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The 1+1-dimensional corner growth model with exponential weights is a centrally important exactly
solvable model in the Kardar–Parisi–Zhang class of statistical mechanical models. While significant
progress has been made on the fluctuations of the growing random shape, understanding of the optimal
paths, or geodesics, is less developed. The Busemann function is a useful analytical tool for studying
geodesics. We describe the joint distribution of the Busemann functions, simultaneously in all directions
of growth. As applications of this description we derive a marked point process representation for the
Busemann function across a single lattice edge and calculate some marginal distributions of Busemann
functions and semi-infinite geodesics.
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1. Introduction

The corner growth model in the Kardar–Parisi–Zhang class. The planar corner growth model (CGM)

is a directed last-passage percolation (LPP) model on the planar integer lattice Z
2 whose paths are allowed

to take nearest-neighbor steps e1 and e2. In the exactly solvable case the random weights attached to the

vertices of Z
2 are i.i.d. exponentially or geometrically distributed random variables.

The exact solvability of the exponential and geometric CGM has been fundamental to the 20-year

progress in the study of the 1+1-dimensional Kardar–Parisi–Zhang (KPZ) universality class. After the

initial breakthrough by Baik, Deift and Johansson [Baik et al. 1999] on planar LPP on Poisson points,
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the Tracy–Widom limit of the geometric and exponential CGM followed in [Johansson 2000]. This

work relied on techniques that today would be called integrable probability, a subject that applies ideas

from representation theory and integrable systems to study stochastic models. A large literature has

followed. Recent reviews appear in [Corwin 2018; 2016; 2012]. A different line of work was initiated

in [Balázs et al. 2006] that gave a probabilistic proof of the KPZ exponents of the exponential CGM,

following the seminal work [Cator and Groeneboom 2006] on the planar Poisson LPP. The proof utilized

the tractable stationary version of the CGM and developed estimates by coupling perturbed versions

of the CGM process. This opening led to the first proofs of KPZ exponents for the asymmetric simple

exclusion process (ASEP) [Balázs and Seppäläinen 2010] and the KPZ equation [Balázs et al. 2011], to

the discovery of the first exactly solvable positive-temperature lattice polymer model [Seppäläinen 2012],

to a proof of KPZ exponents for a class of zero-range processes outside known exactly solvable models

[Balázs et al. 2012], and most recently to Doob transforms and martingales in random walks in random

environments (RWRE) that manifest KPZ behavior [Balázs et al. 2019b]. The estimates from [Balázs

et al. 2006] have also been applied to coalescence times of geodesics [Pimentel 2016] and to the local

behavior of Airy processes [Pimentel 2018].

Joint distribution of Busemann functions. The present article places the stationary CGM into a larger

context by describing the natural coupling of all the stationary CGMs. This coupling arises from the joint

distribution of the Busemann functions in all directions of growth.

Let Gx,y denote the last-passage value between points x and y on the lattice Z
2 (the precise definition

follows in (2-1) in Section 2). The Busemann function B
ρ
x,y is the limit of increments Gvn,y − Gvn,x as

vn is taken to infinity in the direction parametrized by ρ. In a given direction this limit exists almost

surely. These limits are extended to a process B
• by taking limits in the parameter ρ. Finite-dimensional

distributions of B
• are identified as the unique invariant distributions of multiclass LPP processes. These

distributions are conveniently described in terms of mappings that represent FIFO (first-in-first-out)

queues. Key points of the development are (i) an intertwining between two types of multiclass processes,

called the multiline process and the coupled process, and (ii) a triangular array representation of the

intertwining mapping.

The results of this paper will have various applications in the study of the CGM, and they can be

extended to other 1+1-dimensional growth and polymer models that have a tractable stationary version.

A forthcoming work of the authors develops the joint distribution of Busemann functions for the positive-

temperature log-gamma polymer model.

Two applications have been completed recently. Properties of the joint Busemann process B
• discovered

here are applied in [Janjigian et al. 2019] to describe (i) the overall structure of the geodesics of the

exponential corner growth model and (ii) the statistics of a new object termed the “instability graph”

that captures the geometry of the jumps of the Busemann functions on the lattice. The joint Busemann

distribution is necessary for a full picture of the geodesics because in a fixed direction semi-infinite

geodesics are almost surely unique and coalesce (these facts are reviewed in Section 2B below) but there are

random directions of nonuniqueness. The joint distribution captures the jumps of the Busemann function

as the direction varies. These correspond to jumps in coalescence points and nonuniqueness of geodesics.
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The article [Balázs et al. 2019a] gives a proof of the nonexistence of bi-infinite geodesics in the

exponential CGM, based on couplings with the stationary version of the LPP process. The joint distribution

described here is a critical ingredient of the proof.

An analogue of the Busemann function on the Airy sheet. An interesting similarity appears between

our paper and recent work on the universal objects that arise from LPP. Basu, Ganguly and Hammond

[Basu et al. 2019] study an analogue of the Busemann function in the Brownian last-passage model.

Instead of the lattice scale and all spatial directions, they look at a difference of last-passage values

on the scale n2/3 into a fixed macroscopic direction, where universal objects such as Airy processes

arise. Translated to the CGM, their object of interest is the weak limit Z(z) of the scaled difference

n−1/3[G(n2/3,0),(n+zn2/3,n) − G(−n2/3,0),(n+zn2/3,n) + 4n2/3] that they call the difference weight profile. In

terms of the Airy sheet {W (x, y) : x, y ∈ R} constructed recently by Dauvergne, Ortmann and Virág

[Dauvergne et al. 2018], the limit Z(z) = W (1, z) − W (−1, z).

The limit Z(·) is a continuous process, while the Busemann process we construct is a jump process.

But like the Busemann process, the limit Z(·) is constant in a neighborhood of each point, except for a

small set of exceptional points. In both settings this constancy reflects the same underlying phenomenon,

namely the coalescence of geodesics. In our lattice setting, Theorem 3.4 gives a precise description of

these exceptional directions in terms of an inhomogeneous Poisson process.

Past work. We mention related past work on queues, particle systems, and the CGM.

Queueing fixed points. We formulate a queueing operator as a mapping of bi-infinite sequences of

interarrival times and service times into a bi-infinite sequence of interdeparture times (details in Section 2C).

When the service times are i.i.d. exponential (memoryless, or ·/M/1 queue), it is classical that i.i.d.

exponential times are preserved by the mapping from the interarrival process to the interdeparture

process, subject to the stability condition that the mean interarrival time exceed the mean service time.

Anantharam [1993] proved the uniqueness of this fixed point and Chang [1994] gave a shorter argument.

(An unpublished manuscript of Liggett and Shiga is also cited in [Mountford and Prabhakar 1995].)

Convergence to the fixed point was proved in [Mountford and Prabhakar 1995]. These results were

partially extended to general ·/G/1 queues in [Mairesse and Prabhakar 2003; Prabhakar 2003].

We look at LPP processes with multiple classes of input, but this is not the same as a multiclass queue

that serves customers in different priority classes. In queueing terms, the present paper describes the

unique invariant distribution in a situation where a single memoryless queueing operator transforms

a vector of interarrival processes into a vector of interdeparture processes. It is fairly evident a priori

that this operation cannot preserve an independent collection of interarrival processes because they are

correlated after passing through the same queueing operator. (For example, this operation preserves

monotonicity.) It turns out that the queueing mappings themselves provide a way to describe the structure

of the invariant distribution.

Multiclass measures for particle systems. In a series of remarkable papers, P. A. Ferrari and J. B. Martin

[2006; 2007; 2009] developed queueing descriptions of the stationary distributions of the multiclass

totally asymmetric simple exclusion process (TASEP) and the Aldous–Diaconis–Hammersley process.
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The intertwining that establishes our Theorem 5.5 became possible after the discovery of a way to apply

the ideas of Ferrari and Martin to the CGM. We use the terms multiline process and coupled process to

highlight the analogy with their work.

Busemann functions and semi-infinite geodesics. Existence and properties of Busemann functions and

semi-infinite geodesics are reviewed in Sections 2A and 2B. Two strategies exist for proving the existence

of Busemann functions for the exponential CGM.

(i) Proofs by Ferrari and Pimentel [2005] and Coupier [2011] relied on C. Newman’s approach to

geodesics [Howard and Newman 2001; Licea and Newman 1996; Newman 1995]. This strategy is

feasible because the exact solvability shows that the shape function (2-4) satisfies the required curvature

hypotheses.

(ii) A direct argument from the stationary growth model to the Busemann limit was introduced in

[Georgiou et al. 2015] for the log-gamma polymer, and applied to the exponential CGM in the lecture

notes [Seppäläinen 2018]. An application of this strategy to the CGM with general i.i.d. weights appears

in [Georgiou et al. 2017a; 2017b], where the role of the regularity of the shape function becomes explicit.

A sampling of other significant work on Busemann functions and geodesics can be found in [Cator

and Pimentel 2012; 2013; Ferrari et al. 2009; Bakhtin et al. 2014; Hoffman 2005; 2008].

Organization of the paper. Section 2 collects preliminaries on the CGM and queues. The main results

for Busemann functions and semi-infinite geodesics are stated in Section 3. Section 4 proves a key

lemma for the queueing operator. Section 5 introduces the multiline process, the coupled process, and

the multiclass LPP process, and then states and proves results on their invariant distributions. The key

intertwining between the multiline process and the coupled process appears in (5-8) in the proof of

Theorem 5.5 in Section 5D. Section 6 proves the results of Section 3. For the proof of Theorem 3.4,

Section 6B introduces a triangular array representation for the intertwining mapping. Auxiliary matters

on queues and exponential distributions are relegated to Appendices A and B.

Notation and conventions. Points x = (x1, x2), y = (y1, y2) ∈ R
2 are ordered coordinatewise: x ≤ y if

and only if x1 ≤ y1 and x2 ≤ y2. The `1 norm is |x |1 = |x1| + |x2|. Subscripts indicate restricted subsets

of the reals and integers: for example Z>0 = {1, 2, 3, . . . }. Boldface notation for vectors: e1 = (1, 0),

e2 = (0, 1), and members of the simplex [e2, e1] = {te1 + (1 − t)e2 : 0 ≤ t ≤ 1} are denoted by u.

For n ∈ Z>0, [n] = {1, 2, . . . , n}, with the convention that [n] =∅ for n ∈ Z≤0. A finite integer interval

is denoted by Jm, nK = {m, m + 1, . . . , n}, and Jm, ∞J= {m, m + 1, m + 2, . . .}.
For 0 < α < ∞, X ∼ Exp(α) means that random variable X has exponential distribution with rate α;

in other words P(X > t) = e−αt for t > 0 and E(X) = α−1. In the discussion we parametrize exponential

variables with their mean. For 0 < ρ < ∞, νρ is the probability distribution on the space R
Z

≥0 of

bi-infinite sequences under which the coordinates are i.i.d. exponential variables with common mean ρ.

Higher-dimensional product measures are denoted by ν(ρ1,ρ2,...,ρn) = νρ1 ⊗ νρ2 ⊗ · · · ⊗ νρn.

For 0 ≤ p ≤ 1, X ∼ Ber(p) means that random variable X has Bernoulli distribution with parameter p;

in other words P(X = 1) = p = 1 − P(X = 0).

In general, Eµ represents expectation under a measure µ.
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2. Preliminaries

Section 2A introduces the main objects of discussion: the planar corner growth model (CGM), which

is a special case of last-passage percolation (LPP), and Busemann functions. Section 2B explains

the significance of Busemann functions in the description of directed semi-infinite geodesics and the

asymptotic direction of the competition interface. The somewhat technical Section 2C defines FIFO

(first-in-first-out) queueing mappings that are used in Section 3 to describe the joint distribution of the

Busemann functions. To be sure, the distribution of the Busemann functions could be described by plain

mathematical formulas without their queueing content. But the queueing context gives the mathematics

meaning that can help comprehend the results.

2A. Busemann functions in the corner growth model. The setting for the exponential CGM is the

following: (�,S, P) is a probability space with generic sample point ω. A group of measure-preserving

measurable bijections {θx}x∈Z2 acts on (�,S, P). Measure preservation means that P(θx A) = P(A) for

all sets A ∈ S and x ∈ Z
2. Y = (Yx)x∈Z2 is a random field of independent and identically distributed

Exp(1) random weights defined on � that satisfies Yx(θyω) = Yx+y(ω) for x, y ∈ Z
2 and ω ∈ �.

The canonical choice for the sample space is the product space � = R
Z

2

≥0 with its Borel σ -algebra S,

generic sample point ω = (ωx)x∈Z2 , translations (θxω)y = ωx+y , and coordinate random variables

Yx(ω) = ωx . Then P is the i.i.d. product measure on � under which each Yx is an Exp(1) random variable.

For u ≤ v on Z
2 (coordinatewise ordering) let 5u,v denote the set of up-right paths x• = (xi )

|v−u|1
i=0

from x0 = u to x|v−u|1 = v with steps xi − xi−1 ∈ {e1, e2}. (The left diagram of Figure 1 illustrates this.)

Define the last-passage percolation (LPP) process

Gu,v = max
x•∈5u,v

|v−u|1∑

i=0

Yxi
for u ≤ v on Z

2. (2-1)

For v ∈ u + Z
2
>0 we have the inductive equation

Gu,v = Gu,v−e1 ∨ Gu,v−e2 + Yv. (2-2)

0−1−2−3−4−5−6

0

−1

−2

−3

−4

−e1

−e2

u(ρ)

ρ = 1

ρ = ∞

Figure 1. Left: The thickset line segments define an element of 5(−6,−4),(0,0). Right:
As the parameter ρ increases from 1 to ∞, vector u(ρ) of (2-5) sweeps the directions
from −e1 to −e2 in the third quadrant.
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The convention of this paper is that growth proceeds in the south-west direction (into the third quadrant

of the plane). Thus the well-known shape theorem (Theorem 5.1 in [Martin 2004], Theorem 3.5 in

[Seppäläinen 2018]) of the CGM takes the following form. With probability one,

lim
r→∞

sup
x∈(Z≤0)2: |x |1≥r

|Gx,0 − g(x)|
|x |1

= 0 (2-3)

with the concave, continuous and one-homogeneous shape function (known since [Rost 1981])

g(x) =
(√

|x1| +
√

|x2|
)2

for x = (x1, x2) ∈ R
2
≤0. (2-4)

Busemann functions are limits of differences Gv,x − Gv,y of last-passage values from two fixed points

x and y to a common point v that is taken to infinity in a particular direction. These limits are described

by relating the direction u that v takes to a real parameter ρ that specifies the distribution of the limits: a

bijective mapping between directions u = (u1, u2) ∈ ]− e1, −e2[ in the open third quadrant of the plane

and parameters ρ ∈ (1, ∞) is defined by the equations

u = u(ρ) = −
(

1

1 + (ρ − 1)2
,

(ρ − 1)2

1 + (ρ − 1)2

)
⇐⇒ ρ = ρ(u) =

√
−u1 +

√
−u2√

−u1
. (2-5)

(See the right diagram of Figure 1 for an illustration.)

The existence and properties of Busemann functions are summarized in the following theorem. By

definition, a down-right lattice path {yk} satisfies yk − yk−1 ∈ {e1, −e2} for all k.

Theorem 2.1. On the probability space (�,S, P) there exists a cadlag process Bρ = (B
ρ
x,y)x,y∈Z2 with

state space R
Z

2×Z
2
, indexed by ρ ∈ (1, ∞), with the following properties.

(i) Path properties. There is a single event �0 such that P(�0) = 1 and the following properties hold for

all ω ∈ �0, for all λ, ρ ∈ (1, ∞) and x, y, z ∈ Z
2:

If λ < ρ then Bλ
x,x+e1

≤ B
ρ
x,x+e1

and Bλ
x,x+e2

≥ B
ρ
x,x+e2

. (2-6)

Bρ
x,y + Bρ

y,z = Bρ
x,z. (2-7)

Yx = B
ρ
x−e1,x

∧ B
ρ
x−e2,x

. (2-8)

Cadlag property: the path ρ 7→ B
ρ
x,y is right continuous and has left limits.

(ii) Distributional properties. Each process Bρ is stationary under lattice shifts. The marginal distributions

of nearest-neighbor increments are

B
ρ
x−e1,x

∼ Exp(ρ−1) and B
ρ
x−e2,x

∼ Exp(1 − ρ−1). (2-9)

Along any down-right path {yk}k∈Z on Z
2, for fixed ρ ∈ (1, ∞) the increments {B

ρ
yk ,yk+1}k∈Z are indepen-

dent.

(iii) Limits. Fix ρ ∈ (1, ∞) and let u = u(ρ) be the vector determined by (2-5). Then there exists an

event �
(ρ)

0 such that P(�
(ρ)

0 )=1 and the following holds: for any sequence {un} in Z
2 such that |un|1 →∞



JOINT DISTRIBUTION OF BUSEMANN FUNCTIONS IN THE CORNER GROWTH MODEL 61

and un/n → u and for any ω ∈ �
(ρ)

0 ,

Bρ
x,y = lim

n→∞
[Gun,y − Gun,x ]. (2-10)

Continuity from the left at a fixed ρ ∈ (1, ∞) holds with probability one: limλ↗ρ Bλ
x,y = B

ρ
x,y almost

surely.

The theorem above is proved as Theorem 4.2 in lecture notes [Seppäläinen 2018]. The central point of

the theorem is the limit (2-10), on account of which we call Bρ the Busemann function in direction u.

We record some observations.

