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ABSTRACT
We present a quasi-polynomial time classical algorithm that esti-

mates the partition function of quantum many-body systems at

temperatures above the thermal phase transition point. It is known

that in the worst case, the same problem is NP-hard below this

point. Together with our work, this shows that the transition in

the phase of a quantum system is also accompanied by a transition

in the hardness of approximation. We also show that in a system

of n particles above the phase transition point, the correlation be-

tween two observables whose distance is at least Ω(logn) decays
exponentially. We can improve the factor of logn to a constant

when the Hamiltonian has commuting terms or is on a 1D chain.

The key to our results is a characterization of the phase transition

and the critical behavior of the system in terms of the complex

zeros of the partition function. Our work extends a seminal work

of Dobrushin and Shlosman on the equivalence between the decay

of correlations and the analyticity of the free energy in classical

spin models. On the algorithmic side, our result extends the scope

of a recent approach due to Barvinok for solving classical counting

problems to quantum many-body systems.

CCS CONCEPTS
• Theory of computation → Quantum computation theory;
Approximation algorithms analysis.

KEYWORDS
quantum many-body systems, partition function, decay of corre-

lations, complex zeros, thermal phase transition, approximation

algorithms, Hamiltonian complexity

ACM Reference Format:
AramW. Harrow, Saeed Mehraban, and Mehdi Soleimanifar. 2020. Classical

Algorithms, Correlation Decay, and Complex Zeros of Partition Functions

of Quantum Many-Body Systems. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing (STOC ’20), June 22–26, 2020,
Chicago, IL, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.

1145/3357713.3384322

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00

https://doi.org/10.1145/3357713.3384322

1 INTRODUCTION
At low temperatures, the main characteristics of many-body sys-

tems in condensed matter physics or quantum chemistry are cap-

tured in the structure of the ground state of their Hamiltonian.

The computational complexity of estimating the ground state en-

ergy has been extensively studied through numerous works. In

particular, it has been shown that in the worst case, for many phys-

ically relevant systems including even a two-local Hamiltonian on

a one-dimensional (1D) chain, estimating the ground state energy

is QMA-complete [1]. On the other hand, there is a host of classi-

cal algorithms for efficiently estimating the ground state energy

in certain restricted instances. For examples, the ground state of

a gapped Hamiltonian on a 1D chain can be estimated reliably

[2]. Also, weaker approximation algorithms are known when the

Hamiltonian is on a lattice or it has a dense interaction graph [8].

While at low temperatures the system is in the vicinity of the

ground space, at finite temperatures, the state of the system is a

mixture of different excited states. In thermal equilibrium, a quan-

tum system characterized by a local Hamiltonian H is in the Gibbs

(or thermal) state ρ = exp(−βH )/Zβ (H ), where β is the inverse

of temperature and Zβ (H ) = tr[exp(−βH )] is the partition func-
tion of the system. A natural equivalent to the ground state en-

ergy at finite temperatures is the free energy which is defined as

Fβ (H ) = −1/β logZβ (H ). As the temperature decreases (β → ∞),

the free energy approaches the ground energy of the Hamiltonian.

Many useful statistical properties of the system including the free

energy and other quantities such as the entropy can be obtained

from the partition function and its derivatives. However, exactly

evaluating the partition function is known to be #P-hard. Hence,
in order to characterize the finite-temperature behavior of the sys-

tem, it is crucial to have efficient algorithms that approximate this
quantity.

Our starting point for finding such approximation algorithms is

based on the observation that the phenomenon of the thermal phase

transition is an obstacle for finding efficient algorithms. Consider a

quantum many-body system that consists of n qudits interacting

according to a local Hamiltonian H . As the temperature of this

system increases, meaning β → 0, the Gibbs state ρ approaches

the maximally mixed state 1/dn . Thus, in this case, finding the

partition function is trivial since Zβ=0(H ) = dn . On the other hand,

this problem becomes significantly harder at lower temperatures.

In particular, as β → ∞, the Gibbs state approaches the ground

space of the Hamiltonian H and the free energy Fβ (H ) approaches
the ground energy which is known to be QMA-hard to estimate.

Hence, we see that the computational hardness of estimating the

partition function (or equivalently the free energy) depends on the
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inverse temperature β and goes through a transition from being

trivial to QMA-hard as β increases.

In statistical physics, however, another transition occurs as β
increases, namely, the transition in the phase of the system. At the

thermal phase transition point, certain physical properties of the

system undergo an abrupt change. An example of such a transition

is when amagnetic material that consists of a network of interacting

spins goes from the ferromagnetic to the paramagnetic phase. In the

ferromagnetic phase (the ordered phase), most spins are pointing

in the same direction and their net magnetic effect is non-zero,

whereas in the paramagnetic phase (the disordered phase), the spins

are distributed equally in opposite directions making their net

magnetic effect zero. A distinction between these phases is the

presence of long-range correlations in the ordered phase and the

decay of correlations in the disordered phase. This transition does

not happen gradually as β varies. On the contrary, the phase of the

system changes suddenly at some critical inverse temperature βc
known as the phase transition point.

Does the computational hardness of estimating the partition

function also undergo an abrupt change at the same transition

point? This question has been studied in the classical Ising or hard-
core model, and the answer is known to be affirmative. For these

systems, there are efficient algorithms for estimating the partition

function when β < βc [40, 45] whereas by a result of Sly and Sun

[41, 42] the same problem isNP-hard under a randomized reduction

for β > βc .
Hence, it appears that the thermal phase transition poses a barrier

to obtaining efficient algorithms, and we need a framework for

characterizing this phenomenon. There are at least two methods

for such purpose. One, which is the basis of our algorithm, stems

from analyzing the locus of the complex zeros of the partition

function. Another seemingly different method involves the decay

of correlations in the Gibbs state of the system. In this work, we

study the interface between the decay of correlations and locus of

complex zeros and investigate their algorithmic implications. One

central theme of our work is to establish an equivalence between

these two concepts. From a physics perspective, this unifies two

different characterizations of the phase transition phenomenon.

