A pyrone remodeling strategy to access diverse heterocycles:
Application to the synthesis of fascaplysin natural products
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remodeling strategy is described. The pyrido[1,2-a]indole core was demonstrated to be a versatile scaffold that can be site-

selectively functionalized. The utility of this novel annulation strategy was showcased in a concise formal synthesis of three

fascaplysin congeners.

Introduction

The use of annulation reactions to construct complex structures
remains a powerful strategy in chemical synthesis. ! For almost
a century, 2-pyrones (A, Scheme 1a) have served as valuable
heterocycles for annulations due to their versatile reactivity,
which can be broadly categorized into two main paradigms: (1)
pericyclic annulative processes and (2) regioselective opening
via nucleophilic addition to unveil reactive intermediates poised
for subsequent annulation. With respect to the first paradigm,
pericyclic reactions, such as [4+2] cycloadditions? and 4rn
electrocyclizations,3 have been well documented to provide
rapid access to bicycles such as B and C, which have been
exploited in myriad ways.4> In contrast, there have been limited
examples within the second paradigm. While nucleophilic 1,6-
ring opening of 2-pyrones has proven to be a particularly
effective strategy for orchestrating novel cyclization events via
reactive intermediate D¢ (our previous work®ab), leveraging the
dienolate functionality (E) accessible through 1,2-ring opening
in annulation reactions remains underexplored.”

We envisioned a strategy to N-fused bicycles in which a
tethered reactive moiety (TRM) on 2-pyrone would engage an
in situ generated dienolate (such as 1b) in an annulation
reaction (Scheme 1b). The precursor N-heterocycle—pyrone
adducts (e.g., 1) were anticipated to arise modularly by coupling
N-heterocycle boronate esters and pyrones (e.g., 3-OTf
pyrone)8 via Suzuki coupling. The C2-borylated N-heterocycles
were expected to arise directly from the precursor heterocycles
by leveraging existing methods (e.g., C—H functionalization),®
thus enhancing the practicality of this approach. We
hypothesized that opening 1 with a suitable nucleophile would
first unveil dienolate 1a, which upon equilibration to 1b, would
set the stage for annulation via direct capture the aldehyde
group by the TRM to provide N-fused heterocycle 2. Notably,
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varying the TRM would provide a general platform for diverse
heterocycle synthesis.
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Scheme 1. Annulation strategies enabled by versatile reactivity of 2-
pyrone derivatives.

To demonstrate the viability of this strategy, we initially focused
on converting indole—pyrone adduct 3 to the pyrido[1,2-
alindole scaffold (3b, Scheme 2a)—a key structural motif



present in a number of biologically active natural products
including fascaplysin (4, Scheme 2b),1° goniomitine (5),1 and
tronocarpine (6).12 While there exists numerous methods to
access this biologically relevant scaffold, 1317 many of these
tactics rely on reaction precursors with highly specific
substitution patterns and, therefore, are unfortunately not
general or modular. Specifically, we recognized that while
heterocyclic—dienolate adducts (such as C3-substituted
intermediate 3a) have proven to be effective precursors for
benzannulation processes, strategies to install dienol/dienolate
functionality at C2 of 1H-indoles lacking C3-substitution have
remained elusive due to regioselectivity challenges.13b18,19
Overall, we envisioned that our approach to coupling pyrone—
a masked dienolate—to the C2-position of 1H-indole would
provide a unique opportunity to address this longstanding
regioselectivity challenge.
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Scheme 2. Proposal to access pyrido[1,2-a]indole core.

Results and discussion

We commenced our investigations with indole—pyrone 7a
(Table 1) and sodium methoxide as the nucleophile. Initially, we
observed the formation of the desired pyrido[1,2-alindole (8a)
along with carbazole 9 and hemiaminal 10 as side products
(entry 1). Changing the solvent from acetonitrile to 1,4-dioxane
enhanced the formation of 9, which was generally more
pronounced in relatively non-polar solvents.2? However, the use
of polar solvents such as dimethylformamide resulted in
complete decomposition of 7a (entry 3). The formation of
hemiaminal 10 corroborates the proposed reaction mechanism
illustrated in Scheme 1b and led us to investigate the use of
polar protic solvents, such as methanol, to favor the conversion
of 10 to 8a. We found, at this stage, that conducting the
annulation in methanol furnished 8a in 45% yield (entry 4).
Further investigation using co-solvents (entries 5-7) led to the
identification of a dichloromethane/methanol solvent mixture
as optimal, furnishing 8a in 61% yield (entry 7),21 presumably
due to the increased solubility of 7a. Gratifyingly, the yield
remained unaffected when the annulation was conducted both
under open-flask conditions (entry 8) and on 1.3 g scale (entry
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9). The structure of 8a was unambiguously confirmed by single-
crystal X-ray analysis.
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Table 1. Reaction development and optimization. ?Determined by 1H
NMR analysis using 1,2,3-trimethoxybenzene as an internal
standard. “Open flask set-up under non-anhydrous solvent
conditions. Reaction conducted on 1.3 g scale. 9lIsolated yield.

With optimized conditions in hand, we investigated the scope
of this operationally simple pyrido[1,2-alindole synthesis
(Scheme 3). Indole—pyrone substrates with varied substitution
patterns were readily synthesized through Suzuki coupling of
indole boronate esters® with either 3-bromo-82 or 3-triflyloxy-2-
pyrones.8 Indole substitution at both C3 and C7 had minimal
influence on the ring-opening/annulation process, and the
corresponding  pyrido[1,2-alindoles were isolated in
comparable yields (8b—f, Scheme 3a). Interestingly, tetracyclic
scaffolds such as lactam 8d and lactone 8e were accessed from
indole—pyrones derived from tryptamine and tryptophol,
respectively. Notably, 8d represents the core framework of
tronocarpine (6). Next, we sought to investigate the tolerance
of the overall transformation toward alterations of the
electronics of the indole moiety. We observed that the presence
of an electron-donating group, irrespective of the position,
furnished the corresponding pyrido[1,2-alindoles in high yields
(8g—8i), whereas the product bearing an electron-withdrawing
substituent (8j) was isolated in poor yield.??