Additivity (2-7) implies that B
ρ
x,x = 0 and B

ρ
x,y = −B

ρ
y,x . The weights recovery property (2-8) can be

seen from (2-2) and limits (2-10):

B
ρ
x−e1,x

∧ B
ρ
x−e2,x

= lim
n→∞

[Gun,x − Gun,x−e1] ∧ [Gun,x − Gun,x−e2]

= lim
n→∞

[Gun,x − Gun,x−e1 ∨ Gun,x−e2] = Yx .

Lemma 2.2. With probability one, for all x ∈ Z
2 there exists a random parameter ρ∗(x) ∈ (1, ∞) such

that
B

ρ
x−e1,x

= Yx < B
ρ
x−e2,x

for ρ ∈ (1, ρ∗(x)),

B
ρ
x−e2,x

= Yx < B
ρ
x−e1,x

for ρ ∈ (ρ∗(x), ∞).
(2-11)

The distribution function of ρ∗(x) is P{ρ∗(x) ≤ λ} = 1 − λ−1 for 1 ≤ λ < ∞.

Proof. Monotonicity (2-6) and the exponential rates (2-9) force B
ρ
x−e2,x

↗ ∞ almost surely as ρ ↘ 1

and B
ρ
x−e1,x

↗ ∞ almost surely as ρ ↗ ∞. Edges {x − e1, x} and {x − e2, x} are part of a down-right

path, and hence B
ρ
x−e1,x

and B
ρ
x−e2,x

are independent exponential random variables for each fixed ρ.

Consequently, with probability one, they are distinct for each rational ρ > 1. By monotonicity again there

is a unique real ρ∗(x) ∈ (1, ∞) such that for rational λ ∈ (1, ∞),

λ < ρ∗(x) implies Bλ
x−e1,x

< Bλ
x−e2,x

,

λ > ρ∗(x) implies Bλ
x−e1,x

> Bλ
x−e2,x

.
(2-12)

By monotonicity the same holds for real λ. Conditions (2-11) follow from weights recovery (2-8). The

distribution function comes from (2-11), independence of B
ρ
x−e1,x

and B
ρ
x−e2,x

, and (2-9). �

In particular, for a fixed x , the processes {B
ρ
x−e1,x

}1<ρ<∞ and {B
ρ
x−e2,x

}1<ρ<∞ are not independent of

each other, even though for a fixed ρ, the random variables B
ρ
x−e1,x

and B
ρ
x−e2,x

are independent. Vector

u(ρ∗(x)) is the asymptotic direction of the competition interface emanating from x (see Remark 2.5).

The process B = {B
ρ
x,y} is a Borel function of the weight configuration Y. Limits (2-10) define Bρ

as a function of Y for a countable dense set of ρ in (1, ∞). The remaining ρ-values B
ρ
x,y can then be

defined as right limits. Shifts θu act on the weights by (θuY )x = Yx+u . The limits (2-10) give stationarity

and ergodicity of B as stated in this lemma.

Lemma 2.3. Fix ρ1, . . . , ρn ∈ (1, ∞) and y1, . . . , yn ∈ Z
2. Let Ax = (B

ρ1
x,x+y1

, . . . , B
ρn

x,x+yn
) and let

0 6= u ∈ Z
2. Then the R

n-valued process A = {Ax}x∈Z2 is stationary and ergodic under the shift θu .
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Proof. Since the i.i.d. process Y is stationary and ergodic under every shift, it suffices to show that

Ax = A0 ◦ θx as functions of Y. Let ui ∈ ] − e1, −e2[ be associated to ρi via (2-5) and fix sequences

{u1
m}, . . . , {un

m} in Z
2 such that, as m → ∞, |ui

m |1 → ∞ and ui
m/m → ui for each i ∈ [n]. Then almost

surely,

Ax = (B
ρ1
x,x+y1

, . . . , B
ρn

x,x+yn
) = lim

m→∞

(
[Gu1

m ,x+y1
− Gu1

m ,x ], . . . , [Gun
m ,x+yn

− Gun
m ,x ]

)

= lim
m→∞

(
[Gu1

m−x,y1
− Gu1

m−x,0], . . . , [Gun
m−x,yn

− Gun
m−x,0]

)
◦ θx

= (B
ρ1
0,y1

, . . . , B
ρn

0,yn
) ◦ θx = A0 ◦ θx . �

2B. Semi-infinite geodesics in the corner growth model. Let x• = {xk} be a finite or infinite south-west

directed nearest-neighbor path on Z
2 (xk+1 ∈ {xk − e1, xk − e2}). Then x• is a geodesic if it gives a

maximizing path between any two of its points: for any k < ` in the index set of x•,

Gx`,xk
=

∑̀

i=k

Yxi
.

Given ρ ∈ (1, ∞), define from each x ∈ Z
2 the semi-infinite, south-west directed path bρ,x ={b

ρ,x
k }k∈Z≥0

that starts at x = b
ρ,x

0 and chooses a step from {−e1, −e2} by following the minimal increment of Bρ :

for k ≥ 0,

b
ρ,x

k+1 =





b
ρ,x
k − e1, if B

ρ

b
ρ,x
k −e1, b

ρ,x
k

< B
ρ

b
ρ,x
k −e2, b

ρ,x
k

,

b
ρ,x
k − e2, if B

ρ

b
ρ,x
k −e2, b

ρ,x
k

≤ B
ρ

b
ρ,x
k −e1, b

ρ,x
k

.
(2-13)

The tie-breaking rule in favor of −e2 is chosen simply to make bρ,x a cadlag function of ρ. For a given ρ,

equality on the right-hand side happens with probability zero. Pictorially, to each point z attach the arrow

that points from z to b
ρ,z

1 . For each x the path bρ,x is constructed by starting at x and following the

arrows.

The additivity (2-7) and weights recovery (2-8) imply that bρ,x is a (semi-infinite) geodesic: let

` > k ≥ 0 and suppose {yi }`i=k is a south-west directed path from yk = b
ρ,x
k to y` = b

ρ,x
` . Then

∑̀

i=k

Yyi
≤

`−1∑

i=k

Bρ
yi+1,yi

+ Yy`
= Bρ

y`,yk
+ Yy`

= B
ρ

b
ρ,x
` ,b

ρ,x
k

+ Yb
ρ,x
`

=
`−1∑

i=k

B
ρ

b
ρ,x

i+1,b
ρ,x
i

+ Yb
ρ,x
`

=
∑̀

i=k

Yb
ρ,x
i

.

Thus,

Gb
ρ,x
` ,b

ρ,x
k

=
∑̀

i=k

Yb
ρ,x
i

= B
ρ

b
ρ,x
` ,b

ρ,x
k

+ Yb
ρ,x
`

. (2-14)

We call bρ,x a Busemann geodesic.

We state the key properties of semi-infinite geodesics in the next theorem.

Theorem 2.4. Fix ρ ∈ (1, ∞) and let u = u(ρ) be the direction associated to ρ by (2-5). The following

properties hold with probability one.

(i) Directedness. For all x ∈ Z
2, limk→∞ b

ρ,x
k /k = u.
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(ii) Uniqueness. Let x• = {xk}k∈Z≥0 be any semi-infinite geodesic that satisfies xk/k → u as k → ∞. Then

x• = bρ,x0 .

(iii) Coalescence. For all x, y ∈ Z
2, the paths bρ,x and bρ,y coalesce: there exists z = zρ(x, y) ∈ Z

2 such

that bρ,x ∩ bρ,y = bρ,z .

It is clear from the construction (2-13) that once bρ,x and bρ,y come together, they stay together. We

call zρ(u)(x, y) the coalescence point of the unique u-directed semi-infinite geodesics from x and y. The

Busemann function satisfies

Bρ
x,y = Gzρ(x,y),y − Gzρ(x,y),x a.s. (2-15)

It is important to note that parts (ii) and (iii) of Theorem 2.4 are true with probability one only for a

given u and not simultaneously for all directions.

Theorem 2.4(i) follows from an ergodic theorem for Busemann functions and the shape equation

(2-3) (see for example Theorem 4.3 in [Georgiou et al. 2017a]). Theorem 2.4(ii)–(iii) were established

for the exponential CGM in [Coupier 2011; Ferrari and Pimentel 2005]. The article [Seppäläinen

2020] gives an alternative derivation of Theorem 2.4 based on the properties of the stationary expo-

nential CGM. Versions of Theorem 2.4 for the CGM with general weights appear in [Georgiou et al.

2017a].

Remark 2.5 (competition interface). The geodesic tree emanating from x consists of all the geodesics

between x and points y ∈ x + Z
2
≤0 south and west of x . The semi-infinite geodesics bρ,x are infinite rays

in this tree. Every geodesic to x comes through either x − e1 or x − e2. This dichotomy splits the tree

into two subtrees. Between the two subtrees lies a unique path {ϕx
n }n∈Z≥0 on the dual lattice

(
1
2 , 1

2

)
+ Z

2

that starts at ϕx
0 = x −

(
1
2 , 1

2

)
. ϕx

n is a.s. uniquely defined as the point in x −
(

1
2 , 1

2

)
+ Z

2
≤0 that satisfies

|x − ϕx
n |1 = n + 1 and

Gϕx
n +(− 1

2 , 1
2 ), x−e1

− Gϕx
n +(− 1

2 , 1
2 ), x−e2

> 0 > Gϕx
n +( 1

2 ,− 1
2 ), x−e1

− Gϕx
n +( 1

2 ,− 1
2 ), x−e2

.

(Use the convention Gx,y = −∞ if x ≤ y fails.) The competition interface has a random asymptotic

direction,

lim
n→∞

ϕx
n

n
= u(ρ∗(x)) almost surely, (2-16)

where the limit is described in (2-5) and Lemma 2.2. This was first proved in [Ferrari and Pimentel 2005].

The limit came from the study of geodesics with Newman’s approach. Identification of the limit came

via a mapping of ϕx to a second class particle in the rarefaction fan of TASEP whose limit had been

identified in [Ferrari and Kipnis 1995]. An alternative proof that relies on the stationary LPP processes

was given in [Georgiou et al. 2017a].

2C. Queues. We begin with a standard formulation of a queue that obeys FIFO (first-in-first-out) disci-

pline. This treatment goes back to classic works of Lindley [1952] and Loynes [1962]. Modern references

that connect queues with LPP include [Glynn and Whitt 1991; Baccelli et al. 2000; Draief et al. 2005].
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The inputs are two bi-infinite sequences: the arrival process I = (Ik)k∈Z and the service process

ω = (ω j ) j∈Z in R
Z

≥0. They are assumed to satisfy

lim
m→−∞

0∑

i=m

(ωi − Ii+1) = −∞. (2-17)

The interpretation is that I j is the time between the arrivals of customers j −1 and j and ω j is the service

time of customer j. From these inputs three outputs Ĩ = ( Ĩk)k∈Z, J = (Jk)k∈Z and ω̃ = (ω̃k)k∈Z, also

elements of R
Z

≥0, are constructed as follows.

Let G = (Gk)k∈Z be any function on Z that satisfies Ik = Gk −Gk−1. Define the sequence G̃ = (G̃`)`∈Z

by

G̃` = sup
k: k≤`

{
Gk +

∑̀

i=k

ωi

}
, ` ∈ Z. (2-18)

Under assumption (2-17) the supremum in (2-18) is assumed at some finite k. The interdeparture time

between customers ` − 1 and ` is defined by

Ĩ` = G̃` − G̃`−1 (2-19)

and the sequence Ĩ = ( Ĩk)k∈Z is the departure process. The sojourn time Jk of customer k is defined by

Jk = G̃k − Gk, k ∈ Z. (2-20)

The third output,
ω̃k = Ik ∧ Jk−1, k ∈ Z, (2-21)

is the amount of time customer k − 1 spends as the last customer in the queue.

Ĩ, J and ω̃ are well-defined nonnegative real sequences, and they do not depend on the choice of the

function G as long as G has increments Ik = Gk − Gk−1. The three mappings are denoted by

Ĩ = D(I, ω), J = S(I, ω), and ω̃ = R(I, ω). (2-22)

The queueing story is good for imbuing the mathematics with meaning, but is not necessary for the sequel.

From

G̃k = ωk + Gk ∨ G̃k−1, (2-23)

follow the useful iterative equations

Ĩk = ωk + (Ik − Jk−1)
+ and Jk = ωk + (Jk−1 − Ik)

+. (2-24)

The difference of the two equations above gives a “conservation law”,

Ik + Jk = Jk−1 + Ĩk . (2-25)

We extend the queueing operator D to mappings

D(n) : (RZ

≥0)
n → R

Z

≥0

of multiple sequences into a single sequence. Let ζ, ζ 1, ζ 2, . . . denote elements of R
Z

≥0. Then, as long as
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the actions below are well-defined, let

D(1)(ζ ) = D(ζ, 0) = ζ,

D(2)(ζ 1, ζ 2) = D
(
D(1)(ζ 1), ζ 2

)
= D(ζ 1, ζ 2),

D(3)(ζ 1, ζ 2, ζ 3) = D
(
D(2)(ζ 1, ζ 2), ζ 3

)
= D

(
D(ζ 1, ζ 2), ζ 3

)
,

and, in general, D(n)(ζ 1, ζ 2, . . . , ζ n) = D
(
D(n−1)(ζ 1, . . . , ζ n−1), ζ n

)
for n ≥ 2.

(2-26)

In queueing terms, D(n)(ζ 1, ζ 2, . . . , ζ n) is the departure process that results from feeding arrival

process ζ 1 through a series of n − 1 service stations labeled i = 2, 3, . . . , n. For i = 2, 3, . . . , n, ζ i is

the service process at station i . Departures from station i − 1 are the arrivals at station i . The final output

is the departure process from the last station whose service process is ζ n.

We record some inequalities which are to be understood coordinatewise: for example, I ′ ≥ I means

that I ′
k ≥ Ik for all k ∈ Z.

Lemma 2.6. Assuming that the mappings below are well-defined, we have the following inequalities:

D(I, ω) ≥ ω. (2-27)

If I ′ ≥ I then D(I ′, ω) ≥ D(I, ω). (2-28)

For n ≥ 2, D(n)(ζ 1, ζ 2, ζ 3, . . . , ζ n) ≥ D(n−1)(ζ 2, ζ 3, . . . , ζ n). (2-29)

Proof. The first part of (2-24) implies (2-27). For (2-28) observe that

Jk = sup
j : j≤k

{
G j − Gk +

k∑

i= j

ωi

}
≥ sup

j : j≤k

{
G ′

j − G ′
k +

k∑

i= j

ωi

}
= J ′

k .

Now (2-24) gives Ĩ ′
k ≥ Ĩk .

Inequality (2-29) comes by induction on n. The case n = 2 is (2-27). Then, by induction and (2-28),

D(n)(ζ 1, . . . , ζ n) = D
(
D(n−1)(ζ 1, . . . , ζ n−1), ζ n

)
≥ D

(
D(n−2)(ζ 2, . . . , ζ n−1), ζ n

)

= D(n−1)(ζ 2, . . . , ζ n). �

We record the most basic fact about M/M/1 queues. The following notation will be used in the sequel.

Let

λ = (λ1, . . . , λn) ∈ (0, ∞)n

be an n-tuple of positive reals. Let ζ = (ζ 1, . . . , ζ n) ∈ (RZ

≥0)
n with ζ i = (ζ i

k )k∈Z denote an n-tuple of

nonnegative bi-infinite random sequences. Then ζ has distribution νλ if all the coordinates ζ i
k are mutually

independent with marginal distributions ζ i
k ∼ Exp(λ−1

i ). In other words, ζ i is a sequence of i.i.d. mean λi

exponential variables, and the sequences are independent.

Lemma 2.7. Let n ≥ 2 and let λ = (λ1, . . . , λn) satisfy λ1 > · · · > λn > 0. Let ζ have distribution νλ.

Then D(n)(ζ 1, . . . , ζ n) has distribution νλ1, in other words, D(n)(ζ 1, . . . , ζ n) is a sequence of i.i.d. mean

λ1 exponential random variables.

Proof. The case n = 2 is in Lemma B.2. The general case follows by induction on n. �
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3. Joint distribution of the Busemann functions

This section contains the main results on the joint distribution of the Busemann process

B
• = {Bρ : 1 < ρ < ∞}

defined in Theorem 2.1. Proofs are in Section 6. The distribution of the n-tuple

{(B
ρ1
x−e1,x

, . . . , B
ρn

x−e1,x
)}x ·e2=t

on a given lattice level t ∈ Z comes through a mapping of a product of exponential distributions. This

mapping is developed next.

3A. Coupled exponential distributions. Fix n ∈ Z>0 for the moment and define the following two spaces

of n-tuples of nonnegative real sequences. The sequences themselves are denoted by I i = (I i
k)k∈Z and

ηi = (ηi
k)k∈Z for i ∈ [n]:

Yn =
{

I =(I 1, I 2, . . . , I n)∈(RZ

≥0)
n : ∀ i ∈ J2, nK, lim

m→−∞
1

|m|

0∑

k=−m

I i
k > lim

m→−∞
1

|m|

0∑

k=−m

I i−1
k >0

}
. (3-1)

Xn =
{
η = (η1, η2, . . . , ηn) ∈ (RZ

≥0)
n : ηi ≥ ηi−1 ∀ i ∈ J2, nK and lim

m→−∞

1
|m|

0∑

k=−m

η1
k > 0

}
. (3-2)

The existence of the Cesàro limits as m → −∞ is part of the definitions. Yn and Xn are Borel subsets of

(RZ

≥0)
n and thereby separable metric spaces in the product topology. We endow them with their Borel

σ -algebras.

