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Abstract—Unified Memory in heterogeneous systems serves
a wide range of applications. However, limited capacity of the
device memory becomes a first order performance bottleneck
for data-intensive general-purpose applications with increas-
ing working sets. The performance overhead under memory
oversubscription depends on the memory access pattern of the
corresponding workload. While a regular application with se-
quential, dense memory access suffers from long latency write-
backs, performance of a irregular application with sparse,
seldom access to large data-sets degrades due to page thrashing.
Although smart spatio-temporal prefetching and large page
eviction yield good performance in general, remote zero-copy
access to host-pinned memory proves to be beneficial for irreg-
ular, data-intensive applications. Further, new generation GPUs
introduced hardware access counters to delay page migration
and reduce memory thrashing. However, the responsibility of
deciding what strategy is the best fit for a given application
relies heavily on the programmer based on thorough under-
standing of the memory access pattern through intrusive profil-
ing. In this work, we propose a programmer-agnostic runtime
that leverages the hardware access counters to automatically
categorize memory allocations based on the access pattern and
frequency. The proposed heuristic adaptively navigates between
remote zero-copy access to host-pinned memory and first-touch
page migration based on the trade-off between low latency
remote access and high-bandwidth local access. We show that
although designed to address memory oversubscription, our
scheme has no impact on performance when working sets fit
in the device-local memory. Experimental results show that our
scheme provides performance improvement of 22% to 78% for
irregular applications under 125% memory oversubscription
compared to the state of the art. At the same time, regular
applications are not impacted by the framework.

Keywords-page migration, pinning, memory management,
CPU-GPU, Unified Memory

I. INTRODUCTION

Energy efficiency and massive data parallel SIMD nature
of GPU architecture have led to wider adoption of GPUs
by general purpose applications [10], [24]. Traditionally,
these regular applications operate on highly-structured large
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vectors in a streaming fashion. However, in recent years,
there has been an increasing trend to use GPUs for ap-
plications with irregular memory access patterns, such as
data mining, social network analysis and bioinformatics.
These algorithms operate on large, irregular data structures
like trees, and graphs and are highly input dependent. They
exhibit statically unpredictable, memory access irregularity,
and consequently low spatial locality.

Because of their dense, sequential memory access, regular
data-parallel applications benefit from prefetchers [13], [25],
[29]. A prefetcher prefetches data in advance based on
spatio-temporal locality of access. In the process, it reduces
the number of faults and further improve PCI-e bandwidth.
However, for irregular applications, aggressive prefetching
can be counter-productive under memory oversubscription.
The situation is aggravated further as heavily referenced
pages are replaced using LRU without differentiating be-
tween cold and hot data structures.

Usage of host-pinned “Zero-copy” memory buffers is
suggested in both CUDA [19] and OpenCL [3], [5] for
irregular applications with sparse, rare access to large data.
Using remote zero-copy has two advantages: (i) as no
data is copied to the device memory, it prevents memory
oversubscription, and (ii) sparse accesses benefit from low
latency direct access. In newer generation GPUs [26], page-
level access counters are used to delay migration of pages
from preferred location to the local memory. Avoiding first
touch migration helps reduce page thrashing for irregular
applications. However, there is a drawback with remote
“Zero-copy” access and delayed migration. If GPU reads
or writes to host pinned memory directly for multiple times,
then kernel (GPU code) execution will slow down. Particu-
larly, regular applications with dense, sequential memory
access will no longer benefit from bandwidth-optimized
local access that would result after migrating the data from
host memory. Consequently, developers resort to extensive
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memory profiling before specifying any hint to the memory
subsystem or deciding on a particular allocation type.

Researchers [1], [2] have studied the trade-offs between
lower latency direct memory access to host pinned memory
and bandwidth optimized local memory access in the context
of heterogeneous systems. These works try to split pages
between host and device memory based on the ratio of
host-to-device interconnect bandwidth and local memory
bandwidth to fully utilize the overall system-wide memory
bandwidth. Further, prior work [2] proposed static page
placement strategies, which require compiler support for
profiling and programmer intervention to annotate data struc-
tures. NVIDIA CUDA runtime also supports placement of
memory pages to either host or device memory based on
user-provided hints. If no API annotation is provided, then
CUDA runtime maintains lists of pages thrashed and pinned
indexed by the host or GPU identifier and throttles page
migration and prefetch decision for these pages. Firstly,
maintaining list of pages grouped in blocks of virtual pages
has a considerable implementation and space overhead. Sec-
ondly, page-wise throttling decision eliminates the benefits
of prefetching and eviction in bulk [13].

We provide extensive analysis of memory access pattern
of popular GPU workloads to classify them under regu-
lar and irregular categories. Further analysis reveals that
working sets of irregular applications can often be divided
into cold and hot data structures. While cold allocations are
accessed seldom and sparsely, hot data structures have dense
sequential access.

