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Finding a compromise between tractability and realism has always been at
the core of ecological modelling. The introduction of nonlinear functional
responses in two-species models has reconciled part of this compromise.
However, it remains unclear whether this compromise can be extended to
multispecies models. Yet, answering this question is necessary in order
to differentiate whether the explanatory power of a model comes from the
general form of its polynomial or from a more realistic description of multi-
species systems. Here, we study the probability of feasibility (the existence
of at least one positive real equilibrium) in complex models by adding
higher-order interactions and nonlinear functional responses to the linear
Lotka—Volterra model. We characterize complexity by the number of
free-equilibrium points generated by a model, which is a function of the
polynomial degree and system’s dimension. We show that the probability
of generating a feasible system in a model is an increasing function of its
complexity, regardless of the specific mechanism invoked. Furthermore,
we find that the probability of feasibility in a model will exceed that of
the linear Lotka—Volterra model when a minimum level of complexity is
reached. Importantly, this minimum level is modulated by parameter restric-
tions, but can always be exceeded via increasing the polynomial degree or
system’s dimension. Our results reveal that conclusions regarding the rel-
evance of mechanisms embedded in complex models must be evaluated
in relation to the expected explanatory power of their polynomial forms.

1. Introduction

Understanding and predicting the behaviour of ecological systems has been one of
the greatest challenges in ecological research [1—4]. One promising route to accom-
plish this challenge has been based on the mathematical modelling of species
abundances over time by assuming different functions of species interactions,
growth and decline rates [5]. However, these terms are not uniquely represented:
they are either arbitrarily or specifically chosen to provide tractability (such as the
ability to analytically understand the effect of a change in a parameter) and pre-
serve realism (such as mimicking as much as possible ecological mechanisms)
[6]. Indeed, in principle, a tractable, realistic, mathematical model of a system
can allow us to apply conventional methods to deduce and have a mechanis-
tic knowledge about the behaviour of real-world systems [7,8]. Yet, finding a
compromise between tractability and realism has not been easy [9-11].
Importantly, it has already been shown that in order to explain complex
dynamics, it is not always necessary to have complex models [12]. For example,
complex behaviour, such as transitions from point attractors to chaotic behav-
iour, can already emerge from population dynamics models with low-order
polynomials (e.g. the one-dimensional deterministic logistic model) [13].
In fact, one of the best examples of simple tractable models in ecology is the
well-known linear Lotka—Volterra (LV) model [14,15]. Yet, this model must
be understood just as a first-order approximation to how complex ecological
systems behave [8]. As a consequence, many modifications have been done to
the linear LV model in the hope of adding realism and increasing their expla-
natory power [5]. In general, these modifications yield models of the form
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dN;/dt=N; f(N)/q:(N) fori=1, 2, ..., n, where the f's and ¢’s
are multivariate polynomials (in general with higher-order
terms) in species abundances N=(Ny, N, ..., N [12].

A clear example of complexity added to the linear LV
model is the incorporation of higher-order interactions
(HOIs) that involve more than two variables [16]. The intro-
duction of these higher-order terms has been justified in
order to account for the possibility that the effect of a species
i on the per capita growth rate of a species j might itself
depend on the abundance of a third species k due to either
compensatory effects or supra-additivity [5,17]. The addition
of HOIs has been shown to stabilize dynamics in competition
systems [18], promote diversity in ecological communities
[19] and capture unexplained dynamics of linear LV models
[20]. However, it has been debatable whether these terms
are derived from fundamental principles [21], whether math-
ematically there is anything to prevent their inclusion into
ecological models [22], or whether they are indeed useful to
explain observed ecological dynamics [23].

Another example of complexity is the addition of func-
tional responses, which have been one of the most studied
and ecologically motivated polynomial fraction forms added
to linear LV models [5,6,23,24]. Typically, functional responses
correspond to the mechanistic (or phenomenological) descrip-
tion of how predators (consumers) search, attack and handle
their prey (resources). Although the name of functional
response was first introduced by Solomon [25], functional
responses were broadly adopted after Holling [24] identified
three types of responses: linear (Type I; linear LV model),
hyperbolic (Type II) and sigmoid (Type III). For instance, the
Beddington—-DeAngelis functional response [26,27], which is
a variation of Type II, has been one of the most widely used
responses for modelling food webs [28]. Importantly, the intro-
duction of functional responses has appeared to reconcile part
of the compromise between tractability and realism across a
variety of ecological models [5]. Yet, most of the analytical
(tractable) work incorporating nonlinear functional responses
(Types 1I and III) has been limited to two-species systems
[5,6,24], remaining unclear whether this compromise can be
extended to larger multispecies cases [22,29].

In general, one of the big questions derived from the
addition of complexity (e.g. either HOIs or functional responses)
is whether the explanatory power of a modified model comes
from the general form of its polynomial or from a more realistic
description of multispecies systems. To answer this question, we
study the probability of feasibility in complex models (i.e. modi-
fications to the linear LV model using multivariate polynomials)
under an arbitrary choice of parameter values. Note that the
observability or adaptability of an ecological system is associ-
ated with how much its structure can change while retaining
its feasibility [30,31]. Thus, it is important to distinguish the
minimum amount of information necessary in a model to
explain such observability. Specifically, we study the probability
of feasibility as a function of three key properties of these
complex models: their polynomial degree (interaction order),
dimension (number of species) and parameter restrictions
(sign restrictions). We define the probability of feasibility as
the frequency of finding in a model at least one feasible solution
(i.e. a feasible free-equilibrium point where all its coordinates are
real and positive) by randomly choosing parameter values
under a given distribution [32-34]. Note that the existence of
feasible equilibrium solutions is a crucial condition in the con-
text of species coexistence, ie. a necessary condition for

persistence, permanence and the existence of bounded orbits n

in the feasibility domain [35].