Define a mapping D(n) : Yn → Xn in terms of the multiqueue mappings D(k) of (2-26) as follows: for

I = (I 1, I 2, . . . , I n) ∈ Yn , the image η = (η1, η2, . . . , ηn) = D(n)(I ) is defined by

ηi = D(i)(I i , I i−1, . . . , I 1) for i = 1, . . . , n. (3-3)

In particular, the first sequence is just copied over: η1 = I 1. Then η2 = D(I 2, I 1), η3 = D(3)(I 3, I 2, I 1)=
D(D(I 3, I 2), I 1), and so on. Iterated application of Lemma A.3 from Appendix A together with the

assumption I ∈Yn ensures that the mappings D(i)(I i , I i−1, . . . , I 1) are well-defined. Furthermore, η ∈Xn

follows from inequalities (2-27) and (2-29). Lemma A.3 implies also that D(n) maps Yn into itself. We

do not need this feature in the sequel, which is why we did not define Xn as a subspace of Yn .

Recall:

For ρ = (ρ1, . . . , ρn) ∈ (0, ∞)n, I = (I 1, I 2, . . . , I n) has distribution νρ if

all coordinates I i
k are independent and I i

k ∼ Exp(ρ−1
i ) for each k ∈ Z and i ∈ [n]. (3-4)

If ρ satisfies 0 < ρ1 < ρ2 < · · · < ρn then νρ is supported on Yn . For these ρ define the probability

measure µρ on Xn as the image of νρ under D(n):

µρ = νρ ◦ (D(n))−1 for ρ = (ρ1, ρ2, . . . , ρn) such that 0 < ρ1 < ρ2 < · · · < ρn. (3-5)



JOINT DISTRIBUTION OF BUSEMANN FUNCTIONS IN THE CORNER GROWTH MODEL 67

By Lemma 2.7, if η has distribution µρ with 0 < ρ1 < ρ2 < · · · < ρn , then for each i ∈ [n], ηi = (ηi
k)k∈Z

is a sequence of i.i.d. mean ρi exponential variables. The mapping D(n) couples the variables ηi
k together

so that ηi−1
k ≤ ηi

k for all i ∈ J2, nK and k ∈ Z.

Translations {θ`}`∈Z act on n-tuples of sequences by (θ`η)i
k = ηi

k+` for i ∈ [n] and k, ` ∈ Z. A

translation-ergodic probability measure Q on Xn is invariant under {θ`} and satisfies Q(A) ∈ {0, 1} for

any Borel set A ⊂ Xn that is invariant under {θ`} (and similarly for any other sequence space).

Theorem 3.1. The probability measures µρ are translation-ergodic and have the following properties:

(i) Continuity. The probability measure µρ is weakly continuous as a function of ρ on the set of vectors

that satisfy 0 < ρ1 < ρ2 < · · · < ρn .

(ii) Consistency. If (η1, . . . , ηn) ∼ µ(ρ1,...,ρn), then (η1, . . . , η j−1, η j+1, . . . , ηn) ∼ µ(ρ1,...,ρ j−1,ρ j+1,...,ρn)

for all j ∈ [n].

Continuity of ρ 7→ µρ is proved in Section 6. Translation-covariance of the queueing mappings

(D(θ` I, θ`ω) = θ`D(I, ω)) implies that µρ inherits the translation-ergodicity of νρ. We omit the proof of

consistency. Consistency will be an indirect consequence of the uniqueness of µρ as the translation-ergodic

invariant distribution of the so-called coupled process (Theorem 5.3).

3B. Distribution of Busemann functions. Return to the Busemann functions B
• defined in Theorem 2.1.

For each level t ∈ Z define the level-t sequence of weights Y t = (Y(k,t))k∈Z and for a given ρ ∈ (1, ∞),

sequences of e1 and e2 Busemann variables at level t :

B
ρ,e1
t = (B

ρ

(k−1,t),(k,t))k∈Z and B
ρ,e2
t = (B

ρ

(k,t−1),(k,t))k∈Z.

The next main result characterizes uniquely the distribution of the joint process (Y, B
•
) of weights and

Busemann functions.

Theorem 3.2. Let Y = (Yx)x∈Z2 be i.i.d. Exp(1) variables as in Section 2A. Let 1 < ρ1 < · · · < ρn . Then

at each level t ∈ Z, the (n+1)-tuple of sequences (Y t , B
ρ1,e1
t , . . . , B

ρn,e1
t ) has distribution µ(1,ρ1,...,ρn).

Once the process {B
ρ,e1
t−1 }1<ρ<∞ on a single level t − 1 is given, the variables B

ρ
x−ei ,x

at higher levels

t, t +1, t +2, . . . can be deduced by drawing independent weights Y t , Y t+1, . . . and by applying queueing

mappings. By stationarity, the full distribution will then have been determined. The next lemma describes

the single step of computing the e1 and e2 Busemann increments on level t from the process {B
ρ,e1
t−1 }1<ρ<∞

and independent level-t weights Y t . The mappings D and S were specified in (2-22).

Lemma 3.3. There exists an event of full probability on which

B
ρ,e1
t = D(B

ρ,e1
t−1 , Y t) and B

ρ,e2
t = S(B

ρ,e1
t−1 , Y t) for all ρ ∈ (1, ∞) and t ∈ Z.

The remainder of this section describes some distributional properties of B
• restricted to horizontal

edges and lines on Z
2. The corresponding statements for vertical edges and lines are obtained by replacing

ρ with ρ/(ρ − 1). This is due to the distributional equality {B
ρ
x−e2,x

}x∈Z2
d= {B

ρ/(ρ−1)

Rx−e1,Rx}x∈Z2 where

R(x1, x2) = (x2, x1). This follows from (2-5) and the limits (2-10), by reflecting the lattice across the

diagonal.
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1
ρ

B
ρ
x−e1,x

Yx

Yx +Zλ

λ

Figure 2. A sample path of the pure jump process {B
ρ
x−e1,x

}ρ ∈ [1,∞), with initial value
B1

x−e1,x
= Yx . The jump times are a Poisson point process on (1, ∞) with intensity s−1ds.

Given that there is a jump at λ, the jump size is an independent Exp(λ−1) variable Zλ.

3C. Marginal distribution on a single edge. Lemma 2.2 implies that for a fixed horizontal edge (x−e1, x)

we can extend {B
ρ
x−e1,x

: 1 < ρ < ∞} to a cadlag process

B
•
x−e1,x

= {B
ρ
x−e1,x

: 1 ≤ ρ < ∞}

by setting B1
x−e1,x

= Yx . We describe the distribution of this process in terms of a marked point process.

Figure 2 illustrates a sample path of this process.

Let N be the simple point process on the interval {s : 1 ≤ s < ∞} that has a point at s = 1 with

probability one, and on the open interval (1, ∞) N is a Poisson point process with parameter measure

s−1 ds. (We use N to denote both the random discrete set of locations and the resulting random point

measure.) Let N be the ground process of the marked point process
∑

t∈N δ(t, Z t ) where the mark Z t at

location t ∈ N is Exp(t−1)-distributed and independent of the other marks. Define the nondecreasing

cadlag process X (·) = {X (ρ) : ρ ∈ [1, ∞)} as

X (ρ) =
∑

t ∈ N∩[1,ρ]
Z t ; (3-6)

namely, X (ρ) is the total weight of the marks in [1, ρ]. The Laplace transform of X (ρ) is given in (6-12).

Theorem 3.4. Fix x ∈ Z
2. The nondecreasing cadlag processes B

•
x−e1,x

and X (•) indexed by [1, ∞) are

equal in distribution.

A qualitative consequence of Theorem 3.4 is that for any given λ∈ (1, ∞)\ N, ρ 7→ B
ρ
x−e1,x

is constant

in an interval around λ. From identity (2-15), it is evident that this is due to the fact that the coalescence

point function ρ 7→ zρ(x − e1, x) is constant in an interval. This is an analogue of the local constancy of

the difference weight profile in Theorem 1.1 of [Basu et al. 2019]. The implications of Theorem 3.4 for

the coalescence structure of the geodesics of the CGM are explored in [Janjigian et al. 2019].

Theorem 3.4 is proved by establishing that B
•
x−e1,x

has independent increments and by deducing the

distribution of an increment. Independent increments means that for 1 = ρ0 < ρ1 < · · · < ρn , the random

variables Yx = B
ρ0
x−e1,x

, B
ρ1
x−e1,x

− B
ρ0
x−e1,x

, . . . , B
ρn

x−e1,x
− B

ρn−1
x−e1,x

are independent. For 1 ≤ λ < ρ < ∞,
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the distribution of the increment is

P{B
ρ
x−e1,x

− Bλ
x−e1,x

= 0} = P{N (λ, ρ] = 0} = λ

ρ
,

P{B
ρ
x−e1,x

− Bλ
x−e1,x

> s} =
(

1 − λ

ρ

)
e−s/ρ for s > 0.

(3-7)

For the process B
•
x−e2,x

on a vertical edge, the result of Theorem 3.4 is that

{B
ρ
x−e2,x

: 1 < ρ < ∞} d=
{

X
((

ρ

ρ−1

)
+

)
: 1 < ρ < ∞

}
. (3-8)

3D. Marginal distribution on a level of the lattice. A striking and useful property of the Busemann

process {B
ρ

(k−1,t),(k,t)}k∈Z along a horizontal line in Z
2 for a fixed value ρ ∈ (1, ∞) is that the variables

{B
ρ

(k−1,t),(k,t)}k∈Z are i.i.d. (part (ii) of Theorem 2.1). For example, [Balázs et al. 2006] used this feature

heavily to deduce the KPZ fluctuation exponents of the corner growth model. The next theorem shows that

this property breaks down totally already for the joint process {(Bλ
(k−1,t),(k,t), B

ρ

(k−1,t),(k,t))}k∈Z for two

parameter values λ < ρ. Namely, this pair process is not even a Markov chain and not reversible. However,

if we restrict attention to the differences B
ρ

(k−1,t),(k,t) − Bλ
(k−1,t),(k,t), we can recover the reversibility. The

differences are of interest because they indicate a jump in the coalescence point z•((k − 1, t), (k, t)) in

(2-15) as a function of the direction.

For the statement of the theorem below, the negative part of a real number is x− = (−x) ∨ 0. The

Markov chain Xk in part (a) below has a queueing interpretation as the difference between the sojourn

time of customer k − 1 and the waiting time till the arrival of customer k. The details are in the proof in

Lemma 6.5.

Theorem 3.5. Let 1 ≤ λ < ρ < ∞.

(a) The sequence of differences {B
ρ

(k−1,t),(k,t) − Bλ
(k−1,t),(k,t)}k∈Z is not a Markov chain, but there exists a

stationary reversible Markov chain {Xk}k∈Z such that this distributional equality of processes holds:

{B
ρ

(k−1,t),(k,t) − Bλ
(k−1,t),(k,t)}k∈Z

d= {X−
k }k∈Z.

In particular, the process of differences is reversible:

{B
ρ

(k−1,t),(k,t) − Bλ
(k−1,t),(k,t)}k∈Z

d= {B
ρ

(−k−1,t),(−k,t) − Bλ
(−k−1,t),(−k,t)}k∈Z.

(b) The sequence of pairs {(Bλ
(k−1,t),(k,t), B

ρ

(k−1,t),(k,t))}k∈Z is not a Markov chain. The joint distribution of

two successive pairs

(
(Bλ

(k−1,t),(k,t), B
ρ

(k−1,t),(k,t)), (Bλ
(k,t),(k+1,t), B

ρ

(k,t),(k+1,t))
)

is not the same as the joint distribution of its transpose

(
(Bλ

(k,t),(k+1,t), B
ρ

(k,t),(k+1,t)), (Bλ
(k−1,t),(k,t), B

ρ

(k−1,t),(k,t))
)
.

In particular, the process of pairs {(Bλ
(k−1,t),(k,t), B

ρ

(k−1,t),(k,t))}k∈Z is not reversible.
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3E. The initial segment of the Busemann geodesic. As the last application of Theorem 3.2 we calculate

the probability distribution of the length of the initial horizontal run of a semi-infinite geodesic.

Let a
ρ
x = b

ρ,x

1 −x be the first step of the Bρ Busemann geodesic (2-13) started at x . {a
ρ
x }x∈Z2 is a random

configuration with values in {−e1, −e2}. By weight recovery (2-8), a
ρ
x =−e1 if and only if B

ρ
x−e1,x

−Yx =0.

Hence by Theorem 3.5(a) with λ = 1, reversibility holds along a line: {a
ρ

kei
}k∈Z

d= {a
ρ

−kei
}k∈Z.

The first part of the theorem below gives a queueing characterization for the process {a
ρ

ke1
}k∈Z. To that

end, for the queueing mapping Ĩ = D(I, ω) of (2-22) define the indicator variables

ηk = 1 Ĩk=ωk
= 1{customer k has to wait before entering service}. (3-9)

Let
ξx = inf{k ∈ Z≥0 : a

ρ

x−ke1
= −e2}

denote the number of consecutive −e1 steps that bρ,x takes from a deterministic starting point x . Part (b)

of the theorem gives the distribution of ξx . The Catalan triangle {C(n, k) : 0 ≤ k ≤ n} is given by

C(n, k) =
(n + k)!(n − k + 1)

k!(n + 1)!
. (3-10)

Information about C(n, k) is given above Lemma B.3 in Appendix B.

Theorem 3.6. Let 1 < ρ < ∞.

(a) Let the service and arrival processes satisfy (ω, I ) ∼ ν(1,ρ) and define ηk by (3-9). Then we have the

distributional equality

{1{a
ρ

ke1
= −e1}}k∈Z

d= {ηk}k∈Z.

(b) Let x ∈ Z
2. Then P{ξx = 0} = 1 − ρ−1 and for n ∈ Z>0,

P{ξx = n} = (1 − ρ−1)

n−1∑

k=0

C(n − 1, k)
ρk

(ρ + 1)n+k
. (3-11)

The distribution in (3-11) is proper; that is,
∑

n∈Z≥0
P{ξx = n} = 1. This follows for example from

Theorem 2.4(i) according to which the Busemann geodesic has direction strictly off the axes.

Remark 3.7. If we take (ω, I ) ∼ ν(λ,ρ) for 1 < λ < ρ in Theorem 3.6 and define ηk again by (3-9), we get

the distributional equality {1{B
ρ

(k−1,t),(k,t) = Bλ
(k−1,t),(k,t)}}k∈Z

d= {ηk}k∈Z. The calculation that produced

part (b) gives the distribution P{ξλ,ρ
x = 0} = (ρ − λ)/ρ and

P{ξλ,ρ
x = n} =

ρ − λ

ρ

n−1∑

k=0

C(n − 1, k)
ρkλn

(λ + ρ)n+k
for n ∈ Z>0,

for the random variable

ξλ,ρ
x = inf{k ∈ Z≥0 : B

ρ

x−(k+1)e1,x−ke1
> Bλ

x−(k+1)e1,x−ke1
}.

Note that B
ρ
x−e1,x

= Bλ
x−e1,x

tells us that b
ρ,x

1 = b
λ,x
1 but not which step is chosen.
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4. Properties of queueing mappings

This section proves a property of the queueing mapping D (Lemma 4.4) on which the intertwining

property that comes in Section 5D rests. To prove Lemma 4.4 we develop a duality in the queueing setting

of Section 2C: namely, an LPP process defined in terms of weights (I, ω) can be equivalently described

in terms of weights ( Ĩ , ω̃) defined by (2-22). Routine facts about the queueing mappings are collected in

Appendix A.

Fix an origin m ∈ Z. Assume given nonnegative real weights

Jm, (Ii )i≥m+1, and (ωi )i≥m+1. (4-1)

From these define iteratively for k = m + 1, m + 2, . . .

Ĩk = ωk + (Ik − Jk−1)
+, Jk = ωk + (Jk−1 − Ik)

+, and ω̃k = Ik ∧ Jk−1. (4-2)

There is a duality or reversibility of sorts here. For a fixed k, equations (4-2) are equivalent to

Ik = ω̃k + ( Ĩk − Jk)
+, Jk−1 = ω̃k + (Jk − Ĩk)

+, and ωk = Ĩk ∧ Jk . (4-3)

We turn this reversibility into a lemma as follows. Restrict the given J, I and ω weights in (4-1) to

the interval Jm, nK. Then on the interval J−n, −mK define the given weights J ′
−n , (I ′

i )−n+1≤i≤−m and

(ω′
i )−n+1≤i≤−m as

I ′
i = Ĩ−i+1, J ′

−n = Jn, and ω′
i = ω̃−i+1. (4-4)

Now apply (4-2) to these given weights to compute ( Ĩ ′
k, J ′

k, ω̃
′
k) for k ∈ J−n + 1, −mK. First assume by

induction that J ′
k−1 = J−k+1. The base case k − 1 = −n is covered by the definition in (4-4). Then

J ′
k = ω′

k + (J ′
k−1 − I ′

k)
+ = ω̃−k+1 + (J−k+1 − Ĩ−k+1)

+

= I−k+1 ∧ J−k + (J−k − I−k+1)
+ = J−k .

The third equality above used the definition of ω̃ in (4-2) and the conservation law

Ik + Jk = Jk−1 + Ĩk (4-5)

that follows from (4-2). Thus J ′
k = J−k for all k ∈ J−n, −mK. Next

Ĩ ′
k = ω′

k + (I ′
k − J ′

k−1)
+ = ω̃−k+1 + ( Ĩ−k+1 − J−k+1)

+

= I−k+1 ∧ J−k + (I−k+1 − J−k)
+ = I−k+1.