To this end, we propose a dynamic page placement strat-
egy for irregular general purpose applications. Our proposed
framework leverages hardware-based access counters [25]
to identify sparse and dense memory access and differ-
entiate between hot and cold allocations. Over the course
of execution, the framework achieves a balance between
low latency remote access to host-pinned cold allocations
and bandwidth-optimized local access to hot allocations
in irregular applications with oversubscribed working sets.
However, our framework does not affect regular applications
and applications with working sets smaller than the device
memory capacity. Through experimentation with a set of
regular and irregular GPGPU applications, we demonstrate
that the proposed heuristic adaptively navigates the spectrum
between zero-copy remote access and first-touch migration.
The key contribution of this work is leveraging existing sys-
tem support to design such a developer-agnostic framework.
Specifically, the proposed framework is not built on any
new hardware modification and does not require any explicit
user hints that are based on intrusive profiling of workloads
to provide performance improvement for irregular applica-
tions. Moreover, the proposed framework builds on generic
concepts like zero-copy memory and delayed migration and
thus can be adopted by any GPU irrespective of the vendor-
specific architecture and runtime.
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II. BACKGROUND

This section discusses on-demand paging, the tree-based
prefetcher and the page replacement policy key in re-
alizing Unified Memory for discrete CPU-GPU hetero-
geneous systems. Though the description closely follows
NVIDIA/CUDA terminology, the high-level concepts are
generalizable and vendor-agnostic.

A. On-demand Page Migration and Unified Memory

In the classic “copy then execute” model, data shared
between the CPU and GPU must be allocated in both
memories, and explicitly copied between them by the
host program before and after the kernel launch. NVIDIA
Pascal GPUs [20] have introduced hardware page fault-
ing and Page Migration Engine to support Unified Mem-
ory for discrete CPU-GPU systems. In CUDA 8.0 [19],
cudaMallocManaged allows programs to allocate data
that can be accessed by both host code and kernel using
a single shared pointer. The illusion of Unified Memory
is realized by on-demand allocation and fault-driven data
transfer. This improves programmablity.

In the “copy then execute” model, the host program en-
sures that data is physically available in the device memory
before kernel starts executing. Warps are stalled on near-
faults which occurs only upon L2 cache misses. The mas-
sive thread-level parallelism (TLP) hides the local memory
access latency and guarantees high throughput. However, in
Unified Memory, a new type of faults, which we will refer
to as far-faults [29], can occur when data is not physically
present in the device local memory. On-demand allocation
and page migration is triggered by these far-faults. As a
result, a far-fault is much costlier than a near-fault. The
overhead of a far-fault consists of two major components: a
far-fault handling latency (typically 45us in Pascal GPUs)
to walk and manage page table and the data migration
latency over PCl-e interconnect. The data migration and
kernel execution is serialized.

B. Tree-based Prefetcher

In Unified Memory, massive TLP is not sufficient to
mask memory access latency as the offending warps stall
for the costlier far-faults. The total kernel execution time
increases dramatically and closely resembles the serialized
data migration and kernel execution time of the “copy then
execute” model. To ameliorate this situation, CUDA 8.0
introduced cudaMemPrefetchAsync which allows pro-
grammers to overlap the kernel execution with asynchronous
parallel data migration. However, the onus of deciding what
and when to prefetch still lies on the programmers. To
address this challenge, prefetchers have been proposed [29]
and shown to provide dramatic performance improvement
over replayable far-fault based page migration. Agarwal et
al [1] proposed prefetching neighbors of touched pages to
reduce the overhead of shared TLB shootdown.
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Ganguly et al [13] uncovered the semantics of a “tree-
based neighborhood prefetcher” implemented by CUDA
runtime. They show that this prefetcher provides the best
performance compared to other prefetchers [1], [29] pro-
posed earlier and is key to the success of Unified Mem-
ory. We verified the mechanism of this prefetcher by
running a set of published micro-benchmarks [11] on
GeForceGTX 1080 ti [23]. We also confirmed the
understandings by studying the MIT-licensed opensource
nvidia-uvm submodule. The semantics of this tree-based
prefetcher is described below.

Upon allocating data with cudaMallocManaged, the
user-specified size is first rounded up to the next 2¢ + 64K B.
Then, the allocated size is logically divided into 20 B large
pages plus a fraction of 2M B. For example, from a user
specified size of 4M B + 168K B, three logical chunks are
created- two chunks each of 2M B and one of 256 K B. Then
each of these chunks are further divided into 64K B basic
blocks, which is the unit of prefetching, to create three full-
binary trees where leaf-levels hold 64K B basic blocks.

On every first-touch to a page, a 64K B basic block at
leaf level is identified for migration. As the leaf-levels are
populated by on-demand allocation and data migration, the
occupancy levels in the tree is updated starting from the
leaf to the root level. At any point, if runtime identifies that
occupancy of any non-leaf level node is strictly more than
50%, a prefetch decision is made and pushed to the leaf
levels to balance the occupancy between two children of the
node. In this process, one or many empty leaf node(s) of
64K B basic block are identified for prefetching. We refer
the readers to the work [13] for detailed heuristic of this
tree-based prefetcher.

