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A pyrone remodeling strategy to access diverse heterocycles: 
Application to the synthesis of fascaplysin natural products  
Vignesh Palani, Melecio A. Perea, Kristen E. Gardner and Richmond Sarpong* 

The synthesis of diverse N-fused heterocycles, including the pyrido[1,2-a]indole scaffold, using an efficient pyrone 
remodeling strategy is described. The pyrido[1,2-a]indole core was demonstrated to be a versatile scaffold that can be site-
selectively functionalized. The utility of this novel annulation strategy was showcased in a concise formal synthesis of three 
fascaplysin congeners.

Introduction 
The use of annulation reactions to construct complex structures 
remains a powerful strategy in chemical synthesis. 1 For almost 
a century, 2-pyrones (A, Scheme 1a) have served as valuable 
heterocycles for annulations due to their versatile reactivity, 
which can be broadly categorized into two main paradigms: (1) 
pericyclic annulative processes and (2) regioselective opening 
via nucleophilic addition to unveil reactive intermediates poised 
for subsequent annulation. With respect to the first paradigm, 
pericyclic reactions, such as [4+2] cycloadditions2 and 4p 
electrocyclizations,3 have been well documented to provide 
rapid access to bicycles such as B and C, which have been 
exploited in myriad ways.4,5 In contrast, there have been limited 
examples within the second paradigm. While nucleophilic 1,6-
ring opening of 2-pyrones has proven to be a particularly 
effective strategy for orchestrating novel cyclization events via 
reactive intermediate D6 (our previous work6a,b), leveraging the 
dienolate functionality (E) accessible through 1,2-ring opening 
in annulation reactions remains underexplored.7 
We envisioned a strategy to N-fused bicycles in which a 
tethered reactive moiety (TRM) on 2-pyrone would engage an 
in situ generated dienolate (such as 1b) in an annulation 
reaction (Scheme 1b). The precursor N-heterocycle–pyrone 
adducts (e.g., 1) were anticipated to arise modularly by coupling 
N-heterocycle boronate esters and pyrones (e.g., 3-OTf 
pyrone)8 via Suzuki coupling. The C2-borylated N-heterocycles 
were expected to arise directly from the precursor heterocycles 
by leveraging existing methods (e.g., C–H functionalization),9 
thus enhancing the practicality of this approach. We 
hypothesized that opening 1 with a suitable nucleophile would 
first unveil dienolate 1a, which upon equilibration to 1b, would 
set the stage for annulation via direct capture the aldehyde 
group by the TRM to provide N-fused heterocycle 2. Notably, 

varying the TRM would provide a general platform for diverse 
heterocycle synthesis. 

 
Scheme 1. Annulation strategies enabled by versatile reactivity of 2-
pyrone derivatives. 
 
To demonstrate the viability of this strategy, we initially focused 
on converting indole–pyrone adduct 3 to the pyrido[1,2-
a]indole scaffold  (3b, Scheme 2a)—a key structural motif 
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present in a number of biologically active natural products 
including fascaplysin (4, Scheme 2b),10 goniomitine (5),11 and 
tronocarpine (6).12 While there exists numerous methods to 
access this biologically relevant scaffold, 13–17  many of these 
tactics rely on reaction precursors with highly specific 
substitution patterns and, therefore, are unfortunately not 
general or modular. Specifically, we recognized that while 
heterocyclic–dienolate adducts (such as C3-substituted 
intermediate 3a) have proven to be effective precursors for 
benzannulation processes, strategies to install dienol/dienolate 
functionality at C2 of 1H-indoles lacking C3-substitution have 
remained elusive due to regioselectivity challenges.13b,18,19 
Overall, we envisioned that our approach to coupling pyrone—
a masked dienolate—to the C2-position of 1H-indole would 
provide a unique opportunity to address this longstanding 
regioselectivity challenge. 

 
 

 

Scheme 2. Proposal to access pyrido[1,2-a]indole core. 

