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The 1+1-dimensional corner growth model with exponential weights is a centrally important exactly
solvable model in the Kardar—Parisi—Zhang class of statistical mechanical models. While significant
progress has been made on the fluctuations of the growing random shape, understanding of the optimal
paths, or geodesics, is less developed. The Busemann function is a useful analytical tool for studying
geodesics. We describe the joint distribution of the Busemann functions, simultaneously in all directions
of growth. As applications of this description we derive a marked point process representation for the
Busemann function across a single lattice edge and calculate some marginal distributions of Busemann
functions and semi-infinite geodesics.
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1. Introduction

The corner growth model in the Kardar—Parisi—-Zhang class. The planar corner growth model (CGM)
is a directed last-passage percolation (LPP) model on the planar integer lattice Z> whose paths are allowed
to take nearest-neighbor steps e; and e;. In the exactly solvable case the random weights attached to the
vertices of 72 are i.i.d. exponentially or geometrically distributed random variables.

The exact solvability of the exponential and geometric CGM has been fundamental to the 20-year
progress in the study of the 1+1-dimensional Kardar—Parisi—-Zhang (KPZ) universality class. After the
initial breakthrough by Baik, Deift and Johansson [Baik et al. 1999] on planar LPP on Poisson points,
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the Tracy—Widom limit of the geometric and exponential CGM followed in [Johansson 2000]. This
work relied on techniques that today would be called integrable probability, a subject that applies ideas
from representation theory and integrable systems to study stochastic models. A large literature has
followed. Recent reviews appear in [Corwin 2018; 2016; 2012]. A different line of work was initiated
in [Baldzs et al. 2006] that gave a probabilistic proof of the KPZ exponents of the exponential CGM,
following the seminal work [Cator and Groeneboom 2006] on the planar Poisson LPP. The proof utilized
the tractable stationary version of the CGM and developed estimates by coupling perturbed versions
of the CGM process. This opening led to the first proofs of KPZ exponents for the asymmetric simple
exclusion process (ASEP) [Baldzs and Seppéldinen 2010] and the KPZ equation [Baldzs et al. 2011], to
the discovery of the first exactly solvable positive-temperature lattice polymer model [Seppéldinen 2012],
to a proof of KPZ exponents for a class of zero-range processes outside known exactly solvable models
[Balazs et al. 2012], and most recently to Doob transforms and martingales in random walks in random
environments (RWRE) that manifest KPZ behavior [Balazs et al. 2019b]. The estimates from [Balazs
et al. 2006] have also been applied to coalescence times of geodesics [Pimentel 2016] and to the local
behavior of Airy processes [Pimentel 2018].

Joint distribution of Busemann functions. The present article places the stationary CGM into a larger
context by describing the natural coupling of all the stationary CGMs. This coupling arises from the joint
distribution of the Busemann functions in all directions of growth.

Let G,y denote the last-passage value between points x and y on the lattice 7? (the precise definition
follows in (2-1) in Section 2). The Busemann function Bf, y 1s the limit of increments G,y — Gy, x as
vy, is taken to infinity in the direction parametrized by p. In a given direction this limit exists almost
surely. These limits are extended to a process B* by taking limits in the parameter p. Finite-dimensional
distributions of B* are identified as the unique invariant distributions of multiclass LPP processes. These
distributions are conveniently described in terms of mappings that represent FIFO (first-in-first-out)
queues. Key points of the development are (i) an intertwining between two types of multiclass processes,
called the multiline process and the coupled process, and (ii) a triangular array representation of the
intertwining mapping.

The results of this paper will have various applications in the study of the CGM, and they can be
extended to other 1+1-dimensional growth and polymer models that have a tractable stationary version.
A forthcoming work of the authors develops the joint distribution of Busemann functions for the positive-
temperature log-gamma polymer model.

Two applications have been completed recently. Properties of the joint Busemann process B* discovered
here are applied in [Janjigian et al. 2019] to describe (i) the overall structure of the geodesics of the
exponential corner growth model and (ii) the statistics of a new object termed the “instability graph”
that captures the geometry of the jumps of the Busemann functions on the lattice. The joint Busemann
distribution is necessary for a full picture of the geodesics because in a fixed direction semi-infinite
geodesics are almost surely unique and coalesce (these facts are reviewed in Section 2B below) but there are
random directions of nonuniqueness. The joint distribution captures the jumps of the Busemann function
as the direction varies. These correspond to jumps in coalescence points and nonuniqueness of geodesics.
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The article [Baldzs et al. 2019a] gives a proof of the nonexistence of bi-infinite geodesics in the
exponential CGM, based on couplings with the stationary version of the LPP process. The joint distribution
described here is a critical ingredient of the proof.