As shown in Scheme 3b, the established reaction conditions
were also applicable to the efficient preparation of pyrido[1,2-
alindoles 8k—n bearing various substituents on the pyrone
moiety. Unlike the electronic influence exerted by the
substituents on the indole, C5-substitution on the pyrone
moiety had little to no effect on the final reaction outcome with
the sole exception being product 8k, which was isolated in
diminished yield. Additionally, we investigated the effect of
other alkoxide nucleophiles (Scheme 3c). With increasing
basicity and sterics of the alkoxide, more forcing conditions
were generally required, and the yield of the final products (8a,
80—p) were also diminished.??
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To further demonstrate the generality and versatility of our
strategy, we next explored the synthesis of structurally diverse
heterocyclic systems by subjecting various N-heterocyclic—
pyrone adducts to the established reaction conditions (Scheme
4).23 Gratifyingly, upon coupling various TRMs, such as pyrrole,
7-aza-indole, pyrazole, and aniline moieties, to the C3 position
of 2-pyrones, heterocycles such as indolizine 11, pyrido[3,2-
blindolizine 12, 3- aza-indolizine 13, and 1-naphthylamine 14
were isolated in moderate to high yields.
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Scheme 4. Access to other novel heterocyclic cores. Conditions:
NaOMe, CH,Cl,/MeOH, 23 or 55 °C, 10 min. 9Yield over two steps
starting from SEM-protected 7-azaindole—pyrone substrate.

Each of the pyrone-heterocycle substrates described to this point
contain a free N-H group, thus enabling cyclization directly from
nitrogen to form a new N—C bond, with the sole exception being 1-
naphthylamine 14.24 On the basis of the latter result and our initial
hypothesis (Scheme 1b), we envisioned that employing N-protected
substrates would direct the cyclization to the reactive carbon center,
thus facilitating C—C bond formation?> and carbazole synthesis
(Scheme 5). Interestingly, we found the annulation to be tolerant of
various indole N-substituents, providing carbazoles 15a—c and 9 in
high yields. Notably, unlike the pyrido[1,2-a]indole scope, the nature
of the substituents—both on the indole and pyrone moieties—had

little influence on the final reaction outcome, delivering the
corresponding carbazoles (15d-g) in good yields
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Scheme 5. Scope of modular carbazole synthesis. ?SEM cleavage can
also proceed in the same pot upon prolonged heating to furnish the

free N-H carbazole 9.

We next sought to explore the subsequent reactivity of the C7-ester
functionalized pyrido[1,2-a]indole products (Scheme 6). Friedel—
Crafts acylation,?’ copper-catalyzed carbenoid C—H insertion,28 Lewis
acid-mediated epoxide opening/attendant lactonization,?® and
chlorination3° all proceeded to provide the corresponding C10-
functionalized pyrido[1,2-a]indoles 16—19. The structure of 18 and
19 were unambiguously confirmed by single-crystal X-ray analysis.
Hydrogenation proceeded smoothly to furnish tetrahydro
pyrido[1,2-alindole 20. Treating 8a under Hartwig borylation
conditions20? yielded boronate ester 21, resulting from borylation at
the C7 position. Photo-mediated Heck coupling?031 of 8a with



iodobenzene gave biaryl compound 22, thus providing a platform to
functionalize the C6 position as well, albeit at low conversion.32
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Scheme 6. Derivatizations of pyrido[1,2-a]indoles.
portion of 8a (75%) remained unreacted.

aSignificant

With the generality of this strategy successfully established, we next
turned our attention toward applying our pyrone remodeling
strategy to access the fascaplysin family of natural products. As
illustrated in Scheme 7, we began by hydrolyzing ester 8a to afford
the intermediate carboxylic acid, which smoothly underwent Curtius
rearrangement33 to furnish amine 23 in high yield.
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Taking inspiration from methodology developed by Ackermann and
co-workers,?* a palladium-catalyzed amination/C-H arylation
domino coupling3> was employed to couple 23 and 1,2-
dibromobenze to furnish the pentacyclic core of the fascaplysin
natural products (24), which possessed analytical data (*H and 13C
NMR, HRMS, melting point, IR) in full agreement with those
previously reported. The synthesis of 24 constitutes formal syntheses
of fascaplysin (1) and homofascaplysins B and C (25 and 26), which
can all be accessed independently in a single step from 24.3¢

Conclusions

In summary, we have developed a general, novel pyrone remodeling
strategy, which capitalizes on the 1,2-ring opening of 2-pyrones, to
construct diverse heterocyclic scaffolds. This transformation, which
was initially validated through pyrido[1,2-a]indole synthesis,
features a diverse substrate scope, with varied substitution patterns
on both the indole and pyrone moieties. The scope was additionally
extended to access carbazole cores and other N-fused heterocycles,
thus, showcasing the generality of this strategy. The unusual
reactivity of the pyrido[1,2-alindole core was explored in several
synthetic transformations, which enabled selective functionalization
of three distinct carbon positions. Finally, the utility of this strategy
was further demonstrated in a concise formal synthesis of three
fascaplysin congeners. Studies to further expand the non-intuitive
potential of 2-pyrone and its derivatives in the total synthesis of
complex natural products are the focus of our current efforts.
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