We start illustrating our study using a one-dimensional
toy model and demonstrating that its probability of feasibility
increases as a function of its polynomial degree (and conse-
quently its number of parameters) when parameter values
are arbitrarily chosen from a given probability distribution.
Next, we extend the toy example into a multidimensional
case to show that the probability of generating a feasible mul-
tispecies system is an increasing function of its complexity.
Specifically, we characterize complexity by the number of
free-equilibrium points generated by a model, which is a
function of the polynomial degree and system’s dimension.
Then, to illustrate the expected behaviour of complex
models across different dimensions and parameter restric-
tions, we study modifications to the linear LV model using
HOIs and functional responses. Finally, we discuss the impli-
cations of our results for the explanatory contribution to
feasibility of complex ecological models.

2. Univariate complex models: conceptual

illustration

To investigate the probability of feasibility of ecological systems
using complex models, we start illustrating our methodology in
one-dimensional (univariate) systems. For this purpose, let us
consider the following one-dimensional dynamical system
characterized by the state variable N as shown below:

dN  Nf(N)

E = W ’ 2.1
where f(N) =a,,N" + N 14 +aN+agis a polynomial
of degree m and g(N) can be any other polynomial that shares
no common factor with Nf(N). Note that in the case when
f(N) is linear and g(N)=1, we recover the one-dimensional
version of the linear LV model (i.e. logistic growth model
when a; <0 [5]).

As mentioned before, we study the feasibility of a system
as defined by its capacity to have at least one feasible equili-
brium point (the equilibrium point is both real and positive)
under an arbitrary choice of parameter values. This implies
that the feasibility problem of Model (2.1) is identical to
the feasibility problem of the system defined by the model
dN/dt=Nf(N), as they both involve analysing the real and
positive roots of the polynomial f(N). Therefore, we can
think of the feasibility problem in Model (2.1) as the same
as the feasibility problem of the modified one-dimensional
linear LV model with higher-order terms. Note that the dyna-
mical stability criterion can be relaxed in this case, as it is
linked to the feasibility problem [36]. That is, when Model
(2.1) has k positive equilibrium points (without multiple or
complex roots), a stable feasible free-equilibrium point is fol-
lowed by an unstable one, making the number of positive
stable equilibrium points to be either floor or ceil k/2 for
k=0, 1,..., m [22]. This implies that one can derive the
stability problem from the feasibility one.

It is well known that the feasibility of any system depends
on the specifics given by the model parametrization and
constraints [37]. However, in the absence of information
about the exact parameter values, as in most of the ecological
research, these values are randomly chosen from a prob-
ability distribution [11,38]. This parameter uncertainty
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transfers the feasibility problem to the probability of having
at least one feasible equilibrium point by randomly choosing
parameter values under given conditions [32,39]. For illus-
tration purposes, let us consider the case when the a’s are
all Gaussians ii.d. centred on zero (mean zero), and let us
denote pg(m) the probability that at least one root of f(N) is
positive (i.e. feasible). Note that p(m) is independent of the
distribution’s variance simply because f(N) and cf(N) have
identical roots for any constant ¢ #0. Under this Gaussian
case, it has been demonstrated [40] that the expected
number of positive real roots E(m) as m — oo is given by

E(m) = T, (2.2)

where
2 1
R(m) = ;bg(m) 4 0.6257358072... 4+ 0 (E) . (2.3)

Note that R(m) corresponds to the expected number of real
roots, while E(m) assumes no a priori tendency for positive
or negative roots in R(m). That is, the density of real zeros
is an even function [40].

Next, let us try to find how equation (2.2) can be inserted
into the expression of the probability of feasibility p(m). To
provide a numerical approximation, let us assume that the
location of the m roots of f(N) are independent of each
other and positive with probability p; fori=1, 2, ..., m. There-
fore, the probability of feasibility (to have at least one positive
and real root) becomes p(m)=1—(1 —p)(1 —p2) ... (1 = pp)-
By applying Jensen’s inequality (ie. f(pi)+f(p2)+---+
f(pm) 2mf((p1 +p2+---+pm)/m)) to the convex function
fx)=-log(1 —x), we obtain pg(m)>1-(1-E@Mm)/m)",
where the expected number of positive roots E(m)=p; +
pa+---+ Pm- From the formula of pg(m), one can derive
the upper bound pg(m)<1-(1-max(pi, p2 ..., pu)™
Assuming that pg(m) is continuous for any m>1 implies
the existence of E(m) such that the probability of feasibility
can be written as

pelm) =1— (1 - %) (2.4)

where E(m) is an overestimate of the expected number of
positive roots (that is, E(m) < E(m) < mmax(pa, P2, - -+, Pm))-
This allows us toinfer the mathematical form of E(mn) by find-
ing E(m) such that p(m) is the best fit of 1 — (1 — EGm)/m)™.

