
Adaptive Page Migration for Irregular Data-intensive Applications under GPU
Memory Oversubscription

Debashis Ganguly

Department of Computer Science
University of Pittsburgh

debashis@cs.pitt.edu

Jun Yang

Electrical and Computer Engineering
University of Pittsburgh

juy9@pitt.edu

Ziyu Zhang

Department of Computer Science
University of Pittsburgh

ziz41@pitt.edu

Rami Melhem

Department of Computer Science
University of Pittsburgh

melhem@cs.pitt.edu

Abstract—Unified Memory in heterogeneous systems serves
a wide range of applications. However, limited capacity of the
device memory becomes a first order performance bottleneck
for data-intensive general-purpose applications with increas-
ing working sets. The performance overhead under memory
oversubscription depends on the memory access pattern of the
corresponding workload. While a regular application with se-
quential, dense memory access suffers from long latency write-
backs, performance of a irregular application with sparse,
seldom access to large data-sets degrades due to page thrashing.
Although smart spatio-temporal prefetching and large page
eviction yield good performance in general, remote zero-copy
access to host-pinned memory proves to be beneficial for irreg-
ular, data-intensive applications. Further, new generation GPUs
introduced hardware access counters to delay page migration
and reduce memory thrashing. However, the responsibility of
deciding what strategy is the best fit for a given application
relies heavily on the programmer based on thorough under-
standing of the memory access pattern through intrusive profil-
ing. In this work, we propose a programmer-agnostic runtime
that leverages the hardware access counters to automatically
categorize memory allocations based on the access pattern and
frequency. The proposed heuristic adaptively navigates between
remote zero-copy access to host-pinned memory and first-touch
page migration based on the trade-off between low latency
remote access and high-bandwidth local access. We show that
although designed to address memory oversubscription, our
scheme has no impact on performance when working sets fit
in the device-local memory. Experimental results show that our
scheme provides performance improvement of 22% to 78% for
irregular applications under 125% memory oversubscription
compared to the state of the art. At the same time, regular
applications are not impacted by the framework.

Keywords-page migration, pinning, memory management,
CPU-GPU, Unified Memory

I. INTRODUCTION

Energy efficiency and massive data parallel SIMD nature

of GPU architecture have led to wider adoption of GPUs

by general purpose applications [10], [24]. Traditionally,

these regular applications operate on highly-structured large

vectors in a streaming fashion. However, in recent years,

there has been an increasing trend to use GPUs for ap-

plications with irregular memory access patterns, such as

data mining, social network analysis and bioinformatics.

These algorithms operate on large, irregular data structures

like trees, and graphs and are highly input dependent. They

exhibit statically unpredictable, memory access irregularity,

and consequently low spatial locality.

Because of their dense, sequential memory access, regular
data-parallel applications benefit from prefetchers [13], [25],

[29]. A prefetcher prefetches data in advance based on

spatio-temporal locality of access. In the process, it reduces

the number of faults and further improve PCI-e bandwidth.

However, for irregular applications, aggressive prefetching

can be counter-productive under memory oversubscription.

The situation is aggravated further as heavily referenced

pages are replaced using LRU without differentiating be-

tween cold and hot data structures.

Usage of host-pinned “Zero-copy” memory buffers is

suggested in both CUDA [19] and OpenCL [3], [5] for

irregular applications with sparse, rare access to large data.

Using remote zero-copy has two advantages: (i) as no

data is copied to the device memory, it prevents memory

oversubscription, and (ii) sparse accesses benefit from low

latency direct access. In newer generation GPUs [26], page-

level access counters are used to delay migration of pages

from preferred location to the local memory. Avoiding first

touch migration helps reduce page thrashing for irregular

applications. However, there is a drawback with remote

“Zero-copy” access and delayed migration. If GPU reads

or writes to host pinned memory directly for multiple times,

then kernel (GPU code) execution will slow down. Particu-

larly, regular applications with dense, sequential memory

access will no longer benefit from bandwidth-optimized

local access that would result after migrating the data from

host memory. Consequently, developers resort to extensive

451

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00054

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

memory profiling before specifying any hint to the memory

subsystem or deciding on a particular allocation type.

Researchers [1], [2] have studied the trade-offs between

lower latency direct memory access to host pinned memory

and bandwidth optimized local memory access in the context

of heterogeneous systems. These works try to split pages

between host and device memory based on the ratio of

host-to-device interconnect bandwidth and local memory

bandwidth to fully utilize the overall system-wide memory

bandwidth. Further, prior work [2] proposed static page

placement strategies, which require compiler support for

profiling and programmer intervention to annotate data struc-

tures. NVIDIA CUDA runtime also supports placement of

memory pages to either host or device memory based on

user-provided hints. If no API annotation is provided, then

CUDA runtime maintains lists of pages thrashed and pinned

indexed by the host or GPU identifier and throttles page

migration and prefetch decision for these pages. Firstly,

maintaining list of pages grouped in blocks of virtual pages

has a considerable implementation and space overhead. Sec-

ondly, page-wise throttling decision eliminates the benefits

of prefetching and eviction in bulk [13].

We provide extensive analysis of memory access pattern

of popular GPU workloads to classify them under regu-
lar and irregular categories. Further analysis reveals that

working sets of irregular applications can often be divided

into cold and hot data structures. While cold allocations are

accessed seldom and sparsely, hot data structures have dense

sequential access.

To this end, we propose a dynamic page placement strat-

egy for irregular general purpose applications. Our proposed

framework leverages hardware-based access counters [25]

to identify sparse and dense memory access and differ-

entiate between hot and cold allocations. Over the course

of execution, the framework achieves a balance between

low latency remote access to host-pinned cold allocations

and bandwidth-optimized local access to hot allocations

in irregular applications with oversubscribed working sets.

However, our framework does not affect regular applications

and applications with working sets smaller than the device

memory capacity. Through experimentation with a set of

regular and irregular GPGPU applications, we demonstrate

that the proposed heuristic adaptively navigates the spectrum

between zero-copy remote access and first-touch migration.

The key contribution of this work is leveraging existing sys-

tem support to design such a developer-agnostic framework.

Specifically, the proposed framework is not built on any

new hardware modification and does not require any explicit

user hints that are based on intrusive profiling of workloads

to provide performance improvement for irregular applica-

tions. Moreover, the proposed framework builds on generic

concepts like zero-copy memory and delayed migration and

thus can be adopted by any GPU irrespective of the vendor-

specific architecture and runtime.

