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Abstract. We present a proof of the almost sure existence, uniqueness and coalescence of directed semi-infinite geodesics in planar

growth models that is based on properties of an increment-stationary version of the growth process. The argument is developed in the

context of the exponential corner growth model. It uses coupling, planar monotonicity, and properties of the stationary growth process

to derive the existence of Busemann functions, which in turn control geodesics. This soft approach is in some situations an alternative

to the much-applied 20-year-old arguments of C. Newman and co-authors. Along the way we derive some related results such as the

distributional equality of the directed geodesic tree and its dual, originally due to L. Pimentel.

Résumé. Nous présentons une preuve d’existence, d’unicité, et de coalescence presque sûre de géodésiques semi-infinies dirigées

dans des modèles de croissance planaires. La preuve est basée sur des propriétés d’une version stationnaire du processus de croissance.

L’argument est développé dans le contexte du modèle de la percolation dirigée de dernier passage. Il utilise un couplage, une mo-

notonicité planaire, et des propriétés du processus de croissance stationnaire pour déduire l’existence de fonctions de Busemann, qui

elles-mêmes contrôlent les géodésiques. Cette approche élémentaire est dans certains cas une alternative aux arguments de C. Newman

et coauteurs, très utilisés depuis une vingtaine d’années. En cours de route, nous obtenons des résultats connexes tels que l’égalité

distributionnelle de l’arbre de géodésiques dirigées et de son dual, initialement due à L. Pimentel.
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1. Introduction

1.1. The corner growth model and its geodesics

The setting for the planar corner growth model (CGM) with exponential weights is the following. (�,S,P,�) is a

measure-preserving Z
2-dynamical system. This means that (�,S,P) is a probability space and � = (θx)x∈Z2 is a group

of measurable bijections that acts on � and preserves P: P(θxA) = P(A) for all events A ∈ S and x ∈ Z
2. The generic

sample point of � is denoted by ω. The random weights Y = (Yx)x∈Z2 are independent, identically distributed (i.i.d.) rate

1 exponentially distributed random variables on � that satisfy Yx(ω) = Y0(θxω) for each x ∈ Z
2 and almost every ω ∈ �.

The canonical choice is the product space � = R
Z

2

≥0 with translations (θxω)y = ωx+y , an i.i.d. product measure P and

the coordinate process Yx(ω) = ωx .

The last-passage percolation (LPP) process G = GY is defined for x ≤ y (coordinatewise order) on Z
2 by

Gx,y = G(x,y) = max
x•∈�x,y

|y−x|1∑

k=0

Yxk
. (1.1)
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Fig. 1. An example of an up-right path from (0,0) to (6,4) on the lattice Z
2 .

�x,y is the set of up-right paths x• = (xk)
n
k=0 that start at x0 = x and end at xn = y, with n = |y − x|1. By definition, the

increments of an up-right path satisfy xk+1 −xk ∈ {e1, e2}. A path can be equivalently characterized in terms of its vertices

or its edges. Both points of view are useful. See Figure 1 for an illustration. The zero-length path case is Gx,x = ωx . Our

convention is that

Gx,y = −∞ if x ≤ y fails. (1.2)

The shape function of the exponential CGM has been known since the seminal paper of Rost [18]:

g(ξ) = (
√

ξ1 +
√

ξ2)
2 for ξ = (ξ1, ξ2) ∈R

2
≥0. (1.3)

The shape theorem is the law of large numbers of the LPP process, uniform in all directions (Theorem 5.1 in [15],

Theorem 3.5 in [19]):

Theorem 1.1. Given ε > 0, there exists a P-almost surely finite random variable K such that

∣∣G0,x − g(x)
∣∣ ≤ ε|x|1 for all x ∈ Z

2
≥0 such that |x|1 ≥ K . (1.4)

An up-right path (xi)i∈I indexed by a finite or infinite subinterval I ⊂ Z is a geodesic if it is the maximizing path

between any two of its points:

Gxk ,x	
=

	∑

i=k

Yxi
for all k < 	 in I. (1.5)

Since the weight distribution is continuous, maximizing paths between any two points are unique P-almost surely. A

geodesic (xi)i∈Z≥0
indexed by nonnegative integers is called a semi-infinite geodesic started at x0, and a geodesic (xi)i∈Z

indexed by the entire integer line is a bi-infinite geodesic. A semi-infinite or bi-infinite geodesic x• is u-directed if

xn/n → u as n → ∞.

1.2. The purpose of the paper and its relation to past work

We address the existence, uniqueness and coalescence of semi-infinite geodesics in a given direction u. The results

themselves are not new. The purpose is to present an alternative proof of these known results.

Already for about two decades, geodesics and the closely related Busemann functions have been important in the study

of first- and last-passage growth models, and recently also in positive-temperature polymer models. Proof techniques for

the existence, uniqueness and coalescence of semi-infinite directed geodesics developed by C. Newman and co-authors

[13,14,16] have played a central role in this work. This approach controls the wandering of geodesics with estimates that

rely on assumptions on the limit shape, to show that each direction has a geodesic and each geodesic has a direction.

Almost sure coalescence is shown by a modification argument followed by a Burton–Keane type lack of space argument.

These techniques have been applied to great benefit in many models where sufficient solvability or symmetries enable

the verification of the hypotheses imposed on the limit shape. In the exponential CGM this proof was implemented by

P. A. Ferrari and L. Pimentel [10]. Examples of applications to LPP and positive-temperature polymers with quadratic

limit shapes appear in [1,2,4].

The proof developed in this paper replaces the estimates that control geodesics and the technical modification argu-

ments with a softer proof that comes from structural properties. This proof can be substituted for Newman’s proof in cases
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where sufficiently tractable increment-stationary versions of the growth process can be constructed. This may be possible

in some situations where shift-invariance and curvature are not available. This would be the case for example in models

with inhomogeneous parameters, such as those whose limit shapes are studied in [8].

As a consequence of our development we establish Pimentel’s distributional equality [17] of the directed geodesic

tree and its dual, without recourse to mappings between the CGM and the totally asymmetric simple exclusion process

(TASEP). It is useful to develop a proof of this result within the context of the growth model itself, for the purpose of

extension to growth models and polymer models that are not connected to particle systems. Pimentel [17] used this duality

to derive bounds on coalescence times.

1.3. Other related work

Recent work where coalescence of geodesics figures prominently include [11] on the CGM with general weights and

[6,7] on undirected first-passage percolation. These papers prove coalescence with the Licea–Newman argument. The

proof given here does not presently apply to the models studied there because the properties of their Busemann functions

are not yet sufficiently well understood.

Chaika and Krishnan [5] consider paths on a lattice defined by an ergodic field of nearest-neighbor “arrows”, or local

gradients. They use ergodicity and a very general volume argument to show that if coalescence fails, bi-infinite paths

exist. Theirs would be an alternative proof of the (iii)=⇒(i) implication for Busemann geodesics in Lemma 4.6 below.

Our argument is more model-specific and uses the equal distribution of Busemann geodesics and their duals.

1.4. Notation and conventions

Points x = (x1, x2), y = (y1, y2) ∈ R
2 are ordered coordinatewise: x ≤ y iff x1 ≤ y1 and x2 ≤ y2. The 	1 norm is |x|1 =

|x1|+|x2|. A path as a sequence of points (xk)
n
k=0 can be denoted by x• or by x0,n. Subscripts indicate restricted subsets of

the reals and integers: for example Z>0 = {1,2,3, . . .} and Z
2
>0 = (Z>0)

2 is the positive first quadrant of the planar integer

lattice. Boldface notation for special vectors: e1 = (1,0), e2 = (0,1), and members of the simplex U = {te1 + (1 − t)e2 :
0 ≤ t ≤ 1} are denoted by u, v and w. For 0 < α < ∞, X ∼ Exp(α) means that random variable X has exponential

distribution with rate α, in other words P(X > t) = e−αt for t > 0 and E(X) = α−1. Functional arguments can be

equivalently written as subscripts, as in B(x, y,ω) = Bx,y(ω).

