall |z| <1 is bounded by

K
HOEDIIZ
k=0

(2) Assume b is fixed and there is a deterministic algorithm that
finds the coefficients ay. in time O(N*) for some parameter
N. Then there exists a deterministic algorithm with running
time NOWEM/) thart outputs an e-additive approximation
for f(z).

(3) [cf [5]] Let f(z) = log(g(z)) for some polynomial g(z) of
degree N that does not vanish when z € Ay. The error of
approximating f(z) by a truncated Taylor series of order K for
|z| < 1 is bounded by %m

(4) [cf [5]] Assuming b is fixed, there exists a deterministic al-
gorithm with running time NOWEWN/€) that outputs an -
additive approximation forlog(g(z)).

M

<— " <1
Ko7

(7)

4 SKETCH OF OUR PROOFS

Here, we give an overview of our proof techniques. More details
can be found in the full version of this paper [21].



STOC 20, June 22-26, 2020, Chicago, IL, USA

Sketch of the proof for Theorem 10. The technique used in the
proof of Theorem 10 is inspired by the extrapolation idea of Theo-
rem 4 and also the proof of the similar statement for the classical
systems due to [17].

One major issue that appears in the proof of this Theorem and
Theorem 11 is the handling of entangled boundary conditions. To
address this, we consider the Gibbs state after a subset of spins have
been measured. This means we work with partition functions of
the form tr[exp(—fH)N] for some positive semi-definite operator
N. We then define a function f(f) that measures the correlation
between disjoint observables O; and O,. This function is defined in
a slightly different way than the covariance form in (2) and is tuned
to have specific properties. In particular, we show that at f = 0,
the value of this function is zero, i.e. f(0) = 0. This is expected
intuitively since the system is in the maximally mixed state at § = 0
and particles are distributed independently at random. However,
we further show that the low-order derivatives of this function up
to O(dist(Oq, Oy)) are all zero at § = 0, i.e.

d* £(B)

=0,
dpk

g0 = fork =0,1,...,0(dist(Oq, 02)).

®)
Hence, this function looks very flat around the origin. Additionally,
we prove that f(f) is an analytic function in the zero-free region.
Finally, we show that this together with the constraints on the
derivatives imply that the value of f(f), which shows how corre-
lated O; and Oz are, remains exponentially small when moving
from the origin to a constant f.

This gives us an upper bound o n exp(—dist(O1, O2)/¢) on the
amount of correlation. The extra factor of n makes this bound
exponentially small when dist(O1, O2) = Q(log n).

REMARK 17. Even with the extra factor of n, our bound remains
useful for algorithmic applications such as in [9]. There one needs
to split the system into computationally tractable smaller pieces and
solve the problem for those pieces locally. The error of this strategy
can be bounded using the exponential decay of correlations. To keep
this error less than 1/poly(n), one needs to choose the distances to be
O(log n) which is the regime that our result covers.

In classical systems, one can remove the constraint dist(O1, O2) =
Q(log n) by using the Markov property of the Gibbs states. This
property is known not to (exactly) hold in the quantum case. We
can get around this issue in certain instances. This includes when
the Hamiltonian consists of commuting terms or when it is defined
on a 1D chain. In both cases, using either the commutativity of
local terms or quantum belief propagation [23] (refer to the full
version of the paper [21] for the precise statement), we show that by
removing the interaction terms acting on particles that are far from
the observables O; and Oy, the correlations between O and Oy do
not change by much. Hence, the system size reduces to the number
of particles in the vicinity of the two observables. This number
replaces the prefactor n we had before and is negligible compared
to the exponential factor exp(—dist(O1, O2)/&). Thus, for these sys-
tems, the decay of correlations holds even when dist(O1, O;) is a
constant. In higher dimensions, using quantum belief propagation
results in an error proportional to the size of the boundary which
restricts its application for our purpose.
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Sketch of the proofs for Theorem 5 and Theorem 11. We first in-
troduce a core idea which plays a central role in the proofs of both
Theorem 5 and Theorem 10. For ease of notation, we denote the
partition function of a geometrically-local Hamiltonian H defined
over a D-dimensional lattice A ¢ ZP by Z (7). The particles are
located on the vertices of this lattice.

In Theorem 5, our goal is to show that Zg(A) # 0 inside a disk
of radius fy, i.e. for f € C where || < o for some constant fy. We
consider a series of sublattices ) = Ag CA1 C Ay C---CAp=A
such that each sublattice A; has one fewer vertex than Aj;1. By
convention, we let Zg(0) = 1. As long as the sublattice A; has only
a constant number of particles, we can always ensure Zg(A;) # 0
by choosing f to be a sufficiently small constant. One might worry
that by adding more particles, the partition function vanishes.