From a computational point of view, this shows that these two

distinct frameworks for developing approximation algorithms for

the partition function indeed cover the same range of temperatures.

2 MAIN RESULTS
2.1 Algorithm for Quantum Partition Function
Recall that the classical Ising model is identified as a weighted graph

whose edges have weights Ji j ∈ R and each vertex i takes a spin
value si ∈ {±1}. For this model, the partition function at inverse

temperature β is the sum Zβ =
∑
s1, ...,sn ∈{±1} e

−β ∑
i∼j Ji j si sj

over

different spin configurations. In physics, such a model is identi-

fied using the Hamiltonian H =
∑
i∼j Ji jZiZ j where Z =

(
1 0

0 −1
)

and Zi is the tensor product of Z at vertex i with identity matri-

ces elsewhere. This partition function can be equivalently formu-

lated as Zβ (H ) = tr[exp(−βH )]. For a quantum many-body system

with Hamiltonian H , the partition function is defined similarly

as Zβ (H ) = tr[exp(−βH )] = ∑
k exp(−βEk ), where each Ek is an

eigenvalue of the Hamiltonian H . These eigenvalues are also called

the energy levels of the Hamiltonian H .

If β is real, the terms exp(−βEk ) are all strictly positive, and

hence the partition function Zβ (H ) is strictly positive itself. How-

ever, this changes when β is allowed to be complex. In that case, the

terms exp(−βEk ) acquire complex phases that when added together

might cancel each other and make the partition function zero. We

call the solutions of Zβ (H ) = 0 for β ∈ C the complex zeros of the
partition function.

The significance of these zeros becomes more clear if one looks

at the free energy Fβ (H ). The zeros of Zβ (H ) are the singularities
of logZβ (H ) = −βFβ (H ). Since Zβ (H ) , 0 when β is real, we see

that all these singularities are located in the complex plane and the

free energy is analytic near the real axis. As the number of particles

n grows, the number and location of these points change. Perhaps

rather surprisingly, some of these singularities approach the real

axis in the limit of a large number of particlesn → ∞. The first point

on the positive real axis where these zeros converge in the large n
limit is called the critical inverse temperature and denoted by βc
(see Figure 1). This critical temperature separates different phases

of matter and important quantities such as the free energy become

non-analytic in the vicinity of βc . The study of these complex zeros

in connection with the phase transition phenomenon in classical

Ising models was initiated by Lee and Yang [31] and later extended

by Fisher [20]. This approach is one of the few rigorous methods

available in the theory of phase transitions.

Complex zeros can also be studied in relation to designing ap-

proximation algorithms. For instance, one can go beyond partition

functions and consider complex roots of high-degree polynomials

that appear in combinatorics such as estimating the permanent of

a matrix. Recently, there has been a surge of interest in studying

these complex zeros in theoretical computer science due to their

algorithmic applications. In particular, a new approach based on

the truncated Taylor expansion introduced by Barvinok [5] directly

connects the locus of the complex zeros to approximation algo-

rithms for counting problems. In this work, we extend the scope of

this method by applying it to quantum many-body systems.

We first state the condition on the location of zeros that we use in

our approximation algorithm. Under this condition, it is guaranteed

that the inverse temperature β at which the partition function is

estimated is connected to β = 0 by a path in the complex plane that

avoids the complex zeros along its way with a significant margin.

Even though this algorithm works for any such path, we restrict

our attention to the physically-relevant case when this zero-free

region contains the real β-axis. Hence, we define:

Definition 1 (Vicinity of real β axis). The δ -neighborhood of
the interval [0, β] for some β ∈ R+ is a region of the complex plane
defined as Ωδ,β = {z ∈ C : ∃z′ ∈ [0, β], |z − z′ | ≤ δ } (see Figure 1
for an example of such a region).

Definition 2 (Analyticity condition). For a system of n par-
ticles with a local Hamiltonian H , we define:

(1) A δ -neighborhood Ωδ,β of the interval [0, β] (see Defini-
tion 1) is called zero-free if ∀β ′ ∈ Ωδ,β , the partition function
Zβ ′(H ) , 0 and moreover, | logZβ ′(H )| ≤ O(n).

(2) Equivalently, the free energy Fβ (H ) is called δ -analytic along
[0, β] if Ωδ,β is a zero-free region.
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Figure 1: The location of complex zeros of the partition func-
tion, the critical point βc , and the zero-free region near the
real axis (as in Definition 2). The free energy is analytic in
this region.

While the condition | logZβ (H )| ≤ O(n) is satisfied on the real

β axis, it may not hold in the complex plane close to the zeros

of Zβ (H ). If the partition function is a polynomial, which is the

case for the classical Ising model, this condition follows when β is

constantly far from the complex zeros. In general, though, we need

to include this as an independent assumption.

Definition 3. An approximation algorithm for the partition func-
tion Zβ (H ) takes as input the description of the local Hamiltonian H ,
the inverse temperature β , and a parameter ε and gives an estimate
Z̃β (H ) with ε-multiplicative error, i.e.���Z̃β (H ) − Zβ (H )

��� ≤ εZβ (H ). (1)

This is, up to unimportant constants, equivalent to finding an ε-
additive error for logZβ (H ) or Fβ (H ).