2. Main results on directed semi-infinite geodesics

Here is a restatement of the assumption:

(�,S,P,�) is a measure-preserving Z
2-dynamical system and Y = (Yx)x∈Z2

are i.i.d. Exp(1) random variables on � that satisfy Yx(ω) = Y0(θxω) P-a.s.
(2.1)

The set of possible asymptotic velocities or direction vectors for semi-infinite up-right paths is U = {(t,1 − t) : 0 ≤
t ≤ 1}, with relative interior riU = {(t,1 − t) : 0 < t < 1}.

We start with the results that are almost surely valid for all geodesics and directions.

Theorem 2.1. Assume (2.1). Then the following statements hold with P-probability one.

(i) Each semi-infinite geodesic is u-directed for some u ∈ U .

(ii) For r ∈ {1,2} and each x ∈ Z
2, {xk = x + ker}k∈Z≥0

is the only semi-infinite geodesic that satisfies x0 = x and

limk→∞ k−1xk · e3−r = 0.

(iii) For each u ∈ U and x ∈ Z
2 there exists a u-directed semi-infinite geodesic that starts at x.

Parts (i)–(ii) together say that except for the trivial geodesics xk = x+ker with constant increments, every semi-infinite

geodesic is directed towards a vector u in the interior of the first quadrant.

The next theorem states properties that hold almost surely for a given direction u.

Theorem 2.2. Assume (2.1). Fix u ∈ riU . Then the following statements hold with P-probability one.

(i) For each x ∈ Z
2 there exists a unique u-directed semi-infinite geodesic πu,x = (π

u,x
k )k∈Z≥0

with initial point π
u,x
0 =

x. Each point π
u,x
k is a Borel function of the weights Y . For each pair x, y ∈ Z

2 these geodesics coalesce: that is,

there exists z ∈ Z
2 such that πu,x ∩ πu,y = πu,z.

(ii) There is no bi-infinite geodesic in direction u.
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Let Tu be the tree of all the u-directed semi-infinite geodesics {πu,x : x ∈ Z
2}. That is,

Tu =
⋃

x∈Z2

πu,x (2.2)

when we regard a geodesic as a collection of edges.

The dual lattice Z
2∗ of Z2 is obtained by translating all the vertices and (nearest-neighbor) edges of Z2 by the vector

e∗ = 1
2
(e1 + e2) = ( 1

2
, 1

2
). An edge of Z2 and an edge of Z2∗ are dual if they cross each other or, equivalently, intersect at

their midpoints. The unique dual of an edge e of Z2 is denoted by e∗, and similarly f ∗ denotes the dual of an edge f of

Z
2∗. In particular, if e = {x − ek, x} then e∗ = {x − e∗, x − e∗ + e3−k}, and e∗∗ = e.

The dual graph T ∗
u of the tree Tu is defined through the edge duality:

e∗ ∈ T ∗
u if and only if e /∈ Tu. (2.3)

Move the dual graph T ∗
u back on the original lattice by defining the graph

T̃u = −e∗ − T ∗
u . (2.4)

That is, edge {x − ek, x} ∈ T̃u if and only if edge {−x − e∗,−x − e∗ + ek} ∈ T ∗
u . The point of the next theorem is that T̃u

is also a tree of directed geodesics of an exponential CGM.

Theorem 2.3. Assume (2.1). Fix u ∈ U . Then there exists a collection Ỹ u = (Ỹ u
x )x∈Z2 of i.i.d. Exp(1) weights on

(�,S,P) with these properties.

(i) Ỹ u is a Borel function of the weights Y in (2.1) and Ỹ u
x (θyω) = Ỹ u

x−y(ω) ∀x, y ∈ Z
2.

(ii) P-almost surely T̃u is the tree of the unique u-directed semi-infinite geodesics of the LPP process GỸ u
defined as in

(1.1) with Y replaced by Ỹ u.

In particular, the tree T̃u is equal in distribution to Tu. The dual graph T ∗
u is also P-almost surely a tree.

The equality in distribution of Tu and the (shifted and reflected) dual graph T ∗
u was originally proved by Pimentel

(Lemma 2 in [17]). The weights Ỹ u are defined in (4.16) below.

As the final main results, we record some immediate consequences of the properties of Busemann functions, to be

described in the next section. Distributional properties of the geodesic tree Tu depend on a real parameter α ∈ (0,1) that

is in bijective correspondence with the direction u = (u1,1 − u1) ∈ riU . This bijection is defined by the equations

u = u(α) =
(

α2

(1 − α)2 + α2
,

(1 − α)2

(1 − α)2 + α2

)
⇐⇒ α = α(u) =

√
u1√

u1 +
√

1 − u1

. (2.5)

For example, α gives the distribution of the first step of the geodesic:

P
{
π

u,x
1 = x + e1

}
= α ∀x ∈ Z

2. (2.6)

This statement is proved after Lemma 4.1, after the proof of Theorem 2.1. Note however that the density of e1 steps

along the u-directed semi-infinite geodesic is u1, which is different from α, except in the special case u1 = α = 1
2

. This

points to the fact that understanding distributional properties along a geodesic is challenging. It is much easier to capture

properties transversal to geodesics, as the next theorem illustrates.

Call a point z ∈ Z
2 a source if z does not lie on πu,x for any x �= z. Call z a coalescence point if there exist x �= y in

Z
2 \ {z} such that πu,z = πu,x ∩ πu,y . Equivalently, z is a source if π

u,z−e1

1 = z − e1 + e2 and π
u,z−e2

1 = z − e2 + e1,

while z is a coalescence point if π
u,z−e1

1 = π
u,z−e2

1 = z. To complete the list of possibilities, call z a horizontal point if

π
u,z−e1

1 = z but π
u,z−e2

1 = z − e2 + e1, and a vertical point if π
u,z−e1

1 = z − e1 + e2 but π
u,z−e2

1 = z. See Figure 2 for an

illustration.

Fix an antidiagonal A = {(N + j,−j) : j ∈ Z} of the lattice Z
2, for some N ∈ Z. Let ξj be the random variable that

takes one of the values {s, c, h, v} to record whether point (N + j,−j) is a source, a coalescence point, a horizontal point,

or a vertical point.
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Fig. 2. An example of a source (s), a coalescence point (c), a horizontal point (h), and a vertical point (v). The arrows point from x to π
u,x
1

. There is

an arrow from each vertex x but only the arrows needed for the definitions are displayed in the figure.

Theorem 2.4. Assume (2.1). Fix u ∈ U and let α = α(u). Then {ξj }j∈Z is a stationary Markov chain with state space

{s, c, h, v}, transition matrix

P =

⎡
⎢⎢⎣

s c h v

s 0 1 − α α 0

c α 0 0 1 − α

h 0 1 − α α 0

v α 0 0 1 − α

⎤
⎥⎥⎦ (2.7)

and invariant distribution

μ(s) = μ(c) = α(1 − α), μ(h) = α2, μ(v) = (1 − α)2.

In particular, both sources and coalescence points of semi-infinite geodesics in direction u = (u1,1 − u1) have density

α(u)
(
1 − α(u)

)
=

√
u1(1 − u1)

(
√

u1 +
√

1 − u1)2

on the lattice. This density is maximized at 1/4 by the diagonal direction u = ( 1
2
, 1

2
).

Organization of the rest of the paper

As mentioned, the purpose of the paper is to present a particular proof of Theorems 2.1–2.3. This proof has three main

steps.

(i) Construction of the increment-stationary LPP process.