An analogue of the Busemann function on the Airy sheet. An interesting similarity appears between
our paper and recent work on the universal objects that arise from LPP. Basu, Ganguly and Hammond
[Basu et al. 2019] study an analogue of the Busemann function in the Brownian last-passage model.
Instead of the lattice scale and all spatial directions, they look at a difference of last-passage values
on the scale n*/3 into a fixed macroscopic direction, where universal objects such as Airy processes
arise. Translated to the CGM, their object of interest is the weak limit Z(z) of the scaled difference
n71/3[G(n2/3,0),(n+zn2/3,n) — G (23,0, (nten2 ) + 4n?/3] that they call the difference weight profile. In
terms of the Airy sheet {W(x, y) : x, y € R} constructed recently by Dauvergne, Ortmann and Virag
[Dauvergne et al. 2018], the limit Z(z) = W(, z) — W(—1, 2).

The limit Z(-) is a continuous process, while the Busemann process we construct is a jump process.
But like the Busemann process, the limit Z(-) is constant in a neighborhood of each point, except for a
small set of exceptional points. In both settings this constancy reflects the same underlying phenomenon,
namely the coalescence of geodesics. In our lattice setting, Theorem 3.4 gives a precise description of
these exceptional directions in terms of an inhomogeneous Poisson process.

Past work. We mention related past work on queues, particle systems, and the CGM.

Queueing fixed points. We formulate a queueing operator as a mapping of bi-infinite sequences of
interarrival times and service times into a bi-infinite sequence of interdeparture times (details in Section 2C).
When the service times are i.i.d. exponential (memoryless, or -/M /1 queue), it is classical that i.i.d.
exponential times are preserved by the mapping from the interarrival process to the interdeparture
process, subject to the stability condition that the mean interarrival time exceed the mean service time.
Anantharam [1993] proved the uniqueness of this fixed point and Chang [1994] gave a shorter argument.
(An unpublished manuscript of Liggett and Shiga is also cited in [Mountford and Prabhakar 1995].)
Convergence to the fixed point was proved in [Mountford and Prabhakar 1995]. These results were
partially extended to general -/ G /1 queues in [Mairesse and Prabhakar 2003; Prabhakar 2003].

We look at LPP processes with multiple classes of input, but this is not the same as a multiclass queue
that serves customers in different priority classes. In queueing terms, the present paper describes the
unique invariant distribution in a situation where a single memoryless queueing operator transforms
a vector of interarrival processes into a vector of interdeparture processes. It is fairly evident a priori
that this operation cannot preserve an independent collection of interarrival processes because they are
correlated after passing through the same queueing operator. (For example, this operation preserves
monotonicity.) It turns out that the queueing mappings themselves provide a way to describe the structure
of the invariant distribution.

Multiclass measures for particle systems. In a series of remarkable papers, P. A. Ferrari and J. B. Martin
[2006; 2007; 2009] developed queueing descriptions of the stationary distributions of the multiclass
totally asymmetric simple exclusion process (TASEP) and the Aldous—Diaconis—Hammersley process.
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The intertwining that establishes our Theorem 5.5 became possible after the discovery of a way to apply
the ideas of Ferrari and Martin to the CGM. We use the terms multiline process and coupled process to
highlight the analogy with their work.

Busemann functions and semi-infinite geodesics. Existence and properties of Busemann functions and
semi-infinite geodesics are reviewed in Sections 2A and 2B. Two strategies exist for proving the existence
of Busemann functions for the exponential CGM.

(i) Proofs by Ferrari and Pimentel [2005] and Coupier [2011] relied on C. Newman’s approach to
geodesics [Howard and Newman 2001; Licea and Newman 1996; Newman 1995]. This strategy is
feasible because the exact solvability shows that the shape function (2-4) satisfies the required curvature
hypotheses.

(i) A direct argument from the stationary growth model to the Busemann limit was introduced in
[Georgiou et al. 2015] for the log-gamma polymer, and applied to the exponential CGM in the lecture
notes [Seppéldinen 2018]. An application of this strategy to the CGM with general i.i.d. weights appears
in [Georgiou et al. 2017a; 2017b], where the role of the regularity of the shape function becomes explicit.

A sampling of other significant work on Busemann functions and geodesics can be found in [Cator
and Pimentel 2012; 2013; Ferrari et al. 2009; Bakhtin et al. 2014; Hoffman 2005; 2008].

Organization of the paper. Section 2 collects preliminaries on the CGM and queues. The main results
for Busemann functions and semi-infinite geodesics are stated in Section 3. Section 4 proves a key
lemma for the queueing operator. Section 5 introduces the multiline process, the coupled process, and
the multiclass LPP process, and then states and proves results on their invariant distributions. The key
intertwining between the multiline process and the coupled process appears in (5-8) in the proof of
Theorem 5.5 in Section 5D. Section 6 proves the results of Section 3. For the proof of Theorem 3.4,
Section 6B introduces a triangular array representation for the intertwining mapping. Auxiliary matters
on queues and exponential distributions are relegated to Appendices A and B.

Notation and conventions. Points x = (x1, x2), y = (y1, y2) € R?2 are ordered coordinatewise: x < y if
and only if x| < y; and x» < y,. The 2! norm is |x|; = |x1] + |x2]. Subscripts indicate restricted subsets
of the reals and integers: for example Z.o = {1, 2, 3, ...}. Boldface notation for vectors: e; = (1, 0),
e; = (0, 1), and members of the simplex [e;, e;] = {te; + (1 —t)e; : 0 <t < 1} are denoted by u.