Typical GPGPU workloads are massively parallel
and show spatio-temporal locality. Thus, the tree-based
prefetcher, upon limiting its prefetch decision within 2M B,
provides spatio-temporal locality within large pages. More-
over, it results in allocation of contiguous physical memory
and thus helps reduce bypassing nested page table walk.
Tree-based prefetcher trades in the spectrum of two extrem-
ities: 4K B small page and 2M B large page. It adapts to
the current state of the tree and opportunistically decides on
the prefetch size ranging from 64K B to 1M B instead of a
fixed granularity.

C. Page Replacement Policy

One of the major benefits of Unified Memory is that
programmers do not need to worry about the size of working
set and the available device memory space. When the
working set of the GPU applications does not fit in the device
memory, older pages are automatically evicted to make
room for newer page migration. NVIDIA GPUs implement
Least Recently Used (LRU) based page replacement policy.
As the pages are migrated in, they are placed in a queue
based on the migration timestamp. After migration if a
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page is accessed, then its position is updated based on
the current access timestamp. Newly accessed pages are
moved to the end of the queue and thus the oldest accessed
(/migrated) page will be evicted upon oversubscription. This
is how LRU page replacement policy is realized in NVIDIA
GPUs. The page replacement works at the strict granularity
of 2M B large page. A 2M B large page is selected for
eviction only when it is fully populated and not currently
addressed by scheduled warps. Evicting 2M B ensures that
the semantics of the tree-based prefetcher is not violated.
Hence, the prefetcher remains in action even after device
memory oversubscription [13].

III. CHALLENGES WITH IRREGULAR APPLICATIONS
UNDER OVERSUBSCRIPTION

In this section, we demonstrate the challenges with mem-
ory oversubscription and how a prefetcher exacerbates the
problem. Further, we characterize GPGPU workloads ana-
lyzing their memory access pattern to motivate our work.
Lastly, we detail the state of the art GPU programming
practices like zero-copy memory access and access counter
based delayed migration and highlight limitations with these
approaches.

A. Oversubscription Overhead

While the tree-based prefetcher improves performance by
reducing the number of far-faults and provides higher pro-
grammability, aggressive prefetching under memory over-
subscription proves to be counter productive. A prefetcher
prefetches pages with spatio-temporal locality with the an-
ticipation that these pages will be consumed by the threads
in the immediate future. However, aggressive prefetching
under memory constraint can cause displacement of heavily
referenced pages. As a result, GPGPU workloads suffer from
dramatic performance degradation.
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Figure 1: Sensitivity of workloads to the percentage of
memory oversubscription (performed on real hardware).

Figure 1 shows the performance degradation of GPGPU
workloads with varied percentage of memory oversubscrip-
tion !. The results are obtained by running the workloads

Ithese workloads are described in Section V
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on GeForceGTX 1080 ti [23] (not on simulated en-
vironment). To emulate memory oversubscription, working
sets of the workloads are not scaled, rather the total free
space is controlled by allocating dummy cudaMalloced
variables because cudaMalloced allocations are pinned
and not selected for eviction.

Further analysis by runtime profiling shows that fault-
based migration under oversubscription waits for long la-
tency write backs in case of regular applications. On the
other hand, the oversubscription overhead in irregular appli-
cations is due to excessive page thrashing which is further
exacerbated by the prefetcher. Irregular applications show
order of magnitude performance degradation.

B. Workload Characterization

An effective memory management strategy to deal with
device memory oversubscription requires thorough under-
standing of the memory access pattern of the workloads.
To this end, we analyze the memory access pattern of
various GPGPU workloads to characterize their respective
behaviour. We find that workloads can be broadly cate-
gorized into: 1) regular with dense, sequential, repetitive
memory access and 2) irregular with sparse, seldom access.

Firstly, we visualize the distribution of page access fre-
quency of different data structures over the entire execution
period of two benchmarks, £dtd and sssp, in Figure 2.
We characterize memory pages based on the type of access
- read only, and both read and in-place write.

Figure 2a shows that in £dtd most of the pages in the
allocations are accessed at the same frequency over the entire
execution time. A very few pages equally spaced over the
allocation boundary are accessed a lot more than the rest of
the pages. On the other hand, Figure 2b shows an entirely
different characteristics for sssp. We can see that few data-
structures are more heavily accessed than the others leading
to a cluster of hot and cold pages over the entire memory
set. Moreover, the read-only data-structures are cold and
the pages in hot data-structures are both read from and
written to. This shows that for irregular applications a small
fraction of memory footprint corresponds to the higher share
of bandwidth.

Figure 3a, and 3b show the memory access pattern of
fdtd in iterations 2, and 4 respectively. Horizontal axis
represents time in cycles and primary vertical axis shows
the page numbers accessed at a given cycle. We can see
that the memory access pattern is fairly constant over
two different iterations. Moreover, in every iteration, each
allocated data structure is accessed linearly. This explains
the access frequency distribution of fdtd in Figure 2a.
We characterize fdtd as a regular application. Regular
applications typically show dense, sequential access repeated
over multiple iterations. backprop, hotspot, and srad
are other examples of GPU benchmarks that can also be
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Figure 2: Visualizing page access distribution detailing type
of access and total number of accesses per page per managed
allocation for fdtd and sssp.

categorized as regular applications as they exhibit similar
memory access pattern [9].