We now state our first result which shows that the framework

of the truncated Taylor expansion [5] can be naturally extended to

also estimate quantum partition functions.

Theorem 4. There is a deterministic classical algorithm that takes
a local Hamiltonian H and a number ε as inputs, runs in time
nO (log(n/ε )), and outputs a value within ε-multiplicative error of the
partition function Zβ (H ) at inverse temperature β as long as the free
energy is δ -analytic along the [0, β] line (see Definition 2) for some
δ = O(1).

The result of Theorem 4 allows us to approximate the partition

function, as long as Zβ (H ) is evaluated for β inside the zero-free

region Ωδ,β . Hence, the main challenge in designing an approxima-

tion algorithm is to find the zero-free region or the critical point βc
for a Hamiltonian H . This can be achieved in certain systems such

as the classical Ising model by using their specific structure [7, 33].

In general, though, it is a hard problem to exactly find this region

given an arbitrary Hamiltonian. One can compare this with when

a 1D quantum system is assumed to have a constant spectral gap.

Under this condition, there is an efficient algorithm for estimating

the ground energy. However, it has been shown that validating this

condition, i.e. determining if a Hamiltonian is gapped or not, is

undecidable in the worst case [16].

In our next result, we show that the partition function can be

approximated using Theorem 4 at high constant temperatures. In

particular, we show that for any geometrically-local Hamiltonian

H , there exists a zero-free disk of radius β0 around β = 0 for some

constant β0 ≤ βc which depends only on the geometric parame-

ters of H . Here, we say a Hamiltonian is geometrically local if the

local terms in H act on neighboring qudits that are located on a

D-dimensional lattice Λ ⊂ ZD .

Theorem 5. There exists a real constant β0 such that for all β ∈ C
with |β | ≤ β0, the partition function Zβ (Λ) of a geometrically-local
Hamiltonian H does not vanish and

��
log |Zβ (Λ)|

�� ≤ O(n).

As mentioned earlier, without assuming a specific structure on

the family of Hamiltonians, extending the zero-free region beyond

β0 in Theorem 5 seems implausible. Hence, an alternative approach

is to show the absence of zeros at a given β by assuming the validity

of other conditions such as the decay of correlations. This along

with other results in this direction is the subject of the next section.

2.2 Correlation Decay in the Gibbs State
Another signature of the thermal phase transition is the appearance

of long-range order in the system. In the example of a magnetic

system, below the phase transition in the ordered phase, distant

spins are correlated and point in the same direction, whereas in

the disordered phase, the correlations between disjoint parts of the

system decay exponentially with their distance. More precisely, we

define the exponential decay of correlations as:

Definition 6 (Correlation decay condition). The Gibbs state
ρβ (H ) of a geometrically-local HamiltonianH at inverse temperature
β exhibits an exponential decay of correlations if for any two disjoint
observables O1 and O2 there exist constants ξ and c such that��

tr

[
ρβ (H )O1O2

]
− tr

[
ρβ (H )O1

]
tr

[
ρβ (H )O2

] ��
≤ c ||O1 || ||O2 ||e−dist(O1,O2)/ξ . (2)

What is the relation between the decay of correlations and the

complex zeros of the partition function? Note that the former in-

volves correlations in the system at a real temperature while the

latter concerns the complex temperature features of the partition

function. Could it be that these two apparently distinct characteri-

zations are indeed equivalent?

Besides its physical significance, the correlation decay property

is also crucially used in many approximation algorithms both in

classical [45] and quantum [9] settings. Hence, we see that there

are two different approaches for estimating the partition function:

using the absence of complex zeros versus relying on the decay

of correlations. A third approach is to use Markov chain Monte

Carlo (MCMC) sampling algorithms for this purpose. An important

question is whether the range of temperatures that these widely

different approaches cover is the same.

The equivalence between the exponential decay of correlations

(fast mixing in space) and fast convergence of MCMC algorithms

(fast mixing in time) has been established before for classical sys-

tems [18, 44]. Here, we consider the equivalence between the ab-

sence of complex zeros and the exponential decay of correlations.
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This question has been recently raised in [33] where one direction

of this equivalence was proved for the special case of the classical

Ising model [33]. Here, we study this question in the context of

quantum many-body systems.

We build on a work of Dobrushin and Shlosman [17] who proved

this equivalence for arbitrary translationally-invariant classical sys-

tems.We are not aware of any application of the proof techniques in

this paper or [17] that appear in the recent results on approximate

counting problems. Hence, the methods developed here might be

of independent interest.

Before stating our result, we need to generalize the definition of

the zero-free (or analytic) region in Definition 2 to a multivariable

setting. Given a local HamiltonianH =
∑m
i=1 Hi , we define complex

variables z1, . . . , zm such that each zi roughly equals β plus some

small complex deviation. Hence, instead of working with functions

of βH such as exp(−βH ), we consider functions of ∑m
i=1 ziHi as in

exp(−∑m
i=1 ziHi ). For a fixed inverse temperature β and maximum

deviation δ , we denote the set of such tuples (z1, . . . , zm ) by Γδ,β .
By varying β from zero to some constant β and taking the union of

the corresponding Γδ,β , the set Ωδ,β is obtained.

As discussed earlier, the critical temperature βc corresponds to
the thermal phase transition point, where complex zeros of the

partition function approach the real axis. Note that even with devi-

ations, we do not want any of the variables zi to exceed βc . More

precisely, we have the following definition:

Definition 7 (Vicinity of real β axis, multivariate version).

Let Γδ,β be the set {(z1, . . . , zm ) : ∀i ∈ [m], zi ∈ C, |zi − β | ≤ δ }.
We define Ωδ,β to be Ωδ,β =

⋃
β ′∈R+

β ′<β/(1+δ )
Γδ,β ′ .