Our main contribution is to prove this does not happen. We do so
by showing that the partition function after involving new particles
does not become smaller than a constant fraction of the partition
function before adding the particles. In other words, we show there
exists a constant ¢ > 1 such that

1Zg(Aiv)l = ¢V Zg(Ap)l, ie€{1,2,...,n—1}. 9)

By repeatedly applying this bound, we obtain the following expo-
nentially small (yet sufficiently large for our purposes) lower bound
on the partition function of the whole system:

1Zg(M)] = ™" Zp(A)]. (10)

This leads to the bound given in Theorem 5. This lower bound
is obtained using a method known as the cluster expansion. Since
the local terms in the Hamiltonian of a quantum system do not
necessarily commute, applying this method becomes quite technical.
The cluster expansion that we use is due to Hastings [22, 28], which
represents the operator exp(H) as sum of products of local terms H;.
This allows us to express Zﬁ(Ai+1) in terms of Zﬂ(Ai) plus some
small correction terms that account for the interaction terms acting
on the added particle. This by itself does not lead to a bound on the
partition function. Our technical contribution is to use an inductive
proof to connect such a decomposition to the lower bound (9).

A similar strategy is used in the proof of Theorem 11 which is
based on the result of [17] for translationally-invariant classical
systems. We essentially show a similar bound to (9) on how much
the partition function can shrink after adding new particles. Here,
instead of cluster expansions, we use the exponential decay of
correlations to show such a lower bound. However, notice that the
decay of correlations is a property of the system at a real ff, whereas
we want to bound the absolute value of the partition function at
some complex f. There are multiple steps in the proof before we
can get around this issue.

One crucial step is to reduce the proof of the analyticity of the free
energy to a condition that roughly speaking states that changing
the value of a spin in the system only causes a small relative change
in the partition function of the system even for complex f. We
prove this by isolating the effect of this spin flip from the rest of
the system using the decay of correlations. This requires removing
the imaginary part of f for all the interactions in the vicinity of the
flipped spin and bounding the resulting error.

This overall approach involves a subtle use of the boundary
conditions in the spin system. In the quantum case, this means
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applying local projectors (or more generally a positive operator)
to the Gibbs state before evaluating the partition function. These
projectors can in general be entangled which makes using this
proof technique more challenging for quantum systems.

Sketch of the proof for Theorem 4. The basis of our algorithm in
Theorem 4 is the following observation. It is computationally easy
to find the partition function and its derivatives at § = 0. Note that
in a system of n qudits, Zg_o(H) = d" and its derivatives are

d*Z(H)
dpk 1p=0

Since the local Hamiltonian H equals }12| H; for some m =

= (-1)* tr[H*]. (11)

poly(n), its kth power H¥ is also the sum of nOk) many local
terms, i.e.

Ok

k_ (k)
H _ZlHj ,
j:

where H is a product of k local terms H;. Each of the new terms

(12)

H](.k) acts on a region that is at most k times larger than the sup-
port of the original terms H; which is still some constant. We can
find tr[H*] by adding nOK) many terms like tr[H}k)]. Furthermore,

since the support of each HJ(.k) is < k, each term tr[H](k)] can be com-

puted in time 20(k)_ Hence, the derivatives of (11) can be computed
in time n@k).

How can the solution at f = 0 be used to estimate the one
at some non-zero 7 We use a technique due to Barvinok [4, 6]
that has been applied to similar counting problems. The idea is to
extrapolate this solution at § = 0 to find Zg(H) at some non-zero f§
where the problem is non-trivial. The extrapolation is done simply
by using a truncated Taylor expansion of log Z(H) at § = 0. Since
our goal is to find the partition function with some e-multiplicative
error, it is sufficient to estimate log Z(H) within e-additive error.

The main barrier to the reliability of this algorithm is establish-
ing the fast convergence of the Taylor expansion. Such a Taylor
expansion is only valid when log Z(H) remains a complex-analytic
function, meaning the extrapolation is done along a path contained
in the zero-free region. This is precisely the condition stated in Def-
inition 2. Under this assumption, the Taylor theorem along with the
bound |log Zg(H)| < O(n) that we get from being in the zero-free
region give

K-1 k
1d logZﬂ(H)‘ oK

log Zg(H) - »  —
1;) k! dpk

for some constants cy, ¢z. The running time of computing the terms
in this expansion is dominated by that of finding the derivatives

(13)

< cine”

which, as mentioned earlier, takes time nO&) To get an additive
error of ¢ for log Zg(H), it suffices to choose K = O(log(n/¢)),
resulting in a quasi-polynomial time algorithm.