Figure 1 provides a numerical confirmation of the positive
relationship between the probability of feasibility pc(1n) and the
degree m of the polynomial f(N) under an arbitrary choice of
parameter values (no parameter restrictions). The probability
is calculated numerically over 10* simulations using i.id. par-
ameters from a Gaussian distribution with mean zero and
standard deviation one. The figure shows the best fit to the
data using equation (2.4), where E(m) = alog(m) +b+c/m,
a=0.391, b =0.356 and c=0.141. Note that these values are
close (still an overestimate) to 1/7 and to the constant term
in equation (22). Also, notice the sharp increase in the
probability of feasibility for small m’s. That is, when the poly-
nomial degree m is relatively small, only a few extra terms
are needed to add a noticeable increase in the probability of
feasibility. Once m is large enough, the rate of increase in
the probability of feasibility diminishes sharply even if
considerably more extra terms are added.

1.0 —

univariate system

probability of feasibility

0.6 - s simulations
analytical
0.5 —
| | | | |
0 50 100 150 200

polynomial degree (m)

Figure 1. Probability of feasibility increases as a function of the polynomial
degree in one-dimensional systems. The figure shows the probability that at
least one root is feasible pg(m) in Model (2.1) as a function of the degree
m>1 of the polynomial f(N) (using 10° trial points for each polynomial
degree m). Note that parameters are all iid. Gaussian with mean zero
and standard deviation one. The probability ps(m) is independent of the dis-
tribution’s variance. By plotting (solid line) pg(m) and fitting it with
1—(1— ;F\(m]/.rn]m (where E(m) = alog(m) + b + ¢/m), we find that
the best-fit parameters (R* = 0.9966) are a = 0.391 = 0.004 (an overestimate
value that is close to 1/ in the expression of E(m) in equations (2.2) and
(2.3)), b= 0.356 = 0.013 (an overestimate value that is close to the constant
term in the expression of E(m) in equations (2.2) and (2.3)) and c=0.141 £
0.016. The term ¢/m, which is present in both E(m) (as an order quantity
0(1/m)) and E(m), is not significant for large polynomial degrees m (as it
is small compared to either the log or the constant term in both E(m)
and E(m)). However, the best fit of ¢ takes care of fitting the probability
of feasibility with low polynomial degrees without altering the fact that
the values of @ and b in E(m) are overestimate values and are close to
the ones in the expression of E(m).

Importantly, the example above illustrating a monotonic
and saturating behaviour of the probability of feasibility as a
function of the polynomial degree is robust to the choice of
the probability distribution (see the electronic supplementary
material). This is true as long as the addition of parameters
does not decrease the probability of obtaining an odd sign
sequence in the coefficients of f(IN) (i.e. the number of consecu-
tive sign changes in 4, @u-1, ..., 41, fp is an odd integer—see
electronic supplementary material).

3. Complex multispecies models

To investigate whether the probability of feasibility in complex
multispecies models has similar patterns to those shown
in one-dimensional models, we focus on the multivariate
generalization of Model (2.1):
where N is a vector of species abundances. Model (3.1) can be
characterized by two quantities: its number of free-equilibrium
points and the joint distribution of its parameters.
Equilibrium points (known as N;) are the solutions to all N;
in equation (3.1) when the left-hand side of the equation is
equal to zero. These equilibrium points can be classified
as free or rigid [22]. Free-equilibrium points have non-zero
components (can be complex) and can move freely within
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the state space as a function of parameter values, while rigid-
equilibrium points are restricted in space such that they contain
at least one zero (i.e. N;' = 0). That is, rigid-equilibrium points
are restricted to particular regions of the state space regardless
of the values that model parameters can take and contain at
least one zero coordinate (i.e. boundary-equilibrium points).
Instead, the locations of free-equilibrium points are not
restricted in space and are completely dependent on model
parameters. This implies that only free-equilibrium points
can lead to feasible systems (i.e. N} > 0 fori=1, ..., n). These
definitions further reveal that the number of free-equilibrium
points (O) is, in fact, the multivariate generalization of the
polynomial degree m seen in the one-dimensional case.

Following the definitions above, we use © as the measure
of complexity of a model. When parameters of f;(N) are
independent for all i, © can be analytically obtained by comput-
ing the number of complex roots of equation (3.1) [22,41].
However, when parameters are not independent, that ©
becomes an upper bound and the exact value can be computed
using the PHClab software package [42]. Note that other
measures of complexity have been used in the literature
[6,43]. However, these other measures are either at the level of
system complexity (such as dimensionality or connectivity) or
at the level of assumed mechanisms in a model (e.g. Type I
versus Type II functional responses). Instead our measure of
complexity makes no prior assumption about the complexity
of a model, but integrates all this information to provide a
measure of the enrichment in dynamics that can be derived
from a model [22].

Assuming equation (2.4) as the expression for the prob-
ability of feasibility in multidimensional systems where m is
replaced by O, p(6) can be further simplified under two key
observations. (i) The number of free-equilibrium points @ is
expected to be large in multidimensional systems. This obser-
vation has been shown for LV models with HOIs under an
arbitrary choice of parameter values, where @ increases
exponentially with the dimension of the system [22].
(ii) The overestimate E(@) is very small compared to @ (i.e.
E(@)/® < 1). This second observation has been shown for
one-dimensional systems with standard Gaussian distri-
butions (see previous section). Specifically, E(m) = log(m)/x,
which is much smaller than m for large m. Building on these
two observations, we can rewrite the probability of feasibility
in multidimensional systems as

p(0) ~ 1 — exp(— E(O)). (3.2)