II. BACKGROUND

This section discusses on-demand paging, the tree-based

prefetcher and the page replacement policy key in re-

alizing Unified Memory for discrete CPU-GPU hetero-

geneous systems. Though the description closely follows

NVIDIA/CUDA terminology, the high-level concepts are

generalizable and vendor-agnostic.

A. On-demand Page Migration and Unified Memory

In the classic “copy then execute” model, data shared

between the CPU and GPU must be allocated in both

memories, and explicitly copied between them by the

host program before and after the kernel launch. NVIDIA

Pascal GPUs [20] have introduced hardware page fault-

ing and Page Migration Engine to support Unified Mem-

ory for discrete CPU-GPU systems. In CUDA 8.0 [19],

cudaMallocManaged allows programs to allocate data

that can be accessed by both host code and kernel using

a single shared pointer. The illusion of Unified Memory

is realized by on-demand allocation and fault-driven data

transfer. This improves programmablity.

In the “copy then execute” model, the host program en-

sures that data is physically available in the device memory

before kernel starts executing. Warps are stalled on near-
faults which occurs only upon L2 cache misses. The mas-

sive thread-level parallelism (TLP) hides the local memory

access latency and guarantees high throughput. However, in

Unified Memory, a new type of faults, which we will refer

to as far-faults [29], can occur when data is not physically

present in the device local memory. On-demand allocation

and page migration is triggered by these far-faults. As a

result, a far-fault is much costlier than a near-fault. The

overhead of a far-fault consists of two major components: a

far-fault handling latency (typically 45μs in Pascal GPUs)

to walk and manage page table and the data migration

latency over PCI-e interconnect. The data migration and

kernel execution is serialized.

B. Tree-based Prefetcher

In Unified Memory, massive TLP is not sufficient to

mask memory access latency as the offending warps stall

for the costlier far-faults. The total kernel execution time

increases dramatically and closely resembles the serialized

data migration and kernel execution time of the “copy then

execute” model. To ameliorate this situation, CUDA 8.0

introduced cudaMemPrefetchAsync which allows pro-

grammers to overlap the kernel execution with asynchronous

parallel data migration. However, the onus of deciding what

and when to prefetch still lies on the programmers. To

address this challenge, prefetchers have been proposed [29]

and shown to provide dramatic performance improvement

over replayable far-fault based page migration. Agarwal et

al [1] proposed prefetching neighbors of touched pages to

reduce the overhead of shared TLB shootdown.

452

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

Ganguly et al [13] uncovered the semantics of a “tree-

based neighborhood prefetcher” implemented by CUDA

runtime. They show that this prefetcher provides the best

performance compared to other prefetchers [1], [29] pro-

posed earlier and is key to the success of Unified Mem-

ory. We verified the mechanism of this prefetcher by

running a set of published micro-benchmarks [11] on

GeForceGTX 1080 ti [23]. We also confirmed the

understandings by studying the MIT-licensed opensource

nvidia-uvm submodule. The semantics of this tree-based

prefetcher is described below.

Upon allocating data with cudaMallocManaged, the

user-specified size is first rounded up to the next 2i ∗64KB.

Then, the allocated size is logically divided into 2MB large

pages plus a fraction of 2MB. For example, from a user

specified size of 4MB + 168KB, three logical chunks are

created- two chunks each of 2MB and one of 256KB. Then

each of these chunks are further divided into 64KB basic

blocks, which is the unit of prefetching, to create three full-

binary trees where leaf-levels hold 64KB basic blocks.

On every first-touch to a page, a 64KB basic block at

leaf level is identified for migration. As the leaf-levels are

populated by on-demand allocation and data migration, the

occupancy levels in the tree is updated starting from the

leaf to the root level. At any point, if runtime identifies that

occupancy of any non-leaf level node is strictly more than

50%, a prefetch decision is made and pushed to the leaf

levels to balance the occupancy between two children of the

node. In this process, one or many empty leaf node(s) of

64KB basic block are identified for prefetching. We refer

the readers to the work [13] for detailed heuristic of this

tree-based prefetcher.

Typical GPGPU workloads are massively parallel

and show spatio-temporal locality. Thus, the tree-based

prefetcher, upon limiting its prefetch decision within 2MB,

provides spatio-temporal locality within large pages. More-

over, it results in allocation of contiguous physical memory

and thus helps reduce bypassing nested page table walk.

Tree-based prefetcher trades in the spectrum of two extrem-

ities: 4KB small page and 2MB large page. It adapts to

the current state of the tree and opportunistically decides on

the prefetch size ranging from 64KB to 1MB instead of a

fixed granularity.

C. Page Replacement Policy

One of the major benefits of Unified Memory is that

programmers do not need to worry about the size of working

set and the available device memory space. When the

working set of the GPU applications does not fit in the device

memory, older pages are automatically evicted to make

room for newer page migration. NVIDIA GPUs implement

Least Recently Used (LRU) based page replacement policy.

As the pages are migrated in, they are placed in a queue

based on the migration timestamp. After migration if a

page is accessed, then its position is updated based on

the current access timestamp. Newly accessed pages are

moved to the end of the queue and thus the oldest accessed

(/migrated) page will be evicted upon oversubscription. This

is how LRU page replacement policy is realized in NVIDIA

GPUs. The page replacement works at the strict granularity

of 2MB large page. A 2MB large page is selected for

eviction only when it is fully populated and not currently

addressed by scheduled warps. Evicting 2MB ensures that

the semantics of the tree-based prefetcher is not violated.

Hence, the prefetcher remains in action even after device

memory oversubscription [13].

III. CHALLENGES WITH IRREGULAR APPLICATIONS

UNDER OVERSUBSCRIPTION

In this section, we demonstrate the challenges with mem-

ory oversubscription and how a prefetcher exacerbates the

problem. Further, we characterize GPGPU workloads ana-

lyzing their memory access pattern to motivate our work.

Lastly, we detail the state of the art GPU programming

practices like zero-copy memory access and access counter

based delayed migration and highlight limitations with these

approaches.