We also define the perturbed Gibbs state as follows.

Definition 8 (Complex perturbed Gibbs state). The δ -
perturbed Gibbs state of a local Hamiltonian H =

∑m
i Hi at inverse

temperature β is defined as

ρ ®z (H ) = e−
∑m
i=1 ziHi

tr[e−
∑m
i=1 ziHi ]

, ®z = (z1, . . . , zm ) ∈ Γδ,β (3)

where Γδ,β is defined in Definition 7.

The analyticity conditionwe consider for the result in this section

is stronger than the one used in the approximation algorithm in

Definition 3 and Theorem 4. Previously we only included systems

with open boundary conditions in our analysis, but here we also

need to allow for other boundary conditions. This is not restricted

to the quantum case, and Dobrushin and Shlosman use similar

conditions in their proof for classical systems [17]. The precise

statement of our condition is the following:

Definition 9 (Strong analyticity). The free energy of a
geometrically-local Hamiltonian H is strongly δ -analytic at β if for
any local operator N ≥ 0 with ||N || = 1, there exists a constant c such
that ���log (tr [e−∑m

i=1 ziHiN
] )��� ≤ cn, ∀(z1, . . . , zm ) ∈ Γδ,β . (4)

Assuming Definition 9, we show that the absence of complex ze-

ros around some real β implies the exponential decay of correlations

at that β .

Theorem 10 (Analyticity implies decay of correlations).

Let ρβ (H ) be the Gibbs state of a geometrically-local Hamiltonian
at inverse temperature β in the strong analyticity region Γδ,β given
in Definition 9. This state has the decay of correlation property as in
Definition 6 in any of the following cases:

(i.) The distance between the observables O1 and O2 is at least
Ω(logn),

(ii.) The Hamiltonian H is the sum of mutually commuting local
terms, or

(iii.) The Hamiltonian H is defined on a 1D chain.

The class of commuting Hamiltonians includes important exam-

ples such as stabilizer Hamiltonians like the Toric code, Color code,

or Levin-Wen model [32].

To see the motivation for the strong analyticity (as in Defini-

tion 9) used in this theorem, first note that when restricted to

classical systems, this condition reduces to the one used in [17].

There the operator N sets the boundary conditions which fixes the

value of certain spins in the system before computing the parti-

tion function, or more generally, finding the Gibbs distribution. A

natural question then is how varying these boundary conditions

affects the distribution. In particular, the uniqueness of the Gibbs
distribution refers to the case that in the limit of a large number

of particles, changing distant spins has a negligible effect on the

distribution of spins in a finite region. Hence, a unique Gibbs dis-
tribution can be defined for such systems. This condition is not

satisfied at all temperatures, and below the critical temperature,

multiple Gibbs distributions exist. Thus, it seems natural to include

the boundary conditions in the partition function when studying

its complex zeros and the critical behavior of the system in general.

For quantum systems, one can think of fixing the boundary spin

values by projecting them onto a specific state or more generally

by post-selecting after a local measurement has been performed.

Hence, tr

[
exp

(
−∑m

i=1 ziHi
)
N
]
is the partition function of the

normalized Gibbs state after conditioning on the measurement

outcome associated with N . Notice that, in principle, the state of

the spins after post-selection can be entangled. As we will see, this

causes technical difficulties in extending the classical results to the

quantum regime.

Finally, wemention that the validity of Definition 9 can be shown

in the high temperature regime (β ≤ β0) by a slight modification of

the argument in the proof of Theorem 5.

Proving the converse of Theorem 10 turns out to be more chal-

lenging. Nevertheless, we can give evidence for this direction by

generalizing the result of [17] to classical systems that are not trans-

lationally invariant, and also quantizing certain steps in the proof.

By fully establishing this equivalence, one could rigorously confirm

the physical intuition that a quantum system enters the disordered

phase at the point where the free energy becomes analytic.

Theorem 11. Let H be a geometrically-local Hamiltonian of a
classical spin system, i.e. the local termsHi are all diagonal in the same
product basis. For this system, the exponential decay of correlations
given in Definition 6 implies the absence of zeros near the real axis as
in Definition 2.

In these results, we consider general Hamiltonians without spe-

cializing to specific models. Tighter results have been obtained
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before for specific models [13, 33, 38]. For instance, [33] proves

that a variant of the decay of correlations property in the clas-

sical Ising model implies analyticity. This is based on a different

framework than ours and uses the self-avoiding walk trees and a

carefully designed recurrence as introduced in [46]. The analysis of

[33] is fine-tuned for the Ising model and implies stronger results

than those we achieve. This includes exactly matching the phase

transition point even with arbitrary boundary conditions. Another

approach, based on truncating a convergent cluster expansion, is

used in [13] to obtain the decay of correlations for hard-core models

on bipartite graphs.

2.3 Two-Local Hamiltonian and Lee-Yang Zeros
For our last result, we switch gears and focus on a specific family

of 2-local Hamiltonians. We again use the idea of extrapolation, but

this time, our extrapolation parameter instead of β is the strength of

the external magnetic field applied to the system in the z-direction.
The physical motivation is that when the system is subject to a

large external field in a specific direction (the z-direction in our

case), all spins align themselves in that direction, and estimating

the properties of the system becomes trivial. On the other hand,

as we move to smaller fields, the other interaction terms between

the particles gain significance, making the problem non-trivial. Our

result is an approximation algorithm for the quantum XXZ model

with the following Hamiltonian:

Definition 12. The anisotropic XXZ Hamiltonian on an interac-
tion graph G = (V ,E) is given by

H (µ) = −
∑

(i, j)∈E

(
Ji j (XiX j + YiYj ) + Jzzi j ZiZ j

)
− µ

∑
i ∈V

Zi . (5)

We find an approximation algorithm for this model. This is stated

in the following theorem. This model is outside the family of ferro-

magnetic systems considered previously in [11] and to the best of

our knowledge, no efficient algorithm was previously known for

estimating its partition function.