The goodness in the approximation of equation (3.2) to
equation (2.4) can be shown by sampling over the ©-E space.
For example, setting @=1000 and E =1, the evaluated
expression 1 — (1 — E(0)/0)® = 0.632305 is close to the evalu-
ated expression 1 — exp( — E(0)) = 0.63212. Importantly, the
joint distribution of parameters in Model (3.1) affects how E
is related to ©. As we have shown, in one-dimensional
systems with i.i.d. probability distributions, E increases with
the polynomial degree m. Thus, following equation (3.2),
the assumption E(©,) > E(6,) when ©,> 0O, implies that
p(61) > p(O,). That is, we expect that p(6) increases with O in
multidimensional systems as well. However, as in the univari-
ate case, there are also exceptions to this pattern. Specifically,
when ©>1 is small, the relationship E(®) > E(1) can be
violated. This is because models with @=1 and ©> 1 are fun-
damentally different. Using arbitrary model parameters with

the LV model (i.e. ©®=1), the solo free-equilibrium point must [ 4 |

have real coordinates. Instead, for complex models (i.e. ©>1)
free-equilibrium points are generally complex [22]. Thus,
when O is small but © > 1, the comparison between E(®) and
E(1) is unclear and becomes dependent on the distribution.
However, E(®) > EQ1) is expected to hold with the increase
of free-equilibrium points. These results show that the com-
plexity of a model can be characterized by its number of free-
equilibrium points (), which are a function of the polynomial
degree and system’s dimension.

As in the univariate case, stability in the multivariate case
is related to the feasibility problem [36]. In multidimensional
systems, we do not necessarily need an asymptotically stable
free equilibrium point for the existence of species coexistence
[35,44]. For example, species coexistence can be possible
when there exists both a trajectory from the initial condition
towards any of the feasible free equilibria and if after some
sufficiently large time, the maximum distance between the
feasible equilibrium and the trajectory is bounded [45]. That
is, in the presence of an attracting direction in any of the feas-
ible free-equilibrium points, species coexistence is possible
given an appropriate initial condition [22]. Thus, as we
have discussed for the one-dimensional case (where a stable
equilibrium is typically followed by an unstable one), increas-
ing the number of feasible free-equilibrium points alone
increases on average the probability of the existence of at
least one trajectory compatible with such points. For example,
let us assume a scenario where we have all repelling feasible
free-equilibrium points (i.e. given an unstable system), then
adding an extra feasible free-equilibrium point increases the
probability of the existence of a non-repeling direction and
consequently attaining coexistence. In the next sections,
we test our hypotheses above by illustrating the expected
behaviour of specific multidimensional models using modifi-
cations to the linear LV model with HOIs and nonlinear
functional responses.

3.1. Higher-order interactions
The multidimensional model with HOIs can be generally
written as [23]

de m'—1
F = Ni(ri —+ Z Z aijljz,.'_,lele]'Z .. .N]',),

I=1 1<i<p<...<ji<n

i=1,...,n,
(3.3)

where the r’s represent species growth rates, m’ is the inter-
action order (with m’ =2 we recover the linear LV model),
double indexed a’s represent pairwise species interaction
coefficients, and the remaining a’s correspond to HOIs.
Note that the feasibility problem in Model (3.3) is identical
to the feasibility problem of dN;/dt = Nifi(N)—which is the
same as the feasibility problem studied in Model (3.1). That
is, in both cases, the feasibility problem involves solving
the multivariate polynomial system f;(N*) =0 fori=1, 2, ...,
n. Hence, without loss of generalization, we can think of
the feasibility problem of a general fractional polynomial
system as that of an LV model with HOIs.

Following our analysis of one-dimensional systems,
let us assume that in Model (3.3), the #'s and the a’s are
all Gaussians iid. with mean zero (the variance does
not affect the probability of feasibility or the location of
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Figure 2. Probability of feasibility increases as a function of systems’ dimension and polynomial degree. Panel (a) shows the probability of feasibility (i.e. pgn, m’))
as a function of system size n and interaction order m’ in the linear Lotka—Volterra (LV) model (i.e. pg{n, m" = 2)) and modifications with higher-order interactions
(i.e. pgln, m' >2)). In general, probabilities decrease with system size, but increase as a function of interaction order. Panel (b) shows the relative increase in
the probability of feasibility of modified models compared to the linear LV model (i.e. pgln, m’)/p(n, 2)). The higher the system size and interaction order,
the higher the relative increase. Panel (c) shows the relative increase in the probability of feasibility of modified models compared to lower degree models
(i.e. pgln, m')Ipg(n, m" — 1)) for n=2, 3, 4 species communities. The higher the interaction order, the higher the saturation and, in turn, the lower the relative
increase. Note that parameters (s and the d’s) in equation (3.3) are all assumed to be standard Gaussians i.i.d. with zero mean and unit variance.