On the other hand, Figure 3c, and 3d show the memory
access pattern of sssp in iterations 3, and 5 respectively. We
can see that kernell exhibits sparse memory access over
different data structures and the memory pages accessed over
different iterations varies drastically in virtual address space.
However, kernel?2 shows sequential and dense access over
two data structures in every iteration. This justifies the
cluster of hot and cold data structures in sssp as shown
in Figure 2b. Hence, we characterize sssp as an irregular
applications. In general, irregular applications exhibit dense
sequential access on hot data structures and sparse, random
access on cold data structures. bfs, nw [9], ra [27] are
other benchmarks that fall under the same category.

C. Remote Zero-copy Access and Delayed Migration

Unified Memory offers a “single-pointer-to-data” model.
Both host and device see a unified view of virtual address
space. At any given time, only one physical copy of the
data is maintained either on the host or the device memory.
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Figure 3: Visualizing page access patterns of a regular (fdtd) and an irregular (sssp) application over two iterations. (a), and
(b) show access pattern of fdtd in iterations 2, and 4 respectively. (c), and (d) show access pattern of sssp in iterations 3,

and 5 respectively.

Typically, the data is initialized in the host memory. On every
first access to a page by the device, the corresponding page
table entry in the host is invalidated and data is migrated to
the device memory and a new entry is created in the device
page table. On the contrary, with zero-copy allocations the
physical allocation is hard-pinned to the host memory. This
means pages are never copied from host to device mem-
ory. Rather the device accesses data remotely over cache-
coherent interconnect. cudaHostRegister API allows
malloced allocation to be pinned to the host memory and
the kernels are launched with device pointer derived using
cudaHostGetDevicePointer APIL Remote zero-copy
access has lower latency than the classic Direct Memory Ac-
cess (DMA), but also suffers from lower bandwidth of PCle
interconnect. This is why zero-copy access is introduced for
applications with seldom and sparse access to very large data
sets. OpenCL [3], [5] also provides support for allocating
host pinned memory using CL_MEM_ALLOC_HOST_PTR.

CUDA 9.0 offers
to the Unified
usage  pattern.
allows the

Following the same concept,
the ability to provide wuser hints
Memory  subsystem  about the

cudaMemAdviseSetAccessedBy flag
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device to establish direct mapping to the host memory.
Further, cudaMemAdviseSetPreferredLocation
allows to specify the preferred location of a memory
allocation to be set to the host memory. However, the
pages in the host memory are soft-pinned because based on
runtime heuristics pages can be migrated to the local from
the far memory.

NVIDIA Volta GPUs [26] and IBM Power9 [15] intro-
duced a new hardware based page-level access counter. If an
allocation is advised to be soft-pinned to the host memory,
then the memory is not copied directly at the first-touch by
the device. Rather, the migration from the preferred location
of host memory to the device memory is delayed based on a
static access counter threshold, ¢;. If the page is accessed to
read data for a certain number of times crossing the value of
ts configured in the driver, the data is copied to the device
memory. On the other hand, on write access, the page is
invalidated in the host page table and exclusively copied to
the device memory irrespective of the access frequency [25].

Irregular applications with sparse memory access can
highly benefit from both remote zero-copy access and ac-
cess counter based delayed migration. As in Unified Mem-
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ory, fault-based migration triggers additional prefetching of
neighbor pages, under strict memory budget it can exacer-
bate the situation causing crippling impact on performance.
Delayed migration or no-copy can improve performance for
irregular applications by reducing the number of page thrash-
ing. However, for regular applications with dense, sequential
access zero-copy is a bad option. Although the remote zero-
copy model offers low latency of access, migrating data in
bulk to the local memory and then accessing it enjoys the
benefits of bandwidth optimized local network. Moreover,
larger migration using prefetcher improves PCI-e bandwidth
utilization and reduces the number of far-faults in general.
Similarly, having a static access counter based threshold
for delayed migration incurs additional overhead of remote
access because for dense sequential access, the data is
eventually migrated to the local memory upon crossing the
threshold.

IV. DYNAMIC ACCESS-COUNTER THRESHOLD BASED
DELAYED DATA MIGRATION

We motivate our work based on the following observa-
tions: @ a higher percentage of PCIe bandwidth is con-
sumed by a small percentage of the total memory pages, @
migrating pages of cold data structures causes eviction of
pages of hot data structures for irregular applications, €
data migrations due to page thrashing over low bandwidth
PCle contribute to memory oversubscription overhead, @
current state-of-the-art solutions are not satisfactory to all
workloads as zero-copy access and delayed migration can
hurt performance of regular applications although proven to
be useful for irregular workloads, and thus @ an effective
solution to address device memory oversubscription must
rely on user-hints based on extensive recognition of memory
usage and access pattern.