(ii) Proof of the existence and properties of Busemann functions, by using couplings with the increment-stationary LPP

and monotonicity.

(iii) Control of geodesics with the Busemann functions.

Full details of steps (i) and (ii) are omitted from this paper because these steps are spelled out in lecture notes [19]. We

review these arguments briefly in Section 3. The work of this paper goes towards step (iii). This is done in Section 4 that

develops Busemann geodesics and proves the theorems of Section 2. A final Section 5 relates the geodesics constructed

in Section 2 to competition interfaces.

3. Increment-stationary LPP and Busemann functions

3.1. Preliminaries

A down-right path is a bi-infinite sequence Y = (yk)k∈Z in Z
2 such that yk − yk−1 ∈ {e1,−e2} for all k ∈ Z. The lattice

decomposes into a disjoint union Z
2 =H− ∪Y ∪H+ where the two regions are

H− =
{
x ∈ Z

2 : ∃j ∈ Z>0 such that x + j (e1 + e2) ∈ Y
}

(3.1)

to the left of and below Y and

H+ =
{
x ∈ Z

2 : ∃j ∈ Z>0 such that x − j (e1 + e2) ∈ Y
}

(3.2)

to the right of and above Y .

It will be convenient to summarize certain properties of systems of exponential weights in the following definition.
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Definition 3.1. Let 0 < α < 1. A stochastic process {ζx, Ix, Jx, ηx : x ∈ Z
2} is an exponential-α last-passage percolation

system if the following properties (a)–(b) hold.

(a) The process is stationary under lattice translations and has marginal distributions

ζx, ηx ∼ Exp(1), Ix ∼ Exp(α) and Jx ∼ Exp(1 − α). (3.3)

For any down-right path Y = (yk)k∈Z in Z
2, the random variables

{
ηz : z ∈H−}

,
{
t
(
{yk−1, yk}

)
: k ∈ Z

}
and

{
ζx : x ∈H+}

(3.4)

are all mutually independent, where the undirected edge variables t (e) are defined as

t (e) =

{
Ix if e = {x − e1, x},
Jx if e = {x − e2, x}.

(3.5)

(b) The following equations are in force at all x ∈ Z
2:

ηx−e1−e2
= Ix−e2

∧ Jx−e1
, (3.6)

Ix = ζx + (Ix−e2
− Jx−e1

)+, (3.7)

Jx = ζx + (Ix−e2
− Jx−e1

)−. (3.8)

Equations (3.7)–(3.8) imply this counterpart of (3.6):

ζx = Ix ∧ Jx . (3.9)

An exponential-α LPP system can be constructed explicitly in a quadrant as follows. Assume given independent

weights {Iie1
: i ≥ 1} on the x-axis, {Jje2

: j ≥ 1} on the y-axis, and {ζx : x ∈ Z
2
>0} in the bulk (interior) of the first

quadrant, all with marginal distributions (3.3). Use equations (3.6)–(3.8) to define inductively in the northeast direc-

tion weights {ηx−e1−e2
, Ix, Jx : x ∈ Z

2
>0}. Then property (a) from Definition 3.1 above can be verified inductively. Now

{ζx+e1+e2
, Ix+e1

, Jx+e2
, ηx : x ∈ Z

2
≥0} is an exponential-α LPP system restricted to a quadrant.

Furthermore, if we define the LPP process {Gα
x : x ∈ Z

2
≥0} by Gα

0 = 0,

Gα
ke1

=
k∑

i=1

Iie1
for k ≥ 1, Gα

	e2
=

	∑

j=1

Jje2
for 	 ≥ 1, (3.10)

and inductively

Gα
x = ζx + Gα

x−e1
∨ Gα

x−e2
for x ∈ Z

2
>0, (3.11)

then I and J are the increments:

Ix = Gα
x − Gα

x−e1
and Jx = Gα

x − Gα
x−e2

. (3.12)

All this is elementary to verify and contained in Theorem 3.1 of [19]. {Gα
x : x ∈ Z

2
≥0} is an increment-stationary LPP

process.

To produce an exponential-α LPP system on the full lattice as a function of the i.i.d. weights Y of assumption (2.1),

we take limits of LPP increments in the direction u(α) determined by (2.5). For the statement we need a couple more

definitions.

Define an order among direction vectors u = (u1,1 − u1) and v = (v1,1 − v1) in U according to the e1-coordinate:

u ≺ v if u1 < v1. (3.13)

Geometrically: u ≺ v if v is below and to the right of u. Bijection (2.5) preserves this order.
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Definition 3.2. A measurable function B : �×Z
2 ×Z

2 → R is a covariant cocycle if it satisfies these two conditions for

P-a.e. ω and all x, y, z ∈ Z
2:

B(ω,x + z, y + z) = B(θzω,x, y) (stationarity),

B(ω,x, y) + B(ω,y, z) = B(ω,x, z) (additivity).

K denotes the space of covariant cocycles B such that E|B(x, y)| < ∞ ∀x, y ∈ Z
2.

3.2. Busemann functions

Existence and properties of Busemann functions are summarized in the next theorem.

Theorem 3.3. Assume (2.1). Then for each u ∈ riU there exist a covariant cocycle Bu = (Bu
x,y)x,y∈Z2 and a family of

random weights Xu = (Xu
x )x∈Z2 on (�,S,P,�) with the following properties.

(i) For each u ∈ riU , process

{
Xu

x ,Bu
x−e1,x

,Bu
x−e2,x

, Yx : x ∈ Z
2
}

is an exponential-α(u) last-passage system as described in Definition 3.1. With P-probability one, part (b) of Defini-

tion 3.1 holds simultaneously for all u ∈ riU .

(ii) There exists a single event �0 of full probability such that for all ω ∈ �0, all x ∈ Z
2 and all u ≺ v in riU we have the

inequalities

Bu
x,x+e1

(ω) ≥ Bv
x,x+e1

(ω) and Bu
x,x+e2

(ω) ≤ Bv
x,x+e2

(ω). (3.14)

Furthermore, for all ω ∈ �0 and x, y ∈ Z
2, the function u �→ Bu

x,y(ω) is right-continuous with left limits under the

ordering (3.13).

(iii) For each fixed v ∈ riU there exists an event �
(v)
1 of full probability such that the following holds: for each ω ∈ �

(v)
1

and any sequence vn ∈ Z
2 such that |vn|1 → ∞ and

lim
n→∞

vn

|vn|1
= v, (3.15)

we have the limits

Bv
x,y(ω) = lim

n→∞

[
Gx,vn(ω) − Gy,vn(ω)

]
∀x, y ∈ Z

2. (3.16)

Furthermore, for all ω ∈ �
(v)
1 and x, y ∈ Z

2,

lim
u→v

Bu
x,y(ω) = Bv

x,y(ω). (3.17)

Remark 3.4. The process u �→ Bu is globally cadlag (part (ii)) and at each fixed v limit (3.17) holds almost surely. For

each x, y ∈ Z
2, u �→ Bu

x,y is in fact a jump process [9]. The cadlag property is merely a convention. For certain purposes

it can be useful to work with two processes Bu
+(x, y) and Bu

−(x, y) such that u �→ Bu
+ is right-continuous with left limits,

u �→ Bu
− is left-continuous with right limits, and Bu

+ = Bu
− almost surely for a given u. Our results in Theorems 2.2–2.4

are almost sure statements for a fixed u, and hence we could use either process Bu
+ or Bu

−.