Finally,

ω̃′
k = I ′

k ∧ J ′
k−1 = Ĩ−k+1 ∧ J−k+1 = ω−k+1

as follows again from (4-2). We summarize this finding as follows.

Lemma 4.1. Fix m < n. Assume given Jm , (Ii )m+1≤i≤n and (ωi )m+1≤i≤n . Compute ( Ĩk, Jk, ω̃k)m+1≤k≤n

from (4-2). Then define J ′
−n , (I ′

i )−n+1≤i≤−m and (ω′
i )−n+1≤i≤−m by (4-4) and apply (4-2) to compute

( Ĩ ′
k, J ′

k, ω̃
′
k)−n+1≤k≤−m . The conclusion is that ( Ĩ ′

k, J ′
k, ω̃

′
k) = (I−k+1, J−k, ω−k+1) for k ∈ J−n + 1, −mK.
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(m, 0)

(m, 1)

(n, 0)

(n, 1)

(i-1, 0) (i, 0)

ωi

Ii
Jm

(m, 0)

(m, 1)

(n, 0)

(n, 1)(i-1, 1) (i, 1)

ω̃i

Ĩi

Jn

Figure 3. Illustration of the weights (I, J, ω) on the left and weights ( Ĩ , J, ω̃) on the
right. Pairs (k, a) ∈ Jm, nK × J0, 1K mark vertices of the two-level strip.

Next we use the weights given in (4-1) to construct a last-passage process on the two-level strip

Jm, ∞J×J0, 1K in Z
2. In this construction, Ii serves as a weight on the horizontal edge ((i − 1, 0), (i, 0))

on the lower 0-level, Jm is a weight on the vertical edge ((m, 0), (m, 1)), and ωi is a weight at vertex (i, 1)

on the upper 1-level. (The left diagram of Figure 3 illustrates this.) The last-passage values H(m,0),(n,a)

are defined for (n, a) ∈ Jm, ∞J×J0, 1K as follows:

H(m,0),(m,0) = 0 and H(m,0),(n,0) =
n∑

i=m+1

Ii for n > m,

H(m,0),(m,1) = Jm ,

H(m,0),(n,1) =
{

Jm +
n∑

i=m+1

ωi

}
∨ max

m+1≤ j≤n

{ j∑

i=m+1

Ii +
n∑

i= j

ωi

}
, n > m.

(4-6)

If the given weights (4-1) come from the queueing setting of Section 2C, then H(m,0),(n,1) = G̃n − Gm .

But this connection is not needed for the present.

The next lemma gives alternative formulas for H in terms of the weights calculated in (4-2). Pictorially,

imagine Ĩi as a weight on the edge ((i −1, 1), (i, 1)) and ω̃i as a weight on the vertex (i −1, 0). (The right

diagram of Figure 3 illustrates this.) In (4-7), a sum expression of the form a j + · · ·+ a j−1 is interpreted

as zero. The equation (4-8) makes sense also for ` = n in which case the right-hand side simplifies to Jn .

Lemma 4.2. Let m ≤ n. Then

H(m,0),(n,1) = Im+1 + · · · + Ik + Jk + Ĩk+1 + · · · + Ĩn for each k ∈ Jm, nK. (4-7)

For each ` ∈ Jm, n − 1K,

H(m,0),(n,1) − H(m,0),(`,0) = max
`+1≤ j≤n

{ j∑

i=`+1

ω̃i +
n∑

i= j

Ĩi

}
∨

{ n∑

i=`+1

ω̃i + Jn

}
. (4-8)

We make some observations before the proof. By the two top lines of (4-6), equivalent to (4-7) are the

increment formulas (for all n > m)

Ĩn = H(m,0),(n,1) − H(m,0),(n−1,1) and Jn = H(m,0),(n,1) − H(m,0),(n,0). (4-9)

Taking ` = m in (4-8) gives this dual representation for H :

H(m,0),(n,1) = max
m+1≤ j≤n

{ j∑

i=m+1

ω̃i +
n∑

i= j

Ĩi

}
∨

{ n∑

i=m+1

ω̃i + Jn

}
. (4-10)
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Proof of Lemma 4.2. Let m < n and develop the definition (4-6). As in (2-2),

H(m,0),(n,1) =
{

Jm +
n−1∑

i=m+1

ωi

}
∨ max

m+1≤ j≤n−1

{ j∑

i=m+1

Ii +
n−1∑

i= j

ωi

}
∨

{ n∑

i=m+1

Ii

}
+ ωn

= H(m,0),(n−1,1) ∨ H(m,0),(n,0) + ωn.

(4-11)

Set temporarily

An = H(m,0),(n,1) − H(m,0),(n−1,1) and Bn = H(m,0),(n,1) − H(m,0),(n,0).

Then (4-11) gives the iterative equations

An = ωn + (In − Bn−1)
+ and Bn = ωn + (Bn−1 − In)

+.

Definition (4-6) gives Bm = Jm . This starts an induction. Apply the equations above together with (4-2)

to obtain An = Ĩn and Bn = Jn for all n ≥ m + 1. This establishes (4-9), and (4-7) follows.

We prove (4-8) by induction as ` decreases. The base case ` = n comes from the just proved Bn = Jn .

Assume (4-8) for ` + 1. Then for ` the right-hand side of (4-8) equals

ω̃`+1+
{ n∑

i=`+1

Ĩi

}
∨ max

`+2≤ j≤n

{ j∑

i=`+2

ω̃i+
n∑

i= j

Ĩi

}
∨

{ n∑

i=`+2

ω̃i+Jn

}

= H(m,0),(`+1,0)∧H(m,0),(`,1)−H(m,0),(`,0)+
{

H(m,0),(n,1)−H(m,0),(`,1)

}
∨

{
H(m,0),(n,1)−H(m,0),(`+1,0)

}

= H(m,0),(n,1)−H(m,0),(`,0).

In the first equality we used ω̃`+1 = I`+1 ∧ J`, (4-9) and the induction assumption. �

The last line of (4-6) and formula (4-10) give dual representations of the quantity H(m,0),(n,1). The

next lemma shows that equality persists if we drop the terms that involve J from both formulas. This

statement is the crucial ingredient of Lemma 4.4 below.

Lemma 4.3. Let m ≤ n in Z. Assume given nonnegative weights Jm−1, (Ii )m≤i≤n and (ωi )m≤i≤n .

Compute ( Ĩk, Jk, ω̃k)m≤k≤n from (4-2). Define

Tm,n = max
m≤ j≤n

{ j∑

i=m

Ii +
n∑

i= j

ωi

}
and T̃m,n = max

m≤ j≤n

{ j∑

i=m

ω̃i +
n∑

i= j

Ĩi

}
. (4-12)

Then Tm,n = T̃m,n .

Proof. The case m = n is the identity In + ωn = ω̃n + Ĩn that follows from (4-2).

Let n ≥ m + 1 and assume by induction that T̃m,n−1 ≤ Tm,n−1. Develop the definitions.

Tm,n = max
m≤ j≤n−1

{ j∑

i=m

Ii +
n−1∑

i= j

ωi

}
∨

{ n∑

i=m

Ii

}
+ ωn = Tm,n−1 ∨

{ n∑

i=m

Ii

}
+ ωn. (4-13)
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Similarly,

T̃m,n = T̃m,n−1 ∨
{ n∑

i=m

ω̃i

}
+ Ĩn = T̃m,n−1 ∨

{ n∑

i=m

(Ii ∧ Ji−1)

}
+ ωn + (In − Jn−1)

+

≤ Tm,n−1 ∨
{ n∑

i=m

Ii

}
+ ωn + (In − Jn−1)

+.

(4-14)

The induction assumption was used in the last step.

Case 1: In ≤ Jn−1. This assumption kills the last term of (4-14) and gives

T̃m,n ≤ Tm,n−1 ∨
{ n∑

i=m

Ii

}
+ ωn = Tm,n.

Case 2: In > Jn−1. For this case induction is not needed. We use the last-passage process H(m−1,0),( • , • ).

Conservation law (4-5) and (4-9) imply

In > Jn−1 ⇐⇒ Ĩn > Jn ⇐⇒ H(m−1,0),(n−1,1) < H(m−1,0),(n,0).

Then by (4-11),

H(m−1,0),(n,1) = H(m−1,0),(n,0) + ωn =
n∑

i=m

Ii + ωn ≤ Tm,n.

On the other hand, by definition (4-6),

H(m−1,0),(n,1) =
{

Jm−1 +
n∑

i=m

ωi

}
∨ Tm,n.

Hence H(m−1,0),(n,1) = Tm,n . By the dual formula (4-10),

H(m−1,0),(n,1) = T̃m,n ∨
{ n∑

i=m

ω̃i + Jn

}
≥ T̃m,n.

We conclude that in Case 2, T̃m,n ≤ Tm,n .

We have shown that T̃m,n ≤ Tm,n . This suffices for the proof by the duality in Lemma 4.1 because the

roles of Tm,n and T̃m,n can be switched around. �

The next lemma is the key property of the queueing mapping D that underlies our results. Its proof

relies on Lemma 4.3. Lemma 4.3 applies to the queueing setting described in Section 2C because

equations (2-21) and (2-24) ensure that the assumptions of Lemma 4.3 are satisfied.

Lemma 4.4. Assume given three sequences I 2, I 1, ω1 ∈ R
Z

≥0 such that the queueing operations below

are well-defined. Let ω2 = R(I 1, ω1) as defined in (2-21). Then we have the identity

D
(
D(I 2, ω2), D(I 1, ω1)

)
= D

(
D(I 2, I 1), ω1

)
. (4-15)
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Proof. Choose G1 and G2 so that I t
k = G t

k − G t
k−1 for t = 1, 2. Let

H j = sup
`: `≤ j

{
G2

` +
j∑

i=`

I 1
i

}

and then

H̃k = sup
j : j≤k

{
H j +

k∑

i= j

ω1
i

}
= sup

`: `≤k

{
G2

` + max
j :`≤ j≤k

[ j∑

i=`

I 1
i +

k∑

i= j

ω1
i

] }
. (4-16)

The sequence (H̃k − H̃k−1)k∈Z is the output D(D(I 2, I 1), ω1).

For the left-hand side of (4-15) define first for D(I t , ωt) the sequence

G̃ t
j = sup

`: `≤ j

{
G t

` +
j∑

i=`

ωt
i

}
, t ∈ {1, 2}.

Set Ĩ 1
k = G̃1

k − G̃1
k−1. The output D(D(I 2, ω2), D(I 1, ω1)) is given by the increments of the sequence

Ĥk = sup
j : j≤k

{
G̃2

j +
k∑

i= j

Ĩ 1
i

}
= sup

`: `≤k

{
G2

` + max
j :`≤ j≤k

[ j∑

i=`

ω2
i +

k∑

i= j

Ĩ 1
i

] }
. (4-17)

The rightmost members of lines (4-16) and (4-17) are equal because the innermost maxima over the

quantities in square brackets [· · · ] agree, by Lemma 4.3. We have shown that H̃ = Ĥ and thereby proved

the lemma. �

We extend Lemma 4.4 inductively.

Lemma 4.5. Let n ≥ 2 and assume given n + 1 sequences I 1, I 2, . . . , I n, ω1 ∈ R
Z

≥0 such that all the

queueing operations below are well-defined. Define iteratively

ω j = R(I j−1, ω j−1) for j = 2, . . . , n. (4-18)

Then we have these identities for 1 ≤ k ≤ n − 1:

D(n+1)(I n, I n−1, . . . , I 1, ω1) =
D(k+1)

(
D(n−k+1)[I n, . . . , I k+1, ωk+1], D(I k, ωk), . . . , D(I 1, ω1)

)
. (4-19)

Proof. The case n = 2 is Lemma 4.4.

Let n ≥ 3 and assume that the claim of the lemma holds when n is replaced by n −1, for 1 ≤ k ≤ n −2.

We prove the claim for n.

First the case k = 1, beginning with the right-hand side of (4-19):

D(2)
(
D(n)(I n, . . . , I 2, ω2), D(I 1, ω1)

)
= D

(
D

[
D(n−1)(I n, . . . , I 2), ω2

]
, D(I 1, ω1)

)

= D
(
D

[
D(n−1)(I n, . . . , I 2), I 1

]
, ω1

)

= D
(
D(n)(I n, . . . , I 1), ω1

)
= D(n+1)(I n, . . . , I 1, ω1).
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The first and last two equalities above are from definition (2-26) of D(n), and the middle equality is

Lemma 4.4.

Now let 2 ≤ k ≤ n − 1. The first equality below is definition (2-26) for D(k+1). The second equality is

the induction assumption:

D(k+1)
(
D(n−k+1)(I n, . . . , I k+1, ωk+1), D(I k, ωk), . . . , D(I 1, ω1)

)

= D
(
D(k)

[
D(n−k+1)(I n, . . . , I k+1, ωk+1), D(I k, ωk), . . . , D(I 2, ω2)

]
, D(I 1, ω1)

)

= D
(
D(n)[I n, . . . , I 2, ω2], D(I 1, ω1)

)
.

The last line above is the same as the left-hand side of the previous display. The calculation is completed

as was done there. �

In particular, for k = n − 1, (4-19) gives

D(n+1)(I n, . . . , I 1, ω1) = D(n)
(
D(I n, ωn), . . . , D(I 1, ω1)

)
(4-20)

and for k = 1,

D(n+1)(I n, . . . , I 1, ω1) = D
(
D(n)

[
I n, . . . , I 2, ω2

]
, D(I 1, ω1)

)
. (4-21)

5. Multiclass processes

The distribution µ(1,ρ1,...,ρn) of the (n +1)-tuple (Yt , B
ρ1,e1
t , . . . , B

ρn,e1
t ) given in Theorem 3.2 is deduced

through studying two multiclass LPP processes. Fix a positive integer n, the number of levels or classes.

We define two discrete-time Markov processes on n-tuples of sequences, the multiline process and the

coupled process. Their state space is

An =
{

I = (I 1, I 2, . . . , I n) ∈ (RZ

≥0)
n : ∀ i ∈ [n], lim

m→−∞

1

|m|

0∑

k=−m

I i
k > 1

}
. (5-1)

At each step their evolution is driven by an independent sequence of i.i.d. exponential weights, so assume

that

ω = (ωk)k∈Z is a sequence of i.i.d. variables ωk ∼ Exp(1). (5-2)

5A. Multiline process. At time t ∈ Z≥0, the state of the multiline process is denoted by

I (t) = (I 1(t), . . . , I n(t)) ∈ An.

The one-step evolution from time t to t + 1 is defined as follows in terms of the mappings (2-22). Given

the time t configuration I (t) = I = (I 1, I 2, . . . , I n) in the space An and independent driving weights ω,

define the time t + 1 configuration I (t + 1) = Ī = ( Ī 1, Ī 2, . . . , Ī n) iteratively as follows:

set ω1 = ω and Ī 1 = D(I 1, ω1);
for i = 2, 3, . . . , n:

set ωi = R(I i−1, ωi−1) and Ī i = D(I i , ωi ). (5-3)
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Thus the driving sequence ω acts on the first line I 1 directly, and is then transformed at each stage before

it is passed to the next line. Lemma A.3 guarantees that, for almost every ω from (5-2), the Cesàro limit

limm→−∞|m|−1 ∑0
k=m ωi

k = 1 holds for each i ∈ [n] and the new state Ī lies in An .

Theorem 5.1. Assume (5-2). Then for each ρ = (ρ1, . . . , ρn) ∈ (1, ∞)n, the product measure νρ defined

in (3-4) is invariant for the multiline process (I (t))t∈Z≥0 .

Theorem 5.1 follows from Lemma B.2 in Appendix B: induction on k shows that Ī 1, . . . , Ī k , ωk+1,

I k+1, . . . , I n are independent with Ī i ∼νρi, ωk+1 ∼ν1, I j ∼νρ j. We do not have proof that νρ is the unique

translation-ergodic stationary distribution with mean vector ρ, but have no reason to doubt this either.

5B. Coupled process. At time t ∈ Z≥0, the state of the coupled process is denoted by

η(t) = (η1(t), . . . , ηn(t)) ∈ An

where again ηi (t) = (ηi
k(t))k∈Z. The evolution is simple: the queueing operator D acts on each sequence

ηi with service times ω:

η(t + 1) =
(
D(η1(t), ω), D(η2(t), ω), . . . , D(ηn(t), ω)

)
. (5-4)

We call η(t) the coupled process because it lives also on the smaller state space Xn ∩An (recall (3-2))

where the sequences ηi are coupled so that ηi−1 ≤ ηi. This is the case relevant for the Busemann processes

because the latter are monotone (recall (2-6)). Inequality (2-28) and Lemma A.1 ensure that the Markovian

evolution η(·) is well-defined on Xn ∩An . However, since the mapping (5-4) is well-defined for more

general states, we consider it on the larger state space An of (5-1).

To state an invariance and uniqueness theorem for all parameter vectors ρ ∈ (1, ∞)n we extend µρ

of (3-5), by ordering ρ and by requiring that ηi = ηi+1 if ρi = ρi+1. This is necessary because the

mapping D(n) in (3-5) cannot be applied if some ρi = ρi+1. For if I and ω are both i.i.d. Exp(ρ−1)

sequences, then G̃ in (2-18) is identically infinite because it equals a random constant plus the supremum

of a symmetric random walk.