In this section, we propose an adaptive runtime heuristic
that is programmer-agnostic as it requires no advise to the
memory subsystem from the application developer. Further,
we leverage the new hardware features of page-level access
counters to build our solution. Thus, it demands no hardware
modification and is solely based on pragmatic modification
to GPU driver.

Dynamic Access Counter Threshold. In current delayed
migration solutions, pages are always migrated only after
crossing a static access counter threshold. This means regu-
lar applications with dense memory access ends up incurring
the overhead of remote memory access before ultimately mi-
grating the pages to the local memory. Moreover, when there
is no memory constraint, it is always beneficial to migrate
the data to the device memory and access it locally. This is
because the tree-based prefetcher can considerably improve
PCI-e bandwidth utilization and in turn reduce the number
of far-faults. Also, local memory is bandwidth optimized and
thus guarantees better performance than fragmented remote
access.
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So, an effective solution should be able to decide how
to eliminate the overhead of remote access for no memory
oversubscription and regular applications in general. We
propose a dynamic threshold for delayed migration. The
heuristic of our proposed solution is driven by the following
equation:

o

where ¢, = Static access counter threshold,

tox Num. of allocated pages
s Total num. of pages

ts*x (r—+1)*p,

+ 1, if no oversubscription

otherwise

ey

r = Number of round trips or number of times evicted,

p = Multiplicative Migration Penalty

The proposed dynamic threshold, ¢4, grows adaptively in
response to the size of free space in the device memory start-
ing from 1 to the driver configured static threshold. Let us
consider the static threshold, ¢, configured in the driver as 8.
If currently less than 12.5% of device memory is allocated,
then the dynamic threshold is derived as 1 from Equation 1.
This means every first touch will cause page migration. Sim-
ilarly, the dynamic access counter threshold will be same as
the static threshold of 8 just before reaching the full capacity
of device memory and 9 upon oversubscription. The goal of
the framework, here, is to tame down the aggression of the
prefetcher by delaying the page migration as the memory
starts filling up to its maximum capacity. Use cases involving
no memory oversubscription and regular applications benefit
from this mechanism compared to delayed migration based
on static threshold.

Equation 1 also addresses the situations involving memory
oversubscription. The framework is driven by the intuition
that under memory oversubscription cold pages should be
soft-pinned to the host memory and only hot pages should
be copied to device memory. This is because hot pages can
benefit from bandwidth optimized local memory access and
the sparse and seldom access to cold pages can benefit from
low latency of remote access without contributing to the
strict local memory budget. Equation 1 also introduces a
multiplicative penalty for migration under oversubscription,
p configurable as a module parameter to the GPU driver.
With p 2 and t; = 8, the pages are migrated after
16" access after oversubscription. This helps reduce the
amount of page thrashing. Moreover, the framework keeps
count of the number of round trips or the number of time
a certain chunk of memory is evicted which is denoted as
r in Equation 1. For example, if a given chunk of memory
is evicted twice, then the dynamic threshold of migration
for that memory chunk will be derived as 48. The intuition
behind this heuristic is that the more a page is thrashed,
the harder it should be pinned to the host memory. Thus,
the heuristic controls hardness (/softness) of page pinning
and helps achieve the concept of host-pinned zero-copy
allocation for highly thrashed memory pages.
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Access Counter Based Page Replacement. The frame-
work also extends page replacement strategy leveraging the
same access counters. As detailed in Section II-C, a naive
LRU page replacement cannot differentiate a set of cold
pages from a set of hot pages. As a result, it may end
up evicting highly referenced hot pages in the process of
migrating a cold page and thus defeats the objective of hard-
pinning hot pages to the device memory and cold pages to
the host memory. We use the access counters to sort the
list of 2M B large pages in LRU list such that cold pages
are prioritized over hot pages for eviction in irregular appli-
cations. Thus, we incorporate a simplified Least Frequently
Used (LFU) scheme in the framework. However, with linear
sequential access in regular applications, where pages are
accessed with almost the same frequency, our framework
automatically falls back to the LRU policy. We also prioritize
read-only pages as eviction candidates. This is because on
write access hot pages are migrated exclusively to the device
memory irrespective of their access counter. So, we would
prefer to keep the write pages in local memory as much as
possible.

Access Counter Granularity. Access counters are main-
tained at the page granularity for Volta GPUs [26]. However,
as explained in Section II-B, the tree-based prefetcher in
nvidia-uvm module migrates data in multiple of 64K B
basic blocks based on the page faults relayed from GMMU.
This leads us to the optimization of maintaining access
counters at 64K B basic block level instead of 4K B page
granularity. This not only reduces the memory overhead of
maintaining access counters, it is also functionally more
meaningful as the prefetch granularity is 64K B.