Part (i) of Theorem 3.3 together with (3.6) and (3.9) imply

Yx = Bu
x,x+e1

∧ Bu
x,x+e2

(3.18)

and

Xu
x = Bu

x−e1,x
∧ Bu

x−e2,x
. (3.19)

From the exponential distributions of Bu
0,e1

and Bu
0,e2

and the explicit formula (1.3) of the shape function follows

(
E

[
Bu

0,e1

]
,E

[
Bu

0,e2

])
=

(
1

α(u)
,

1

1 − α(u)

)
= ∇g(u). (3.20)

This is natural since by (3.16) Bu can be viewed as the “microscopic gradient” of the passage time.
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The next theorem gives strong uniqueness of the process {Bu,Xu}.

Theorem 3.5. Assume (2.1) and let {Bu,Xu : u ∈ riU} be the process given by Theorem 3.3. Fix 0 < ρ < 1. Suppose that

on (�,S,P) there are random variables (Ux,Ax−e1,x,Ax−e2,x)x∈Z2 such that {Ux,Ax−e1,x,Ax−e2,x, Yx : x ∈ Z
2} is an

exponential-ρ last-passage system as described in Definition 3.1. Then Ux = X
u(ρ)
x , Ax−e1,x = B

u(ρ)
x−e1,x

and Ax−e2,x =
B

u(ρ)
x−e2,x

for all x, P-almost surely.

3.3. The idea of the proof of Theorems 3.3 and 3.5

These theorems are proved in detail in Section 4 of lecture notes [19]. This type of proof was introduced first in the context

of the positive-temperature log-gamma polymer in [12]. We sketch the main idea. The essential point for the message of

this paper is that coalescence of geodesics is not used in the proof, only couplings, monotonicity, and properties of the

increment-stationary LPP processes of (3.11).

In (3.16) let v = u(α) defined by (2.5). Construct an exponential-λ LPP system in the quadrant x +Z
2
≥0, as explained

below (3.9). Use the i.i.d. Exp(1) η-weights of this construction (defined by (3.6)) to define last-passage times Gx,y .

Consider an e1-increment Gx,vn − Gx+e1,vn in (3.16). Place the I weights on the north and the J weights on the east

boundary of the rectangle [x, vn + e1 + e2]. Use this augmented system to define last-passage times G
λ,NE
x,vn+e1+e2

, where

superscript NE indicates that the boundary weights are on the north and east. Then, by planar monotonicity (Lemma A.1)

and by choosing λ suitably, the upper bound

Gx,vn − Gx+e1,vn ≤ G
λ,NE
x,vn+e1+e2

− G
λ,NE
x+e1,vn+e1+e2

holds with high probability for large n. The right-hand increment above can be controlled because it comes from an

increment-stationary LPP process. Similar reasoning yields a lower bound

Gx,vn − Gx+e1,vn ≥ G
ρ,NE
x,vn+e1+e2

− G
ρ,NE
x+e1,vn+e1+e2

with a different parameter ρ. After sending vn to infinity, the bounds are brought together by letting λ and ρ converge to

α.

This establishes the almost sure limit (3.16) for a countable dense set of directions v. Properties of the resulting

processes Bv are derived from monotonicity and the increment-stationary LPP processes. The construction of the full

process {Bu : u ∈ riU} is completed by taking right limits as v ↘ u to get cadlag paths in the parameter u. This proves

Theorem 3.3.

To prove the uniqueness in Theorem 3.5, the reasoning above is repeated: this time increment variables Ax−ek ,x are

given, and planar monotonicity is used to sandwich them between Busemann limits from Theorem 3.3.

3.4. Midpoint problem

We quote one more result from [19] that is a corollary of the Busemann limits. We use this fact in the proof of Theorem 4.7

below to show the nonexistence of bi-infinite Bu-geodesics. Let πx,y denote the (almost surely unique) geodesic for Gx,y

defined by (1.1).

Theorem 3.6. Assume (2.1) and fix u ∈ riU . Let un ≤ zn ≤ vn be three sequences on Z
2 that satisfy the following

conditions: un and vn can be random but zn is not (that is, un and vn can be measurable functions of ω but zn does not

depend on ω), |vn − zn|1 → ∞, |zn − un|1 → ∞, and

lim
n→∞

vn − zn

|vn − zn|1
= lim

n→∞

zn − un

|zn − un|1
= u.

Then limn→∞ P{zn ∈ πun,vn} = 0.

This theorem is proved for deterministic un, vn in lecture notes [19] as Theorem 4.12 on p. 174. The same argument

proves the version above for random un, vn and appears in the arXiv version of [19]. The proof proceeds by expressing

the condition zn ∈ πun,vn in terms of increments of Gx,y and then taking the Busemann limits (3.16).
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4. Busemann geodesics and proofs of the main theorems

4.1. Busemann geodesics

Let {Bu : u ∈ riU} be the covariant integrable cocycles constructed in Theorem 3.3. We write interchangeably

Bu(x, y,ω) = Bu
x,y(ω). For each direction u ∈ riU and initial point x ∈ Z

2 construct a semi-infinite random up-right

lattice path bu,x(ω) = {bu,x
k (ω)}k∈Z≥0

by following minimal increments of Bu:

b
u,x
0 (ω) = x and for k ≥ 0,

b
u,x
k+1(ω) =

⎧
⎨
⎩

b
u,x
k (ω) + e1 if Bu

b
u,x
k ,b

u,x
k +e1

(ω) ≤ Bu
b

u,x
k ,b

u,x
k +e2

(ω),

b
u,x
k (ω) + e2 if Bu

b
u,x
k ,b

u,x
k +e2

(ω) < Bu
b

u,x
k ,b

u,x
k +e1

(ω).

(4.1)

The tie-breaking rule in favor of e1 is a convention we follow henceforth. For a given u the case of equality on the

right-hand side of the two-case formula happens with probability zero because Bu
x,x+e1

and Bu
x,x+e2

are independent

exponential random variables. Pictorially, to each point z attach an arrow that points from z to b
u,z
1 . The path bu,x is

constructed by starting at x and following the arrows. By (3.18),

Yb
u,x
k

= Bu
(
b

u,x
k ,b

u,x
k+1

)
for k ≥ 0. (4.2)

We shall call bu,x the Bu-geodesic from x. This term is justified by the next lemma. Since the processes Bu arise as

Busemann functions, we can also call these geodesics Busemann geodesics.

Lemma 4.1.

(i) bu,x is a semi-infinite geodesic for the LPP process (1.1). For all 0 ≤ m < n,

G
(
bu,x

m ,bu,x
n

)
= Bu

(
bu,x

m ,bu,x
n

)
+ Yb

u,x
n

. (4.3)

(ii) There exists an event �2 such that P(�2) = 1 and for all ω ∈ �2 the following properties hold ∀u,v ∈ riU . If u ≺ v,

then bv,x stays always (weakly) to the right and below bu,x . Furthermore, geodesic bu,x is u-directed:

lim
n→∞

b
u,x
n

n
= u ∀x ∈ Z

2. (4.4)

(iii) For each fixed v ∈ riU there exists an event �
(v)
3 such that P(�

(v)
3 ) = 1 and the following properties hold for each

ω ∈ �
(v)
3 and x ∈ Z

2: ∀k ∈ Z≥0, b
u,x
k → b

v,x
k as u → v in riU , and furthermore, bv,x is the unique semi-infinite

v-directed geodesic out of x. In particular, the geodesic tree Tv defined by (2.2) can be expressed as

Tv =
⋃

x∈Z2

bv,x, (4.5)

where again geodesics are regarded as collections of edges.

Proof. Part (i). Let x0,n be any path from x0 = b
u,x
0 = x to xn = b

u,x
n . By (3.18) and (4.2),

n∑

k=0

Yxk
≤

n−1∑

k=0

Bu(xk, xk+1) + Yxn = Bu(x0, xn) + Yxn = Bu
(
b

u,x
0 ,bu,x

n

)
+ Yb

u,x
n

=
n−1∑

k=0

Bu
(
b

u,x
k ,b

u,x
k+1

)
+ Yb

u,x
n

=
n∑

k=0

Yb
u,x
k

.