ForneZ.o, [n]={1, 2, ..., n}, with the convention that [n] = & for n € Z¢. A finite integer interval
is denoted by [m,n] ={m,m+1,...,n}, and [m, co[={m,m+1,m+2,...}.

For 0 < o < 00, X ~ Exp(«) means that random variable X has exponential distribution with rate «;
in other words P(X > t) =e~* fort > 0 and E(X) =« In the discussion we parametrize exponential
variables with their mean. For 0 < p < oo, v” is the probability distribution on the space IRZO of
bi-infinite sequences under which the coordinates are i.i.d. exponential variables with common mean 0-
Higher-dimensional product measures are denoted by v(P1:P2:P1) = Pl @ VP2 Q - - . @ VP,

For 0 < p <1, X ~ Ber(p) means that random variable X has Bernoulli distribution with parameter p;
in other words P(X =1)=p=1— P(X =0).

In general, E* represents expectation under a measure j.
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2. Preliminaries

Section 2A introduces the main objects of discussion: the planar corner growth model (CGM), which
is a special case of last-passage percolation (LPP), and Busemann functions. Section 2B explains
the significance of Busemann functions in the description of directed semi-infinite geodesics and the
asymptotic direction of the competition interface. The somewhat technical Section 2C defines FIFO
(first-in-first-out) queueing mappings that are used in Section 3 to describe the joint distribution of the
Busemann functions. To be sure, the distribution of the Busemann functions could be described by plain
mathematical formulas without their queueing content. But the queueing context gives the mathematics
meaning that can help comprehend the results.

2A. Busemann functions in the corner growth model. The setting for the exponential CGM is the
following: (2, &, P) is a probability space with generic sample point w. A group of measure-preserving
measurable bijections {0,},c72 acts on (2, G, P). Measure preservation means that P(6,A) = P(A) for
all sets A € G and x € Z% Y = (Yy),z2 is a random field of independent and identically distributed
Exp(1) random weights defined on €2 that satisfies Y, (6yw) = Y, 4, (w) for x, y € 7? and w € Q.

The canonical choice for the sample space is the product space 2 = [F\RZ) with its Borel o -algebra G,
generic sample point @ = (wy),cz2, translations (6xw)y = wy4y, and ‘coordinate random variables
Y, (®w) = w,. Then P is the i.i.d. product measure on €2 under which each Y, is an Exp(1) random variable.

For u < v on Z? (coordinatewise ordering) let I, , denote the set of up-right paths x, = (x,-)l.”:_oul‘
from xo = u to xj,_y|, = v with steps x; — x;_1 € {ey, e2}. (The left diagram of Figure 1 illustrates this.)

Define the last-passage percolation (LPP) process

[v—uly
G, = max Z Y, foru<wvon 7> (2-1)
Xe€Ily —0

Forveu+ Zio we have the inductive equation

Gu,v = Gu,v—e| \% Gu,v—ez + Yv- (2'2)

—6 =5 —4 -3 -2 -1 0

[ —e)
oooooocl>—1 ,0:1?\
(@) (@) (@] (@) (@) OO —? \\\
| u(p) "~
O O  OmmmOmmmQmm=(Q c‘>—3
OmmOom=O © O O O —4 Y —e
| p=oc

Figure 1. Left: The thickset line segments define an element of IT(_¢ _4) (0,0). Right:
As the parameter p increases from 1 to oo, vector u(p) of (2-5) sweeps the directions
from —e; to —e; in the third quadrant.
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The convention of this paper is that growth proceeds in the south-west direction (into the third quadrant
of the plane). Thus the well-known shape theorem (Theorem 5.1 in [Martin 2004], Theorem 3.5 in
[Seppélidinen 2018]) of the CGM takes the following form. With probability one,

li |Gx,0—gx)]
im sup —_— =

r=%0 (@) 2 X1

0 (2-3)

with the concave, continuous and one-homogeneous shape function (known since [Rost 1981])

g0) = (VIxil+v1xl ) for x = (x1,x2) € R, (2-4)

Busemann functions are limits of differences G, » — G, , of last-passage values from two fixed points
x and y to a common point v that is taken to infinity in a particular direction. These limits are described
by relating the direction u that v takes to a real parameter p that specifies the distribution of the limits: a
bijective mapping between directions u = (uy, uy) € ]— e, —ey[ in the open third quadrant of the plane
and parameters p € (1, 0o) is defined by the equations

1 (p—1)?
1+(o—1D2" 1+(p—1)2

s e

(See the right diagram of Figure 1 for an illustration.)
The existence and properties of Busemann functions are summarized in the following theorem. By
definition, a down-right lattice path {yy} satisfies y, — yx—1 € {e1, —e»} for all k.

Theorem 2.1. On the probability space (2, S, P) there exists a cadlag process BP = (B)I?,y)x,yelz with

state space RZZXZZ, indexed by p € (1, 00), with the following properties.