Definition 5.2. Let ρ = (ρ1, ρ2, . . . , ρn) ∈ (0, ∞)n. The probability measure µρ on the space (RZ

≥0)
n is

defined as follows.

(i) If 0 < ρ1 < ρ2 < · · · < ρn then apply (3-5).

(ii) If 0 < ρ1 ≤ ρ2 ≤ · · · ≤ ρn , there exist m ∈ [n], a vector σ = (σ1, . . . , σm) such that 0 < σ1 < · · · < σm ,

and indices 1 = i1 < i2 < · · · < im < im+1 = n +1 such that ρi` = · · · = ρi`+1−1 = σ` for ` = 1, . . . , m. Let

I ∼ νσ, ζ =D(m)(I ), and then define η = (η1, . . . , ηn) ∈Xn by ηi` = · · · = ηi`+1−1 = ζ ` for ` = 1, . . . , m.

Define µρ to be the distribution of η.

(iii) For general ρ = (ρ1, . . . , ρn) ∈ (0, ∞)n, choose a permutation π such that πρ = (ρπ(1), . . . , ρπ(n))

satisfies ρπ(1) ≤ ρπ(2) ≤ · · · ≤ ρπ(n). Let π act on weight configurations η = (η1, . . . , ηn) by πη =
(ηπ(1), . . . , ηπ(n)). Define µρ = µπρ ◦ π−1, or more explicitly

Eµρ [ f ] = Eµπρ [ f (πη)] = Eµπρ◦π−1[ f ]

for bounded Borel functions f on (RZ

≥0)
n , where the measure µπρ is the one defined in step (ii).
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If there is more than one ordering permutation in step (iii), there are identical sequences whose ordering

among themselves is immaterial. If ρ ∈ (1, ∞)n then µρ is supported on the space An of (5-1). The next

existence and uniqueness theorem is proved in Section 5D.

Theorem 5.3. Assume (5-2).

(i) Invariance. Let ρ = (ρ1, ρ2, . . . , ρn) ∈ (1, ∞)n. Then the probability measure µρ of Definition 5.2 is

invariant for the Markov chain (η(t))t∈Z≥0 defined by (5-4).

(ii) Uniqueness. Let µ̃ be a translation-ergodic probability measure on An under which coordinates ηi
k

have finite means ρi = E µ̃[ηi
k] > 1. If µ̃ is invariant for the process η(t), then µ̃ = µρ for ρ =

(ρ1, . . . , ρn) ∈ (1, ∞)n.

5C. Stationary multiclass LPP on the upper half-plane. We reformulate the coupled process as a

multiclass CGM on the upper half-plane. Fix the number n of classes. Assume given i.i.d. Exp(1)

random weights {ωx}x∈Z×Z>0 , and an initial configuration η(0) = (η1(0), . . . , ηn(0)) ∈ An independent

of ω. Define a vector of LPP processes Gx = (G1
x , . . . , Gn

x) for x ∈ Z × Z≥0 as follows. First choose

initial functions {Gi
(k,0)}k∈Z with the property ηi

k(0) = Gi
(k,0) −Gi

(k−1,0). Then for (k, t) ∈ Z×Z>0 define

Gi
(k,t) = sup

j : j≤k

{Gi
( j,0) + G( j,1),(k,t)}, (5-5)

where Gx,y is the usual LPP process of (2-1) with weights Yx(ω) = ωx . Then lastly define the process

η(t) = (η1(t), . . . , ηn(t)) for t ∈ Z>0 as the increments

ηi
k(t) = Gi

(k,t) − Gi
(k−1,t) for i ∈ [n] and k ∈ Z. (5-6)

Theorem 5.4. Let ρ = (ρ1, ρ2, . . . , ρn) ∈ (1, ∞)n. Then µρ of Definition 5.2 is an invariant measure

of the increment process η(·) defined above by (5-6) in the multiclass exponential corner growth model.

Measure µρ is the unique invariant measure for η(·) among translation-ergodic probability measures on

An with means given by ρ.

This follows from Theorem 5.3 simply by noting that (5-6) can be reformulated inductively as

η(t) =
(
D(η1(t − 1), ωt), D(η2(t − 1), ωt), . . . , D(ηn(t − 1), ωt)

)
, t ∈ Z>0, (5-7)

where ωt = {ω(k,t)}k∈Z is the sequence of weights on level t .

5D. Invariant distribution for the coupled process. This section proves Theorem 5.3. We separate the

invariance of µρ and the uniqueness in Theorems 5.5 and 5.6 below. Their combination establishes

Theorem 5.3. The proof of the next theorem shows how the invariance of µρ for η(t) follows from the

invariance of νρ for I (t) and the fact that the mapping D(n) intertwines the evolutions of I (t) and η(t).

Theorem 5.5. Let ρ = (ρ1, ρ2, . . . , ρn) ∈ (1, ∞)n. Then µρ of Definition 5.2 is an invariant distribution

for the (RZ

≥0)
n-valued Markov chain η(t) defined by (5-4).

Proof. The general claim follows from the case 1 < ρ1 < ρ2 < · · · < ρn because permuting the {ηi } or

setting ηi = η j produces the exact same change in the image of the mapping in (5-4).
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So assume 1 < ρ1 < ρ2 < · · · < ρn . Given a driving sequence ω, denote by Sω and T ω the mappings on

the state spaces that encode a single temporal evolution step of the processes I (·) and η(·). In other words,

the mapping from time t to t+1 defined by (5-3) for the multiline process is encoded as I (t+1)=Sω(I (t)).

For the coupled process the step in (5-4) is encoded as η(t + 1) = T ω(η(t)). Let D = D(n) denote the

mapping (3-3) that constructs the coupled configuration from the multiline configuration. Let Dk , Sω
k

and T ω
k denote the k-th R

Z

≥0-valued coordinates of the images of these mappings.

Let I ∼ νρ be a multiline configuration with product exponential distribution νρ. We need to show

that if η has the distribution µρ of D(I ), then so does T ω(η) when ω is an independent sequence of i.i.d.

Exp(1) weights. For the argument we can assume that η = D(I ). As before let ω1 = ω and iteratively

ω j = R(I j−1, ω j−1) for j = 2, 3, . . . , n. The fourth equality below is (4-20). The other equalities are

consequences of definitions:

T
ω

k (η) = D(ηk, ω) = D
(
D(k)(I k, . . . , I 1), ω1

)
= D(k+1)(I k, . . . , I 1, ω1)

(4-20)= D(k)
(
D(I k, ωk), D(I k−1, ωk−1), . . . , D(I 1, ω1)

)

= D(k)
(
S

ω
k (I ),Sω

k−1(I ), . . . ,Sω
1 (I )

)
= Dk(S

ω(I )).

Since the above works for all coordinates k ∈ [n], we have T ω(η) = D(Sω(I )). Since η = D(I ), we have

verified the intertwining

T
ω(D(I )) = D(Sω(I )). (5-8)

By Theorem 5.1, Sω(I )
d= I ∼ νρ. Consequently T ω(η)

d= D(I ) ∼ µρ. �

Theorem 5.6. Assume (5-2). Let µ̃ be a translation-ergodic probability measure on Xn under which each

coordinate ηi
k has a finite mean. If µ̃ is invariant for the coupled process η(t), then µ̃ = µρ for the mean

vector ρ of µ̃.

We prove Theorem 5.6 following [Chang 1994], by showing that the evolution contracts the ρ distance

between stationary and ergodic sequences. Let η = (ηk)k∈Z and ξ = (ξk)k∈Z be stationary processes taking

values in R
n
≥0. Their ρ distance is defined by

ρ(η, ξ) = inf
(X,Y )∈M

E[ |X0 − Y0|1], (5-9)

where M is the set of jointly defined stationary sequences (X, Y ) = (Xk, Yk)k∈Z such that X
d= η and

Y
d= ξ , E is the expectation on the probability space on which the coupling (X, Y ) is defined, and |·|1 is

the `1 distance on R
n
≥0.

From [Gray 2009, Theorem 9.2], we know that (i) ρ induces a metric on the space of translation-

invariant distributions and (ii) if η and ξ are both ergodic, there exists a jointly stationary and ergodic pair

(X, Y ) at which the infimum in (5-9) is attained.

The following is a straightforward generalization of Theorem 2.4 of [Chang 1994] to R
n
≥0-valued sta-

tionary and ergodic sequences η = (η1, . . . , ηn) and ξ = (ξ 1, . . . , ξ n) where ηi = (ηi
k)k∈Z and ξ i = (ξ i

k)k∈Z
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are random elements of R
Z

≥0. Let

η̃ = (̃η1, . . . , η̃ n) =
(
D(η1, ω), . . . , D(ηn, ω)

)

and similarly ξ̃ = (̃ξ 1, . . . , ξ̃ n) denote the outcome of applying the queueing map D(·, ω) to each

sequence-valued coordinate.

Proposition 5.7. Let ω satisfy (5-2). Let the R
n
≥0-valued stationary and ergodic processes η and ξ be

independent of ω and have finite means that satisfy E[ηi
k] = E[ξ i

k ] = λi > 1 for i ∈ [n] and k ∈ Z. Then

ρ(̃η, ξ̃ ) ≤ ρ(η, ξ). (5-10)

If η and ξ have different distributions the inequality in (5-10) is strict.

Before the proof we complete the proof of Theorem 5.6. Let ρ = E µ̃[η0] be the mean vector of µ̃. Let

η ∼ µρ and ξ ∼ µ̃. By the known invariance of µρ and the assumed invariance of µ̃, η̃
d= η and ξ̃

d= ξ .

Hence ρ(̃η, ξ̃ ) = ρ(η, ξ). The last statement of Proposition 5.7 forces µ̃ = µρ.

Proof of Proposition 5.7. Let (X, Y ) = ((X1, . . . , Xn), (Y 1, . . . , Y n)) be an arbitrary R
2n
≥0-valued jointly

stationary and ergodic process with marginals X
d= η and Y

d= ξ , independent of the weights ω, with

(X, Y, ω) coupled together under a probability measure P with expectation E. As above, write X̃ i =
(X̃ i

k)k∈Z = D(X i , ω) and Ỹ i = (Ỹ i
k )k∈Z = D(Y i , ω) for the action of the queueing operator on the

individual sequences X i = (X i
k)k∈Z and Y i = (Y i

k )k∈Z. Inequality (5-10) follows from showing

E[|X̃0 − Ỹ0|1] ≤ E[|X0 − Y0|1]. (5-11)

Define the process Z by Z i
k = X i

k ∨ Y i
k . Then

|X0 − Y0|1 =
n∑

i=1

|X i
0 − Y i

0 | =
n∑

i=1

(2Z i
0 − X i

0 − Y i
0). (5-12)

Let Z̃ i = D(Z i , ω). Then Z̃ i ≥ X̃ i ∨ Ỹ i by monotonicity (2-28). Hence

|X̃0 − Ỹ0|1 =
n∑

i=1

|X̃ i
0 − Ỹ i

0 | =
n∑

i=1

(
2(X̃ i

0 ∨ Ỹ i
0) − X̃ i

0 − Ỹ i
0

)
≤

n∑

i=1

(2Z̃ i
0 − X̃ i

0 − Ỹ i
0). (5-13)

The triple (X, Y, ω) is jointly stationary and ergodic because ω is an i.i.d. process independent of

the ergodic process (X, Y ). Consequently, as translation-respecting mappings of ergodic processes,

both (X, Y, Z , ω) and (X̃ , Ỹ , Z̃) are jointly stationary and ergodic. The queueing stability condition

E(X i
0) > E(ω0) implies E(X̃ i

0) = E(X i
0), and by the same token E(Ỹ i

0) = E(Y i
0) and E(Z̃ i

0) = E(Z i
0).

This goes back to Loynes [1962] and follows also from Lemma A.3 in Appendix A. Taking expectations

on both sides of (5-12) and (5-13) gives (5-11).

For the strict inequality assume that η and ζ are not equal in distribution and let (X, Y ) be a jointly

ergodic pair that gives the minimum in (5-9). To deduce the strict inequality

n∑

i=1

E[X̃ i
0 ∨ Ỹ i

0] <

n∑

i=1

E(Z̃ i
0). (5-14)
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we can tap directly into the proof of part (ii) of Theorem 2.4 in [Chang 1994], once we show that X i

and Y i must cross for some i ∈ [n]. X i and Y i cross if with probability one there exist k, ` ∈ Z such that

X i
k > Y i

k and X i
` < Y i

` .

Suppose X i and Y i do not cross. Then P({X i ≥ Y i } ∪ {X i ≤ Y i }) = 1. We show that this implies

X i = Y i a.s. This gives us the contradiction needed, since X i = Y i for all i ∈ [n] implies that η
d= ξ .

To show X i = Y i a.s., write {X i = Y i }c = A+ ∪ A− a.s. for

A+ = {X i ≥ Y i and X i
k > Y i

k for some k ∈ Z},
A− = {X i ≤ Y i and X i

k < Y i
k for some k ∈ Z}.

A+ is a shift-invariant event. By the joint ergodicity of (X, Y ) and E(X i
0 − Y i

0) = 0,

0 = 1A+ · lim
n→∞

1

2n + 1

∑

−n≤k≤n

(X i
k − Y i

k )

= lim
n→∞

1

2n + 1

∑

−n≤k≤n

(X i
k − Y i

k ) · 1θ−k A+ = E[(X i
0 − Y i

0) · 1A+] a.s.

Thus X i
0 = Y i

0 a.s. on A+. By the shift-invariance of A+, X i
k = Y i

k a.s. on A+ for all k ∈ Z. But then it

must be that P(A+) = 0. Similarly P(A−) = 0.

To summarize, we have shown that some X i and Y i must cross. Following the proof on page 1131–1132

of [Chang 1994] gives the strict inequality (5-14). The connection between the notation of [Chang 1994]

and ours is Sk = ωk , (T 1
1,k−1, T 1

2,k−1) = (X i
k, X̃ i

k) and (T 2
1,k−1, T 2

2,k−1) = (Y i
k , Ỹ i

k ). �

6. Proofs of the results for Busemann functions

We prove the theorems of Section 3 in the order in which they were stated.

6A. Continuity of µ
ρ and distribution of the Busemann process.

Proof of the continuity claim of Theorem 3.1. Fix ρ = (ρ1, . . . , ρn) such that 0 < ρ1 < · · · < ρn . Let

{ρh}h∈Z>0 be a sequence of parameter vectors such that ρh = (ρh
1 , . . . , ρh

n ) → (ρ1, . . . , ρn) as h → ∞.

We construct variables ηh ∼ µρh

and η ∼ µρ such that ηh → η coordinatewise almost surely.

Let I = (I 1, . . . , I n) ∼ νρ and define I
h,i
k = (ρh

i /ρi )I i
k . Then I h = (I h,1, . . . , I h,n) ∼ νρh

and we have

the pointwise limits I
h,i
k → I i

k for all i ∈ [n] and k ∈ Z as h → ∞. Furthermore, the assumption in (A-2)

holds:

lim
m→−∞

h→∞

∣∣∣∣
1

|m|

0∑

j=m

I
h,i
j − ρi

∣∣∣∣ = 0 almost surely for all i ∈ [n]. (6-1)

Let ηh =D(n)(I h) and η =D(n)(I ). Apply Lemma A.2 repeatedly to show that ηh → η coordinatewise

almost surely:

(1) ηh,1 = I h,1 → I 1 = η1 needs no proof.
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(2) Lemma A.2 gives the limit ηh,2 = D(I h,2, I h,1) → D(I 2, I 1) = η2 and that D(I h,2, I h,1) satisfies the

hypotheses of the lemma.

(3) For ηh,3 = D(3)(I h,3, I h,2, I h,1) = D(D(I h,3, I h,2), I h,1), by case (2), D(I h,3, I h,2) satisfies the

hypotheses of Lemma A.2. Then Lemma A.2 gives D(D(I h,3, I h,2), I h,1) → D(D(I 3, I 2), I 1) and that

D(3)(I h,3, I h,2, I h,1) satisfies the hypotheses of Lemma A.2.

(4) Proceed by induction. From the case of i − 1 sequences, D(i−1)(I h,i , I h,i−1, . . . , I h,2) satisfies the

hypotheses of Lemma A.2. Apply the Lemma to conclude that the mapping for i sequences obeys the

limit

ηh,i = D(i)(I h,i , . . . , I h,2, I h,1) = D(D(i−1)(I h,i , I h,i−1, . . . , I h,2), I h,1) → ηi

and also satisfies the assumptions of Lemma A.2. This is then passed on to be used for the case of i + 1

sequences.

This completes the proof of ηh → η. �

Proof of Theorem 3.2. Introduce an (n+1)-st parameter value ρ0 ∈ (1, ρ1). By Lemma 2.3, the R
n+1
≥0 -valued

Z-indexed process

B
ρ0,...,ρn,e1
t = {(B

ρ0
(k−1,t),(k,t), B

ρ1
(k−1,t),(k,t), . . . , B

ρn

(k−1,t),(k,t))}k∈Z (6-2)

is stationary and ergodic under translation of the k-index and furthermore B
ρ0,...,ρn,e1
t has the same

distribution as the sequence B
ρ0,...,ρn,e1
t−1 on the previous level t − 1. Lemma 3.3 gives B

ρ0,...,ρn,e1
t =

D(B
ρ0,...,ρn,e1
t−1 , Y t). By the uniqueness given in Theorem 5.3, the distribution of B

ρ0,...,ρn,e1
t must be the

invariant distribution µ(ρ0,...,ρn).