free-equilibrium points since for any constants ¢ # 0, the roots
of the multivariate polynomial system cf;(N*) =0 fori=1, 2,
..., n do not change). For illustration purposes, let us consider
multispecies systems of dimension two, three, and four (i.e.
n=2, 3, 4) with interaction order given by m’'=2, 3, 4, 5, 6.
Then, we define pg(n, m’) as the probability of feasibility
with n species and interaction order m'. The probability of
feasibility is calculated using the PHClab package [42],
which numerically solves the polynomial system defined by
equation (3.3) after setting dN;/dt=0 and deleting N; from
the right-hand side (r.h.s.). Under a generic choice of par-
ameter values, it has been shown [22] that the number of
free-equilibrium points is given by ©@=(m'—1)". It is also
well known that in the case of the linear LV model (i.e.
m' =2, @=1) under an arbitrary choice of parameter values
(distribution centred on zero), the probability of feasibility
is given by pg(n, 2)=1/2" for all n [46,47]. However, as in
the one-dimensional case, figure 2a shows that when HOIs
are added, the probability of feasibility increases as a function
of the polynomial degree 1'. The figure also shows that if two
multispecies models have the same polynomial degree 17/, the
one with the lower dimension n exhibits a higher probability
of feasibility (i.e. pg(n1, m’) > pc(ny, m') for all m' if and only if
11 <1y). This result can be expected from the fact that the
probability of feasibility in a system decreases on average
as the number of species increases [47,48]. Note that if two
multispecies models have the same interaction order m', but
different dimension n, they also differ in the number of
model parameters and free-equilibrium points ©.

Next, we use the results above to study how the explanatory
power of feasibility with complex models changes relative to the
linear LV model. Figure 2b shows that multispecies models with
the same interaction order m’ > 2 exhibit a relative increase in the
probability of feasibility compared to the linear LV model (i.e.
pcn, m')/pcn, 2)) as a function of their dimension n. For
example, adding up to quadratic terms (i.e. ' = 3), the relative
probability of feasibility increases by a factor of 1.5, 2 and 2.6
for 2,3 and 4 species, respectively. Note that increasing the inter-
action order substantially increases the number of model
parameters in a high-dimensional system, which turns into
high amplifications in probability. Nevertheless, figure 2c

shows that this relative increase in the probability of feasi-
bility reduces as more parameters are added (.e. pg(n, m')/
pc(n, m’ —1)). That is, adding extra parameters to a multispecies
model, that is already defined by a large number of parameters,
increases the relative probability of feasibility less than in a
multispecies model with fewer number of parameters. This
implies that the largest relative increase in the probability of
feasibility will happen when adding HOIs to the linear LV
model with a large number of species.

3.2. Nonlinear functional responses and parameter

restrictions

The cases above did not consider any sort of parameter
restrictions, hence we now shift our focus to study how the
probability of feasibility with complex multispecies models
changes as a function of sign restrictions. Typically, these
restrictions are imposed into models to specify particular struc-
tures and dynamics, such as antagonistic, competitive and
mutualistic [5]. In particular, these dynamics are expressed
and modified through a variety of nonlinear functional
responses [6,24]. Hence, to explicitly incorporate functional
responses into our general multidimensional model (equation
(3.1)), we use the form

dN; 1
d_t, = N;(ri + a;iN; — Z aiNjy, i=1,...,n,  (34)
1<j<n
i#i
where
1, m// —
by = N2 m' =23, ... (5

A’ -17
1+Zke,/(‘ ; By q6,) N}
96

Functional responses (i.e. ¢’s), which are quotients of two
polynomials determined by the abundances of the prey, are
dependent on the parameters: m", p’s, q’s, I’s and h’s. The
parameter m" in equation (3.5) indicates the type of the func-
tional response (i.e. Type I, Type II, and Type III functional
responses are represented by m”=1, m"=2, and m" =3,
respectively). For any pair of species (ij), the functions
p(i, j) and q(i, j) represent the indices of the prey (or resource)
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and predator (or consumer), respectively (i.e. if i is the prey of
j then p(i, j) =i and q(i, j) =). For each species k, we define I;
to be the set of indices that represent all their prey. By defin-
ing I; for each species, all connections between species are
known. To allow for different responses within the same
species, for every predator q(i,j), we define I'y;j) to be a
subset of I,;;, which contains the index of the prey p(,j)
(e pGj)elyu)Cly. The ks in equation (3.5
are constants and represent prey handling time in Type II
functional responses. Note that the #’s and the a’s
continue to represent species’ growth rates and interaction
coefficients, respectively.

It has been common to use forms of functional responses
where the ¢’s are functions of the abundance of a single prey
for which p(i, j) is the only element in I'y(; j, [6]. Nevertheless,
the ¢'s can also be functions of the abundances of all prey,
making I'y ;) = I,/ Here, we consider four commonly used
cases: Type I, Type II with I';;jy=1I, (i.e. Beddington-
DeAngelis functional response), Type II with Iy, = {p(i, j)}
and Type III with Iy ;) = {p(i, j)}. We denote these responses
by Ty, Tom, Tas and T3, respectively. Note that in equation
(3.5) ¢;j=¢;;; however, this symmetry can be broken to allow
for more generalized types of functional responses by repla-
cing the double subscript constant hy,;) with a triple
subscript constant /i ;; in equation (3.5).

In Model (3.4), the a’s are not necessarily restricted to any
particular value or sign. However, in predator—prey models,
a;; and a; have opposite signs for every i#j. Moreover, the
ratio laq(i,j),p(i,j)l / lap(i,j),q(i,j)ll which is denoted by €ij, is
usually a constant between 0 and 1, and reflects the fraction
of prey that is converted into a predator’s abundance. This
implies that the probability of feasibility with functional
responses (or higher-order terms in general) can be different
when adding or not parameter restrictions (e.g. sign restric-
tions defining who eats whom). Thus, to study the effect of
sign restrictions in the coefficients of a’s, we rewrite Model
(3.4) as

dN;
5 t’ = Ni(r; + a;iN; — Z a;iNjij + Z € jiNj by,
JESAL jEL (36)
di=1,...,n,

where S;=1{1,2, ..., n}\li} (backslash symbol means set
difference) and all a;/s are non-negative except when i=j
(unrestricted in sign).