A. Oversubscription Overhead

While the tree-based prefetcher improves performance by

reducing the number of far-faults and provides higher pro-

grammability, aggressive prefetching under memory over-

subscription proves to be counter productive. A prefetcher

prefetches pages with spatio-temporal locality with the an-

ticipation that these pages will be consumed by the threads

in the immediate future. However, aggressive prefetching

under memory constraint can cause displacement of heavily

referenced pages. As a result, GPGPU workloads suffer from

dramatic performance degradation.

1.
02 1.
67

1.
46 2.
00

4.
46

1.
59

15
.2
2

1.
11

1.
32 1.
89

1.
55 2.
11

15
.3
6

9.
84

20
.8
3

1.
48

0

5

10

15

20

25

backprop fdtd-2d hotspot srad bfs nw ra sssp

Regular Irregular

R
un

ti
m

e
(N

or
m

al
iz

ed
 to

 b
as

el
in

e)

No Oversub 125% Oversub 150% Overub

Figure 1: Sensitivity of workloads to the percentage of

memory oversubscription (performed on real hardware).

Figure 1 shows the performance degradation of GPGPU

workloads with varied percentage of memory oversubscrip-

tion 1. The results are obtained by running the workloads

1these workloads are described in Section V

453

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

on GeForceGTX 1080 ti [23] (not on simulated en-
vironment). To emulate memory oversubscription, working

sets of the workloads are not scaled, rather the total free

space is controlled by allocating dummy cudaMalloced

variables because cudaMalloced allocations are pinned

and not selected for eviction.

Further analysis by runtime profiling shows that fault-

based migration under oversubscription waits for long la-

tency write backs in case of regular applications. On the

other hand, the oversubscription overhead in irregular appli-

cations is due to excessive page thrashing which is further

exacerbated by the prefetcher. Irregular applications show

order of magnitude performance degradation.

B. Workload Characterization

An effective memory management strategy to deal with

device memory oversubscription requires thorough under-

standing of the memory access pattern of the workloads.

To this end, we analyze the memory access pattern of

various GPGPU workloads to characterize their respective

behaviour. We find that workloads can be broadly cate-

gorized into: 1) regular with dense, sequential, repetitive

memory access and 2) irregular with sparse, seldom access.

Firstly, we visualize the distribution of page access fre-

quency of different data structures over the entire execution

period of two benchmarks, fdtd and sssp, in Figure 2.

We characterize memory pages based on the type of access

- read only, and both read and in-place write.

Figure 2a shows that in fdtd most of the pages in the

allocations are accessed at the same frequency over the entire

execution time. A very few pages equally spaced over the

allocation boundary are accessed a lot more than the rest of

the pages. On the other hand, Figure 2b shows an entirely

different characteristics for sssp. We can see that few data-

structures are more heavily accessed than the others leading

to a cluster of hot and cold pages over the entire memory

set. Moreover, the read-only data-structures are cold and

the pages in hot data-structures are both read from and

written to. This shows that for irregular applications a small

fraction of memory footprint corresponds to the higher share

of bandwidth.

Figure 3a, and 3b show the memory access pattern of

fdtd in iterations 2, and 4 respectively. Horizontal axis

represents time in cycles and primary vertical axis shows

the page numbers accessed at a given cycle. We can see

that the memory access pattern is fairly constant over

two different iterations. Moreover, in every iteration, each

allocated data structure is accessed linearly. This explains

the access frequency distribution of fdtd in Figure 2a.

We characterize fdtd as a regular application. Regular

applications typically show dense, sequential access repeated

over multiple iterations. backprop, hotspot, and srad
are other examples of GPU benchmarks that can also be

(a) fdtd

(b) sssp

Figure 2: Visualizing page access distribution detailing type

of access and total number of accesses per page per managed

allocation for fdtd and sssp.

categorized as regular applications as they exhibit similar

memory access pattern [9].

On the other hand, Figure 3c, and 3d show the memory

access pattern of sssp in iterations 3, and 5 respectively. We

can see that kernel1 exhibits sparse memory access over

different data structures and the memory pages accessed over

different iterations varies drastically in virtual address space.

However, kernel2 shows sequential and dense access over

two data structures in every iteration. This justifies the

cluster of hot and cold data structures in sssp as shown

in Figure 2b. Hence, we characterize sssp as an irregular

applications. In general, irregular applications exhibit dense

sequential access on hot data structures and sparse, random

access on cold data structures. bfs, nw [9], ra [27] are

other benchmarks that fall under the same category.

C. Remote Zero-copy Access and Delayed Migration

Unified Memory offers a “single-pointer-to-data” model.

Both host and device see a unified view of virtual address

space. At any given time, only one physical copy of the

data is maintained either on the host or the device memory.

454

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

(a) fdtd - Iteration 2 (b) fdtd - Iteration 4

(c) sssp - Iteration 3 (d) sssp - Iteration 5

Figure 3: Visualizing page access patterns of a regular (fdtd) and an irregular (sssp) application over two iterations. (a), and

(b) show access pattern of fdtd in iterations 2, and 4 respectively. (c), and (d) show access pattern of sssp in iterations 3,

and 5 respectively.

Typically, the data is initialized in the host memory. On every

first access to a page by the device, the corresponding page

table entry in the host is invalidated and data is migrated to

the device memory and a new entry is created in the device

page table. On the contrary, with zero-copy allocations the

physical allocation is hard-pinned to the host memory. This

means pages are never copied from host to device mem-

ory. Rather the device accesses data remotely over cache-

coherent interconnect. cudaHostRegister API allows

malloced allocation to be pinned to the host memory and

the kernels are launched with device pointer derived using

cudaHostGetDevicePointer API. Remote zero-copy

access has lower latency than the classic Direct Memory Ac-

cess (DMA), but also suffers from lower bandwidth of PCIe

interconnect. This is why zero-copy access is introduced for

applications with seldom and sparse access to very large data

sets. OpenCL [3], [5] also provides support for allocating

host pinned memory using CL_MEM_ALLOC_HOST_PTR.

Following the same concept, CUDA 9.0 offers

the ability to provide user hints to the Unified

Memory subsystem about the usage pattern.

cudaMemAdviseSetAccessedBy flag allows the

device to establish direct mapping to the host memory.

Further, cudaMemAdviseSetPreferredLocation
allows to specify the preferred location of a memory

allocation to be set to the host memory. However, the

pages in the host memory are soft-pinned because based on

runtime heuristics pages can be migrated to the local from

the far memory.