Let ρ0 ↘ 1. By Lemma 2.2, almost surely,

lim
ρ0↘1

B
ρ0,ρ1,...,ρn,e1
t = {(Y(k,t), B

ρ1
(k−1,t),(k,t), . . . , B

ρn

(k−1,t),(k,t))}k∈Z,

while Theorem 3.1 gives the weak convergence µ(ρ0,ρ1,...,ρn) → µ(1,ρ1,...,ρn) as ρ0 ↘ 1. �

The proof of Lemma 3.3 below relies on the iterative equations (2-24). Since these equations can

have solutions other than the one coming from the queuing mapping, additional conditions are needed as

specified in Lemma A.4 in Appendix A.

Proof of Lemma 3.3. We show that there is an event �0 of full probability on which the assumptions

of Lemma A.4 hold for the sequences ( Ĩ , J, I, ω) = (B
ρ,e1
t , B

ρ,e2
t , B

ρ,e1
t−1 , Y t) simultaneously for all

uncountably many ρ ∈ (1, ∞) and t ∈ Z.

Assumption (A-14) requires

lim
m→−∞

0∑

k=m

(Y(k,t) − B
ρ

(k,t−1),(k+1,t−1)) = −∞ for all t ∈ Z.

This holds almost surely simultaneously for all ρ in a dense countable subset of (1, ∞). By the mono-

tonicity (2-6) this extends to all ρ ∈ (1, ∞) on a single event of full probability.
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Utilizing the recovery property (2-8) and additivity (2-7),

Y(k,t) + (B
ρ

(k−1,t−1),(k,t−1) − B
ρ

(k−1,t−1),(k−1,t))
+

= B
ρ

(k−1,t),(k,t) ∧ B
ρ

(k,t−1),(k,t) + (B
ρ

(k−1,t),(k,t) − B
ρ

(k,t−1),(k,t))
+

= B
ρ

(k−1,t),(k,t)

and

Y(k,t) + (B
ρ

(k−1,t−1),(k−1,t) − B
ρ

(k−1,t−1),(k,t−1))
+

= B
ρ

(k−1,t),(k,t) ∧ B
ρ

(k,t−1),(k,t) + (B
ρ

(k,t−1),(k,t) − B
ρ

(k−1,t),(k,t))
+

= B
ρ

(k,t−1),(k,t).

These equations are valid for all ρ and all (k, t) on a single event of full probability because this is true

of properties (2-8) and (2-7). Assumption (A-15) has been verified.

Lemma A.5 implies that with probability one, for all ρ in a dense countable subset of (1, ∞), Y(k,t) =
B

ρ

(k,t−1),(k,t) for infinitely many k < 0. Monotonicity (2-6) and recovery (2-8) extend this property to all

ρ ∈ (1, ∞) on the same event. �

6B. Triangular arrays and independent increments. To extract further properties of the distribution µρ,

we develop an alternative representation for η = D(n)(I ) of (3-3). Assume given I = (I 1, . . . , I n) ∈ Yn .

Define arrays {ηi, j : 1 ≤ j ≤ i ≤ n} and {ξ i, j : 1 ≤ j ≤ i ≤ n} of elements of R
Z

≥0 as follows. The ξ

variables are passed from one i level to the next.

(i) For i = 1, set η1,1 = I 1 = ξ 1,1.

(ii) For i = 2, 3, . . . , n,

ηi,1 = I i ,

ηi, j = D(ηi, j−1, ξ i−1, j−1) for j = 2, 3, . . . , i,

ξ i, j−1 = R(ηi, j−1, ξ i−1, j−1) for j = 2, 3, . . . , i,

ξ i,i = ηi,i .

(6-3)

Step i takes inputs from two sources: from the outside it takes I i, and from step i − 1 it takes the

configuration ξ i−1,• = (ξ i−1,1, ξ i−1,2, . . . , ξ i−1,i−2, ξ i−1,i−1 = ηi−1,i−1).

Lemma A.3 ensures that the arrays are well-defined for I ∈ Yn . The inputs I 1, . . . , I n enter the

algorithm one by one in order. If the process is stopped after the step i = m is completed for some m < n,

it produces the arrays for (I 1, . . . , I m) ∈ Ym .

The arrays are illustrated in Figure 4. The following properties of the arrays come from Lemmas 6.1

and 6.2 and their proofs.

(i) The input of the D(n)-mapping lies on the left edge of the η-array: (η1,1, . . . , ηn,1) = (I 1, . . . , I n).

The output of the D(n)-mapping lies on the right-hand diagonal edges of both arrays:

(η1,1, η2,2, . . . , ηn,n) = (ξ 1,1, ξ 2,2, . . . , ξ n,n) = D
(n)(I 1, . . . , I n) ∼ µ(ρ1, ρ2,..., ρn).
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η1,1

η2,1 η2,2

η3,1 η3,2 η3,3

...
...

...
. . .

ηn,1 ηn,2 ηn,3 · · · ηn,n

ξ 1,1

ξ 2,1 ξ 2,2

ξ 3,1 ξ 3,2 ξ 3,3

...
...

...
. . .

ξ n,1 ξ n,2 ξ n,3 · · · ξ n,n

Figure 4. Arrays {ηi, j : 1 ≤ j ≤ i ≤ n} and {ξ i, j : 1 ≤ j ≤ i ≤ n}.

(ii) The j-th column (η j, j , η j+1, j , . . . , ηn, j ) of the η-array has the product distribution ν(ρ j , ρ j+1,..., ρn).

It is obtained from the ( j−1)-st column (η j, j−1, η j+1, j−1, . . . , ηn, j−1) by the mapping (5-3) with

η j−1, j−1 = ξ j−1, j−1 as the external driving weights.

(iii) Row (ξ i,1, ξ i,2, . . . , ξ i,i ) of the ξ -array has the product distribution ν(ρ1, ρ2,..., ρi ).

Lemma 6.1. Let I = (I 1, . . . , I n) ∈ Yn . Let (̃η 1, . . . , η̃ n) = D(n)(I 1, . . . , I n) be given by the map-

ping (3-3). Let {ηi, j } be the array defined above. Then η̃ i = ηi,i for i = 1, . . . , n.

Proof. It suffices to prove η̃n = ηn,n because the same proof applies to all i . The construction of

the array can be reimagined as follows. Start with (η1,1, η2,1, . . . , ηn,1) = (I 1, I 2, . . . , I n). Then for

` = 2, 3, . . . , n − 1 iterate the following step that maps the (n − ` + 2)-vector

(ηn,`−1, ηn−1,`−1, . . . , η`,`−1, η`−1,`−1)

to the (n − ` + 1)-vector

(ηn,`, ηn−1,`, . . . , η`+1,`, η`,`)

=
(
D(ηn,`−1, ξ n−1,`−1), D(ηn−1,`−1, ξ n−2,`−1), . . . , D(η`+1,`−1, ξ `,`−1), D(η`,`−1, η`−1,`−1)

)
.

The ξ -variables above satisfy

ξ `,`−1 = R(η`,`−1, ξ `−1,`−1) = R(η`,`−1, η`−1,`−1)

ξ `+1,`−1 = R(η`+1,`−1, ξ `,`−1)
...

ξ n−1,`−1 = R(ηn−1,`−1, ξ n−2,`−1).

Thus (4-20) implies that

D(n−`+2)(ηn,`−1, ηn−1,`−1, . . . , η`,`−1, η`−1,`−1) = D(n−`+1)(ηn,`, ηn−1,`, . . . , η`+1,`, η`,`). (6-4)

In the derivation below, use the first line of (6-3) to replace each I i with ηi,1. Then iterate (6-4) from

` = 2 to ` = n − 1 to obtain

η̃ n = D(n)(I n, I n−1, . . . , I 3, I 2, I 1) = D(n)(ηn,1, ηn−1,1, . . . , η3,1, η2,1, η1,1)

= D(n−1)
(
ηn,2, ηn−1,2, . . . , η3,2, η2,2

)

= · · · = D(3)(ηn,n−2, ηn−1,n−2, ηn−2,n−2) = D(ηn,n−1, ηn−1,n−1) = ηn,n. �
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The next two lemmas describe the distributions of the arrays.

Lemma 6.2. Fix 0 < ρ1 < · · · < ρn and let the multiline configuration I = (I 1, . . . , I n) have distribution

ν(ρ1,...,ρn). Let {ηi, j }1≤ j≤i≤n and {ξ i, j }1≤ j≤i≤n be the arrays defined above. Then for each 1 ≤ i, j ≤ n, con-

figuration (η j, j , η j+1, j , . . . , ηn, j ) has distribution ν(ρ j , ρ j+1,..., ρn) and configuration (ξ i,1, ξ i,2, . . . , ξ i,i )

has distribution ν(ρ1, ρ2,..., ρi ). In particular, each ηi, j has distribution νρi and each ξ i, j has distribution νρ j.

Proof. First we prove the claim for (η j, j , η j+1, j , . . . , ηn, j ). Recall that by definition ξ j, j = η j, j .

For j = 1, the definitions give (ξ 1,1 = η1,1, η2,1, . . . , ηn,1) = (I 1, I 2, . . . , I n) ∼ ν(ρ1, ρ2,..., ρn).

Let j ∈ J2, nK. Assume inductively that

(ξ j−1, j−1 = η j−1, j−1, η j, j−1, . . . , ηn, j−1) ∼ ν(ρ j−1, ρ j ,..., ρn).

The mapping from (η j, j−1, . . . , ηn, j−1) to (η j, j , . . . , ηn, j ) is the mapping (5-3) of the multiline process,

with ξ j−1, j−1 as the external driving weights ω. Namely, this mapping is carried out by iterating

η j+k, j = D(η j+k, j−1, ξ j+k−1, j−1), ξ j+k, j−1 = R(η j+k, j−1, ξ j+k−1, j−1)

for k = 0, 1, . . . , n − j. Then (η j, j , η j+1, j , . . . , ηn, j ) ∼ ν(ρ j , ρ j+1,..., ρn) follows from the invariance in

Theorem 5.1.

Next the proof for (ξ i,1, ξ i,2, . . . , ξ i,i ). The claim is immediate for i = 1 because there is just one

sequence η1,1 = I 1 = ξ 1,1 ∼ νρ1. Let i ∈ J2, nK and assume inductively that (ξ i−1,1, ξ i−1,2, . . . , ξ i−1,i−1)∼
ν(ρ1, ρ2,..., ρi−1). By construction, ηi,1 = I i ∼ νρi is independent of ξ i−1,•, and hence

(ηi,1, ξ i−1,1, ξ i−1,2, . . . , ξ i−1,i−1) ∼ ν(ρi , ρ1, ρ2,..., ρi−1).

Now we transform the sequence above by repeated application of the mapping (ηi,`, ξ i−1,`) 7→ (ξ i,`, ηi,`+1)

defined by (6-3):
ηi,`+1 = D(ηi,`, ξ i−1,`),

ξ i,` = R(ηi,`, ξ i−1,`)

for ` = 1, . . . , i − 1. The pair to be transformed next slides successively to the right. The succession of

sequences produced by this process is displayed below, beginning with the first one from above. The pair

to which the mapping is applied next is enclosed in the box. The distribution follows from Lemma B.2:

( ηi,1, ξ i−1,1 , ξ i−1,2, ξ i−1,3, . . . , ξ i−1,i−1) ∼ ν(ρi , ρ1, ρ2, ρ3,..., ρi−1)

( ξ i,1, ηi,2, ξ i−1,2 , ξ i−1,3, . . . , ξ i−1,i−1) ∼ ν(ρ1, ρi , ρ2, ρ3,..., ρi−1)

. . .

( ξ i,1, . . . , ξ i,`−1, ηi,`, ξ i−1,` , ξ i−1,`+1, . . . , ξ i−1,i−1) ∼ ν(ρ1,...,ρ`−1, ρi , ρ`, ρ`+1..., ρi−1)

. . .

( ξ i,1, . . . , ξ i,i−1, ηi,i ) ∼ ν(ρ1,..., ρi−1, ρi ).

To complete the induction from i − 1 to i , set ξ i,i = ηi,i. �
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Remark 6.3 (notation). To keep track of the inputs when processes are constructed by queueing mappings

(2-22), superscripts indicate the arrival and service processes used in the construction. This works as

follows when the arrival process is I and the service process is ω:

• G I denotes a function that satisfies Ik = G I
k − G I

k−1.

• G̃ I, ω is the process defined by (2-18) whose increments are the output Ĩ
I, ω
k = G̃

I, ω
k − G̃

I, ω
k−1, and so

Ĩ I, ω = D(I, ω).

• J I, ω = S(I, ω) is the process defined by (2-20) as J
I, ω

k = G̃
I, ω
k − G I

k .

• ω̃I, ω = R(I, ω).

Lemma 6.4. Fix 0 < ρ1 < · · · < ρn and let the multiline configuration I = (I 1, . . . , I n) have distribution

ν(ρ1,...,ρn). Let η = (η1, . . . , ηn) = D(n)(I ) and let {ηi, j } and {ξ i, j } be the arrays constructed above. Then

for each m ∈ J2, nK and k ∈ Z, the following random variables are independent:

{ξm,1
i }i≤k, {ξm,2

i }i≤k, . . . , {ξm,m−1
i }i≤k, {ηm

i }i≤k−1, ηm
k − ηm−1

k , ηm−1
k − ηm−2

k , . . . , η2
k − η1

k , η1
k .

Proof. Index k is fixed throughout the proof. We begin with the case m = 2.

By the definitions, η1 = I 1,

ξ 2,1 = R(η2,1, ξ 1,1) = R(I 2, I 1) = ω̃I 2,I 1
and η2 = D(I 2, I 1) = Ĩ I 2,I 1

.

Hence ξ
2,1
i = I 2

i ∧ J
I 2,I 1

i−1 and η2
k − η1

k = (I 2
k − J

I 2,I 1

k−1 )+. By Lemma B.2(a), { Ĩ
I 2,I 1

i }i≤k−1, J
I 2,I 1

k−1 ,

{ω̃I 2,I 1

i }i≤k−1, I 2
k , I 1

k are independent. To be precise, Lemma B.2(a) gives the independence of

{ω̃I 2,I 1

i }i≤k−1, { Ĩ
I 2,I 1

i }i≤k−1, and J
I 2,I 1

k−1 . These are functions of {I 2
i , I 1

i }i≤k−1, and thereby independent

of I 2
k , I 1

k . Properties of independent exponentials (Lemma B.1(i)) imply that

ξ
2,1
k = I 2

k ∧ J
I 2,I 1

k−1 and η2
k − η1

k = (I 2
k − J

I 2,I 1

k−1 )+ are mutually independent. (6-5)

Altogether we have that {ξ 2,1
i }i≤k , {η2

i }i≤k−1, η2
k − η1

k , η1
k are independent.

Let m ≥ 3 and make an induction assumption:

{ξm−1,1
i }i≤k, . . . , {ξm−1,m−2

i }i≤k, {ηm−1
i }i≤k−1, ηm−1

k − ηm−2
k , . . . , η2

k − η1
k , η

1
k are independent. (6-6)

The previous paragraph verified this assumption for m = 3.

Since ηm,1 = I m is independent of all the variables in (6-6), apply Lemma B.2(a) to the pair ξm,1 =
R(ηm,1, ξm−1,1), ηm,2 = D(ηm,1, ξm−1,1) to conclude the independence of

{ξm,1
i }i≤k, {ηm,2

i }i≤k, {ξm−1,2
i }i≤k, . . . , {ξm−1,m−2

i }i≤k,

{ηm−1
i }i≤k−1, ηm−1

k − ηm−2
k , . . . , η2

k − η1
k , η

1
k .

(6-7)

This starts an induction on j = 2, 3, . . . , m − 1, whose induction assumption is the independence of

{ξm,1
i }i≤k, . . . , {ξm, j−1

i }i≤k, {ηm, j

i }i≤k, {ξm−1, j

i }i≤k, . . . , {ξm−1,m−2
i }i≤k,

{ηm−1
i }i≤k−1, η

m−1
k − ηm−2

k , . . . , η2
k − η1

k , η
1
k .

(6-8)
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The induction step is the application of Lemma B.2(a) to the pair ξm, j = R(ηm, j , ξm−1, j ), ηm, j+1 =
D(ηm, j , ξm−1, j ) to conclude the independence of

{ξm,1
i }i≤k, . . . , {ξm, j−1

i }i≤k, {ξm, j

i }i≤k, {ηm, j+1
i }i≤k,

{ξm−1, j+1
i }i≤k, . . . , {ξm−1,m−1

i }i≤k, {ηm−1
i }i≤k−1, ηm−1

k − ηm−2
k , . . . , η2

k − η1
k , η1

k .
(6-9)

Thus the induction assumption (6-8) for j has been advanced to j + 1 in (6-9).

At the end of the j-induction we have the independence of

{ξm,1
i }i≤k, . . . , {ξm,m−2

i }i≤k, {ηm,m−1
i }i≤k,

{ηm−1
i }i≤k−1, ηm−1

k − ηm−2
k , . . . , η2

k − η1
k , η

1
k .