(i) Path properties. There is a single event 2y such that P(20) = 1 and the following properties hold for
all w € Q, forall », p e (1,00) and x, v, z € 7*:

If\ <pthen By ., <BY ., and B} ., > Bl .. (2-6)
Bf,y + B)/)),z = Bf,z' (2'7)
Yo =B , «ABL_, .. (2-8)

Cadlag property: the path p — BY. y is right continuous and has left limits.
(i) Distributional properties. Each process B” is stationary under lattice shifts. The marginal distributions

of nearest-neighbor increments are

B!, .~Exp(p™") and B{_, ,~Exp(l—ph. (2-9)

X—e1,X

Along any down-right path {y;}rez on 72, for fixed p € (1, 00) the increments {B;?k,ykJrl Ykez are indepen-
dent.

(ii1) Limits. Fix p € (1, 0o) and let u = u(p) be the vector determined by (2-5). Then there exists an
event Q(()p) such that [P’(Q(()p)) =1 and the following holds: for any sequence {u,} in Z* such that |u,|, — 00
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and u,/n — u and for any w € Q(p),

Biy= nlijrolo[Gumy = Gu,.xl. (2-10)
Continuity from the left at a fixed p € (1, 00) holds with probability one: lim, , B}’},y = B)f,y almost
surely.

The theorem above is proved as Theorem 4.2 in lecture notes [Seppildinen 2018]. The central point of
the theorem is the limit (2-10), on account of which we call B” the Busemann function in direction u.
We record some observations.

Additivity (2-7) implies that Bf , =0 and BY. y = ny x. The weights recovery property (2-8) can be
seen from (2-2) and limits (2-10):

B? A B?

xX—ep,Xx X—e2, X

— llIl'l [Gu,,,x - Gu,,,x—el] AN [Gu,,,x - Gu,,,x—ez]
n—o00

= lim [Gu,,,x - Gun,x—el v Gun,x—ez] = Yx-

n—oo

Lemma 2.2. With probability one, for all x € 7* there exists a random parameter p*(x) € (1, 00) such

that
B)f e1x_Y <Bx —er,x fOl’,OE(l,p*(x)), 2-11)
Bl o =Yc<By_, . forpe(p*(x),o0).

The distribution function of p*(x) is P{p*(x) <A} =1—1"1for 1 < < oo.

Proof. Monotonicity (2-6) and the exponential rates (2-9) force Bf,ez’ + /" 0o almost surely as p \( 1

and BY_ —e;.x /" 00 almost surely as p " co. Edges {x — ey, x} and {x — e;, x} are part of a down-right
path, and hence Bf_ —e;.x and Bl e,.» are independent exponential random variables for each fixed p.

Consequently, with probability one, they are distinct for each rational p > 1. By monotonicity again there
is a unique real p*(x) € (1, co) such that for rational A € (1, 00),

)
A < p*(x) implies B x erx < Bi e (2-12)
A > p*(x) implies By_, . > By_,, .-

By monotonicity the same holds for real A. Conditions (2-11) follow from weights recovery (2-8). The

distribution function comes from (2-11), independence of BY_ e.x and BY_ er.x» and (2-9). g

In particular, for a fixed x, the processes {Bf_, }i<p<cc and {BY_q, +}1<p<oc are not independent of
P e.x and B?
u(p*(x)) is the asymptotic direction of the competition interface emanating from x (see Remark 2.5).

each other, even though for a fixed p, the random variables B are independent. Vector

X—en,x

The process B = {By.,} is a Borel function of the weight configuration Y. Limits (2-10) define B?
as a function of Y for a countable dense set of p in (1, o). The remaining p-values nyy can then be
defined as right limits. Shifts 6, act on the weights by (6,Y), = Y,4+,. The limits (2-10) give stationarity
and ergodicity of B as stated in this lemma.

Lemma 2.3. Fix pi1,...,p, € (1,00) and y\,...,y, € Z% Let A, = (B, ,..... BY" ) and let

0 # u € 7% Then the R"-valued process A = {A\},cp2 is stationary and ergodic under the shift ,.
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Proof. Since the i.i.d. process Y is stationary and ergodic under every shift, it suffices to show that
A, = Ag o6, as functions of Y. Let u’ €] — ey, —e,[ be associated to p; via (2-5) and fix sequences

{ul}, ..., {u"} in Z* such that, as m — oo, |u! || — oo and u!, /m — u' for each i € [n]. Then almost
surely,
Pn :
Ac=By, - B = ”}Lmoo([Gu;”,x ty1 = Gut oL G aty, — Gup, x)
= Jim ((Gup—ry, = Gujy—r)s -+ Gy, = Gug—x.01) 0 x
_ P1 Pn _
—(Bo,yl’---’Bo,yn)o ), = Ago0,. O

2B. Semi-infinite geodesics in the corner growth model. Let x, = {x;} be a finite or infinite south-west
directed nearest-neighbor path on 73 (xk+1 € {xr —e1, xx — e2}). Then x, is a geodesic if it gives a
maximizing path between any two of its points: for any k < ¢ in the index set of x,,

£
Grm = Y.

i=k

Given p € (1, 00), define from each x € Z? the semi-infinite, south-west directed path b”* = {b,f ’x}kezzo
that starts at x = bg " and chooses a step from {—e;, —e,} by following the minimal increment of B*:
for k > 0,

px : o P
by e, if Bb,f"‘—el,b]f’x = Bbf‘x—ez,b,’;’x’

b, —ey, ifBY <B

p.X px =
bk —ez,bk

bﬂ,x _

(= 2-13)

P
p.x X .
bk —eq, bk

The tie-breaking rule in favor of —e; is chosen simply to make b”* a cadlag function of p. For a given p,
equality on the right-hand side happens with probability zero. Pictorially, to each point z attach the arrow
that points from z to bf “. For each x the path b”* is constructed by starting at x and following the
arrows.