Results and discussion 
We commenced our investigations with indole–pyrone 7a 
(Table 1) and sodium methoxide as the nucleophile. Initially, we 
observed the formation of the desired pyrido[1,2-a]indole (8a) 
along with carbazole 9 and hemiaminal 10 as side products 
(entry 1). Changing the solvent from acetonitrile to 1,4-dioxane 
enhanced the formation of 9, which was generally more 
pronounced in relatively non-polar solvents.20 However, the use 
of polar solvents such as dimethylformamide resulted in 
complete decomposition of 7a (entry 3). The formation of 
hemiaminal 10 corroborates the proposed reaction mechanism 
illustrated in Scheme 1b and led us to investigate the use of 
polar protic solvents, such as methanol, to favor the conversion 
of 10 to 8a. We found, at this stage, that conducting the 
annulation in methanol furnished 8a in 45% yield (entry 4). 
Further investigation using co-solvents (entries 5–7) led to the 
identification of a dichloromethane/methanol solvent mixture 
as optimal, furnishing 8a in 61% yield (entry 7),21 presumably 
due to the increased solubility of 7a. Gratifyingly, the yield 
remained unaffected when the annulation was conducted both 
under open-flask conditions (entry 8) and on 1.3 g scale (entry 

9). The structure of 8a was unambiguously confirmed by single-
crystal X-ray analysis. 

 
 
 

Table 1. Reaction development and optimization. aDetermined by 1H 
NMR analysis using 1,2,3-trimethoxybenzene as an internal 
standard. bOpen flask set-up under non-anhydrous solvent 
conditions. cReaction conducted on 1.3 g scale. dIsolated yield. 
 
With optimized conditions in hand, we investigated the scope 
of this operationally simple pyrido[1,2-a]indole synthesis 
(Scheme 3). Indole–pyrone substrates with varied substitution 
patterns were readily synthesized through Suzuki coupling of 
indole boronate esters9 with either 3-bromo-8a or 3-triflyloxy-2-
pyrones.8b Indole substitution at both C3 and C7 had minimal 
influence on the ring-opening/annulation process, and the 
corresponding pyrido[1,2-a]indoles were isolated in 
comparable yields (8b–f, Scheme 3a). Interestingly, tetracyclic 
scaffolds such as lactam 8d and lactone 8e were accessed from 
indole–pyrones derived from tryptamine and tryptophol, 
respectively. Notably, 8d represents the core framework of 
tronocarpine (6). Next, we sought to investigate the tolerance 
of the overall transformation toward alterations of the 
electronics of the indole moiety. We observed that the presence 
of an electron-donating group, irrespective of the position, 
furnished the corresponding pyrido[1,2-a]indoles in high yields 
(8g–8i), whereas the product bearing an electron-withdrawing 
substituent (8j) was isolated in poor yield.22 
As shown in Scheme 3b, the established reaction conditions 
were also applicable to the efficient preparation of pyrido[1,2-
a]indoles 8k–n bearing various substituents on the pyrone 
moiety. Unlike the electronic influence exerted by the 
substituents on the indole, C5-substitution on the pyrone 
moiety had little to no effect on the final reaction outcome with 
the sole exception being product 8k, which was isolated in 
diminished yield. Additionally, we investigated the effect of 
other alkoxide nucleophiles (Scheme 3c). With increasing 
basicity and sterics of the alkoxide, more forcing conditions 
were generally required, and the yield of the final products (8a, 
8o–p) were also diminished.22 
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Scheme 3. Scope of modular pyrido[1,2-a]indole synthesis. aIsolated both lactone and alcohol-ester precursor in a ratio of 2:1. bIsolated 8j 
along with the corresponding carbazole (29% yield). cOne-pot procedure: Suzuki coupling + ring-opening/annulation. 
To further demonstrate the generality and versatility of our 
strategy, we next explored the synthesis of structurally diverse 
heterocyclic systems by subjecting various N-heterocyclic–
pyrone adducts to the established reaction conditions (Scheme 
4).23 Gratifyingly, upon coupling various TRMs, such as pyrrole, 
7-aza-indole, pyrazole, and aniline moieties, to the C3 position 
of 2-pyrones, heterocycles such as indolizine 11, pyrido[3,2-
b]indolizine 12, 3- aza-indolizine 13, and 1-naphthylamine 14 
were isolated in moderate to high yields. 