The running time of this algorithm depends exponentially on
the distance between the zeros and the extrapolation path. This
allows us to clearly see why our algorithm fails beyond the phase
transition point. If we try to extrapolate to f§ > f., we need to
find a zero-free region that avoids the “armor” of zeros that are
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concentrated around the real axis at .. This results in a zero-free
region with a vanishing width. Hence, the running time blows up,
which matches our expectation from the NP hardness result above

Be [42].

Sketch of the proof for Theorem 13. Thus far we have only con-
sidered complex zeros of the partition function as a function of f.
These are often called Fisher zeros [20]. One can, however, fix  and
consider the partition function as a function of other parameters
in the Hamiltonian. When that parameter is the strength of the
external magnetic field denoted by p, these zeros are called Lee-
Yang zeros [31]. In a pioneering result, Lee and Yang showed that
for ferromagnetic systems, the locus of these zeros can be exactly
determined and they are all on the imaginary axis in the complex
pi-plane.

A generalization of this theorem has been proved for a class
of 2-local quantum systems including the anisotropic Heisenberg
model [43]. The result follows by mapping the quantum system to
a classical spin system and applying a Lee-Yang type argument to
the classical model.

Knowing the location of the complex zeros, we use the extrapo-
lation algorithm to estimate the solution at a constant y by finding
the low-order derivatives of the partition function at 4 = 0. We can
apply this to the quantum XXZ model given in (5).

5 PREVIOUS WORK

Classical Statistical Physics and Combinatorial Counting: The
Gibbs distribution and partition function appear naturally in com-
binatorial optimization, statistical physics, and machine learning.
In particular, the classical Ising model has been studied extensively
within these areas. These studies have resulted in various proba-
bilistic and deterministic approximation algorithms for this model
and its variants. In the following, we summarize some of these
results.

Most notable and the first rigorously proven efficient algorithm
for the Ising model is the result of Jerrum and Sinclair [24] that
uses a Markov chain Monte Carlo (MCMC) sampling algorithm
to estimate the partition function in the ferromagnetic regime on
arbitrary graphs. More generally, it has been shown that one can
set up Markov chains for sampling from the Gibbs distribution that
mix rapidly if and only if the correlations decay exponentially.
This is known as the equivalence of mixing in time and mixing in
space [18, 44].

Another approach uses the decay of correlations in the Gibbs
distribution. This property essentially allows one to decompose
the interaction graph of the system into smaller computationally
tractable pieces, and then combine the results of the computation on
those pieces to find the overall partition function. In contrast to the
MCMC approach, algorithms based on the decay of correlations can
be deterministic. This approach, for instance, has lead to efficient
deterministic algorithms for the hard-core model up to the hardness
threshold [45] and the antiferromagnetic Ising model [40].

There is a recent conceptually different approach to estimating
the partition function, which is the basis of this work. This approach
views the partition function as a high-dimensional polynomial and
uses the truncated Taylor expansion to extend the solution at a
computationally easy point to a non-trivial regime of parameters.
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Since its introduction [5], this method has been used to obtain
deterministic algorithms for various interesting problems such as
the ferromagnetic and antiferromagnetic Ising models [34, 37] on
bounded graphs.

The question of the relation between the analyticity of the free
energy and the decay of correlations was recently considered in
[33] where the authors show that the correlation decay implies
the absence of Fisher zeros near the real axis. A more general
statement has been proved by Dobrushin and Shlosman [17] for
translationally-invariant classical systems.

Quantum Many-Body Systems: The problem of estimating the
partition function and correlation decay in quantum systems has
also been studied in the past. We review some of these results here.

There are various results (e.g., [14, 39]) that estimate the partition
function by sampling from the Gibbs state using a quantum com-
puter (also known as quantum Gibbs sampling). The best known
bound on the running time of these algorithms is exponential in
the number of particles. This running time can be reduced if we
assume other conditions. For example, [25] shows that a strong
form of the decay of correlations implies an efficient quantum Gibbs
sampler for commuting Hamiltonians. If in addition to the decay
of correlations we add the decay of quantum conditional mutual
information, then this result can be extended to non-commuting
Hamiltonians [9]. Turning these quantum algorithms into classical
ones results in an nP°Y1°8(") running time. Although we cannot
directly compare these results with our algorithm due to different
conditions that are imposed, the n®U°8") running time that we
achieve outperforms that of these algorithms.