The additivity (2-7) and weights recovery (2-8) imply that b”-* is a (semi-infinite) geodesic: let
¢ > k > 0 and suppose {yi}f:k is a south-west directed path from y; = b,f " to yp = bf . Then

£ £—1 £—1 L
o __ pp . >Y4 _ P _
D Vu S D Byt Yo = By Y = By ¥ = 3 B e+ Yipr = 3 Yy
i=k i=k i=k i=k
Thus,

14

— — RBP -

o = 2; Yopr = By g+ o @19

1=

We call b** a Busemann geodesic.
We state the key properties of semi-infinite geodesics in the next theorem.

Theorem 2.4. Fix p € (1, 00) and let u = u(p) be the direction associated to p by (2-5). The following
properties hold with probability one.

(i) Directedness. For all x € 72, limy_,» b / k = u.
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(i) Uniqueness. Let x, = {xt}xez., be any semi-infinite geodesic that satisfies x;/k — u as k — 00. Then
x, = bP.

(iii) Coalescence. Forall x, y € 72, the paths b”* and b*Y coalesce: there exists z=1z7"(x,y) € 72 such
that b** N b*Y = bP*,

It is clear from the construction (2-13) that once b”* and b”*Y come together, they stay together. We
call z°™ (x, y) the coalescence point of the unique u-directed semi-infinite geodesics from x and y. The
Busemann function satisfies

B)I?,y = GZ‘J(X,)')J’ - Gzp(x,y),x a.s. (2-15)

It is important to note that parts (ii) and (iii) of Theorem 2.4 are true with probability one only for a
given u and not simultaneously for all directions.

Theorem 2.4(i) follows from an ergodic theorem for Busemann functions and the shape equation
(2-3) (see for example Theorem 4.3 in [Georgiou et al. 2017a]). Theorem 2.4(ii)—(iii) were established
for the exponential CGM in [Coupier 2011; Ferrari and Pimentel 2005]. The article [Seppéldinen
2020] gives an alternative derivation of Theorem 2.4 based on the properties of the stationary expo-
nential CGM. Versions of Theorem 2.4 for the CGM with general weights appear in [Georgiou et al.
2017a].

Remark 2.5 (competition interface). The geodesic tree emanating from x consists of all the geodesics
between x and points y € x + Zio south and west of x. The semi-infinite geodesics b”* are infinite rays
in this tree. Every geodesic to X comes through either x — e; or x — e,. This dichotomy splits the tree
into two subtrees. Between the two subtrees lies a unique path {¢; },cz., on the dual lattice (% %) +27?
that starts at ¢} =x — (3, 3). ¢} is a.s. uniquely defined as the point in x — (1, 1) + Z2, that satisfies

lx —¢@r|1 =n+1 and

Gt h—er ~ Gt hve 7 0> Cod —hvmey ~ Ogiad ~hx—er
(Use the convention G, y, = —oo if x < y fails.) The competition interface has a random asymptotic
direction,
. "
lim — =u(p™(x)) almost surely, (2-16)
n—»o0o n

where the limit is described in (2-5) and Lemma 2.2. This was first proved in [Ferrari and Pimentel 2005].
The limit came from the study of geodesics with Newman’s approach. Identification of the limit came
via a mapping of ¢* to a second class particle in the rarefaction fan of TASEP whose limit had been
identified in [Ferrari and Kipnis 1995]. An alternative proof that relies on the stationary LPP processes
was given in [Georgiou et al. 2017a].

2C. Queues. We begin with a standard formulation of a queue that obeys FIFO (first-in-first-out) disci-
pline. This treatment goes back to classic works of Lindley [1952] and Loynes [1962]. Modern references
that connect queues with LPP include [Glynn and Whitt 1991; Baccelli et al. 2000; Draief et al. 2005].
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The inputs are two bi-infinite sequences: the arrival process I = (Iy)recz and the service process
®=(wj)jez In RZO. They are assumed to satisfy

0

li C_I..1) = —00. 2-17

m—1>111c>o Z(a)t it1) o0 ( )
1=m

The interpretation is that /; is the time between the arrivals of customers j — 1 and j and w; is the service

time of customer j. From these inputs three outputs [ = (ik)kez, J = (J)rez and @ = (&) kez, also

elements of RZ , are constructed as follows.