Theorem 13. There is a deterministic algorithm that runs in
nO (log(n/ε )) time and outputs an ε-multiplicative approximation to
the partition function of the anisotropic XXZmodel (see Definition 12)
in the ferromagnetic regime, i.e. when Jzzi j ≥ |Ji j |, and µ is an arbi-
trary non-zero constant.

3 PRELIMINARIES
Consider a D-dimensional lattice Λ ⊂ ZD containing n sites with

a d-dimensional particle (qudit) on each site. The Hilbert space is

H =
⊗

i ∈ΛHi whereHi is the local Hilbert space of site i . For a
regionA ⊆ Λ, we denote its size by |A| and its complement by Ā. The
diameter of A is defined to be diam(A) = sup{dist(x ,y) : x ,y ∈ A}.
The interaction of these particles is described by a local Hamiltonian

H that has the following form:

H =
∑
X ⊂Λ

HX . (6)

Each term HX is a Hermitian operator with operator norm at most

h that is acting non-trivially only on the sites in X . We denote this

by writing supp(HX ) = X . The local terms HX do not necessarily

commute with each other. Similarly, we define HA =
∑
X ⊆A HX

to be the Hamiltonian restricted to a region A ⊆ Λ. We denote

the number of local terms in the Hamiltonian bym and often also

write H =
∑m
i=1 Hi . The 1-norm of an operator O is denoted by

||O ||
1
= tr[

√
O†O] and its operator norm, i.e. the largest singular

value, by ||O ||.
In order to impose geometric locality on the interactions between

the particles, we consider the interactions that satisfy the following

condition.

Definition 14 (Geometrically-local Hamiltonians). A
Hamiltonian H =

∑
X ⊂Λ HX such that supp(HX ) = 0 when

diam(X ) > R or |X | > κ is called a (κ,R)-local Hamiltonian. We call
κ the locality and R the range of H . We use the words geometrically-
local and (κ,R)-local interchangeably when κ,R are kept constant.

This should be contrasted with the case where supp(HX ) = 0

when |X | > κ but there is no restriction on diam(X ). In order to

distinguish between these two, we use the terms geometrically-
local versus local throughout this paper. We also focus mostly on

geometrically-local Hamiltonians with a finite range R, but most of

our results also apply to Hamiltonians with interactions that decay

fast enough, for example, with some exponential rate.

Remark 15. In general, the locality κ of a geometrically-local
Hamiltonian on a D-dimensional lattice Λ can be bounded as κ ≤
O(RD ), which is the size of a ball of diameter R. Nevertheless, we treat
both κ and R as independent parameters in this paper.

Our approximation algorithm is based on the truncated Taylor

series method which is summarized in the following proposition.

The proof can be found in the full version [21], but also see the

discussion in the next section.

Proposition 16 (Truncated Taylor series for bounded func-

tions and polynomials). We denote a disk of radius b centered at
the origin in the complex plane by ∆b , that is ∆b = {z ∈ C : |z | ≤ b}.

(1) Let f (z) be a complex function that is analytic and bounded as
| f (z)| ≤ M when z ∈ ∆b for a constant b > 1. Then the error
of approximating f (z) by a truncated Taylor series of order K
for all |z | ≤ 1 is bounded by�����f (z) − K∑

k=0

akz
k

����� ≤ M

bK (b − 1)
, |z | ≤ 1. (7)

(2) Assume b is fixed and there is a deterministic algorithm that
finds the coefficients ak in time O(N k ) for some parameter
N . Then there exists a deterministic algorithm with running
time NO (log(M/ε )) that outputs an ε-additive approximation
for f (z).

(3) [cf. [5]] Let f (z) = log(д(z)) for some polynomial д(z) of
degree N that does not vanish when z ∈ ∆b . The error of
approximating f (z) by a truncated Taylor series of order K for
|z | ≤ 1 is bounded by N

K+1
1

bK (b−1) .
(4) [cf. [5]] Assuming b is fixed, there exists a deterministic al-

gorithm with running time NO (log(N /ε )) that outputs an ε-
additive approximation for log(д(z)).

4 SKETCH OF OUR PROOFS
Here, we give an overview of our proof techniques. More details

can be found in the full version of this paper [21].
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Sketch of the proof for Theorem 10. The technique used in the

proof of Theorem 10 is inspired by the extrapolation idea of Theo-

rem 4 and also the proof of the similar statement for the classical

systems due to [17].

One major issue that appears in the proof of this Theorem and

Theorem 11 is the handling of entangled boundary conditions. To

address this, we consider the Gibbs state after a subset of spins have

been measured. This means we work with partition functions of

the form tr[exp(−βH )N ] for some positive semi-definite operator

N . We then define a function f (β) that measures the correlation

between disjoint observablesO1 andO2. This function is defined in

a slightly different way than the covariance form in (2) and is tuned

to have specific properties. In particular, we show that at β = 0,

the value of this function is zero, i.e. f (0) = 0. This is expected

intuitively since the system is in the maximally mixed state at β = 0

and particles are distributed independently at random. However,

we further show that the low-order derivatives of this function up

to O(dist(O1,O2)) are all zero at β = 0, i.e.

dk f (β)
dβk

���
β=0
= 0, for k = 0, 1, . . . ,O(dist(O1,O2)). (8)

Hence, this function looks very flat around the origin. Additionally,

we prove that f (β) is an analytic function in the zero-free region.