Access Counter Maintenance. In our implementation,
we use 32bits access registers. Hardware counters are up-
dated by GMMU on every page access during TLB look up.
Whereas, runtime reads the values of hardware access coun-
ters and maintains them as part of driver (/system software)
memory. As runtime is responsible to update GPU’s page
table, they are read, updated, and consulted on every PCle
migration. The lower 27bits are used for access counters and
most significant 5bits are kept to keep track of round trip
time or 7. This provides the opportunity to maintain a large
value for access frequency and to realize a historic counter.
The access counters in Volta GPUs only keep track of remote
accesses. In comparison, our framework maintains count
of both device-local and remote accesses. This provides a
historic view of accesses and helps us differentiate hot pages
from cold pages over larger iterations. When the counter
for one of the basic block reaches the maximum value (for
either the round trip counters or the access counters), the
framework halves the corresponding counters of all the basic
blocks instead of resetting them entirely. This helps maintain
the relative view of hotness over multiple allocations.
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V. EXPERIMENTAL METHODOLOGY

Simulation Framework. Ganguly et al [13] extended
GPGPU-Sim 3.x [6] to provide functional and tim-
ing simulation support for Unified Memory such that
benchmarks written using cudaMallocManaged, and
cudaDeviceSynchronize APIs can be simulated. They
incorporated the control flow to resolve far-faults as de-
scribed by Zheng et al [29]. This enables modelling on-
demand memory allocation and fault-driven data migration.
They also incorporated several prefetch mechanisms [29]
including NVIDIA driver’s tree-based prefetcher and dif-
ferent page replacement algorithms including default 2M B
LRU scheme. The timing simulation of the setup is validated
against a hardware platform with GeForceGTX 1080 Ti
and PCI-e 3.0 16x interconnect.

We extended GPGPU-Sim UVM Smart to add support
for direct access to host-pinned memory over PCle inter-
connect and the LFU eviction policy. We also incorporated
the access counter based automatic categorization of data
structures as cold and hot, and adaptive dynamic threshold
based page migration scheme as described in Section IV.
Table I shows the primary configuration parameters of the
extended simulator. The items in bold face shows the default
value of the configurations items. The extended simulator is
publicly available [11] for verification and further research
collaboration.

U Tat,

GPU Architecture
GPU Cores

Shader Core Config

GPGPU-Sim UVM Smart

NVIDIA GeForceGTX 1080Ti Pascal-like
28 SMs, 128 cores each @ 1481 MHz
Max. 32 CTA and 64 warps per SM,

32 threads per warp, GTO scheduler

Memory System

Page Size 4KB
Page Table Walk Latency 100 core cycle
PCI-e 3.0 16x,

CPU-GPU Interconnect 8 GTPS per channel per direction,
100 GPU core cycles latency
100 GPU core cycles [2]

200 GPU core cycles

DRAM Latency
Remote Zero-copy Access Latency

Eviction Granularity 2 MB, 64KB
Page Replacement Policy LRU, LFU
Far-fault Handling Latency 45us
Hardware Prefetcher Tree-based
Static Access Counter Threshold 8, 16, 32

2,4, 8, 1048576

Multiplicative Migration Penalty

Table I: Configuration parameters of the simulated system.

Application Suite. Along with the simulation frame-
work, GPGPU-Sim UVM Smart [11] also provides a set
of benchmarks from Rodinia [9], Lonestar [7], and Poly-
Bench [14] benchmark suites. These are the only publicly
available benchmarks that are implemented using CUDA
Unified Memory APIs. In these benchmarks data struc-
tures are allocated using cudaMallocManaged instead
of cudaMalloc followed by cudaMemcpy API calls.

As discussed in Section I1I-B, we divide these benchmarks
into two categories: regular (backprop, £dtd, hotspot,
srad), and irregular (bfs, nw, ra, sssp) access pattern.
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To simulate oversubscription, working sets of the bench-
marks are not scaled, rather is controlled by a configuration
parameter that specifies the available free space in the device
memory in the simulation setup.

VI. EVALUATION

In this section, we evaluate the effectiveness of the frame-
work proposed in Section IV. Henceforth, we will alternately
refer to the dynamic access-counter threshold based delayed
migration scheme as Adaptive. We compare our scheme
with @ the state of the art baseline where remote access
is not enabled and data is migrated at first touch, alternately
referred it as Baseline or Disabled, @) the static access
counter based threshold proposed in Volta GPUs termed
as Always, and € a static access counter based delayed
migration scheme enabled only after oversubscription re-
ferred as Oversub. Difference between Always and Oversub
is that Always delays migration from the start irrespective
of memory oversubscription.

For Baseline, LRU page replacement is active whereas for
the other three scheme, our framework uses the proposed
access counter based simplified LFU policy.

Note that the following experiments only deal with 125%
of device memory oversubscription. Unlike, CPU virtual
memory, current GPUs are not capable of handling a higher
percentage of memory oversubscriptions. NVIDIA recom-
mends to use more than one GPU to distribute workload if
the GPU memory oversubscription is more than 125%.