(6-10)

Split {ηm,m−1
i }i≤k into the independent pieces {ηm,m−1

i }i≤k−1 and η
m,m−1
k . Combine the former with

{ηm−1
i }i≤k−1, Lemma B.2(a), and the transformations ξm,m−1 = R(ηm,m−1, ηm−1), ηm = D(ηm,m−1, ηm−1)

to form the independent variables {ξm,m−1
i }i≤k−1, {ηm

i }i≤k−1 and J
ηm,m−1,ηm−1

k−1 . Transform the inde-

pendent pair (η
m,m−1
k , J

ηm,m−1,ηm−1

k−1 ) into the independent pair of ξ
m,m−1
k = η

m,m−1
k ∧ J

ηm,m−1,ηm−1

k−1 and

ηm
k −ηm−1

k = (η
m,m−1
k − J ηm,m−1,ηm−1

k−1 )+. Attach ξ
m,m−1
k to the sequence {ξm,m−1

i }i≤k−1. After these steps,

we have the independence of

{ξm,1
i }i≤k, . . . , {ξm,m−2

i }i≤k, {ξm,m−1
i }i≤k,

{ηm
i }i≤k−1, ηm

k − ηm−1
k , ηm−1

k − ηm−2
k , . . . , η2

k − η1
k , η

1
k .

(6-11)

Thus the induction assumption (6-6) has been advanced from m − 1 to m. �

Proof of Theorem 3.4. Fix 1 < ρ1 < · · · < ρn and let the multiline configuration I = (I 0, . . . , I n)

have distribution ν(1,ρ1,...,ρn). Let η = (η0, . . . , ηn) = D(n+1)(I ). By Theorem 3.2 proved above,

(Y t , B
ρ1,e1
t , . . . , B

ρn,e1
t )

d= η ∼ µ(1,ρ1,...,ρn). Lemma 6.4 gives the independence of the components of

the vector

(η1
k , η

2
k − η1

k , . . . , η
n
k − ηn−1

k )
d= (Yx , B

ρ1
x−e1,x

− Yx , B
ρ2
x−e1,x

− B
ρ1
x−e1,x

, . . . , B
ρn

x−e1,x
− B

ρn−1
x−e1,x

).

(Above k ∈ Z and x ∈ Z
2 are arbitrary.)

The distribution of an increment ηm
k − ηm−1

k can be computed from the 2-component mapping

(ηm−1, ηm) = D(2)(I m−1, I m) = (I m−1, D(I m, I m−1)) where (I m−1, I m) ∼ νρm−1,ρm. The first equation

of (2-24) gives

ηm
k − ηm−1

k = ηm
k − I m−1

k = (I m
k − J

I m ,I m−1

k−1 )+.

The right-hand side has the distribution in (3-7) with (λ, ρ) = (ρm−1, ρm) because, by the structure of the

queueing mapping, I m
k and J

I m ,I m−1

k−1 are independent exponentials with parameters ρ−1
m and ρ−1

m−1 − ρ−1
m .

A computation of the Laplace transform of the increment X (ρ)− X (λ) of the process defined by (3-6)

gives, for ρ > λ ≥ 1 and α > 0,

E[e−α(X (ρ)−X (λ))] =
1 + λα

1 + ρα
. (6-12)
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This is the Laplace transform of the distribution in (3-7). Thus ηm
k − ηm−1

k has the same distribution as

X (ρm) − X (ρm−1).

To summarize, the nondecreasing cadlag processes B
•
x−e1,x

and X (•) have identically distributed initial

values (both B1
x−e1,x

= Yx and X (1) are Exp(1)-distributed) and identically distributed independent

increments. Hence the processes are equal in distribution. �

6C. Bivariate Busemann process on a line. The remainder of this section proves statements for the

sequence {(Bλ
(k−1,t),(k,t), B

ρ

(k−1,t),(k,t))}k∈Z that has distribution µ(λ,ρ). We use the following notation: Let

ρ > λ > 0, (I 1, I 2) ∼ ν(λ,ρ) and (η1, η2) = D(2)(I 1, I 2) = (I 1, D(I 2, I 1)). Then (η1, η2) ∼ µ(λ,ρ). Let

J = J I 2,I 1 = S(I 2, I 1).

Proof of Theorem 3.5. The next auxiliary lemma identifies a reversible Markov chain.

Lemma 6.5. Let X i = Ji−1 − I 2
i . Then {X i }i∈Z and {X+

i }i∈Z are stationary reversible Markov chains.

{X−
i }i∈Z is not a Markov chain.

Proof. From the second equation of (2-24),

X i+1 = Ji − I 2
i+1 = I 1

i + (Ji−1 − I 2
i )+ − I 2

i+1 = X+
i + I 1

i − I 2
i+1.

Since Ji−1 is a function of (I 1
k , I 2

k )k≤i−1, X i is independent of (I 1
i , I 2

i+1). Schematically, we can express

the transition probability as X i+1 = X+
i +Exp(λ−1)−Exp(ρ−1), where the three terms on the right-hand

side are independent.

Similarly, using conservation (2-25) and the dual equations (4-3),

X i = Ji−1 − I 2
i = Ji − η2

i = ω̃i+1 + (Ji+1 − η2
i+1)

+ − η2
i = X+

i+1 + ω̃i+1 − η2
i . (6-13)

Ji and η2
i are independent by Lemma B.2(a), and hence the triple (Ji , η

2
i , I 2

i+1) is independent. Conse-

quently so is the triple

(X i+1, ω̃i+1, η
2
i ) = (Ji − I 2

i+1, Ji ∧ I 2
i+1, η

2
i )

and we can express (6-13) as X i = X+
i+1 + Exp(λ−1) − Exp(ρ−1) where again the three terms on the

right-hand side are independent. The transitions from X i to X i+1 and back are the same.

From the equations above we obtain equations that show X+
i as a reversible Markov chain.

Writing temporarily Ui = I 1
i−1 − I 2

i , we get these equations for X−
i+1:

X−
i+1 = (X+

i + Ui+1)
− =

(
(X+

i−1 + Ui )
+ + Ui+1

)−
.

Conditioned on X i ≥ 0, X i ∼ Exp(λ−1 − ρ−1). Thus

P(X−
i+1 = 0 | X−

i = 0) = P(X+
i + Ui+1 ≥ 0 | X i ≥ 0)

= P{Exp(λ−1 − ρ−1) + Ui+1 ≥ 0}.
(6-14)
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For the next calculation, note that X i−1 < 0 implies X i = X+
i−1 + Ui = Ui and then X i+1 = U+

i + Ui+1.

P(X−
i+1 = 0 | X−

i = 0, X−
i−1 > 0) =

P(X−
i+1 = 0, X−

i = 0, X−
i−1 > 0)

P(X−
i = 0, X−

i−1 > 0)

=
P(Ui + Ui+1 ≥ 0, Ui ≥ 0, X i−1 < 0)

P(Ui ≥ 0, X i−1 < 0)

= P(Ui + Ui+1 ≥ 0 | Ui ≥ 0)

= P{Exp(λ−1) + Ui+1 ≥ 0}.

(6-15)

We used above the independence of X i−1 from (Ui , Ui+1) and then the conditional distribution Ui ∼
Exp(λ−1), given that Ui ≥ 0. The conditional distributions in (6-14) and (6-15) do not agree, and

consequently X−
i is not a Markov chain. �

Since η2
k −η1

k = η2
k − I 1

k = (I 2
k − Jk−1)

+ = X−
k , we conclude that η2

k −η1
k is not a Markov chain, but it

is a function of a reversible Markov chain. Part (a) of Theorem 3.5 has been proved.

We give here two more auxiliary lemmas.

Lemma 6.6. The process (η1
k , η

2
k)k∈Z is not a Markov chain.

Proof. The construction gives η2
k+1 = I 1

k+1 + (I 2
k+1 − Jk)

+. On the right, the variables I 1
k+1 and I 2

k+1 are

independent and independent of Jk and (η1
j , η

2
j ) j≤k . The conclusion of the lemma follows from showing

that conditioning on η1
k = η2

k gives Jk an unbounded distribution, while conditioning on η1
k−1 < η2

k−1 and

η1
k = η2

k implies Jk ≤ η1
k−1 + η1

k . Thus conditioning on (η1
k , η

2
k) does not completely decouple η2

k+1 from

the earlier past.

From the three independent variables (Jk−1, I 1
k , I 2

k ) the queueing formulas define

η1
k = I 1

k , η2
k = I 1

k + (I 2
k − Jk−1)

+ and Jk = I 1
k + (Jk−1 − I 2

k )+. (6-16)

The condition η1
k = η2

k is equivalent to Jk−1 ≥ I 2
k , and conditioning on this implies

Jk−1 − I 2
k ∼ Exp(λ−1 − ρ−1).

Thus Jk is unbounded.

For the second scenario consider the five independent variables (Jk−2, I 1
k−1, I 2

k−1, I 1
k , I 2

k ) and augment

(6-16) with the equations of the prior step:

η1
k−1 = I 1

k−1, η2
k−1 = I 1

k−1 + (I 2
k−1 − Jk−2)

+ and Jk−1 = I 1
k−1 + (Jk−2 − I 2

k−1)
+. (6-17)

Now η1
k−1 < η2

k−1 implies Jk−1 = I 1
k−1 and then η1

k = η2
k implies Jk = I 1

k + Jk−1 − I 2
k = I 1

k + I 1
k−1 − I 2

k .

Hence Jk ≤ I 1
k + I 1

k−1 = η1
k + η1

k−1. The lemma is proved.

With service process I 1 = η1, arrival process I 2 and departure process η2, the queueing explanation of

the proof is that η1
k = η2

k implies that customer k had to wait before entering service, and hence delays

from the past can influence the next interdeparture time η2
k+1. �

Lemma 6.7. The pair ((η1
k , η

2
k), (η

1
k+1, η

2
k+1)) and its transpose ((η1

k+1, η
2
k+1), (η

1
k , η

2
k)) are not equal in

distribution.
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Proof. By the queueing construction, η1
k+1 = I 1

k+1 is independent of (η1
k , η

2
k) because the latter pair is a

function of (I 1
i , I 2

i )i≤k . To see that η1
k = I 1

k is not independent of (η1
k+1, η

2
k+1), write

η2
k+1 − η1

k+1 = (I 2
k+1 − Jk)

+ = (I 2
k+1 − I 1

k − [Jk−1 − I 2
k ]+ )+

where all four variables in the last expression are independent. �

Part (b) of Theorem 3.5 follows from the two lemmas above. �

Proof of Theorem 3.6 and Remark 3.7. Part (a) comes from translating the condition B
ρ

(k−1)e1,ke1
= Yke1

into a statement about the queueing mapping Ĩ = D(I, ω).

By (2-13),

P{ξx = 0} = P{B
ρ
x−e2,x

< B
ρ
x−e1,x

} = 1 − ρ−1

from the independence and exponential distributions in Theorem 2.1(ii). From (3-7),

P{ξλ,ρ
x = 0} = P{B

ρ
x−e1,x

> Bλ
x−e1,x

} =
ρ − λ

ρ
.

To calculate P{ξλ,ρ
x = n} for n ≥ 1 we put x on the x-axis and use the distribution (B

λ,e1
0 , B

ρ,e1
0 )

d=
(η1, η2) ∼ µ(λ,ρ) given by Theorem 3.2, with the notation from the start of Section 6C. By setting λ = 1

the same calculation gives P{ξx = n} because Y 0 = B
1,e1
0 .

P{ξλ,ρ
ne1

=n}=P{Bρ

−e1,0
> Bλ

−e1,0, B
ρ

0,e1
= Bλ

0,e1
, B

ρ

e1,2e1
= Bλ

e1,2e1
, . . . , B

ρ

(n−1)e1,ne1
= Bλ

(n−1)e1,ne1
}

= P{η2
0 > I 1

0 , η2
1 = I 1

1 , η2
2 = I 1

2 , . . . ,η2
n = I 1

n }
= P{I 2

0 > J−1, I 2
1 ≤ J0, I 2

2 ≤ J1, . . . , I 2
n ≤ Jn−1} (6-18)

The last equality used η2
i = I 1

i + (I 2
i − Ji−1)

+ repeatedly: η2
i > I 1

i is equivalent to I 2
i > Ji−1.

Next apply repeatedly the equation Ji = I 1
i +(Ji−1− I 2

i )+ inside the last probability in (6-18). I 2
0 > J−1

implies J0 = I 1
0 . Then I 2

1 ≤ J0 implies J1 = I 1
1 + J0 − I 2

1 = I 1
1 + I 1

0 − I 2
1 . Assume inductively that

Ji = I 1
i + · · · + I 1

0 − I 2
1 − · · · − I 2

i . (6-19)

Then I 2
i+1 ≤ Ji implies

Ji+1 = I 1
i+1 + Ji − I 2

i+1 = I 1
i+1 + (I 1

i + · · · + I 1
0 − I 2

1 − · · · − I 2
i ) − I 2

i+1

and the induction goes from i to i + 1. Substitute (6-19) for J0, . . . , Jn−1 in the last probability in (6-18).

Use the independence of the variables J−1, {I 1
i , I 2

i }i≥0. Let Sα
m denote the sum of m i.i.d. Exp(α) random

variables, with S and S̃ denoting independent sums.

P{ξλ,ρ
ne1

= n} = P{I 2
0 > J−1, I 2

1 ≤ I 1
0 , I 2

2 +I 2
1 ≤ I 1

1 +I 1
0 , . . . , I 2

n +·· ·+I 2
1 ≤ I 1

n−1+·· ·+I 1
0 }

= P{I 2
0 > J−1} P{Sρ−1

m ≤ S̃λ−1

m ∀m ∈ [n]} =
ρ−λ

ρ

n−1∑

k=0

C(n−1,k)
ρkλn

(λ+ρ)n+k
. (6-20)

The last line comes from the independence of I 2
0 and J−1, their distributions I 2

0 ∼ Exp(ρ−1) and J−1 ∼
Exp(λ−1 − ρ−1), and Lemma B.3. �
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Appendix A. Queues

We prove elementary lemmas about the queueing mappings. Unless otherwise stated, the weights are real

numbers without any probability distributions.

Lemma A.1. Fix 0 ≤ a < b. Let I = (Ik)k∈Z and ω = (ω j ) j∈Z in R
Z

≥0 satisfy

lim
m→−∞

1

|m|

0∑

i=m

Ii ≥ b and lim
m→−∞

1

|m|

0∑

i=m

ωi = a. (A-1)

Then Ĩ = D(I, ω) is well-defined and satisfies limm→−∞ |m|−1 ∑0
i=m Ĩi ≥ b.

Proof. Assumption (2-17) is obviously satisfied. Without loss of generality assume G0 = 0. Let

0 < ε < (b − a)/3. Then for large enough n,

G̃−n = sup
k: k≤−n

{
Gk +

−n∑

i=k

ωi

}
= sup

k: k≤−n

{
−

0∑

i=k+1

Ii +
0∑

i=k

ωi

}
−

0∑

i=−n+1

ωi

≤ sup
k: k≤−n

{
−|k|(b − ε) + |k|(a + ε)

}
− n(a − ε) = n(−b + 3ε).

Since
∑0

i=m+1 Ĩi = G̃0 − G̃m , this proves limm→−∞ |m|−1 ∑0
i=m Ĩi ≥ b. �

Lemma A.2. Fix 0 ≤ a < b. Assume given nonnegative real sequences I = (Ii )i∈Z, ω = (ωi )i∈Z,

I (h) = (I
(h)
i )i∈Z and ω(h) = (ω

(h)
i )i∈Z where h ∈ Z>0 is an index. Assume I

(h)
i → Ii and ω

(h)
i → ωi as

h → ∞ for all i ∈ Z, and furthermore,

lim
m→−∞

h→∞

∣∣∣∣
1

|m|

0∑

i=m

I
(h)
i − b

∣∣∣∣ = 0 and lim
m→−∞

h→∞

∣∣∣∣
1

|m|

0∑

i=m

ω
(h)
i − a

∣∣∣∣ = 0. (A-2)

Then Ĩ = D(I, ω) and ω̃ = R(I, ω) are well-defined, as are Ĩ (h) = D(I (h), ω(h)) and ω̃(h) = R(I (h), ω(h))

for large enough h. We have the limits

lim
h→∞

Ĩ
(h)
i = Ĩi and lim

h→∞
ω̃

(h)
i = ω̃i for all i ∈ Z (A-3)

and

lim
m→−∞

h→∞

∣∣∣∣
1

|m|

0∑

i=m

Ĩ
(h)
i − b

∣∣∣∣ = 0 and lim
m→−∞

h→∞

∣∣∣∣
1

|m|

0∑

i=m

ω̃
(h)
i − a

∣∣∣∣ = 0. (A-4)

Proof. Assumption (2-17) is satisfied to make Ĩ (h) = D(I (h), ω(h)) well-defined for large enough h.

We can assume G
(h)
0 = 0. Compute Ĩ (h) = D(I (h), ω(h)) as the increments of the function

G̃
(h)
` = sup

k≤`

{
G

(h)
k +

∑̀

i=k

ω
(h)
i

}
. (A-5)
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Let k0 be a maximizer in (2-18) for G̃`. Then

lim
h→∞

G̃
(h)
` ≥ lim

h→∞

{
G

(h)
k0

+
∑̀

i=k0

ω
(h)
i

}
= Gk0 +

∑̀

i=k0

ωi = G̃`. (A-6)

Let k(h) be a maximizer in (A-5). If limh→∞ G̃
(h)
` ≤ G̃` fails then it must be that k(h) → −∞ along

a subsequence. But we can write

G̃
(h)
` = G

(h)

k(h) +
∑̀

i=k(h)

ω
(h)
i

= −
0∑

i=k(h)+1

I
(h)
i +

0∑

i=k(h)

ω
(h)
i +

(
1`>0

∑̀

i=1

ω
(h)
i − 1`<0

0∑

i=`+1

ω
(h)
i

)
(A-7)

which converges to −∞ as k(h) → −∞ by the assumptions and thereby contradicts (A-6). We have now

proved that

lim
h→∞

G̃
(h)
` = G̃` for all ` ∈ Z (A-8)

and thereby verified (A-3) for Ĩ (h).