Finally, we show that this together with the constraints on the

derivatives imply that the value of f (β), which shows how corre-

lated O1 and O2 are, remains exponentially small when moving

from the origin to a constant β .
This gives us an upper bound ∝ n exp(−dist(O1,O2)/ξ ) on the

amount of correlation. The extra factor of n makes this bound

exponentially small when dist(O1,O2) = Ω(logn).

Remark 17. Even with the extra factor of n, our bound remains
useful for algorithmic applications such as in [9]. There one needs
to split the system into computationally tractable smaller pieces and
solve the problem for those pieces locally. The error of this strategy
can be bounded using the exponential decay of correlations. To keep
this error less than 1/poly(n), one needs to choose the distances to be
O(logn) which is the regime that our result covers.

In classical systems, one can remove the constraint dist(O1,O2) =
Ω(logn) by using the Markov property of the Gibbs states. This

property is known not to (exactly) hold in the quantum case. We

can get around this issue in certain instances. This includes when

the Hamiltonian consists of commuting terms or when it is defined

on a 1D chain. In both cases, using either the commutativity of

local terms or quantum belief propagation [23] (refer to the full

version of the paper [21] for the precise statement), we show that by

removing the interaction terms acting on particles that are far from

the observables O1 and O2, the correlations between O1 and O2 do

not change by much. Hence, the system size reduces to the number

of particles in the vicinity of the two observables. This number

replaces the prefactor n we had before and is negligible compared

to the exponential factor exp(−dist(O1,O2)/ξ ). Thus, for these sys-
tems, the decay of correlations holds even when dist(O1,O2) is a
constant. In higher dimensions, using quantum belief propagation

results in an error proportional to the size of the boundary which

restricts its application for our purpose.

Sketch of the proofs for Theorem 5 and Theorem 11. We first in-

troduce a core idea which plays a central role in the proofs of both

Theorem 5 and Theorem 10. For ease of notation, we denote the

partition function of a geometrically-local Hamiltonian H defined

over a D-dimensional lattice Λ ⊂ ZD by Zβ (Λ). The particles are
located on the vertices of this lattice.

In Theorem 5, our goal is to show that Zβ (Λ) , 0 inside a disk

of radius β0, i.e. for β ∈ C where |β | ≤ β0 for some constant β0. We

consider a series of sublattices ∅ = Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn = Λ
such that each sublattice Λi has one fewer vertex than Λi+1. By
convention, we let Zβ (∅) = 1. As long as the sublattice Λi has only
a constant number of particles, we can always ensure Zβ (Λi ) , 0

by choosing β to be a sufficiently small constant. One might worry

that by adding more particles, the partition function vanishes.

Our main contribution is to prove this does not happen. We do so

by showing that the partition function after involving new particles

does not become smaller than a constant fraction of the partition

function before adding the particles. In other words, we show there

exists a constant c > 1 such that

|Zβ (Λi+1)| ≥ c−1 |Zβ (Λi )|, i ∈ {1, 2, . . . ,n − 1}. (9)

By repeatedly applying this bound, we obtain the following expo-

nentially small (yet sufficiently large for our purposes) lower bound

on the partition function of the whole system:

|Zβ (Λ)| ≥ c−n |Zβ (Λ1)|. (10)

This leads to the bound given in Theorem 5. This lower bound

is obtained using a method known as the cluster expansion. Since
the local terms in the Hamiltonian of a quantum system do not

necessarily commute, applying this method becomes quite technical.

The cluster expansion that we use is due to Hastings [22, 28], which

represents the operator exp(H ) as sum of products of local termsHi .

This allows us to express Zβ (Λi+1) in terms of Zβ (Λi ) plus some

small correction terms that account for the interaction terms acting

on the added particle. This by itself does not lead to a bound on the

partition function. Our technical contribution is to use an inductive

proof to connect such a decomposition to the lower bound (9).

A similar strategy is used in the proof of Theorem 11 which is

based on the result of [17] for translationally-invariant classical

systems. We essentially show a similar bound to (9) on how much

the partition function can shrink after adding new particles. Here,

instead of cluster expansions, we use the exponential decay of

correlations to show such a lower bound. However, notice that the

decay of correlations is a property of the system at a real β , whereas
we want to bound the absolute value of the partition function at

some complex β . There are multiple steps in the proof before we

can get around this issue.

One crucial step is to reduce the proof of the analyticity of the free

energy to a condition that roughly speaking states that changing

the value of a spin in the system only causes a small relative change

in the partition function of the system even for complex β . We

prove this by isolating the effect of this spin flip from the rest of

the system using the decay of correlations. This requires removing

the imaginary part of β for all the interactions in the vicinity of the

flipped spin and bounding the resulting error.

This overall approach involves a subtle use of the boundary

conditions in the spin system. In the quantum case, this means
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applying local projectors (or more generally a positive operator)

to the Gibbs state before evaluating the partition function. These

projectors can in general be entangled which makes using this

proof technique more challenging for quantum systems.

Sketch of the proof for Theorem 4. The basis of our algorithm in

Theorem 4 is the following observation. It is computationally easy

to find the partition function and its derivatives at β = 0. Note that

in a system of n qudits, Zβ=0(H ) = dn and its derivatives are

dkZβ (H )
dβk

���
β=0
= (−1)k tr[Hk ]. (11)

Since the local Hamiltonian H equals

∑m
i=1 Hi for some m =

poly(n), its kth power Hk
is also the sum of nO (k )

many local

terms, i.e.