NVIDIA Volta GPUs [26] and IBM Power9 [15] intro-

duced a new hardware based page-level access counter. If an

allocation is advised to be soft-pinned to the host memory,

then the memory is not copied directly at the first-touch by

the device. Rather, the migration from the preferred location

of host memory to the device memory is delayed based on a

static access counter threshold, ts. If the page is accessed to

read data for a certain number of times crossing the value of

ts configured in the driver, the data is copied to the device

memory. On the other hand, on write access, the page is

invalidated in the host page table and exclusively copied to

the device memory irrespective of the access frequency [25].

Irregular applications with sparse memory access can

highly benefit from both remote zero-copy access and ac-

cess counter based delayed migration. As in Unified Mem-

455

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

ory, fault-based migration triggers additional prefetching of

neighbor pages, under strict memory budget it can exacer-

bate the situation causing crippling impact on performance.

Delayed migration or no-copy can improve performance for

irregular applications by reducing the number of page thrash-

ing. However, for regular applications with dense, sequential

access zero-copy is a bad option. Although the remote zero-

copy model offers low latency of access, migrating data in

bulk to the local memory and then accessing it enjoys the

benefits of bandwidth optimized local network. Moreover,

larger migration using prefetcher improves PCI-e bandwidth

utilization and reduces the number of far-faults in general.

Similarly, having a static access counter based threshold

for delayed migration incurs additional overhead of remote

access because for dense sequential access, the data is

eventually migrated to the local memory upon crossing the

threshold.

IV. DYNAMIC ACCESS-COUNTER THRESHOLD BASED

DELAYED DATA MIGRATION

We motivate our work based on the following observa-

tions: 1 a higher percentage of PCIe bandwidth is con-

sumed by a small percentage of the total memory pages, 2
migrating pages of cold data structures causes eviction of

pages of hot data structures for irregular applications, 3
data migrations due to page thrashing over low bandwidth

PCIe contribute to memory oversubscription overhead, 4
current state-of-the-art solutions are not satisfactory to all

workloads as zero-copy access and delayed migration can

hurt performance of regular applications although proven to

be useful for irregular workloads, and thus 5 an effective

solution to address device memory oversubscription must

rely on user-hints based on extensive recognition of memory

usage and access pattern.

In this section, we propose an adaptive runtime heuristic

that is programmer-agnostic as it requires no advise to the

memory subsystem from the application developer. Further,

we leverage the new hardware features of page-level access

counters to build our solution. Thus, it demands no hardware

modification and is solely based on pragmatic modification

to GPU driver.

Dynamic Access Counter Threshold. In current delayed

migration solutions, pages are always migrated only after

crossing a static access counter threshold. This means regu-

lar applications with dense memory access ends up incurring

the overhead of remote memory access before ultimately mi-

grating the pages to the local memory. Moreover, when there

is no memory constraint, it is always beneficial to migrate

the data to the device memory and access it locally. This is

because the tree-based prefetcher can considerably improve

PCI-e bandwidth utilization and in turn reduce the number

of far-faults. Also, local memory is bandwidth optimized and

thus guarantees better performance than fragmented remote

access.

So, an effective solution should be able to decide how

to eliminate the overhead of remote access for no memory

oversubscription and regular applications in general. We

propose a dynamic threshold for delayed migration. The

heuristic of our proposed solution is driven by the following

equation:

td =

{
ts ∗ Num. of allocated pages

Total num. of pages
+ 1, if no oversubscription

ts ∗ (r + 1) ∗ p, otherwise
(1)

where ts = Static access counter threshold,

r = Number of round trips or number of times evicted,

p = Multiplicative Migration Penalty

The proposed dynamic threshold, td, grows adaptively in

response to the size of free space in the device memory start-

ing from 1 to the driver configured static threshold. Let us

consider the static threshold, ts, configured in the driver as 8.

If currently less than 12.5% of device memory is allocated,

then the dynamic threshold is derived as 1 from Equation 1.

This means every first touch will cause page migration. Sim-

ilarly, the dynamic access counter threshold will be same as

the static threshold of 8 just before reaching the full capacity

of device memory and 9 upon oversubscription. The goal of

the framework, here, is to tame down the aggression of the

prefetcher by delaying the page migration as the memory

starts filling up to its maximum capacity. Use cases involving

no memory oversubscription and regular applications benefit

from this mechanism compared to delayed migration based

on static threshold.
Equation 1 also addresses the situations involving memory

oversubscription. The framework is driven by the intuition

that under memory oversubscription cold pages should be

soft-pinned to the host memory and only hot pages should

be copied to device memory. This is because hot pages can

benefit from bandwidth optimized local memory access and

the sparse and seldom access to cold pages can benefit from

low latency of remote access without contributing to the

strict local memory budget. Equation 1 also introduces a

multiplicative penalty for migration under oversubscription,

p configurable as a module parameter to the GPU driver.

With p = 2 and ts = 8, the pages are migrated after

16th access after oversubscription. This helps reduce the

amount of page thrashing. Moreover, the framework keeps

count of the number of round trips or the number of time

a certain chunk of memory is evicted which is denoted as

r in Equation 1. For example, if a given chunk of memory

is evicted twice, then the dynamic threshold of migration

for that memory chunk will be derived as 48. The intuition

behind this heuristic is that the more a page is thrashed,

the harder it should be pinned to the host memory. Thus,

the heuristic controls hardness (/softness) of page pinning

and helps achieve the concept of host-pinned zero-copy

allocation for highly thrashed memory pages.

456

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

Access Counter Based Page Replacement. The frame-

work also extends page replacement strategy leveraging the

same access counters. As detailed in Section II-C, a naı̈ve

LRU page replacement cannot differentiate a set of cold
pages from a set of hot pages. As a result, it may end

up evicting highly referenced hot pages in the process of

migrating a cold page and thus defeats the objective of hard-

pinning hot pages to the device memory and cold pages to

the host memory. We use the access counters to sort the

list of 2MB large pages in LRU list such that cold pages

are prioritized over hot pages for eviction in irregular appli-

cations. Thus, we incorporate a simplified Least Frequently

Used (LFU) scheme in the framework. However, with linear

sequential access in regular applications, where pages are

accessed with almost the same frequency, our framework

automatically falls back to the LRU policy. We also prioritize

read-only pages as eviction candidates. This is because on

write access hot pages are migrated exclusively to the device

memory irrespective of their access counter. So, we would

prefer to keep the write pages in local memory as much as

possible.