Thus for any n, the segment b
u,x
0,n is a geodesic between its endpoints.

Part (ii). The ordering of Busemann geodesics follows from the monotonicity (3.14) of the Busemann functions.

For the limit (4.4) consider first fixed u ∈ riU . Recall the mean vector of Bu from (3.20). The cocycle ergodic theorem

(Theorem B.1 in the Appendix) applies to the mean-zero cocycle

F(ω,x, y) = −Bu(x, y,ω) + ∇g(u) · (y − x)
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by virtue of the bound F(ω,0, ei) ≤ −Y0 + C that comes from (3.18). By translation-invariance, if (4.4) is proved for

x = 0 it follows for all x. Since bu,0 ⊂ Z
2
≥0, g(b

u,0
n ) is defined for the shape function g in (1.3). Then by the homogeneity

of g, (4.3), (1.4), and Theorem B.1,

g

(
b

u,0
n

n

)
− ∇g(u) ·

b
u,0
n

n

=
1

n

[
g
(
bu,0

n

)
− G

(
0,bu,0

n

)]
+

1

n

[
Bu

(
0,bu,0

n

)
− ∇g(u) · bu,0

n

]
+

Y
b

u,0
n

n

−→ 0 almost surely as n → ∞.

All the limit points of b
u,0
n /n lie on U . As a differentiable, concave and homogeneous function, g satisfies g(ξ) =

∇g(ξ) · ξ for all ξ ∈R
2
>0. Since g is strictly concave on U , for every δ > 0 there exists ε > 0 such that

g(v) ≤ ∇g(u) · v − ε for v ∈ U such that |v − u| ≥ δ. (4.6)

Thus the limit above forces b
u,0
n /n → u almost surely.

Let �2 be the event on which limit (4.4) happens for a countable dense set of directions u ∈ riU and all x ∈ Z
2. The

limit extends simultaneously to all u ∈ riU on the event �2 by virtue of the ordering of the geodesics bu,x .

Part (iii). Let �
(v)
3 be the event on which limits (3.17) hold, uniqueness of finite geodesics holds, equality on the right-

hand side of (4.1) does not happen for the fixed v, and part (ii) above holds. On this event b
u,x
k → b

v,x
k as u → v because,

inductively in k, (4.1) chooses the same step for all u close enough to v by virtue of (3.17).

Let π = (πi)i∈Z≥0
be a v-directed semi-infinite geodesic from π0 = x. Let u ≺ v ≺ w in riU . By the directedness (4.4),

after some (random but finite) number of steps π remains strictly between bu,x and bw,x . Then it follows that π remains

for all time weakly between bu,x and bw,x . For if π ever went strictly to the left of bu,x , it would have to eventually

intersect bu,x at some later point πm = b
u,x
m . Then there would be two distinct geodesics π0,m and b

u,x
0,m from x to πm, in

violation of the uniqueness of finite geodesics. Similarly π cannot go strictly to the right of bw,x .

Letting u → v and w → v shows that π must coincide with bv,x . �

Proof of Theorem 2.1. Part (i). Let �4 be the full probability event on which finite geodesics are unique and limits (4.4)

hold for all x ∈ Z
2 and all u ∈ riU . Fix ω ∈ �4. Let x• = (xn)n≥n0

be a semi-infinite geodesic at this sample point ω. We

can assume it indexed so that xn · (e1 + e2) = n. Suppose

u1 = lim
xn · e1

n
< lim

n→∞

xn · e1

n
= ū1. (4.7)

Then necessarily 0 ≤ u1 < ū1 ≤ 1. Pick a vector u ∈ riU between u = (u1,1 − u1) and ū = (ū1,1 − ū1). Then infinitely

often x• is strictly to the left of, strictly to the right of, and crosses bu,xn0 . This violates the uniqueness of finite geodesics.

Consequently (4.7) cannot happen on �4 and hence all semi-infinite geodesics have a direction.

Part (ii). We prove the case e1 for x = 0. Fix a sequence w1 ≺ w2 ≺ · · · ≺ wk ≺ · · · in riU such that wk → e1. By

Theorem 3.3, B
wk

0,e2
∼ Exp(1 − α(wk)). Since 1 − α(wk) → 0,

B
wk

0,e2
→ ∞ almost surely as k → ∞ (4.8)

by the monotonicity (3.14). While retaining P(�4) = 1, modify the event �4 so that (4.8) holds on �4, and further

intersect it with the (countably many full probability) events �
(wk)
1 from Theorem 3.3(iii). Now the Busemann limit

(3.16) holds on �4 for v = wk for each k.

Fix ω ∈ �4. Suppose that at this ω there is a semi-infinite geodesic π = {πn}n∈Z≥0
such that π0 = 0, π	 = (	 − 1,1)

for some 	 ≥ 1, and limn→∞ n−1πn · e2 = 0. We derive a contradiction from this.

By connecting e2 = (0,1) to the point π	 = (	 − 1,1) (now fixed for the present) with a horizontal path, we get the

lower bound

Ge2,πn ≥
	−1∑

i=0

ω(i,1) + Gπ	+1,πn for n > 	.
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That π is a geodesic from π0 = 0 implies G0,πn = G0,π	
+ Gπ	+1,πn for n > 	. Thus

G0,πn − Ge2,πn ≤ G0,π	
−

	−1∑

i=0

ω(i,1) for all n > 	. (4.9)

For each k, fix a sequence {wn,k}n≥0 in Z
2
≥0 such that |wn,k|1 = n and limn→∞ n−1wn,k = wk . By the assumptions

limn−1πn · e2 = 0 and wk ∈ riU , and by Lemma A.1, there are infinitely many indices n such that

G0,πn − Ge2,πn ≥ G0,wn,k
− Ge2,wn,k

.

Hence by the Busemann limit (3.16),

lim
n→∞

[G0,πn − Ge2,πn ] ≥ B
wk

0,e2
.

Limit (4.8) now contradicts (4.9) because the right-hand side of (4.9) is fixed and finite.

Part (iii). The family {bu,x : u ∈ riU , x ∈ Z
2} gives a u-directed semi-infinite geodesic for each u ∈ riU and each

starting point x. A semi-infinite geodesic in direction er from x is defined trivially by xk = x + ker for k ≥ 0. �

Proof of (2.6). By part (iii) of Lemma 4.1 and by (4.1),

P
{
π

u,x
1 = x + e1

}
= P

{
b

u,x
1 = x + e1

}
= P

{
Bu

x,x+e1
≤ Bu

x,x+e2

}
= α.

The last equality is due to the fact that Bu
x,x+e1

and Bu
x,x+e2

are independent exponential random variables with rates α

and 1 −α, respectively. This comes from part (i) of Theorem 3.3 because (x + e2, x, x + e1) is a segment of a down-right

path. �

Remark 4.2. If two separate Busemann processes Bu
+ and Bu

− are constructed as indicated in Remark 3.4, then two Buse-

mann geodesics bu,x,+ and bu,x,− would be constructed by (4.1). Lemma 4.1 would hold for both families. Furthermore,

bu,x,+ would always stay weakly to the right and below bu,x,−.

In view of Lemma 4.1(iii), to complete the proof of Theorem 2.2, it suffices to prove that, P-almost surely for a fixed

u ∈ riU , geodesics bu,x and bu,y coalesce and that there is no bi-infinite Bu-geodesic. To achieve this we introduce dual

geodesics and along the way prove Theorem 2.3.