Additionally, it is worth noticing that the feasibility in
Model (3.4) is dependent on the common numerator of its
r.h.s.,, and the solution becomes similar to the previous case
of an LV model with HOIs, where parameters are linked.
That is, the higher the diversity and order of functional
responses added into a model, the higher the order of terms
added to the numerator of the r.h.s. of equation (3.4). To
show this, let us write all ¢;/'s as quotients of two polynomials
¢ = d)}f / qb? . Thus, equation (3.4) has a common denominator
given by @&; = Ilies, ¢, whose number of terms and leading
order depend on the specified functional responses. Then, let
us define &; = <I>,'<15}].l / qb?- , where @ is the same as @; but
with the term d)f]? replaced by d)i?—which also depends on
the specified functional responses. This process implies that
the common numerator of the r.h.s. of equation (3.4) (after
deleting N; outside the bracket) is a multivariate polynomial
expressed in terms of species abundances given by the

following expression:

11 ®D; + a;;N; D; — Z 111]']\]]'@1‘]', i=1,2,...,n 3.7)
1<j<n
j#i

Therefore, the roots of equation (3.7) determine the free-
equilibrium points of equation (3.4), allowing the common
numerator of the r.h.s. of equation (3.6) to be written in a
form similar to equation (3.7). Note that when moving from
Type Ty to Ty and then to Ti, the order of added terms
increases. Moreover, when T, functional responses are
used, which are functions of all prey abundances of a specific
predator, there will be fewer distinct denominators in each
line of equation (3.4). This is because all prey of a specific
predator will have the identical denominator of equation
(3.5), and, in return, it will have fewer higher-order terms
added to the numerator in equation (3.7) than what would
be added by Tys.

To numerically compute the probability of feasibility for
different types of functional responses (i.e. Ty, Tz, T2s and
Tss), we consider the following models and parameter distri-
butions. Unrestricted Model (M;p: Model (3.4) is used to
represent species dynamics (the parameters are a’s, h’s and
r's) and the distribution of parameters is given by (i) all
a’s are uniform in [—+v/3, V3], (i) all #s are uniform in
[—v/3, V3] except for r; (uniform in [0, 2+/3]) and r,, (uniform
in [-2v/3, 0], and (ii) all #’s are uniform in [0, 2v/3] (notice
that all these parameters have a unit variance). Restricted
Model (Mg): Model (3.6) is used to represent species dynamics
(the parameters are a’s, I'’s, ’s and the €’s) and the distribution
of parameters is given by (i) all 4;/s are uniform in [0, 2v/3]
except when i=j (a;/s are uniform between [—+/3, V3D,
(i) all #’s are uniform in [—+/3, v/3] except for r; (uniform in
[0, 24/3]) and r,, (uniform in [—2+v/3, 0), (iii) all #’s are uniform
in [0, 2v/3], and (iv) all €’s are uniform in [0, 1]. In addition, we
assume an interaction network defined by p(i, j) = min(, j) for
every 1<1i, j<n, where i #j (i.e. all species are connected to
each other). This assumption requires that I, ={1, 2, ..., k— 1}
for all k where I; is an empty set (i.e. every species is a
predator of all lower indexed species and is a prey to all
higher indexed species). Next, we compute the probability of
feasibility p(n, type, model) for n-species systems (n=2, 3, 4).
Note that p(2, Tz, M) =pQ2, Tz, My for i={U, R} as the
solo predator in the network has a single prey. These para-
meter values are chosen to simply illustrate the effect of sign
restrictions and are not intended to reflect any specific
ecological process.

In general, as the complexity of a model increases (either
with dimension or with adding extra processes), its number
of roots (free-equilibrium points) also increases, which
leads to an increase in the computational time needed to
solve multivariate polynomials for a single trial. Thus, any
exponential increase in the number of free-equilibrium
points makes computing the probability of feasibility a hard
task. Thus, to reasonably compute these probabilities, we
use 25000 trials for each combination p(n, type, M,).
The results are presented in table 1. Note that the proba-
bility of feasibility agrees with the theoretical value p(n, Ty,
Mp)=1/2" up to 2 digits, which is a good indicator for
comparison purposes.

Table 1 shows that the number of free-equilibrium points
(©) of both models (M;; and Mg) increases as a function of
the polynomial degree, i.e. functional responses T, Tz, Tos
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Table 1. Probability of feasibility and number of free-equilibrium points as a function of system’s size and polynomial degree (functional response). For n =2,
3, 4 species systems (columns) and four different types of functional responses T;, Ty, Tos T (rows), the table shows the probability of feasibility for sign-
unrestricted models (py = p(n, type, My)) and sign-restricted models (pg = p(n, type, Mg)). For each of these combinations, the table also shows the average
(the median is almost identical) number of free-equilibrium points (@) computed using the solver PHClab (with default settings). Note that © can numerically
fluctuate either because parameters yield fewer roots or because the solver eliminates leading terms with small coefficients (which do not affect the existence
of a feasible root). Probabilities decrease with system size. Both probabilities and free-equilibrium points tend to increase with polynomial degree. For each
system size, py increases with the value of @. Similarly, for © > 1, pp increases with the value of ©.