Access Counter Granularity. Access counters are main-

tained at the page granularity for Volta GPUs [26]. However,

as explained in Section II-B, the tree-based prefetcher in

nvidia-uvm module migrates data in multiple of 64KB
basic blocks based on the page faults relayed from GMMU.

This leads us to the optimization of maintaining access

counters at 64KB basic block level instead of 4KB page

granularity. This not only reduces the memory overhead of

maintaining access counters, it is also functionally more

meaningful as the prefetch granularity is 64KB.

Access Counter Maintenance. In our implementation,

we use 32bits access registers. Hardware counters are up-

dated by GMMU on every page access during TLB look up.

Whereas, runtime reads the values of hardware access coun-

ters and maintains them as part of driver (/system software)

memory. As runtime is responsible to update GPU’s page

table, they are read, updated, and consulted on every PCIe

migration. The lower 27bits are used for access counters and

most significant 5bits are kept to keep track of round trip

time or r. This provides the opportunity to maintain a large

value for access frequency and to realize a historic counter.

The access counters in Volta GPUs only keep track of remote

accesses. In comparison, our framework maintains count

of both device-local and remote accesses. This provides a

historic view of accesses and helps us differentiate hot pages

from cold pages over larger iterations. When the counter

for one of the basic block reaches the maximum value (for

either the round trip counters or the access counters), the

framework halves the corresponding counters of all the basic

blocks instead of resetting them entirely. This helps maintain

the relative view of hotness over multiple allocations.

V. EXPERIMENTAL METHODOLOGY

Simulation Framework. Ganguly et al [13] extended

GPGPU-Sim 3.x [6] to provide functional and tim-

ing simulation support for Unified Memory such that

benchmarks written using cudaMallocManaged, and

cudaDeviceSynchronize APIs can be simulated. They

incorporated the control flow to resolve far-faults as de-

scribed by Zheng et al [29]. This enables modelling on-

demand memory allocation and fault-driven data migration.

They also incorporated several prefetch mechanisms [29]

including NVIDIA driver’s tree-based prefetcher and dif-

ferent page replacement algorithms including default 2MB
LRU scheme. The timing simulation of the setup is validated

against a hardware platform with GeForceGTX 1080 Ti
and PCI-e 3.0 16x interconnect.

We extended GPGPU-Sim UVM Smart to add support

for direct access to host-pinned memory over PCIe inter-

connect and the LFU eviction policy. We also incorporated

the access counter based automatic categorization of data

structures as cold and hot, and adaptive dynamic threshold

based page migration scheme as described in Section IV.

Table I shows the primary configuration parameters of the

extended simulator. The items in bold face shows the default

value of the configurations items. The extended simulator is

publicly available [11] for verification and further research

collaboration.

Simulator GPGPU-Sim UVM Smart
GPU Architecture NVIDIA GeForceGTX 1080Ti Pascal-like
GPU Cores 28 SMs, 128 cores each @ 1481 MHz

Shader Core Config Max. 32 CTA and 64 warps per SM,
32 threads per warp, GTO scheduler

Memory System
Page Size 4KB
Page Table Walk Latency 100 core cycle

CPU-GPU Interconnect
PCI-e 3.0 16x,
8 GTPS per channel per direction,
100 GPU core cycles latency

DRAM Latency 100 GPU core cycles [2]
Remote Zero-copy Access Latency 200 GPU core cycles
Eviction Granularity 2 MB, 64KB
Page Replacement Policy LRU, LFU
Far-fault Handling Latency 45μs
Hardware Prefetcher Tree-based
Static Access Counter Threshold 8, 16, 32
Multiplicative Migration Penalty 2, 4, 8, 1048576

Table I: Configuration parameters of the simulated system.

Application Suite. Along with the simulation frame-

work, GPGPU-Sim UVM Smart [11] also provides a set

of benchmarks from Rodinia [9], Lonestar [7], and Poly-

Bench [14] benchmark suites. These are the only publicly

available benchmarks that are implemented using CUDA

Unified Memory APIs. In these benchmarks data struc-

tures are allocated using cudaMallocManaged instead

of cudaMalloc followed by cudaMemcpy API calls.

As discussed in Section III-B, we divide these benchmarks

into two categories: regular (backprop, fdtd, hotspot,

srad), and irregular (bfs, nw, ra, sssp) access pattern.

457

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

To simulate oversubscription, working sets of the bench-

marks are not scaled, rather is controlled by a configuration

parameter that specifies the available free space in the device

memory in the simulation setup.

VI. EVALUATION

In this section, we evaluate the effectiveness of the frame-

work proposed in Section IV. Henceforth, we will alternately

refer to the dynamic access-counter threshold based delayed

migration scheme as Adaptive. We compare our scheme

with 1 the state of the art baseline where remote access

is not enabled and data is migrated at first touch, alternately

referred it as Baseline or Disabled, 2 the static access

counter based threshold proposed in Volta GPUs termed

as Always, and 3 a static access counter based delayed

migration scheme enabled only after oversubscription re-

ferred as Oversub. Difference between Always and Oversub
is that Always delays migration from the start irrespective

of memory oversubscription.
For Baseline, LRU page replacement is active whereas for

the other three scheme, our framework uses the proposed

access counter based simplified LFU policy.
Note that the following experiments only deal with 125%

of device memory oversubscription. Unlike, CPU virtual

memory, current GPUs are not capable of handling a higher

percentage of memory oversubscriptions. NVIDIA recom-

mends to use more than one GPU to distribute workload if

the GPU memory oversubscription is more than 125%.

A. Sensitivity to Static Migration Threshold
The success of access counter based delayed migration

relies on finding a suitable value for the static access counter

threshold, ts. The objective of the framework is not to hurt

regular applications in general and all applications under

no oversubscription. So, we run experiments to find out

the sensitivity of ts on the kernel execution time. Figure 4

shows the result. In this experiment, we consider the Always
scheme as it is the state of the art for delayed migration.

99
.7
3% 10
3.
13
%

10
0.
20
%

10
0.
46
%

92
.3
0%

10
0.
42
%

92
.9
4%

11
0.
02
%

10
2.
00
%

10
3.
49
%

10
0.
64
%

10
1.
05
%

95
.7
0%

10
2.
25
%

98
.5
5%

10
6.
92
%

0.9

0.95

1

1.05

1.1

1.15

backprop fdtd hotspot srad bfs nw ra sssp

Regular Irregular

R
un

ti
m

e
(N

or
m

al
iz

ed
 to

 ts
=8

)

ts=8 (Always) ts=16 (Always) ts=32 (Always)

Figure 4: Sensitivity of workloads to the static access counter

threshold for delayed migration.