Hk =

nO (k )∑
j=1

H
(k )
j , (12)

where H
(k )
j is a product of k local terms Hi . Each of the new terms

H
(k )
j acts on a region that is at most k times larger than the sup-

port of the original terms Hi which is still some constant. We can

find tr[Hk ] by adding nO (k )
many terms like tr[H (k)

j ]. Furthermore,

since the support of eachH
(k )
j is ≤ k , each term tr[H (k)

j ] can be com-

puted in time 2
O (k )

. Hence, the derivatives of (11) can be computed

in time nO (k )
.

How can the solution at β = 0 be used to estimate the one

at some non-zero β? We use a technique due to Barvinok [4, 6]

that has been applied to similar counting problems. The idea is to

extrapolate this solution at β = 0 to find Zβ (H ) at some non-zero β
where the problem is non-trivial. The extrapolation is done simply

by using a truncated Taylor expansion of logZβ (H ) at β = 0. Since

our goal is to find the partition function with some ε-multiplicative

error, it is sufficient to estimate logZβ (H ) within ε-additive error.
The main barrier to the reliability of this algorithm is establish-

ing the fast convergence of the Taylor expansion. Such a Taylor

expansion is only valid when logZβ (H ) remains a complex-analytic

function, meaning the extrapolation is done along a path contained

in the zero-free region. This is precisely the condition stated in Def-

inition 2. Under this assumption, the Taylor theorem along with the

bound | logZβ (H )| ≤ O(n) that we get from being in the zero-free

region give�����logZβ (H ) −
K−1∑
k=0

1

k!

dk logZβ (H )
dβk

���
β=0

����� ≤ c1ne
−c2K

(13)

for some constants c1, c2. The running time of computing the terms

in this expansion is dominated by that of finding the derivatives

which, as mentioned earlier, takes time nO (K )
. To get an additive

error of ε for logZβ (H ), it suffices to choose K = O(log(n/ε)),
resulting in a quasi-polynomial time algorithm.

The running time of this algorithm depends exponentially on

the distance between the zeros and the extrapolation path. This

allows us to clearly see why our algorithm fails beyond the phase

transition point. If we try to extrapolate to β ≥ βc , we need to

find a zero-free region that avoids the “armor" of zeros that are

concentrated around the real axis at βc . This results in a zero-free

region with a vanishing width. Hence, the running time blows up,

which matches our expectation from the NP hardness result above

βc [42].

Sketch of the proof for Theorem 13. Thus far we have only con-

sidered complex zeros of the partition function as a function of β .
These are often called Fisher zeros [20]. One can, however, fix β and

consider the partition function as a function of other parameters

in the Hamiltonian. When that parameter is the strength of the

external magnetic field denoted by µ, these zeros are called Lee-

Yang zeros [31]. In a pioneering result, Lee and Yang showed that

for ferromagnetic systems, the locus of these zeros can be exactly

determined and they are all on the imaginary axis in the complex

µ-plane.
A generalization of this theorem has been proved for a class

of 2-local quantum systems including the anisotropic Heisenberg

model [43]. The result follows by mapping the quantum system to

a classical spin system and applying a Lee-Yang type argument to

the classical model.

Knowing the location of the complex zeros, we use the extrapo-

lation algorithm to estimate the solution at a constant µ by finding

the low-order derivatives of the partition function at µ = 0. We can

apply this to the quantum XXZ model given in (5).

5 PREVIOUS WORK
Classical Statistical Physics and Combinatorial Counting: The

Gibbs distribution and partition function appear naturally in com-

binatorial optimization, statistical physics, and machine learning.

In particular, the classical Ising model has been studied extensively

within these areas. These studies have resulted in various proba-

bilistic and deterministic approximation algorithms for this model

and its variants. In the following, we summarize some of these

results.

Most notable and the first rigorously proven efficient algorithm

for the Ising model is the result of Jerrum and Sinclair [24] that

uses a Markov chain Monte Carlo (MCMC) sampling algorithm

to estimate the partition function in the ferromagnetic regime on

arbitrary graphs. More generally, it has been shown that one can

set up Markov chains for sampling from the Gibbs distribution that

mix rapidly if and only if the correlations decay exponentially.

This is known as the equivalence of mixing in time and mixing in

space [18, 44].

Another approach uses the decay of correlations in the Gibbs

distribution. This property essentially allows one to decompose

the interaction graph of the system into smaller computationally

tractable pieces, and then combine the results of the computation on

those pieces to find the overall partition function. In contrast to the

MCMC approach, algorithms based on the decay of correlations can

be deterministic. This approach, for instance, has lead to efficient

deterministic algorithms for the hard-core model up to the hardness

threshold [45] and the antiferromagnetic Ising model [40].

There is a recent conceptually different approach to estimating

the partition function, which is the basis of this work. This approach

views the partition function as a high-dimensional polynomial and

uses the truncated Taylor expansion to extend the solution at a

computationally easy point to a non-trivial regime of parameters.
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Since its introduction [5], this method has been used to obtain

deterministic algorithms for various interesting problems such as

the ferromagnetic and antiferromagnetic Ising models [34, 37] on

bounded graphs.

The question of the relation between the analyticity of the free

energy and the decay of correlations was recently considered in

[33] where the authors show that the correlation decay implies

the absence of Fisher zeros near the real axis. A more general

statement has been proved by Dobrushin and Shlosman [17] for

translationally-invariant classical systems.

Quantum Many-Body Systems: The problem of estimating the

partition function and correlation decay in quantum systems has

also been studied in the past. We review some of these results here.