4.2. South-west and dual geodesics

Define south-west Bu-geodesics bsw,u,x(ω) by following minimal south-west increments of Bu:

b
sw,u,x
0 (ω) = x and for k ≥ 0,

b
sw,u,x
k+1 (ω) =

⎧
⎨
⎩

b
sw,u,x
k (ω) − e1 if Bu

b
sw,u,x
k −e1,b

sw,u,x
k

(ω) ≤ Bu
b

sw,u,x
k −e2,b

sw,u,x
k

(ω),

b
sw,u,x
k (ω) − e2 if Bu

b
sw,u,x
k −e2,b

sw,u,x
k

(ω) < Bu
b

sw,u,x
k −e1,b

sw,u,x
k

(ω).

(4.10)

By (3.19),

Xu
b

sw,u,x
k

= Bu
(
b

sw,u,x
k+1 ,b

sw,u,x
k

)
for k ≥ 0. (4.11)

Define an LPP process in terms of the weights Xu:

GXu

x,y = GXu
(x, y) = max

x•∈�x,y

|y−x|1∑

k=0

Xu
xk

for x ≤ y on Z
2. (4.12)

We think of this LPP process as pointing down and left, but do not alter the ordering x ≤ y in the notation GXu

x,y .
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Lemma 4.3. Fix u ∈ riU .

(i) bsw,u,x is a semi-infinite down-left geodesic for LPP process GXu
defined by (4.12). For all 0 ≤ m < n,

GXu(
bsw,u,x

n ,bsw,u,x
m

)
= Bu

(
bsw,u,x

n ,bsw,u,x
m

)
+ Xu

b
sw,u,x
n

. (4.13)

(ii) We have the P-almost sure direction

lim
n→∞

b
sw,u,x
n

n
= −u ∀x ∈ Z

2. (4.14)

(iii) Bu is the Busemann function for LPP process GXu
in direction −u. Precisely, on the event �

(u)
1 of Theorem 3.3(iii)

and for any sequence vn ∈ Z
2 such that |vn|1 → ∞ and vn/|vn|1 → −u,

Bu
x,y = lim

n→∞

[
GXu

vn,y − GXu

vn,x

]
∀x, y ∈ Z

2. (4.15)

Proof. Part (i) is proved as in Lemma 4.1, by utilizing (3.19) and (4.11).

Define a process (X̃, B̃u, Ỹ u) by setting

X̃x = Y−x, B̃u
x,y = Bu

−y,−x and Ỹ u
x = Xu

−x ∀x, y ∈ Z
2. (4.16)

Properties of (Xu,Bu, Y ) given in Theorem 3.3 imply that {X̃x, B̃
u
x−e1,x

, B̃u
x−e2,x

, Ỹ u
x }x∈Z2 is an exponential-α(u) LPP

system. By Theorem 3.5, B̃u is the Busemann function in direction u of the LPP process GỸ u
defined by (1.1) but with

weights Ỹ u.

For part (ii), apply definition (4.1) to B̃u and compare the outcome with (4.10) to conclude that −bsw,u,x is the B̃u

geodesic that starts at −x. Limit (4.4) applied to the LPP process GỸ u
gives (4.14).

Part (iii) follows from

lim
n→∞

[
GXu

vn,y − GXu

vn,x

]
= lim

n→∞
GỸ u

−y,−vn
− GỸ u

−x,−vn
] = B̃u

−y,−x = Bu
x,y . �

Define dual Bu-geodesics b∗,u,z on the dual lattice Z
2∗ by shifting south-west geodesics by e∗ = ( 1

2
, 1

2
):

b
∗,u,z
k = b

sw,u,z+e∗

k − e∗ for z ∈ Z
2∗ and k ≥ 0. (4.17)

Lemma 4.4. Fix u ∈ riU . Then an edge e lies on some geodesic bu,x if and only if its dual edge e∗ does not lie on any

dual geodesic b∗,u,z. In particular, the family {bu,x : x ∈ Z
2} of Bu-geodesics and the family {b∗,u,z : z ∈ Z

2∗} of dual

Bu-geodesics never cross each other.

Proof. We need to check that, for x ∈ Z
2, b

u,x
1 = x + e1 if and only if b

∗,u,x+e∗

1 = x + e∗ − e1.

b
∗,u,x+e∗

1 = x + e∗ − e1 ⇐⇒ b
sw,u,x+e1+e2

1 = x + e2

⇐⇒ Bu
x+e2,x+e1+e2

≤ Bu
x+e1,x+e1+e2

⇐⇒ Bu
x,x+e1

≤ Bu
x,x+e2

⇐⇒ b
u,x
1 = x + e1.

The third equivalence used additivity. A similar argument shows that b
u,x
1 = x+e2 if and only if b

∗,u,x+e∗

1 = x+e∗−e2. �

Lemma 4.5. Fix u ∈ riU . The process of arrows {bu,x
1 − x}x∈Z2 is equal in distribution to the process {−x − e∗ −

b
∗,u,−x−e∗

1 }x∈Z2 of reversed dual arrows reflected across the origin.

Proof. Utilize again the process defined in (4.16). As observed, B̃u is the Busemann function in direction u of the LPP

process (1.1) with weights Ỹ u. In particular then processes B̃u and Bu are equal in distribution. Distributional equality

{−x − b
sw,u,−x
1 }x∈Z2

d= {bu,x
1 − x}x∈Z2 follows from these equivalences:

−x − b
sw,u,−x
1 = e1 ⇐⇒ b

sw,u,−x
1 = −x − e1 ⇐⇒ Bu

−x−e1,−x ≤ Bu
−x−e2,−x

⇐⇒ B̃u
x,x+e1

≤ B̃u
x,x+e2

(4.18)
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and

b
u,x
1 − x = e1 ⇐⇒ Bu

x,x+e1
≤ Bu

x,x+e2
.

The claim of the lemma follows from −x − e∗ − b
∗,u,−x−e∗

1 = −x − b
sw,u,−x
1 . �

The message of the last two lemmas is that the up-right directed Bu-geodesics {bu,x : x ∈ Z
2} and the down-left

directed dual Bu-geodesics {b∗,u,z : z ∈ Z
2∗} never cross each other but are equal in distribution, modulo a shift by e∗ and

a lattice reflection across the origin.

4.3. Coalescence and the bi-infinite geodesic

The backward Bu-cluster Cu(x) at x consists of those points y whose Bu-geodesic goes through x:

Cu(x) =
{
y ∈ x +Z

2
≤0 : b

u,y
|x−y|1 = x

}
.

A bi-infinite up-right nearest-neighbor path {xk}k∈Z on Z
2 is a bi-infinite Bu-geodesic if b

u,xk

	−k = x	 for all indices k < 	

in Z. If two Bu-geodesics bu,x and bu,y have a point in common they coalesce: namely, if b
u,x
m = b

u,y
n then b

u,x
m+k = b

u,y

n+k

for all k ≥ 0.

Consider the following three events.

(i)
{
there exists a bi-infinite Bu-geodesic

}

(ii)
{
∃x ∈ Z

2 such that Cu(x) is infinite
}

(iii)
{
∃x, y ∈ Z

2 such that the Bu-geodesics bu,x and bu,y are disjoint
}
.

(4.19)

The goal is to show that almost surely none of these happen. The first step is to show that they happen together, modulo

the duality.

Lemma 4.6. Fix u ∈ riU . Then all three events in (4.19) have equal probability.

Proof. Step 1. {(i)} = {(ii)}. For one direction, any point on a bi-infinite Bu-geodesic has an infinite backward Bu-cluster.

Conversely, suppose Cu(x0) is infinite. Then for each m ∈ Z>0 there exists y(m) ∈ x0 +Z
2
≤0 such that b

u,y(m)
m = x0. From

the finite paths b
u,y(m)

0,m , a compactness argument produces an infinite backward path {xi}i≤0 such that b
u,xi

1 = xi+1 for all

i < 0. Extend this infinite backward path to a bi-infinite Bu-geodesic x• by defining xi = b
u,x0

i for i > 0.