>0’

Let G = (Gy)rez be any function on Z that satisfies Iy = Gy — Gy—1. Define the sequence G= (az)[ez
by

l
Gy = sup{Gk—f—Za)i}, teZ. (2-18)
k:k<t i—k

Under assumption (2-17) the supremum in (2-18) is assumed at some finite k. The interdeparture time
between customers £ — 1 and ¢ is defined by

I; =G -Gy (2-19)
and the sequence [= (ik)kel is the departure process. The sojourn time Ji of customer k is defined by
Ji=Gyr—Gr, kel (2-20)

The third output,
51{:1/(/\.]](_1, keZ, (2—21)

is the amount of time customer k — 1 spends as the last customer in the queue.
I, J and @ are well-defined nonnegative real sequences, and they do not depend on the choice of the
function G as long as G has increments Iy = Gy — G—1. The three mappings are denoted by

I=D,w), J=SU,w), and &=R(,w). (2-22)
The queueing story is good for imbuing the mathematics with meaning, but is not necessary for the sequel.
From
Gr = o+ GV G, (2-23)
follow the useful iterative equations
L=wi+Ue— )™ and  Je=wp+ (o1 — 1T (2-24)

The difference of the two equations above gives a “conservation law”,
L+ Ji = Ji1 + I (2-25)
We extend the queueing operator D to mappings
D™ . (Rio)” — Rio

of multiple sequences into a single sequence. Let ¢, ¢!, ¢2, ... denote elements of [R%O. Then, as long as
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the actions below are well-defined, let
DV () =D, 0) =z,
DP' ¢H=D(DV ("), ¢?) =D ).

(2-26)

DY % ¢H=D(DP 1, ¢%) =D(DE', ¢H), &),

and, in general, D(”)(gl, CZ, e = D(D(’"“(;l, e, ;”_1), g“”) forn > 2.
In queueing terms, D™ (¢!, ¢2, ..., ¢") is the departure process that results from feeding arrival
process ¢! through a series of n — 1 service stations labeled i =2,3,...,n. Fori =2,3,...,n, ¢'is

the service process at station i. Departures from station i — 1 are the arrivals at station i. The final output
is the departure process from the last station whose service process is ¢”.

We record some inequalities which are to be understood coordinatewise: for example, I’ > I means
that I,é > [ forallk e Z.

Lemma 2.6. Assuming that the mappings below are well-defined, we have the following inequalities:

D, w) > w. (2-27)
IfI' > I then D(I', w) > D(I, w). (2-28)
Forn>2, DW, 2,03, ..., cm =D D@2 3, ..., M. (2-29)

Proof. The first part of (2-24) implies (2-27). For (2-28) observe that

k k
Jy = sup {Gj —Gk—{—Za)i} > sup {G/J —G}C+Za)i} =J;.
jiisk i Jri<k Py
Now (2-24) gives INIQ > .
Inequality (2-29) comes by induction on n. The case n = 2 is (2-27). Then, by induction and (2-28),
D(n)(é'l, e g.n) — D(D(n_l)(fl, o g.n—l)’ é.n) > D(D(”_z)(;“2, o é.n—l), g.n)
=D" V(2 . O

We record the most basic fact about M/M/1 queues. The following notation will be used in the sequel.
Let
A=, ..., y) € (0, 00)"

be an n-tuple of positive reals. Let ¢ = ({1, e (IRZO)” with ¢/ = ({,i)kez denote an n-tuple of
nonnegative bi-infinite random sequences. Then ¢ has distribution v* if all the coordinates ;,f are mutually
independent with marginal distributions g“,i ~Exp(}; 1. In other words, ¢ is a sequence of i.i.d. mean A
exponential variables, and the sequences are independent.

Lemma 2.7. Letn > 2 and let A = (A1, ..., A,) satisfy .y > --- > A, > 0. Let ¢ have distribution v*.
Then D™ (', ..., ¢") has distribution v, in other words, DY (¢!, ..., ¢") is a sequence of i.i.d. mean

A1 exponential random variables.

Proof. The case n =2 is in Lemma B.2. The general case follows by induction on 7. U
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3. Joint distribution of the Busemann functions
This section contains the main results on the joint distribution of the Busemann process
B'={B”:1<p < o0}
defined in Theorem 2.1. Proofs are in Section 6. The distribution of the n-tuple

(B gy xr s BY g, D }cer=t

on a given lattice level t € Z comes through a mapping of a product of exponential distributions. This
mapping is developed next.

3A. Coupled exponential distributions. Fix n € Z- for the moment and define the following two spaces
of n-tuples of nonnegative real sequences. The sequences themselves are denoted by I' = (I ]i)keZ and

= (0 )kez for i € [n]:

foo|

yn={1=(11, P IMe®Ey":Vie[2n], lim Zlk>mlimw o Zl’ ! } (3-1)

k=—m

Xn=:n=(n1,n2,-~,n ye(RE)" :n' ="' Vie[2,n] and lim ol 3 Z 77k>0} (3-2)
m——0o0

The existence of the Cesaro limits as m — —oo is part of the definitions. ), and A&, are Borel subsets of

(RZ )" and thereby separable metric spaces in the product topology. We endow them with their Borel

o -algebras.