As we vary ts from 8 to 32, we see that regular appli-

cations show almost no sensitivity to the static threshold.

This is because for regular applications the number of

per basic block accesses generated by load/store unit is

quite high and they always exceeds the threshold. Thus, for

regular application, no remote access is performed. How-

ever, irregular applications shows sensitivity to ts. While

performance of nw and sssp degrades with higher value of

ts, bfs and ra show improvement for ts = 16 compared

to ts = 8. This behaviour is not unpredictable and depends

on the input of the workload and the sparsity of memory

access. We recommend a justifiably small number for ts
such that it closely resemble to first-touch migration under

no oversubscription. However, an extremely small value for

ts like 1 or 2 is also not recommended as it will have

negative impact on performance for irregular applications

under oversubscription. Experiments in the later subsections

use ts = 8. We will present experimental results showing

the sensitivity p on performance in Section VI-D.

B. The Case of No Oversubscription

In this section, we compare the proposed Adaptive scheme

against the Baseline and the Always scheme for delayed

migration under no oversubscription. Figure 5 shows the

normalized runtime of different workloads using the above

three schemes. Oversub is not applicable for this experiment

as it enables threshold based delayed migration only after

oversubscription.

98
.9
5%

99
.1
3%

10
0.
08
%

10
0.
01
%

94
.2
9% 10

1.
72
%

76
.8
7%

11
0.
99
%

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

backprop fdtd-2d hotspot srad bfs nw ra sssp

Regular Irregular

R
un

ti
m

e
(N

or
m

al
iz

ed
 to

 b
as

el
in

e)

Baseline (Disabled) Always Adaptive

Figure 5: Comparing the impact of dynamic access counter

based adaptive scheme on execution time against the base-

line case of first-touch migration and static access counter

threshold based delayed migration scheme under no memory

oversubscription.

Figure 5 shows for both regular and irregular appli-

cations, the Adaptive scheme produces results equivalent

to the Baseline or Disabled scheme. This means that the

dynamic threshold scheme falls back to first-touch migration

based on the access frequency and memory availability.

While, for regular applications, Always scheme shows no

major performance difference, for irregular applications,

it introduces unpredictability. bfs and ra benefit from

Always scheme, whereas nw and sssp show performance

degradation. This is because even for sparse memory access,

458

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

if there is no memory constraint, it is always better to copy

the data to device memory using prefetcher and then ben-

efit from bandwidth optimized local access. Note, that the

objective of the framework under no oversubscription is not

to outperform Baseline first touch-based migration, rather to

show more consistent and predictbale behavior compared to

Always scheme of static threshold-based delayed migration.

C. The Case of Oversubscription

In this experiment, we show the effectiveness of the

proposed Adaptive policy by comparing runtime of different

workloads against Disabled, Always, and Oversub policies.

For the Adaptive scheme p = 8 is used and ts = 8 is set for

all delayed migration policies.

99
.6
2%

10
0.
68
%

92
.0
4%

10
0.
04
%

80
.1
5% 10

0.
50
%

24
.3
7%

74
.6
2%

10
0.
02
%

10
0.
52
%

99
.4
6%

10
0.
00
%

90
.6
4%

98
.6
8%

10
0.
00
%

76
.1
2%

10
0.
50
%

10
0.
77
%

10
0.
22
%

10
0.
01
%

78
.2
1%

67
.1
8%

21
.7
7% 40
.2
1%

0

0.2

0.4

0.6

0.8

1

1.2

backprop fdtd hotspot srad bfs nw ra sssp

Regular Irregular

R
un

ti
m

e
(N

or
m

al
iz

ed
 to

 b
as

el
in

e)

Baseline (Disabled) Always Oversub Adaptive

Figure 6: Comparing the impact of dynamic access counter

based adaptive scheme on execution time against the base-

line case of first-touch migration and static access counter

threshold based delayed migration schemes.

Figure 6 shows that Adaptive scheme does not impact

performance of regular applications. On the other hand im-

proves the performance of irregular applications by 22% to

78%. Moreover, it also yields better performance compared

to static access counter threshold based schemes.

0.
00
%

10
0.
00
%

93
.3
3%

10
0.
00
%

69
.1
7%

97
.5
3%

16
.6
7%

64
.2
9%

0.
00
%

10
0.
00
%

10
1.
67
%

10
0.
00
%

81
.5
0% 97
.5
3%

10
0.
00
%

67
.8
6%

0.
00
%

99
.9
1%

10
0.
00
%

10
0.
00
%

63
.0
1%

71
.3
2%

10
.1
4% 21
.4
3%

0

0.2

0.4

0.6

0.8

1

1.2

backprop fdtd hotspot srad bfs nw ra sssp

Regular Irregular

To
ta

l n
um

be
r

of
 p

ag
es

 th
ra

sh
ed

(N

or
m

al
iz

ed
 to

 b
as

el
in

e)

Baseline (Disabled) Always Oversub Adaptive

Figure 7: Comparing the impact of dynamic access counter

based adaptive scheme on memory thrashing against the

baseline case of first-touch migration and static access

counter threshold based delayed migration schemes.

To reason about the performance improvement by the

Adaptive scheme demonstrated in Figure 6, we plot the

number of pages being thrashed for different schemes in

Figure 7. We see that the improvement in kernel execution

time is directly a factor of reduction in memory thrashing for

irregular applications. For regular applications, the number

of pages being thrashed using Adaptive scheme is same as

Baseline or Disabled. Note that for backprop there is no

thrashing at all. This is because it scans through the entire

allocation sequentially without any data reuse over iterations.

On the other hand, ra shows completely random access and

no data reuse which makes it a perfect candidate for zero-

copy host-pinned memory access.

D. Sensitivity to Multiplicative Penalty

In this experiment, we study the effect of the multiplica-

tive penalty, p on the kernel execution time. The intuition is

that higher values of p dictates a larger dynamic threshold

for delayed migration and thus achieves harder pinning of

pages.