T, 1 02543 0.5378 1
O e I
T, ' 5 088 03486 3 '

and T3, in that order. Focusing on the unrestricted model (M)
and controlling for the number of species n (for any 7, columns
in table), table 1 shows that the increase in the probability of
feasibility is consistent with the increase in © (i.e. complexity).
That is, p(n, T1, M) <p(, Ty, M) <p(n, Tos, My) <p(n, Tss,
My). These inequalities are also present in the restricted
model (Mg), except for n=2 and n =3, where p(n, T;, Mg) >
p(n, Tz, Mg). However, at n=4 (under a higher © when T5,,
is used) the inequality is recovered again. It is worth mention-
ing that unlike the case of the LV model with HOIs, where both
the number of free-equilibrium points and the number of par-
ameters increase as a function of the polynomial degree, in the
case of functional responses T5,,, Tas and Tz, the number of
parameters is constant. Nevertheless, the increase in the prob-
ability of feasibility, while not as high as in the LV model with
HOIs, is still observed despite fixing the number of parameters
and whether the a’s are restricted in sign or not.

The analysis above allows us to make a distinction
between complex models and the linear LV model. Table 1
reveals that the probability of feasibility is a monotonic and
saturating function of complexity when ©>1 (e.g. moving
from type Ty, to Ty to T3,). However, when we compare
cases with @=1 against cases with ©@> 1, the probability of
feasibility of a linear LV model (i.e. @=1) will be exceeded
only as soon as a minimum level of complexity (&%) is
reached. For example, under the restricted model Mg, the
probability of feasibility will exceed that of the linear LV
model when @>23 for n=2, 3, 4. This level of complexity
(@) differs for each distribution. By contrast, under the unrest-
ricted model My, this level decreases to ©>3 for all n’s
regardless of functional response.

The previous results can be explained by noticing the
fundamental difference between complex models and the
linear LV model. Under arbitrary model parameters, the solo
free-equilibrium point in LV model must be real (i.e. all its coor-
dinates are real). Instead, in complex models free-equilibrium
points are generally complex [22]. Thus, the initial entrance
to the complex domain represents a handicap for complex
models, yet this is quickly recovered by the increase of free-
equilibrium points. These concepts can be verified analytically:
defining the probability of feasibility p(©) by the form
1-(1—E@)/6)°, let us assume that p(©) < p(1), leading to
E®) < 01 — (1 — E1)'/°. If O increases, the rhs. of the
inequality will approach —In(1 — E(1)) independently of ©.

0.1256 02299 1 0.0662 00923
S et et o
o S
0.1807 0.2802 289 01347 10,2422

However, we know already that E(@) increases with ©.
This implies the existence of a minimum ©* for which
E(@") > —In(1 — E(1)) and subsequently p(@ *) > p(1). Because
of the expected drastic increase in © as a function of the dimen-
sion of the system [22], it can be proved that no matter the
parameter restrictions imposed in a model, ©* can always be
exceeded by increasing either dimensionality or polynomial
degree. This increase will yield a higher probability of feasi-
bility than in the linear LV model regardless of the specific
mechanisms invoked.

Indeed, table 1 shows that the relative increase in the prob-
ability of feasibility compared to the linear LV model (i.e. p(n,
type, M;)/p(n, T1, My, for i ={U, R}) is a function of n for any
given functional response. For instance, when Ts, is used as
functional response, the probability for models M; and Mg
increases by a factor of 1.1, 1.4, 2 and 0.6, 1.2, 2.6 for n=2, 3,
4 species, respectively. This increasing pattern is also consistent
using Ty, and Tp,. Therefore, adding nonlinear processes to a
linear LV model (T;) increases the number of free-equilibrium
points; which, in turn, contributes to the increase in the prob-
ability of feasibility—this is further magnified as the number
of species increases. Additionally, note that the number of par-
ameters is fixed for the functional responses Ty, T»s and T3,
which differ only by a few terms (the h’s) compared to T;.
Therefore, unlike the case of HOISs, the relative increase in the
probability of feasibility is not necessarily larger when
moving from Type I to Type II (either Ty, or Tys) than the
increase observed when moving from Type II to Type III. For
example, focusing on the model Mg with n=4 species and
moving from T; to Tys and then from Ty, to Ts,, the relative
increase is 1.3 and 2, respectively.

It is also worth noticing that while functional responses T5,,,
Tos and T34 are widely used in the literature, the functional
response Ty, can be considered a more realistic type [6].
Interestingly, table 1 shows that models with T5,, have fewer
free-equilibrium points (less complexity) than the other types,
and their probability of feasibility is the closest to the linear
LV model. This can suggest that realistic models should deviate
the least from the probability of feasibility of the linear LV
model. Nevertheless, the difference in its probability of
feasibility compared to the linear LV model will increase
with dimensionality. This is evident by the number of free-
equilibrium points, which exceeds that obtained from the LV
model with HOIs at interaction order m’' =3 (i.e. adding up to
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quadratic terms to the linear LV model results in 2" free equili-
brium points) at n>3—implying at least an exponential
increase in © with dimensionality. Focusing on T»,,, if the sym-
metry is broken in equation (3.5) by replacing a few hy 4 j with
hy,ij (which can differ only slightly from 4 ), the number of
free-equilibrium points can go beyond that of T3, increasing
the probability of feasibility significantly. Furthermore, the
probability of feasibility with functional responses (under par-
ameter restrictions) is smaller than in the linear LV model for
n =2, 3 species except when n =3 and the functional response
Tss is used. However, this pattern already disappears with
four species, confirming that one cannot directly extrapolate
our understanding of ecological dynamics from low to high
dimensions [39,49,50].