Define a mapping D™ : ), — X, in terms of the multiqueue mappings D®) of (2-26) as follows: for
I=" 1% ...,1") €Y,, theimage n = (n', n*, ..., n") = D™ (I) is defined by

' =DOU, 1Y fori=1,...,n. (3-3)

In particular, the first sequence is just copied over: n' =1I'. Then n”> =D>, 1"), P’ =D U3, 1>, 1" =
D(D(I3, I?), I"), and so on. Iterated application of Lemma A.3 from Appendix A together with the
assumption / € ), ensures that the mappings D® (I, I LT | 1) are well-defined. Furthermore, 1 € &),
follows from inequalities (2-27) and (2-29). Lemma A.3 implies also that D maps Y, into itself. We
do not need this feature in the sequel, which is why we did not define X, as a subspace of }),.

Recall:

For p = (p1, ..., pa) € (0,00)", I =(I', 1%, ..., I") has distribution v if
all coordinates I,ﬁ are independent and I,ﬁ ~ Exp(p;” l) foreachk e Z andi € [n]. (3-4)

If p satisfies 0 < p; < pp < --- < p, then v* is supported on )),. For these p define the probability
measure j” on X, as the image of v” under DV:

w’ =v° o (D)~ for p=(p1, pa, ..., pn) such that 0 < p; < pp < - -+ < pp. (3-5)



JOINT DISTRIBUTION OF BUSEMANN FUNCTIONS IN THE CORNER GROWTH MODEL 67

By Lemma 2.7, if n has distribution u” with 0 < p; < p < --- < py, then for each i € [n], n = (ﬂi)kez
is a sequence of i.i.d. mean p; exponential variables. The mapping D™ couples the variables 77}; together
so that ;' < n! for all i € [2,n] and k € Z.

Translations {6,}¢c7z act on n-tuples of sequences by (an)fC = 77;<+1€ fori € [n]and k, £ € Z. A
translation-ergodic probability measure Q on X, is invariant under {6,} and satisfies Q(A) € {0, 1} for
any Borel set A C X, that is invariant under {6;} (and similarly for any other sequence space).

Theorem 3.1. The probability measures u” are translation-ergodic and have the following properties:

(i) Continuity. The probability measure ” is weakly continuous as a function of p on the set of vectors
that satisfy 0 < p1 < p2 < --- < py.

(ii) Consistency. If (n!, ..., n") ~ p®rr) then (nt, ..., n/=1 Tl Lo p") ~ pPLePiztoPitseson)
forall j € [n].

Continuity of p +> w” is proved in Section 6. Translation-covariance of the queueing mappings
(D61, 6yw) = 0, D(I, ®)) implies that ” inherits the translation-ergodicity of v”. We omit the proof of
consistency. Consistency will be an indirect consequence of the uniqueness of ©” as the translation-ergodic
invariant distribution of the so-called coupled process (Theorem 5.3).

3B. Distribution of Busemann functions. Return to the Busemann functions B® defined in Theorem 2.1.
For each level ¢ € Z define the level-t sequence of weights Y, = (Yk.n))kez and for a given p € (1, 00),
sequences of e; and e; Busemann variables at level ¢:

nPel __ P nP.€ __ pp
Bt - (B(kflyt)’(k’,))kel and Bt - (B k,zfl),(k,t))kez'

The next main result characterizes uniquely the distribution of the joint process (Y, B*) of weights and
Busemann functions.

Theorem 3.2. Let Y = (Yy) ez be i.i.d. Exp(1) variables as in Section 2A. Let 1 < p1 < --- < py. Then
at each level t € Z, the (n+1)-tuple of sequences (Y, BF"*', ..., B"°") has distribution pu1-P1>-Pn),

Once the process {Ef;el' }1<p<oco ON a single level r — 1 is given, the variables B)I?—e,-, . at higher levels
t,t+1,t+2, ... can be deduced by drawing independent weights Y;, Y41, . .. and by applying queueing
mappings. By stationarity, the full distribution will then have been determined. The next lemma describes
the single step of computing the e; and e, Busemann increments on level ¢ from the process {Effl' H<p<oo
and independent level-r weights Y. The mappings D and S were specified in (2-22).

Lemma 3.3. There exists an event of full probability on which

B =D(B”“',Y;) and B{*® =S(B"“.Y,) forallpe(l,o0)andteZ.

t—1> t—1>

The remainder of this section describes some distributional properties of B* restricted to horizontal
edges and lines on Z2 The corresponding statements for vertical edges and lines are obtained by replacing
p with p/(p — 1). This is due to the distributional equality {B{_,, }ycz2 < {Bf.", 'k Jrez> Where
R(x1, x2) = (x2, x1). This follows from (2-5) and the limits (2-10), by reflecting the lattice across the

diagonal.
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BP

x—ej,x
A — e =
o
Y. +7Z, | *—0
Yx" *—0

[ "P

Figure 2. A sample path of the pure jump process {Bf_e]’x} pell,00), With initial value
B;_el’x =Y,. The jump times are a Poisson point process on (1, co) with intensity s ~'ds.
Given that there is a jump at A, the jump size is an independent Exp(1~") variable Z;.