A. Sensitivity to Static Migration Threshold

The success of access counter based delayed migration
relies on finding a suitable value for the static access counter
threshold, ¢,. The objective of the framework is not to hurt
regular applications in general and all applications under
no oversubscription. So, we run experiments to find out
the sensitivity of ¢5 on the kernel execution time. Figure 4
shows the result. In this experiment, we consider the Always
scheme as it is the state of the art for delayed migration.

u ts=8 (Always) mts=16 (Always) ts=32 (Always)
<
115 &
= Sy
% =
211 o8 —
s s | &2 R s S
1 = = 3 ShN 34
13 IS = IS
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] 1 S N %
4 R )
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E ]2 N
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% oo ML | HAD | RNE | RN [ Wod [ HO0 | 0D | 1)
backprop fdtd |hotspot| srad bfs nw ra sssp
Regular Irregular

Figure 4: Sensitivity of workloads to the static access counter
threshold for delayed migration.

As we vary t, from 8 to 32, we see that regular appli-
cations show almost no sensitivity to the static threshold.
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This is because for regular applications the number of
per basic block accesses generated by load/store unit is
quite high and they always exceeds the threshold. Thus, for
regular application, no remote access is performed. How-
ever, irregular applications shows sensitivity to ¢5. While
performance of nw and sssp degrades with higher value of
ts, bfs and ra show improvement for ¢{; = 16 compared
to t; = 8. This behaviour is not unpredictable and depends
on the input of the workload and the sparsity of memory
access. We recommend a justifiably small number for ¢,
such that it closely resemble to first-touch migration under
no oversubscription. However, an extremely small value for
ts like 1 or 2 is also not recommended as it will have
negative impact on performance for irregular applications
under oversubscription. Experiments in the later subsections
use t; = 8. We will present experimental results showing
the sensitivity p on performance in Section VI-D.

B. The Case of No Oversubscription

In this section, we compare the proposed Adaptive scheme
against the Baseline and the Always scheme for delayed
migration under no oversubscription. Figure 5 shows the
normalized runtime of different workloads using the above
three schemes. Oversub is not applicable for this experiment
as it enables threshold based delayed migration only after
oversubscription.

m Baseline (Disabled) = Always = Adaptive §
)
115 < E
£ 11 . < S R & -
3 = N g 3 =
_:g 1.05 ES = S = © =
s 1 GF 8 T 3 Q
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8 0.95 &
509
E o
é 0.85 §
E 0.8 e
<= 0.75 I
=
g 07
ackprop fdtd-2d | hotspot | srad bfs nw ra SSSp
Regular Irregular

Figure 5: Comparing the impact of dynamic access counter
based adaptive scheme on execution time against the base-
line case of first-touch migration and static access counter
threshold based delayed migration scheme under no memory
oversubscription.

Figure 5 shows for both regular and irregular appli-
cations, the Adaptive scheme produces results equivalent
to the Baseline or Disabled scheme. This means that the
dynamic threshold scheme falls back to first-touch migration
based on the access frequency and memory availability.
While, for regular applications, Always scheme shows no
major performance difference, for irregular applications,
it introduces unpredictability. bfs and ra benefit from
Always scheme, whereas nw and sssp show performance
degradation. This is because even for sparse memory access,
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if there is no memory constraint, it is always better to copy
the data to device memory using prefetcher and then ben-
efit from bandwidth optimized local access. Note, that the
objective of the framework under no oversubscription is not
to outperform Baseline first touch-based migration, rather to
show more consistent and predictbale behavior compared to
Always scheme of static threshold-based delayed migration.

C. The Case of Oversubscription

In this experiment, we show the effectiveness of the
proposed Adaptive policy by comparing runtime of different
workloads against Disabled, Always, and Oversub policies.
For the Adaptive scheme p = 8 is used and t; = 8 is set for
all delayed migration policies.
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Figure 6: Comparing the impact of dynamic access counter
based adaptive scheme on execution time against the base-
line case of first-touch migration and static access counter
threshold based delayed migration schemes.

Figure 6 shows that Adaptive scheme does not impact
performance of regular applications. On the other hand im-
proves the performance of irregular applications by 22% to
78%. Moreover, it also yields better performance compared
to static access counter threshold based schemes.

R
o
b
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Figure 7: Comparing the impact of dynamic access counter
based adaptive scheme on memory thrashing against the
baseline case of first-touch migration and static access
counter threshold based delayed migration schemes.
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To reason about the performance improvement by the
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Adaptive scheme demonstrated in Figure 6, we plot the
number of pages being thrashed for different schemes in
Figure 7. We see that the improvement in kernel execution
time is directly a factor of reduction in memory thrashing for
irregular applications. For regular applications, the number
of pages being thrashed using Adaptive scheme is same as
Baseline or Disabled. Note that for backprop there is no
thrashing at all. This is because it scans through the entire
allocation sequentially without any data reuse over iterations.
On the other hand, ra shows completely random access and
no data reuse which makes it a perfect candidate for zero-
copy host-pinned memory access.