Let 0 <ε < (b−a)/3. By assumption (A-2) there exist finite n1(ε) and h1(ε) such that, when n ≥ n1(ε)

and h ≥ h1(ε),

G̃
(h)
−n = sup

k: k≤−n

{
G

(h)
k +

−n∑

i=k

ω
(h)
i

}
= sup

k: k≤−n

{
−

0∑

i=k+1

I
(h)
i +

0∑

i=k

ω
(h)
i

}
−

0∑

i=−n+1

ω
(h)
i

≤ sup
k: k≤−n

{
−|k|(b − ε) + |k|(a + ε)

}
− n(a − ε) = n(−b + 3ε).

From this,

lim
m→−∞

sup
h≥h1(ε)

G̃
(h)
m

|m|
≤ −b + 3ε. (A-9)

Since
∑0

i=m Ĩ
(h)
i = G̃

(h)
0 − G̃

(h)
m−1 and G̃

(h)
0 ≥ ω

(h)
0 ≥ 0, this proves

lim
m→−∞

inf
h≥h1(ε)

1

|m|

0∑

i=m

Ĩ
(h)
i ≥ b − 3ε. (A-10)

For the complementary upper bound, get a lower bound for G̃
(h)
m−1 by taking k = ` in (A-5).

0∑

i=m

Ĩ
(h)
i = G̃

(h)
0 − G̃

(h)
m−1 ≤ G̃

(h)
0 − G

(h)
m−1 = G̃

(h)
0 +

0∑

i=m

I
(h)
i .

Apply limit (A-8) and assumption (A-2). Limit (A-4) has been proved for Ĩ (h).
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The limits for ω̃(h) follow from the other limits and the generally valid identity

ωk + Ik = ω̃k + Ĩk (A-11)

that comes from equations (2-21) and (2-24). �

For reference elsewhere in the paper we state the simple consequence of Lemma A.2 where the

sequences are constant functions of h.

Lemma A.3. Fix 0 ≤ a < b. Let I = (Ik)k∈Z and ω = (ω j ) j∈Z in R
Z

≥0 satisfy

lim
m→−∞

1

|m|

0∑

i=m

Ii = b and lim
m→−∞

1

|m|

0∑

i=m

ωi = a. (A-12)

Then Ĩ = D(I, ω) and ω̃ = R(I, ω) are well-defined and satisfy

lim
m→−∞

1

|m|

0∑

i=m

Ĩi = b and lim
m→−∞

1

|m|

0∑

i=m

ω̃i = a. (A-13)

For the purpose of verifying that Busemann functions obey the queueing operation Ĩ = D(I, ω), it

is convenient to have a lemma that deduces this from assuming the iterative equations (2-24). The first

lemma below makes a statement without randomness.

Lemma A.4. Let { Ĩk, Jk, Ik, ωk}k∈Z be nonnegative real numbers that satisfy the three assumptions below:

lim
m→−∞

0∑

i=m

(ωi − Ii+1) = −∞. (A-14)

Ĩk = ωk + (Ik − Jk−1)
+ and Jk = ωk + (Jk−1 − Ik)

+ for all k ∈ Z. (A-15)

Jk = ωk for infinitely many k < 0. (A-16)

Then Ĩ = D(I, ω) and J = S(I, ω).

Proof. Rewrite the second equation of (A-15) as follows. Let Wk = Jk − ωk and Uk = ωk − Ik+1. Then

Wk = (Wk−1 + Uk−1)
+. (A-17)

This is Lindley’s recursion from queueing theory and Wk is the waiting time of customer k. Equation

(A-17) iterates inductively to give

Wk =
{(

W` +
k−1∑

i=`

Ui

) ∨(
max

m: `+1≤m≤k−1

k−1∑

i=m

Ui

)}+
for all ` < k. (A-18)

We claim that

Wk =
(

sup
m: m≤k−1

k−1∑

i=m

Ui

)+
for all k ∈ Z. (A-19)
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Dropping the first term on the right in (A-18) and letting ` → −∞ gives ≥ in (A-19). By assumption

(A-16) W` = 0 for some ` < k. Then (A-18) gives also ≤ in (A-19).

The proof is completed by making explicit the content of (A-19). Let G and G̃ be as defined in the

definition of the mappings D and S. Then from (A-19) and (2-23) deduce

Jk = ωk +
(

sup
m: m≤k−1

k−1∑

i=m

(ωi − Ii+1)

)+
= ωk +

(
sup

m: m≤k−1

{
Gm − Gk +

k−1∑

i=m

ωi

})+

= ωk + (G̃k−1 − Gk)
+ = ωk + G̃k−1 ∨ Gk − Gk = G̃k − Gk .

Thus J = S(I, ω). Finally, from the first equation of (A-15) and Ik = Gk − Gk−1,

Ĩk = ωk + (Ik − Jk−1)
+ = Ik − Jk−1 + ωk + (Jk−1 − Ik)

+ = Ik + Jk − Jk−1

= Ik + (G̃k − Gk) − (G̃k−1 − Gk−1) = G̃k − G̃k−1. �

Here is a version for a random sequence.

Lemma A.5. Let { Ĩk, Jk, Ik, ωk}k∈Z be finite nonnegative random variables that satisfy assumptions

(i)–(iii) below:

(i) limm→−∞
∑0

i=m(ωi − Ii+1) = −∞ almost surely.

(ii) {Jk, ωk}k∈Z is a stationary process.

(iii) Equations

Ĩk = ωk + (Ik − Jk−1)
+ and Jk = ωk + (Jk−1 − Ik)

+ (A-20)

are valid for all k ∈ Z, almost surely.

Then Jk = ωk for infinitely many k < 0 with probability one, and Ĩ = D(I, ω) and J = S(I, ω) almost

surely.

Proof. Lemma A.4 gives the conclusion once we verify that assumption (A-16) holds almost surely. Using

the waiting time notation W from the previous proof, it suffices to show that

P{W` = 0 for infinitely many ` < 0} = 1 (A-21)

The complementary event is B ={there exists m <0 such that Wk >0 for all k ≤m}. B is a shift-invariant

event. On the event B, the right-hand side of (A-17) is strictly positive for all k ≤ m (for a random m).

This implies, for all k < m,

0 < Wm = Wm−1 + Um−1 = Wm−2 + Um−2 + Um−1 = · · · = Wk +
m−1∑

i=k

Ui = Wk +
m−1∑

i=k

(ωi − Ii+1).

By assumption (i) of the lemma, Wk → ∞ a.s. on the event B as k → −∞. Let c < ∞. By the

shift-invariance of B and the stationarity of the process {Wk = Jk − ωk}k∈Z,

P(W0 ≥ c, B) = P(Wk ≥ c, B) → P(B) as k → −∞.

We conclude that W0 = ∞ a.s. on the event B, and hence P(B) = 0. Claim (A-21) has been verified. �
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Remark A.6 (nonstationary solution to Lindley’s recursion). Some result such as Lemma A.5 is needed,

for there can be another solution to Lindley’s recursion that blows up as n → −∞. Suppose {Uk} is

ergodic and EUk < 0. Pick any random N such that
∑N

k=m Uk < 0 for all m ≤ N. Set

Wn = −
N∑

k=n

Uk for n ≤ N ,

WN+1 = 0,

Wn = (Wn−1 + Un−1)
+ for n ≥ N + 2.

One can check that Wn = (Wn−1 + Un−1)
+ holds for all n ∈ Z.

Appendix B. Exponential distributions

The next lemma is elementary. The mapping (I, J, W ) 7→ (I ′, J ′, W ′) in the lemma is an involution, that

is, its own inverse.

Lemma B.1. Let α, β > 0. Assume given independent variables W ∼ Exp(α + β), I ∼ Exp(α), and

J ∼ Exp(β). Define

I ′ = W + (I − J )+,

J ′ = W + (I − J )−,

W ′ = I ∧ J.

(B-1)

(i) I − J and I ∧ J are independent.

(ii) (I − J )+ ∼ Ber(β/(α + β)) · Exp(α), that is, the product of a Bernoulli with success probability

β/(α + β) and an independent rate α exponential.

(iii) The triple (I ′, J ′, W ′) has the same distribution as (I, J, W ).

We use the previous lemma to establish some facts about the queueing operators. To be consistent

with the queueing discussion we parametrize exponentials with their means τ and ρ.

Lemma B.2. Let 0 < τ < ρ. Let (Ik)k∈Z and (ω j ) j∈Z be mutually independent random variables such

that Ik ∼ Exp(ρ−1) and ω j ∼ Exp(τ−1). Let Ĩ = D(I, ω) as defined by (2-18) and (2-19), ω̃ = R(I, ω)

as defined by (2-21), and Jk = G̃k − Gk as in (2-20). Let 3k = ({ Ĩ j } j≤k, Jk, {ω̃ j } j≤k).

(a) {3k}k∈Z is a stationary, ergodic process. For each k ∈ Z, the random variables { Ĩ j } j≤k, Jk, {ω̃ j } j≤k

are mutually independent with marginal distributions

Ĩ j ∼ Exp(ρ−1), ω̃ j ∼ Exp(τ−1) and Jk ∼ Exp(τ−1 − ρ−1).

(b) Ĩ and ω̃ are independent sequences of i.i.d. variables.

Proof. Part (b) follows from part (a) by dropping the Jk coordinate and letting k → ∞. Stationarity and

ergodicity of {3k} follow from its construction as a mapping applied to the independent i.i.d. sequences

I and ω.
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The distributional claims in part (a) are proved by coupling ( Ĩk, Jk−1, ω̃k)k∈Z with another sequence

whose distribution we know. Construct a process ( Îk, Ĵk−1, ω̂k)k≥1 as follows. First let Ĵ0 be an

Exp(τ−1 − ρ−1) variable that is independent of (I, ω). Then for k = 1, 2, 3, . . ., iterate the steps

Îk = ωk + (Ik − Ĵk−1)
+,

Ĵk = ωk + ( Ĵk−1 − Ik)
+,

ω̂k = Ik ∧ Ĵk−1.

(B-2)

We prove the following claim by induction for each m ≥ 1:

The variables Î1, . . . , Îm, Ĵm, ω̂1, . . . , ω̂m are mutually independent,

with marginal distributions Îk ∼ Exp(ρ−1), Ĵm ∼ Exp(τ−1 − ρ−1) and ω̂ j ∼ Exp(τ−1). (B-3)

By construction, the variables (I1, Ĵ0, ω1) are independent with distributions

(Exp(ρ−1), Exp(τ−1 − ρ−1), Exp(τ−1)).

The base case m = 1 of (B-3) comes by applying Lemma B.1 to the mapping (B-2) with k = 1. Now

assume (B-3) holds for m. Then (Im+1, Ĵm, ωm+1) are independent with distributions

(Exp(ρ−1), Exp(τ−1 − ρ−1), Exp(τ−1))

because, by construction, Ĵm is a function of (I1, . . . , Im, Ĵ0, ω1, . . . , ωm) and thereby independent

of (Im+1, ωm+1). By Lemma B.1, mapping (B-2) turns the triple (Im+1, Ĵm, ωm+1) into the triple

( Îm+1, Ĵm+1, ω̂m+1) of independent variables, which is also independent of Î1, . . . , Îm, ω̂1, . . . , ω̂m .

Statement (B-3) has been extended to m + 1.

Our next claim is as follows:

There exists (almost surely a random index) m0 ≥ 0 such that Jm0 = Ĵm0 . (B-4)

Suppose first that J0 ≥ Ĵ0. Then (2-24) and (B-2) imply that Jk ≥ Ĵk for all k ≥ 0. If (B-4) fails then

Jk > Ĵk for all k ≥ 0. But then for all k > 0,

Jk = Jk−1 + ωk − Ik = · · · = J0 +
k∑

j=1

(ω j − I j ) → −∞ almost surely, as k → ∞,

which contradicts the fact that Jk ≥ 0 for all k. Thus in this case (B-4) happens. The case J0 ≤ Ĵ0 is

symmetric.

Through equations (2-24) and (B-2), (B-4) implies that Ĩk = Îk , Jk = Ĵk , and ω̃k = ω̂k for all k > m0.

Part (a) follows from (B-3), because for any `, ( Ĩ`−n, . . . , Ĩ`, J`, ω̃`−n, . . . , ω̃`) has the same distribution

as ( Ĩk−n, . . . , Ĩk, Jk, ω̃k−n, . . . , ω̃k) which agrees with ( Îk−n, . . . , Îk, Ĵk, ω̂k−n, . . . , ω̂k) with probability

tending to one as k → ∞. �

Next we compute a competition probability for two independent homogeneous Poisson processes on

[0, ∞) with rates α and β. Let {σi }i≥1 be the jump times of the rate α Poisson process and {τi }i≥1 the
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jump times of the rate β Poisson process. For n ≥ 1 define the events

An = {σi < τi for all i ∈ [n]},
Bn = {σi < τi for all i ∈ [n − 1], σn > τn}.

The Catalan numbers {Cn : n ≥ 0} are defined by

Cn =
1

n + 1

(
2n

n

)
. (B-5)

The following properties of the Catalan triangle {C(n, k) : 0 ≤ k ≤ n} given in (3-10) can be deduced with

elementary arguments. C(n, 0)=1, C(n, k)=
(

n+k
k

)
−

(
n+k
k−1

)
for k >0, C(n, k)=C(n, k−1)+C(n−1, k),

i∑

k=0

C(n, k) = C(n + 1, i) for 0 ≤ i ≤ n, (B-6)

and n∑

k=0

C(n, k) = C(n + 1, n) = C(n + 1, n + 1) = Cn+1. (B-7)

Lemma B.3. For n ≥ 1,

P(An) =
n−1∑

k=0

C(n − 1, k)
αnβk

(α + β)n+k
, (B-8)

P(Bn) = Cn−1
αn−1βn

(α + β)2n−1
. (B-9)

Remark B.4. The generating function of the Catalan numbers is

f (x) =
∑

n≥0

Cnxn =
1 −

√
1 − 4x

2x
for |x | ≤ 1

4 .

Hence from (B-9),
∞∑

n=1

P(Bn) =
β

α + β
f

(
αβ

(α + β)2

)
=

{
1 if β ≥ α,
β

α
if β < α.

In other words, the rate α process stays forever ahead of the rate β process with probability (1 − β/α)+.

Proof. We compute P(Bn) first and then obtain P(An) by inclusion-exclusion.

Since C0 = 1, (B-9) holds for n = 1. For n ≥ 2 condition on (σn, τn):

P(Bn) =
∫

a>b>0
P(a,b)

{
Ui ≤ Vi for i ∈ [n − 1]

}
P((σn, τn) ∈ d(a, b)), (B-10)

where under P(a,b), 0 < U1 < · · · < Un−1 are the order statistics of n − 1 i.i.d. uniform random variables

on [0, a] and 0 < V1 < · · · < Vn−1 are the same on [0, b], independent of the {Ui }. We calculate the

probability inside the integral.
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Below, first use the equal probability of the permutations of {xi } among themselves and {y j } among

themselves. Note that a > b and the conditions xi < yi force all {xi , y j } to lie in [0, b]. Then use the equal

probability of all permutations of {xi , y j } together. The Catalan number Ck is the number of permutations

of {x1, . . . , xk, y1, . . . , yk} such that x1 < · · · < xk , y1 < · · · < yk and xi < yi for all i (see Corollary 6.2.3

and item dd on page 223 of [Stanley 1999]).

P(a,b)(Ui ≤ Vi for i ∈ [n − 1]) =
((n − 1)!)2

(ab)n−1

∫

x1<···<xn−1<a
y1<···<yn−1<b

1xi <yi ∀i∈[n−1] dx d y

= Cn−1
((n − 1)!)2

(ab)n−1

∫

x1<···<xn−1<y1<···<yn−1<b

dx d y = Cn−1
((n − 1)!)2

(ab)n−1
·

b2(n−1)

(2n − 2)!
.

Substitute this back into (B-10). Use the gamma densities of σn and τn .

P(Bn) = Cn−1
((n − 1)!)2

(2n − 2)!

∫

0<b<a<∞

bn−1

an−1
·
(αa)n−1

0(n)
αe−αa ·

(βb)n−1

0(n)
βe−βb da db

= Cn−1
αnβn

(2n − 2)!

∫

0<b<a<∞
b2n−2 e−αa−βb da db = Cn−1

αn−1 βn

(β + α)2n−1
.

We prove (B-8). The case n = 1 is elementary. Let n ≥ 2 and assume (B-8) for n − 1. Abbreviate

p = β/(α + β) and q = α/(α + β). Use (B-6) and (B-7) below.

P(An) = P(An−1) − P(Bn) = qn−1
n−2∑

k=0

C(n − 2, k) pk − Cn−1qn−1 pn

= qn−1
n−2∑

k=0

C(n − 2, k) (pk − pn) = qn

n−2∑

k=0

n−1∑

j=k

C(n − 2, k) p j

= qn

n−1∑

j=0

j∧(n−2)∑

k=0

C(n − 2, k) pi = qn

n−1∑

j=0

C(n − 1, j ∧ (n − 2))p j = qn

n−1∑

j=0

C(n − 1, j)p j . �
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