Here is the compactness argument. Choose nested subsequences of indices {m1
j }j≥1 ⊃ {m2

j }j≥1 ⊃ · · · ⊃ {mk
j }j≥1 ⊃ · · ·

such that, for each k, mk
1 ≥ k and the k-step path segments b

u,y(mk
j )

mk
j −k,mk

j

converge to a path x−k,0 as j → ∞. Convergent

subsequences exist because the k-step segments {bu,y(m)

m−k,m}m≥k lie in the finite set of k-step paths that end at x0. Since the

subsequences are nested, the limits are consistent and form a single backward nearest-neighbor path {xi}i≤0. Since the

convergence happens on a discrete set, for each k there exists j (k) < ∞ such that b
u,y(mk

j )

mk
j −k,mk

j

= x−k,0 for j ≥ j (k). This

implies that b
u,xi

1 = xi+1 for all i < 0.

Step 2. P{(iii)} ≤ P{(ii)}. Suppose event (iii) happens and let points x0, y0 ∈ Z
2 be such that geodesics bu,x0 and

bu,y0 are disjoint. By the limit in (4.4), both coordinates b
u,x0
n · e1 and b

u,x0
n · e2 increase to ∞ as n → ∞, and the same

for bu,y0 . By suitably redefining the initial points we can assume that x0 and y0 lie on the same antiodiagonal (that is,

x0 · (e1 + e2) = y0 · (e1 + e2)) and x0 · e2 < y0 · e2, so that bu,y0 is above and to the left of bu,x0 .

Let us say that a dual point z ∈ Z
2∗ lies between the two geodesics if the ray {z + t (e2 − e1) : t ≥ 0} hits a point of

bu,y0 and the ray {z + t (e1 − e2) : t ≥ 0} hits a point of bu,x0 .

For each z ∈ Z
2∗ that lies between the two geodesics, at least one of z + e1 and z + e2 also lies between the two

geodesics. For if z+ e1 does not lie between the two geodesics, then edge {z, z+ e1} must cross an edge of bu,x0 , and this

edge is {z + ( 1
2
,− 1

2
), z + ( 1

2
, 1

2
)}. Similarly, if z + e2 does not lie between the two geodesics, the edge {z + (− 1

2
, 1

2
), z +

( 1
2
, 1

2
)} belongs to bu,y0 . Thus if neither z + e1 nor z + e2 lies between the two geodesics, the two geodesics meet at the

point z + ( 1
2
, 1

2
), contrary to the assumption of no coalescence.
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Thus we can choose a semi-infinite path {zm}m∈Z≥0
on the dual lattice such that z0 · (e1 + e2) = y0 · (e1 + e2), zm+1 ∈

{zm + e1, zm + e2} for all m, and the entire path z• lies between the geodesics bu,x0 and bu,y0 . Since Bu-geodesics and

dual Bu-geodesics never cross, the (finite) dual geodesics b
∗,u,zm

0,m must also lie between the geodesics bu,x0 and bu,y0 .

In particular, the endpoints {b∗,u,zm
m }m∈Z≥0

lie on the bounded antidiagonal segment between x0 and y0. By compactness

there is a subsequence zmj
such that the endpoint converges: b

∗,u,zmj
mj

→ z∗. Since this convergence happens on a discrete

set, there exists some j0 such that b
∗,u,zmj
mj

= z∗ for all j ≥ j0. Thereby the (dual) backward Bu-cluster C∗,u(z∗) is infinite.

We have shown that event (iii) implies that event (ii) happens for dual geodesics. By the distributional equality of the

families of Bu-geodesics and dual Bu-geodesics, the conclusion P{(iii)} ≤ P{(ii)} follows.

Step 3. P{(i)} ≤ P{(iii)}. Let x and y be two points on Z
2 on opposite sides of a bi-infinite dual Bu-geodesic. Geodesics

bu,x and bu,y cannot cross the dual Bu-geodesic (Lemma 4.4), and hence cannot coalesce. �

Theorem 4.7. Fix u ∈ riU . Then all three events in (4.19) have zero probability.

Proof. This theorem follows from Lemma 4.6 and

P
{
there exists a bi-infinite Bu-geodesic

}
= 0. (4.20)

To prove (4.20) we use the solution of the midpoint problem to prove that a bi-infinite Bu-geodesic goes through the origin

with probability zero. Suppose {xn}n∈Z is a bi-infinite Bu-geodesic with x0 = 0. To apply Theorem 3.6 to un = x−n,

zn = 0 and vn = xn we need the limits

x−n

n
→ −u and

xn

n
→ u (4.21)

almost surely on the event where a bi-infinite Bu-geodesic through the origin exists.

The second limit of (4.21) is in (4.4). The backward limit x−n/n → −u is proved by the same argument. Namely,

since x−n,0 is a (finite) Bu-geodesic (that is, b
u,x−n

j = x−n+j for 0 ≤ j ≤ n), (4.3) applies and gives

Gx−n,0 = Bu
x−n,0 + Y0.

The uniform passage time limit (1.4) applies to the southwest LPP process to give

Gx−n,0 = g(−x−n) + o(n) almost surely.

The uniform ergodic theorem for cocycles (Theorem B.1) gives

Bu
x−n,0 = ∇g(u) · (−x−n) + o(n) almost surely.

These almost sure asymptotics and strict concavity of g in the form (4.6) then imply that the first limit in (4.21) holds

almost surely on the event where a bi-infinite Bu-geodesic x• through x0 = 0 exists.

Since x−n,n is a geodesic through the origin, we have 0 ∈ πx−n,xn for all n > 0 on the event where the bi-infinite

geodesic x• goes through the origin. By Theorem 3.6 this event must have probability zero. �

4.4. Completion of the proofs

Proof of Theorem 2.2. Lemma 4.1(iii) implies that almost surely there is a unique u-directed semi-infinite geodesic

out of x, namely the Bu-geodesic bu,x . Its construction (4.1) shows that it is a Borel function of the random variables

Bu
x,y which in turn are Borel functions of Y . Theorem 4.7 gives the almost sure coalescence and non-existence of a

bi-infinite geodesic. (A bi-infinite u-directed geodesic (xi)i∈Z must also be a Bu-geodesic because by Lemma 4.1(iii),

(xi)i≥	 = bu,x	 for each 	 ∈ Z.) �

Proof of Theorem 2.3. Process Ỹ u was defined in (4.16) and hence by (3.19) satisfies

Ỹ u
x = Xu

−x = Bu
−x−e1,−x ∧ Bu

−x−e2,−x .

The i.i.d. Exp(1) distribution of Xu gives the same to Ỹ u, limit (3.16) shows that Ỹ u is a Borel function of Y , and the

second equality of the display above implies that Ỹ u
x (θyω) = Ỹ u

x−y(ω).
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Lemma 4.4 and definition (2.3) imply that T ∗
u =

⋃
z∈Z2∗ b∗,u,z. Tracing through definition (2.4) of T̃u, definition (4.17)

of dual geodesics, and (4.18) gives the equivalence

{x, x + e1} ∈ T̃u ⇐⇒ B̃u
x,x+e1

≤ B̃u
x,x+e2

.

A similar argument gives {x, x + e2} ∈ T̃u ⇐⇒ B̃u
x,x+e1

> B̃u
x,x+e2

. The proof of Lemma 4.5 observed that B̃u is the

Busemann function of the LPP process with weights Ỹ u. Hence (4.5) applied to weights Ỹ u implies that T̃u is the tree of

semi-infinite u-directed geodesics for this LPP process. �

Proof of Theorem 2.4. Define aj ∈ {1,2} by

aj =

{
1, Bu

(N+j,−j−1),(N+j+1,−j−1) ≤ Bu
(N+j,−j−1),(N+j,−j),

2, Bu
(N+j,−j−1),(N+j,−j) < Bu

(N+j,−j−1),(N+j+1,−j−1).