10
0.
08
%

10
0.
27
%

99
.9
8%

10
0.
01
%

83
.6
0%

92
.2
9%

29
.0
3% 64
.4
6%10
0.
22
%

99
.9
4%

10
2.
37
%

10
0.
01
%

78
.7
2%

84
.1
9%

19
.5
1% 51
.3
5%

10
0.
50
%

10
0.
77
%

10
0.
22
%

10
0.
01
%

78
.2
1%

67
.1
8%

21
.7
7%

40
.2
1%

17
4.
07
%

90
.7
3%

13
9.
65
%

23
8.
38
%

10
0.
20
%

6.
04
%

13
.5
5%

28
.5
5%

0

0.5

1

1.5

2

2.5

3

backprop fdtd hotspot srad bfs nw ra sssp

Regular Irregular

R
un

ti
m

e
(N

or
m

al
iz

ed
 to

 b
as

el
in

e)

Baseline (Disabled) p=2 (Adaptive) p=4 (Adaptive) p=8 (Adaptive) p=1048576 (Adaptive)

Figure 8: Sensitivity of workloads to the multiplicative

migration penalty.

Figure 8 shows that regular application doesn’t show any

performance variation when the value of p is varied from

2 to 8. Whereas, irregular applications shows strictly linear

performance improvement with larger p. The observation is

consistent with p = 16 and p = 32 (not plotted due to

limited space). This is how our adaptive scheme navigates

between bandwidth optimized local access and low latency

remote access.

A question may arise as to why not having an unreason-

ably higher value of p. Clearly, the dynamic threshold, td
is dictated by p. Hence, for relatively large p, the values of

ts and r would not have an appreciable effect on td. As

a result, an unreasonably large p will blindly keep pages

pinned to the host memory without caring for the access

threshold or the number of round trips (evictions). We see

that t = 1048576 indeed has a huge performance benefits

on nw, ra and sssp by eliminating thrashing entirely.

However, this behaviour is unpredictable and solely depends

on what pages get pinned to the host memory. For example,

bfs shows 2% performance degradation. Moreover, regular

459

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

applications suffer a great deal of performance loss for a

large p. For example, kernel execution time for srad almost

doubles up. This is because for dense, sequential access

it is always better to migrate the memory to the device

and access locally. This also proves that our framework is

tunable to achieve remote zero-copy access by configuring

p or multiplicative penalty. Further, our dynamic threshold

based heuristic navigates between zero-copy remote access

and first touch migration adaptively.

Note that the sensitivity studies in Section VI-A and

VI-D are not performed to find the optimal values for ts
and p, rather to show the effectiveness of the heuristic for

reasonable values for these two parameters. Moreover, the

objective of the framework is not to automate the process

of finding values for ts and p as these are configurable as

kernel module parameters to NVIDIA driver.

VII. RELATED WORK

Unified Virtual Memory (UVM) support in modern dis-

crete CPU-GPU systems [4], [20] has overcome many

limitations present in the traditional “copy then execute”

programming model [21], [22] by automating GPU memory

management. Agarwal et al [1] proposed aggressive first-

touch migration and prefetching neighboring pages. Zheng

et al [29] are the first one to study different user-directed

and user-agnostic prefetchers to overlap data migration and

kernel execution to hide the overhead of handling far-faults.

Ganguly et al [13] uncovered the mechanism of the tree-

based prefetcher implemented in NVIDIA GPU dirver and

demonstrated that compared to other prefetchers it provides

the maximum performance improvement.

Burtscher et al [7] introduced a new benchmark suites

called Lonestar consisting of a set of irregular applica-

tions. They performed a quantitative study to categorize

these workloads based on their memory and control flow

irregularity and input dependence. Pannotia [8] focused on

evaluating irregular graph applications on AMD platform.

Spatter [17] is a CUDA benchmark suite to characterize

scatter, gather, and related sparse access patterns. Vesely et

al [28] showed that divergent memory accesses in irregular

application can cause order of magnitude slow down from

address translation overhead alone. Leo [12] is a profiler

driven optimization framework for irregular GPU applica-

tions.

Oversubscription overhead for data-intensive general

purpose applications have become a first order perfor-

mance bottleneck. Data-parallel workloads are partitioned in

VAST [18] based on available GPU physical memory. In the

contrary, GPUswap [16] transparently relocates data from

the GPU to system RAM but make it accessible to the device

under oversubscription. Agarwal et al [2] have proposed a

compiler-based profiling mechanism to make programmers

aware of the specific memory access pattern. Based on this

knowledge, programmers annotate data structures to provide

page placement hints to the the memory subsystem. All these

techniques either are plagued by huge performance overhead

or needs code modification. Ganguly et al [13] proposed

a tree-based page replacement policy inspired by the tree-

based prefetcher in CUDA driver to deal with memory

oversubscription. However, they failed to address the specific

case for irregular applications with sparse, seldom access to

large oversubscribed datasets.

VIII. CONCLUSION

In this paper, we introduce a programmer-agnostic frame-

work to deal with memory oversubscription overhead

stemming from page thrashing in irregular, data-intensive

GPU applications. Our scheme leverages the hardware ac-

cess counters present in new generation GPUs. Hence, it

makes the solution simple and pragmatic with no need

for any programmer-assistance or new hardware enhance-

ments. Based on the memory availability and access fre-

quency, our heuristic adaptively navigates between first-

touch page migration and remote zero-copy access. The

proposed framework employs a dynamic access counter

threshold to delay page migration instead of relying on a

static threshold for accesses. Based on access frequency,

the proposed scheme achieves soft-pinning of hot pages

to the device local memory while remotely accessing cold

pages from host memory. As a result, it balances between

low latency remote access and high bandwidth local access

to reduce thrashing significantly. Experimental results show

that while the proposed framework improves performance

for irregular applications under tight memory budget, it

has no negative impact on performance in cases of no

memory oversubscription or for regular applications. As part

of the future work, we propose to study the usability of

dynamic threshold based heuristic in multi-GPU clusters

for collaborative applications as a mechanism to enforce

memory throttling and reduce thrashing.

ACKNOWLEDGMENT

This material is based in part upon work supported

by the National Science Foundation under Grant Number

CCF-1725657. We thank the anonymous reviewers for their

constructive feedback.

REFERENCES

[1] Neha Agarwal, David Nellans, Mike O’Connor, Stephen W
Keckler, and Thomas F Wenisch. Unlocking bandwidth for
gpus in cc-numa systems. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture
(HPCA), pages 354–365. IEEE, 2015.