4. Discussion

One of the main goals in ecological research is to understand
the main factors that contribute to the persistence of multispe-
cies systems [5,51]. While simple ecological models (such as the
linear LV model) are typically modified for the purpose of
adding realism and dynamical richness, tractability is usually
compromised [6,12]. For example, it is well known that in the
linear LV model (Type I), the number of feasible equilibrium
solutions (a crucial condition for the persistence of ecological
systems) is always one regardless of the dimension of the
system, making this a limited but tractable model [35,52].
By contrast, the addition of higher-order terms (specifically,
polynomial fractions such as nonlinear functional responses
and higher-order interactions) invariantly increases the
number of free-equilibrium solutions, making these rich but
untractable models [22]. This reveals that without knowing
the exact parameter values in a model, it is necessary to
study from a probabilistic point of view the contribution of eco-
logical processes (both mechanistic and phenomenological) to
explaining the dynamics of multispecies systems.

Focusing on the feasibility of ecological systems (defined
here as the probability of exhibiting at least one positive real
root under an arbitrary choice of parameter values) in com-
plex models (defined here as modifications to the LV model
using multivariate polynomial fractions and with ©>1), we
have shown that the probability of feasibility is a monotonic
and saturating function of its complexity, regardless of the
specific mechanism invoked. We have characterized this
complexity by the number of free-equilibrium points (©)
generated by a model, which is a function of the model’s
polynomial degree and dimension. We have found that the
probability of feasibility in a complex model (@>1) will
exceed the one in a linear LV model (@ = 1) as soon as a mini-
mum level of complexity (6%) is reached. Importantly, this
minimum level is modulated by parameter restrictions, but
can always be exceeded via increasing the polynomial
degree or system’s dimension.

It is worth recalling that the number of free-equilibrium
points in a model and its number of parameters are two differ-
ent descriptors [22]. For example, the LV model with Type II
functional responses has the same number of parameters as
that of Type III, yet the number of free-equilibrium points is
different in both models. This difference is important as we
have shown that it is expected that the model with more free-
equilibrium points will have a higher probability of feasibility.
These findings could be perceived as a desirable advantage

for complex models, as they can provide a higher probability [ 8 |

of generating a feasible multispecies system (and richer
dynamics). Unfortunately, this increase in probability happens
no matter what type of specific mechanism is added, it all
depends on its polynomial form—Ilimiting the capacity to dis-
tinguish the actual contribution of a specific ecological process
to the feasibility of a multispecies system.

For example, studies have investigated population
dynamics resulting from mutualism by employing functional
responses based on density-dependent benefits and costs
[53-55], i.e. the ¢'s in equation (3.4) are replaced with ¢ — ¢
where functional responses are modified to add a cost term.
However, as we have shown, adding cost terms to penalize
for some benefits will not decrease the probability of feasibility,
actually they will increase it. Similarly, in the study of food-web
models [28], it is common practice to use multispecies func-
tional responses (i.e. polynomial fractions of more than a
single species) in order to include the effect of other predators
or prey [56]. Note that the Types I, II, III functional responses
are functions of the prey density only—a single species. But,
as we have shown, any of these modifications can only increase
the probability of feasibility. As a third example, the simple and
ecologically motivated idea of introducing carrying capacities
to limit the growth of species (i.e. the total growth rate G; of
species i is replaced by G;(1 — N;/K;), where K; is its carrying
capacity) [29] also increases the probability of feasibility.
Thus, regardless of whether a higher-order term (nonlinear
mechanism) is ecologically well motivated, expected to limit
or enrich dynamics, or has absolutely no meaning, it is
expected to increase the probability of feasibility in a multispe-
cies model. This suggests that the explanatory contribution to
feasibility of a proposed ecological mechanism must be evalu-
ated by its deviation from the expected behaviour of its
polynomial form.

The contribution of different ecological processes has been
studied by showing how additional terms can help us to fit
observed data [54]. Yet, fitting data has the same effect as intro-
ducing parameter restrictions [22]. Hence, under this fitting
process, it is only expected that any additional process will
increase on average the probability of explaining the dynamics
of the feasible system. Furthermore, under certain cases,
adding more process into a model can leave the probability
the same as in the original restricted case (e.g. a linear LV
mutualistic model with no self-regulation: adding negative-
density dependence will increase the probability, while
adding positive density dependence will leave the probability
invariant; yet, this involves modifying an already restricted
model rather than restricting a modified model). Thus, studies
using fitting methodologies should contrast their results by
using out-of-sample validations [33].

Our results motivate us to reconsider what constitutes a
realistic model, or how much complexity can be appropriate
to add into a model to mimic realistic ecological mechanisms.
Do we need models to fit perfectly data? Or do we need
models to explain and predict dynamics with minimal avail-
able information? Because it is virtually impossible to know
the exact form of the equations governing the dynamics of mul-
tispecies systems, as well as the exact value of initial conditions,
we believe that a first step towards answering these questions
implies understanding the extent to which the complexity of
a model provides an advantage over other models by virtue
of their specific mechanisms invoked and not simply by their
polynomial form. Otherwise, any mechanism can explain
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equally well any ecological dynamics, introducing the problem
of model or structural unidentifiability [57]. Thus, in order to
advance our causative knowledge of ecological dynamics, we
need to understand the expected outcomes of our proposed

models and their alternative hypotheses.
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