D. Sensitivity to Multiplicative Penalty

In this experiment, we study the effect of the multiplica-
tive penalty, p on the kernel execution time. The intuition is
that higher values of p dictates a larger dynamic threshold
for delayed migration and thus achieves harder pinning of

pages.
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Figure 8: Sensitivity of workloads
migration penalty.

to the multiplicative

Figure 8 shows that regular application doesn’t show any
performance variation when the value of p is varied from
2 to 8. Whereas, irregular applications shows strictly linear
performance improvement with larger p. The observation is
consistent with p = 16 and p = 32 (not plotted due to
limited space). This is how our adaptive scheme navigates
between bandwidth optimized local access and low latency
remote access.

A question may arise as to why not having an unreason-
ably higher value of p. Clearly, the dynamic threshold, ¢4
is dictated by p. Hence, for relatively large p, the values of
ts and r would not have an appreciable effect on t;. As
a result, an unreasonably large p will blindly keep pages
pinned to the host memory without caring for the access
threshold or the number of round trips (evictions). We see
that £ = 1048576 indeed has a huge performance benefits
on nw, ra and sssp by eliminating thrashing entirely.
However, this behaviour is unpredictable and solely depends
on what pages get pinned to the host memory. For example,
bfs shows 2% performance degradation. Moreover, regular
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applications suffer a great deal of performance loss for a
large p. For example, kernel execution time for srad almost
doubles up. This is because for dense, sequential access
it is always better to migrate the memory to the device
and access locally. This also proves that our framework is
tunable to achieve remote zero-copy access by configuring
p or multiplicative penalty. Further, our dynamic threshold
based heuristic navigates between zero-copy remote access
and first touch migration adaptively.

Note that the sensitivity studies in Section VI-A and
VI-D are not performed to find the optimal values for ¢,
and p, rather to show the effectiveness of the heuristic for
reasonable values for these two parameters. Moreover, the
objective of the framework is not to automate the process
of finding values for ¢; and p as these are configurable as
kernel module parameters to NVIDIA driver.

VII. RELATED WORK

Unified Virtual Memory (UVM) support in modern dis-
crete CPU-GPU systems [4], [20] has overcome many
limitations present in the traditional “copy then execute”
programming model [21], [22] by automating GPU memory
management. Agarwal et al [1] proposed aggressive first-
touch migration and prefetching neighboring pages. Zheng
et al [29] are the first one to study different user-directed
and user-agnostic prefetchers to overlap data migration and
kernel execution to hide the overhead of handling far-faults.
Ganguly et al [13] uncovered the mechanism of the tree-
based prefetcher implemented in NVIDIA GPU dirver and
demonstrated that compared to other prefetchers it provides
the maximum performance improvement.

Burtscher et al [7] introduced a new benchmark suites
called Lonestar consisting of a set of irregular applica-
tions. They performed a quantitative study to categorize
these workloads based on their memory and control flow
irregularity and input dependence. Pannotia [8] focused on
evaluating irregular graph applications on AMD platform.
Spatter [17] is a CUDA benchmark suite to characterize
scatter, gather, and related sparse access patterns. Vesely et
al [28] showed that divergent memory accesses in irregular
application can cause order of magnitude slow down from
address translation overhead alone. Leo [12] is a profiler
driven optimization framework for irregular GPU applica-
tions.

Oversubscription overhead for data-intensive general
purpose applications have become a first order perfor-
mance bottleneck. Data-parallel workloads are partitioned in
VAST [18] based on available GPU physical memory. In the
contrary, GPUswap [16] transparently relocates data from
the GPU to system RAM but make it accessible to the device
under oversubscription. Agarwal et al [2] have proposed a
compiler-based profiling mechanism to make programmers
aware of the specific memory access pattern. Based on this
knowledge, programmers annotate data structures to provide
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page placement hints to the the memory subsystem. All these
techniques either are plagued by huge performance overhead
or needs code modification. Ganguly et al [13] proposed
a tree-based page replacement policy inspired by the tree-
based prefetcher in CUDA driver to deal with memory
oversubscription. However, they failed to address the specific
case for irregular applications with sparse, seldom access to
large oversubscribed datasets.

VIII. CONCLUSION

In this paper, we introduce a programmer-agnostic frame-
work to deal with memory oversubscription overhead
stemming from page thrashing in irregular, data-intensive
GPU applications. Our scheme leverages the hardware ac-
cess counters present in new generation GPUs. Hence, it
makes the solution simple and pragmatic with no need
for any programmer-assistance or new hardware enhance-
ments. Based on the memory availability and access fre-
quency, our heuristic adaptively navigates between first-
touch page migration and remote zero-copy access. The
proposed framework employs a dynamic access counter
threshold to delay page migration instead of relying on a
static threshold for accesses. Based on access frequency,
the proposed scheme achieves soft-pinning of hot pages
to the device local memory while remotely accessing cold
pages from host memory. As a result, it balances between
low latency remote access and high bandwidth local access
to reduce thrashing significantly. Experimental results show
that while the proposed framework improves performance
for irregular applications under tight memory budget, it
has no negative impact on performance in cases of no
memory oversubscription or for regular applications. As part
of the future work, we propose to study the usability of
dynamic threshold based heuristic in multi-GPU clusters
for collaborative applications as a mechanism to enforce
memory throttling and reduce thrashing.
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