[2] Neha Agarwal, David Nellans, Mark Stephenson, Mike
O’Connor, and Stephen W. Keckler. Page placement strategies
for gpus within heterogeneous memory systems. In Proceed-
ings of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 607–618, New York, NY, USA,
2015. ACM.

460

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

[3] AMD. AMD APP SDK OpenCL Optimization Guide.
http://developer.amd.com/wordpress/media/2013/12/AMD
OpenCL Programming Optimization Guide2.pdf, 2015.

[4] AMD. Radeons Next-generation Vega Architecture. https://
radeon.com/ downloads/vega-whitepaper-11.6.17.pdf, 2017.

[5] ARM. ARM Mali GPU OpenCL Developer Guide.
http://infocenter.arm.com/help/topic/com.arm.doc.100614
0303 00 en/arm mali gpu opencl developer guide
100614 0303 00 en.pdf, 2017.

[6] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong,
and Tor M Aamodt. Analyzing cuda workloads using a de-
tailed gpu simulator. In Performance Analysis of Systems and
Software, 2009. ISPASS 2009. IEEE International Symposium
on, pages 163–174. IEEE, 2009.

[7] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A
quantitative study of irregular programs on gpus. In 2012
IEEE International Symposium on Workload Characterization
(IISWC), pages 141–151. IEEE, 2012.

[8] Shuai Che, Bradford M Beckmann, Steven K Reinhardt, and
Kevin Skadron. Pannotia: Understanding irregular gpgpu
graph applications. In 2013 IEEE International Symposium on
Workload Characterization (IISWC), pages 185–195. IEEE,
2013.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron. Ro-
dinia: A benchmark suite for heterogeneous computing. In
Workload Characterization, 2009. IISWC 2009. IEEE Inter-
national Symposium on, pages 44–54. Ieee, 2009.

[10] Andrew Corrigan, Fernando Camelli, Rainald Löhner, and
John Wallin. Running unstructured grid cfd solvers on
modern graphics hardware. In 19th AIAA Computational
Fluid Dynamics Conference, number AIAA, volume 4001,
2009.

[11] Debashis Ganguly. GPGPU-Sim UVM Smart. https://github.
com/DebashisGanguly/gpgpu-sim UVMSmart/, 2018.

[12] Naila Farooqui, Christopher J Rossbach, Yuan Yu, and
Karsten Schwan. Leo: A profile-driven dynamic optimization
framework for {GPU} applications. In 2014 Conference on
Timely Results in Operating Systems ({TRIOS} 14), 2014.

[13] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami Melhem.
Interplay between hardware prefetcher and page eviction
policy in cpu-gpu unified virtual memory. In Proceedings of
the 46th International Symposium on Computer Architecture,
ISCA ’19, pages 224–235, New York, NY, USA, 2019. ACM.

[14] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ay-
alasomayajula, and John Cavazos. Auto-tuning a high-level
language targeted to gpu codes. In 2012 Innovative Parallel
Computing (InPar), pages 1–10. Ieee, 2012.

[15] IBM. IBM Power System AC922: Technical Overview and
Introduction. http://www.redbooks.ibm.com/redpapers/pdfs/
redp5494.pdf. Accessed Apr 04, 2019.

[16] Jens Kehne, Jonathan Metter, and Frank Bellosa. Gpuswap:
Enabling oversubscription of gpu memory through trans-
parent swapping. In Proceedings of the 11th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ’15, pages 65–77, New York, NY, USA,
2015. ACM.

[17] Patrick Lavin, Jason Riedy, Rich Vuduc, and Jeffrey Young.
Spatter: A benchmark suite for evaluating sparse access
patterns. arXiv preprint arXiv:1811.03743, 2018.

[18] Janghaeng Lee, Mehrzad Samadi, and Scott Mahlke. Vast:
The illusion of a large memory space for gpus. In Parallel
Architecture and Compilation Techniques (PACT), 2014 23rd
International Conference on, pages 443–454. IEEE, 2014.

[19] NVIDIA. CUDA Runtime API - v10.0.130. https://docs.
nvidia.com/cuda/cuda-runtime-api/. Accessed Apr 04, 2019.

[20] NVIDIA. NVIDIA Pascal Architecture. https://www.
nvidia.com/en-us/data-center/pascal-gpu-architecture/. Ac-
cessed Apr 04, 2019.

[21] NVIDIA Corp. CUDA Toolkit 4.0. https://developer.nvidia.
com/cuda-toolkit-40, 2011.

[22] NVIDIA Corp. NVIDIA GeForce GTX 750 Ti.
http://international.download.nvidia.com/geforce-com/
international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf,
2014.

[23] NVIDIA Corp. NVIDIA GeForce GTX 1080 Ti.
http://international.download.nvidia.com/geforce-com/
international/pdfs/GeForce GTX 1080 Whitepaper FINAL.
pdf, 2016.

[24] Victor Podlozhnyuk. Black-scholes option pricing, 2007.

[25] Nikolay Sakharnykh. Everything you need
to know about Unified Memory. http://
on-demand.gputechconf.com/gtc/2018/presentation/
s8430-everything-you-need-to-know-about-unified-memory.
pdf. Accessed Apr 04, 2019.

[26] Nikolay Sakharnykh. Unified memory on pascal and volta.
http://on-demand.gputechconf.com/gtc/2017/presentation/
s7285-nikolay-sakharnykh-unified-memory-on-pascal-and-volta.
pdf. Accessed Apr 04, 2019.

[27] University of Tennesse. HPC Challenge Benchmark. https:
//icl.utk.edu/hpcc/, 2012.

[28] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H Loh,
and Abhishek Bhattacharjee. Observations and opportunities
in architecting shared virtual memory for heterogeneous sys-
tems. In 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 161–171.
IEEE, 2016.

[29] Tianhao Zheng, David Nellans, Arslan Zulfiqar, Mark
Stephenson, and Stephen W Keckler. Towards high perfor-
mance paged memory for gpus. In 2016 IEEE International
Symposium on High Performance Computer Architecture
(HPCA), pages 345–357. IEEE, 2016.

461

Authorized licensed use limited to: University of Pittsburgh. Downloaded on March 08,2021 at 20:13:36 UTC from IEEE Xplore. Restrictions apply.