Property (a) in Definition 3.1 applied to the down-right path

y2j = (N + j,−j − 1), y2j+1 = (N + j + 1,−j − 1)

implies that {aj }j∈Z are i.i.d. random variables with marginal distribution

P(aj = 1) = α = 1 − P(aj = 2).

The process {ξj } is obtained from the connection

ξj =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

s

c

h

v

if (aj−1, aj ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(2,1)

(1,2)

(1,1)

(2,2).

Thus {ξj } has the distribution of the Markov chain Xj = (aj−1, aj ), after relabeling the states as above. �

5. Increment-stationary LPP and competiton interface

This section explains how Bu represents a LPP process with boundary conditions and how the paths bu,x and bsw,u,x

function both as geodesics and competition interfaces, depending on whether the LPP uses weights Y or Xu. Fix u ∈ riU .

Fix also a down-right path Y = (yk)k∈Z on Z
2, that is, a sequence in Z

2 such that yk − yk−1 ∈ {e1,−e2} for all k ∈ Z. Let

H± be as in (3.1)–(3.2) and define H̃± = Y ∪H±. Y serves as a boundary and the LPP processes will be defined in the

regions H̃±.

Let |π | denote the Euclidean length (number of edges) of a nearest-neighbor lattice path. For x ∈ H̃+, let �Y,x be the

set of up-right paths π = π0,n = (πi)
n
i=0 of any length n = |π | that go from Y to x and that lie in H+ except for the initial

point on Y :

�Y,x =
{
π : π ∈ �π0,x,π0 ∈ Y,π1,|π | ⊂H+}

.

For x ∈ H̃+ define the LPP process

H+
x = sup

π∈�Y,x

{
Bu

y0,π0
+

|π |∑

i=1

Xu
πi

}
. (5.1)

In the degenerate case x ∈ Y and H+
x = Bu

y0,x
. The set of paths maximized over can be finite (for example in case

limk→−∞ yk · e2 = ∞ and limk→∞ yk · e1 = ∞) or infinite (for example if yk = ke1 is the x-axis). The random variables

Xu
x over x ∈ H+ and Bu

yk ,yk+1
on Y are all independent, so H+ is an LPP process that uses independent weights. To

ensure unique geodesics, we restrict ourselves to the full-measure event on which

no two nonempty sums of distinct
{
Xu

x

}
x∈H+ and

{
Bu

yk ,yk+1

}
k∈Z agree. (5.2)

A combination of (3.19) and (4.11), as in the proof of Lemma 4.1(i), shows that the LPP process H+ coincides with

Bu and that the southwest geodesics are the geodesics in this process.
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Proposition 5.1. Fix x ∈ H+. Let n = min{i ≥ 0 : b
sw,u,x
i ∈ Y}. Then {π+,x

i = b
sw,u,x
n−i }0≤i≤n is the unique maximizing

path in (5.1) and

H+
x = Bu

y0,π
+,x
0

+
n∑

i=1

Xu

π
+,x
i

= Bu
y0,x

. (5.3)

For A ⊂ Y , let H+
A = {x ∈ H̃+ : π

+,x
0 ∈ A} denote the set of points x whose geodesic emanates from A. Fix two

adjacent points ym, ym+1 on Y . Decompose H+ = H+
y−∞,m

∪H+
ym+1,∞ according to whether the geodesic emanates from

{yk}k≤m or {yk}k≥m+1. The two regions H+
y−∞,m

and H+
ym+1,∞ are separated by an up-right path ϕ+ = (ϕ+

n )n≥0 called the

competition interface:

ϕ+
0 =

{
ym, Bu

y0,ym
< Bu

y0,ym+1
,

ym+1, Bu
y0,ym+1

< Bu
y0,ym

,
and for k ≥ 0

ϕ+
k+1 =

⎧
⎨
⎩

ϕ+
k + e1, H+

ϕ+
k +e1

< H+
ϕ+

k +e2
,

ϕ+
k + e2, H+

ϕ+
k +e2

< H+
ϕ+

k +e1
.

(5.4)

One can check inductively that for each n ∈ Z≥0, ϕ+
n is the unique point on its antidiagonal {x ∈ H̃+ : x · (e1 + e2) =

ϕ+
0 · (e1 + e2)+ n} that satisfies ϕ+

n +Z>0e2 ⊂H+
y−∞,m

and ϕ+
n +Z>0e1 ⊂H+

ym+1,∞ . Comparison of (4.1) and (5.4), with

an appeal to (5.3), proves the next characterization of ϕ+.

Proposition 5.2. ϕ+ = bu,ϕ+
0 .

An analogous LPP process is defined for x ∈ H̃− with weights Y :

H−
x = sup

π∈�x,Y

{|π |−1∑

i=0

Yπi
+ Bu

π|π |,y0

}
, (5.5)

where �x,Y is the set of up-right paths from x to Y that lie in H− except for their final point on Y . This time H−
x = Bu

x,y0
,

the part of bu,x between x and Y is the geodesic, and competition interfaces are southwest geodesics bsw,u,y emanating

from points y ∈ Y . We omit the details.

From the results of this section we can derive Lemma 4.4 of [3] as a special case. Namely, fix (m,n) ∈ Z
2
>0 and take

H− to be the southwest quadrant bounded on the north and east by the path y−
k = (m,n) − k+e2 − k−e1. In terms of

the LPP process H− and the weights Y in (5.5) above, the “reversed process” G∗ and weights ω∗ in [3] correspond to

G∗
ij = H−

(m−i,n−j) and ω∗
ij = Y(m−i,n−j). The competition interface that emanates from the “origin” (m,n) for H− in

(5.5) is the southwest geodesic bsw,u,(m,n). According to Proposition 5.1 above this path is also the geodesic for LPP

process H+ constructed with coordinate axes boundary yk = k+e1 + k−e2. This is exactly what Lemma 4.4 of [3] says.

Appendix A: Planar monotonicity

Planar LPP increments possess monotonicity properties. The lemma below can be found proved as Lemma 4.6 in [19].

Let the LPP process G be defined by (1.1) and define increments

Ix,v = Gx,v − Gx+e1,v and Jy,v = Gy,v − Gy+e2,v.

Lemma A.1. For x, y, v ∈ Z
2 such that x ≤ v − e1 and y ≤ v − e2

Ix,v+e2
≥ Ix,v ≥ Ix,v+e1

and Jy,v+e2
≤ Jy,v ≤ Jy,v+e1

. (A.1)

Appendix B: Cocycle ergodic theorem

Recall Definition 3.2. Covariant integrable cocycles satisfy a uniform ergodic theorem, sometimes also called a shape

theorem.
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Theorem B.1. Let F ∈K be such that E[F(x, y)] = 0 ∀x, y ∈ Z
2. Assume that there exists a function F : �×{e1, e2} →

R such that, P-almost surely and for k ∈ {1,2}, F(ω,0, ek) ≤ F(ω, ek) and

lim
δ↘0

lim
n→∞

max
|x|1≤n

1

n

∑

0≤i≤nδ

∣∣F(θx+iek
ω, ek)

∣∣ = 0. (B.1)

Then

lim
n→∞

max
|x|1≤n

|F(ω,0, x)|
n

= 0 P-a.s.

For a proof see Appendix A.3 of [12]. A sufficient condition for limit (B.1) is that E|F(ω, ek)|2+ε < ∞ for some ε > 0

and the shifts of F have finite range of dependence: namely, ∃r0 < ∞ such that if |xi − xj | ≥ r0 for each pair i �= j , then

{(F (θxi
ω, ek))k∈{1,2} : 1 ≤ i ≤ m} is a sequence of m independent random vectors.
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