There are various results (e.g., [14, 39]) that estimate the partition

function by sampling from the Gibbs state using a quantum com-

puter (also known as quantum Gibbs sampling). The best known

bound on the running time of these algorithms is exponential in

the number of particles. This running time can be reduced if we

assume other conditions. For example, [25] shows that a strong

form of the decay of correlations implies an efficient quantum Gibbs

sampler for commuting Hamiltonians. If in addition to the decay

of correlations we add the decay of quantum conditional mutual

information, then this result can be extended to non-commuting

Hamiltonians [9]. Turning these quantum algorithms into classical

ones results in an npolylog(n) running time. Although we cannot

directly compare these results with our algorithm due to different

conditions that are imposed, the nO (logn)
running time that we

achieve outperforms that of these algorithms.

Considering the success of approximation schemes for the clas-

sical statistical problems, it is desirable to import those results to

evaluate the thermal properties of interacting quantum many-body

systems. This indeed can be done for some models like the quan-

tum transverse field Ising model [10, 15] or the quantum XY model

[11] in the ferromagnetic regime using what is called the quantum-
to-classical mapping. However, this approach only works for a re-

stricted set of Hamiltonians known as stoquastic Hamiltonians in

which all off-diagonal matrix elements are real and non-positive.

This set is known to be restricted in many ways. For example, esti-

mating the ground state energy of a general quantum Hamiltonian

is QMA-complete but the problem is in AM when we restrict to

stoquastic Hamiltonians.

Establishing the decay of correlations in the Gibbs state has also

been studied in quantum settings. In particular, it has been shown

that the Gibbs state has this property in the 1D translationally

invariant case [3] or above some constant temperature in higher

dimensions [28]. Thus, in these regimes, there exist efficient rep-

resentations for the state of the system using a tensor network

ansatz like matrix product states or projected entanglement pair

states [22, 28, 36]. However, this does not necessarily imply an effi-

cient algorithm that finds and faithfully manipulates these tensor

networks.

The decay of conditional mutual information is another property

of the Gibbs state that has been rigorously proved for 1D systems

[26] and conjectured for higher dimensions. This result has been

used to find algorithmic schemes for preparing the Gibbs state

on a quantum computer [9] or estimating the free energy in 1D

[27, 30]. A recent result of [29] uses cluster expansions along with a

technique very similar to the onewe use in Theorem 10 (i.e. showing

the low-order derivatives of the correlation function are zero) to

establish the decay of conditional mutual information above some

constant temperature.

6 DISCUSSION AND OPEN QUESTIONS
Our work raises many questions that we leave for future work.

Here we mention some of them.

(1) Perhaps the most immediate problem is to fully establish (or

refute) the connection between the decay of correlations and the

absence of zeros. There are at least two directions to pursue. First, it

would be interesting to prove the exponential decay of correlations

in the zero-free region of non-commuting Hamiltonians in higher

dimensions. Currently we can only show this when the distance of

the observables is Ω(logn). It seems for this to work, the region of

applicability of certain tools such as quantum belief propagation

needs to be extended to the complex regime.

Additionally, establishing the absence of zeros in quantum sys-

tems when the correlations decay exponentially is also open. A

first step might be to prove this for commuting Hamiltonians or

1D chains. In this work, we have already extended some parts of

the proof of this statement for the classical systems to commuting

Hamiltonians, but it seems to complete the proof, a more careful

analysis of the entangled boundary conditions is required.

(2) While we focus on the covariance form of the correlations

(2), one can also consider quantum conditional mutual information

(qCMI) as a measure of correlations. Using the absence of zeros

to prove the decay of qCMI is another interesting question. This

would extend the result of [29] to lower temperatures down to the

phase transition point. Since the approach of [29] resembles some

of the techniques we use, this looks like a promising direction.

(3) Is there some range of temperatures or Hamiltonian parame-

ters that a quantum computer cannot efficiently sample from the

Gibbs state but the extrapolation technique still works? At least,

when the parameter of interest is temperature, this depends on

the fate of the previous questions we mentioned, i.e. showing that

the decay of correlations and qCMI are necessary for the absence

of zeros. The result of [9] implies an efficient quantum sampler

under the same conditions. Are there other parameters besides

temperature for which one can show a separation between these

notions?

(4) Is it possible to improve the lower bound we obtained for the

critical point βc in Theorem 5 without using other conditions such

as the decay of correlations? In general, what is the computational

hardness of determining the thermal phase transition point βc ?
(5) Can the running time of our algorithm be improved for spe-

cific systems to polynomial time? For this to be done, we need an

algorithm that given a local Hamiltonian H =
∑O (n)

ℓ=1
Hℓ , computes

tr[Hk ] in time O(n · 2O (k )
) instead of the current nO (k )

running

time. This has been achieved for the classical Ising model [34, 37] by

relating the derivatives of the partition function to combinatorial

objects that can be efficiently counted. Another approach for an

improved running time is recently introduced in [29], where the

authors apply a multivariate version of the cluster expansion that

we use to compute the derivatives of logZβ (H ) efficiently.
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(6) Can we use the extrapolation idea to avoid the sign problem?

The easy regime, which includes the starting point of the extrapo-

lation, could be a regime of parameters where the Hamiltonian is

sign-free and MCMC algorithms yield a good estimate, whereas the

end point is where the sign problem exists. A candidate parameter

for extrapolation is the chemical potential. There are important

physical systems such as lattice gauge theories for which at zero

chemical potential the partition function is sign-free while there is

a severe sign problem for non-zero chemical potentials.

(7) Barvinok’s approach has been used to obtain approximation

algorithms for other problems related to quantum computing [12,

19, 35]. Are there other relevent applications for this method?
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