Scheme 4. Access to other novel heterocyclic cores. Conditions: 
NaOMe, CH2Cl2/MeOH, 23 or 55 °C, 10 min. aYield over two steps 
starting from SEM-protected 7-azaindole–pyrone substrate. 
 

Each of the pyrone-heterocycle substrates described to this point 
contain a free N–H group, thus enabling cyclization directly from 
nitrogen to form a new N–C bond, with the sole exception being 1-
naphthylamine 14.24 On the basis of the latter result and our initial 
hypothesis (Scheme 1b), we envisioned that employing N-protected 
substrates would direct the cyclization to the reactive carbon center, 
thus facilitating C–C bond formation25 and carbazole synthesis 
(Scheme 5). Interestingly, we found the annulation to be tolerant of 
various indole N-substituents, providing carbazoles 15a–c and 9 in 
high yields. Notably, unlike the pyrido[1,2-a]indole scope, the nature 
of the substituents—both on the indole and pyrone moieties—had 

little influence on the final reaction outcome, delivering the 
corresponding carbazoles (15d–g) in good yields 
  

Scheme 5. Scope of modular carbazole synthesis. aSEM cleavage can 
also proceed in the same pot upon prolonged heating to furnish the 
free N–H carbazole 9. 
 
We next sought to explore the subsequent reactivity of the C7-ester 
functionalized pyrido[1,2-a]indole products (Scheme 6). Friedel–
Crafts acylation,27 copper-catalyzed carbenoid C–H insertion,28 Lewis 
acid-mediated epoxide opening/attendant lactonization,29 and 
chlorination30 all proceeded to provide the corresponding C10-
functionalized pyrido[1,2-a]indoles 16–19. The structure of 18 and 
19 were unambiguously confirmed by single-crystal X-ray analysis. 
Hydrogenation proceeded smoothly to furnish tetrahydro 
pyrido[1,2-a]indole 20. Treating 8a under Hartwig borylation 
conditions20,9 yielded boronate ester 21, resulting from borylation at 
the C7 position. Photo-mediated Heck coupling20,31 of 8a with 
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iodobenzene gave biaryl compound 22, thus providing a platform to 
functionalize the C6 position as well, albeit at low conversion.32 
 

 

 
 

Scheme 6. Derivatizations of pyrido[1,2-a]indoles. aSignificant 
portion of 8a (75%) remained unreacted. 
 
With the generality of this strategy successfully established, we next 
turned our attention toward applying our pyrone remodeling 
strategy to access the fascaplysin family of natural products. As 
illustrated in Scheme 7, we began by hydrolyzing ester 8a to afford 
the intermediate carboxylic acid, which smoothly underwent Curtius 
rearrangement33 to furnish amine 23 in high yield. 

 

Scheme 7. Formal synthesis of fascaplysin congeners. 

Taking inspiration from methodology developed by Ackermann and 
co-workers,34 a palladium-catalyzed amination/C–H arylation 
domino coupling35 was employed to couple 23 and 1,2-
dibromobenze to furnish the pentacyclic core of the fascaplysin 
natural products (24), which possessed analytical data (1H and 13C 
NMR, HRMS, melting point, IR) in full agreement with those 
previously reported. The synthesis of 24 constitutes formal syntheses 
of fascaplysin (1) and homofascaplysins B and C (25 and 26), which 
can all be accessed independently in a single step from 24.36  

Conclusions 
In summary, we have developed a general, novel pyrone remodeling 
strategy, which capitalizes on the 1,2-ring opening of 2-pyrones, to 
construct diverse heterocyclic scaffolds.  This transformation, which 
was initially validated through pyrido[1,2-a]indole synthesis,  
features a diverse substrate scope, with varied substitution patterns 
on both the indole and pyrone moieties. The scope was additionally 
extended to access carbazole cores and other N-fused heterocycles, 
thus, showcasing the generality of this strategy. The unusual 
reactivity of the pyrido[1,2-a]indole core was explored in several 
synthetic transformations, which enabled selective functionalization 
of three distinct carbon positions. Finally, the utility of this strategy 
was further demonstrated in a concise formal synthesis of three 
fascaplysin congeners. Studies to further expand the non-intuitive 
potential of 2-pyrone and its derivatives in the total synthesis of 
complex natural products are the focus of our current efforts. 
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