Considering the success of approximation schemes for the clas-
sical statistical problems, it is desirable to import those results to
evaluate the thermal properties of interacting quantum many-body
systems. This indeed can be done for some models like the quan-
tum transverse field Ising model [10, 15] or the quantum XY model
[11] in the ferromagnetic regime using what is called the quantum-
to-classical mapping. However, this approach only works for a re-
stricted set of Hamiltonians known as stoquastic Hamiltonians in
which all off-diagonal matrix elements are real and non-positive.
This set is known to be restricted in many ways. For example, esti-
mating the ground state energy of a general quantum Hamiltonian
is QMA-complete but the problem is in AM when we restrict to
stoquastic Hamiltonians.

Establishing the decay of correlations in the Gibbs state has also
been studied in quantum settings. In particular, it has been shown
that the Gibbs state has this property in the 1D translationally
invariant case [3] or above some constant temperature in higher
dimensions [28]. Thus, in these regimes, there exist efficient rep-
resentations for the state of the system using a tensor network
ansatz like matrix product states or projected entanglement pair
states [22, 28, 36]. However, this does not necessarily imply an effi-
cient algorithm that finds and faithfully manipulates these tensor
networks.

The decay of conditional mutual information is another property
of the Gibbs state that has been rigorously proved for 1D systems
[26] and conjectured for higher dimensions. This result has been
used to find algorithmic schemes for preparing the Gibbs state
on a quantum computer [9] or estimating the free energy in 1D
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[27, 30]. A recent result of [29] uses cluster expansions along with a
technique very similar to the one we use in Theorem 10 (i.e. showing
the low-order derivatives of the correlation function are zero) to
establish the decay of conditional mutual information above some
constant temperature.

6 DISCUSSION AND OPEN QUESTIONS

Our work raises many questions that we leave for future work.
Here we mention some of them.

(1) Perhaps the most immediate problem is to fully establish (or
refute) the connection between the decay of correlations and the
absence of zeros. There are at least two directions to pursue. First, it
would be interesting to prove the exponential decay of correlations
in the zero-free region of non-commuting Hamiltonians in higher
dimensions. Currently we can only show this when the distance of
the observables is Q(log n). It seems for this to work, the region of
applicability of certain tools such as quantum belief propagation
needs to be extended to the complex regime.

Additionally, establishing the absence of zeros in quantum sys-
tems when the correlations decay exponentially is also open. A
first step might be to prove this for commuting Hamiltonians or
1D chains. In this work, we have already extended some parts of
the proof of this statement for the classical systems to commuting
Hamiltonians, but it seems to complete the proof, a more careful
analysis of the entangled boundary conditions is required.

(2) While we focus on the covariance form of the correlations
(2), one can also consider quantum conditional mutual information
(QCMI) as a measure of correlations. Using the absence of zeros
to prove the decay of qCMI is another interesting question. This
would extend the result of [29] to lower temperatures down to the
phase transition point. Since the approach of [29] resembles some
of the techniques we use, this looks like a promising direction.

(3) Is there some range of temperatures or Hamiltonian parame-
ters that a quantum computer cannot efficiently sample from the
Gibbs state but the extrapolation technique still works? At least,
when the parameter of interest is temperature, this depends on
the fate of the previous questions we mentioned, i.e. showing that
the decay of correlations and qCMI are necessary for the absence
of zeros. The result of [9] implies an efficient quantum sampler
under the same conditions. Are there other parameters besides
temperature for which one can show a separation between these
notions?

(4) Is it possible to improve the lower bound we obtained for the
critical point f¢ in Theorem 5 without using other conditions such
as the decay of correlations? In general, what is the computational
hardness of determining the thermal phase transition point f.?

(5) Can the running time of our algorithm be improved for spe-
cific systems to polynomial time? For this to be done, we need an
algorithm that given a local Hamiltonian H = Z?:(n) Hp, computes
tr[H¥] in time O(n - 20(%)) instead of the current n°%) running
time. This has been achieved for the classical Ising model [34, 37] by
relating the derivatives of the partition function to combinatorial
objects that can be efficiently counted. Another approach for an
improved running time is recently introduced in [29], where the
authors apply a multivariate version of the cluster expansion that
we use to compute the derivatives of log Zg(H) efficiently.
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(6) Can we use the extrapolation idea to avoid the sign problem?
The easy regime, which includes the starting point of the extrapo-
lation, could be a regime of parameters where the Hamiltonian is
sign-free and MCMC algorithms yield a good estimate, whereas the
end point is where the sign problem exists. A candidate parameter
for extrapolation is the chemical potential. There are important
physical systems such as lattice gauge theories for which at zero
chemical potential the partition function is sign-free while there is
a severe sign problem for non-zero chemical potentials.

(7) Barvinok’s approach has been used to obtain approximation
algorithms for other problems related to quantum computing [12,
19, 35]. Are there other relevent applications for this method?
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