3C. Marginal distribution on a single edge. 1.emma 2.2 implies that for a fixed horizontal edge (x—ey, x)

we can extend {Bf : 1 < p < oo} to a cadlag process

—el,X

B: ={B’ 1< p<oo)

xX—e1,Xx X—e1,X

by setting B;_ e1.x = Yx. We describe the distribution of this process in terms of a marked point process.
Figure 2 illustrates a sample path of this process.

Let N be the simple point process on the interval {s : 1 < s < oo} that has a point at s = 1 with
probability one, and on the open interval (1, co) N is a Poisson point process with parameter measure
s~'ds. (We use N to denote both the random discrete set of locations and the resulting random point
measure.) Let N be the ground process of the marked point process ),y 8¢, z,) Where the mark Z; at
location ¢ € N is Exp(t~!)-distributed and independent of the other marks. Define the nondecreasing

cadlag process X () ={X(p) : p € [1,00)} as

X(p)= Y Zs (3-6)

teNN[L,p]

namely, X (p) is the total weight of the marks in [1, p]. The Laplace transform of X (p) is given in (6-12).
Theorem 3.4. Fix x € 7. The nondecreasing cadlag processes B} _,, x and X (-) indexed by [1, c0) are
equal in distribution.

A qualitative consequence of Theorem 3.4 is that for any given A € (1, 00)\ N, p+— Bf_el’x is constant

in an interval around A. From identity (2-15), it is evident that this is due to the fact that the coalescence
point function p — z”(x — ey, x) is constant in an interval. This is an analogue of the local constancy of
the difference weight profile in Theorem 1.1 of [Basu et al. 2019]. The implications of Theorem 3.4 for
the coalescence structure of the geodesics of the CGM are explored in [Janjigian et al. 2019].

Theorem 3.4 is proved by establishing that B} has independent increments and by deducing the

—e1,X
distribution of an increment. Independent increments means that for 1 = pg < p; < --- < p,, the random

variables Y, = B B! — B”

v—e.x> Br—ex ey xs s B/, . —B”} _areindependent. For I <A < p < 00,

x—ey,x xX—ep,x
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the distribution of the increment is

A
PBY ¢\ v = By ¢x =0} =P{N(. p] =0} ==,
Joj
5 (3-7
P{BY ¢\ x — B;L—el,x > s} = (1 — ;)e_s/p for s > 0.
For the process By _,, , on a vertical edge, the result of Theorem 3.4 is that
{Bf_ez,le <p<oo}i{X(<ﬁ>+) 01 <p<oo}. (3-8)

3D. Marginal distribution on a level of the lattice. A striking and useful property of the Busemann
process {B(/;c—l,t),(k,t)}kez along a horizontal line in Z? for a fixed value p € (1, 00) is that the variables
{B(;c—l,t),(k,t)}kez are i.i.d. (part (ii) of Theorem 2.1). For example, [Baldzs et al. 2006] used this feature
heavily to deduce the KPZ fluctuation exponents of the corner growth model. The next theorem shows that
this property breaks down totally already for the joint process {(B(}Lk—l,t),(k,t)’ B&_l,;),@,n)}kez for two
parameter values A < p. Namely, this pair process is not even a Markov chain and not reversible. However,
if we restrict attention to the differences B(’;C_l’ Nk~ B(Ak_l’ 1).(k.ry» WE can recover the reversibility. The
differences are of interest because they indicate a jump in the coalescence point z°((k — 1, 1), (k, t)) in
(2-15) as a function of the direction.

For the statement of the theorem below, the negative part of a real number is x~ = (—x) vV 0. The
Markov chain Xy in part (a) below has a queueing interpretation as the difference between the sojourn
time of customer k — 1 and the waiting time till the arrival of customer k. The details are in the proof in
Lemma 6.5.

Theorem 3.5. Let 1 <A < p < o0.

(a) The sequence of differences {B(’;{il’t)’(k’t) — B(Akfl,t),(k,t)}kez is not a Markov chain, but there exists a
stationary reversible Markov chain { X }rez such that this distributional equality of processes holds:

P A d -
{Bi—1.0y.(k.) — Bli—1.0), (k) ez = { X Jrez-

In particular, the process of differences is reversible:

p A d pp A
{B(k—l,r),(k,t) - B(k—l,t),(k,t)}kel = {B(—k—l,t),(—k,t) - B(—k—l,z),(—k,z)}kel-

(b) The sequence of pairs {(Bélc—l,t),(k,t)’ B(‘;(_Lt)’(k,t))}kez is not a Markov chain. The joint distribution of
two successive pairs

A o A o
((B(k—l,t),(k,t)’ B(k—l,t),(k,t))’ (B(k,t),(k-‘r],t)’ B(k,t),(k-‘rl,t)))

is not the same as the joint distribution of its transpose

A P A P
((B(k,t),(k-i-l,l)’ B(k,t),(k-i—l,t))’ (B(k—l,t),(k,l)’ B(k—l,t),(k,t)))’

In particular, the process of pairs {(B(Ak_]’[)y(k,t), B&_l,;),@,;))}kel is not reversible.
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3E. The initial segment of the Busemann geodesic. As the last application of Theorem 3.2 we calculate
the probability distribution of the length of the initial horizontal run of a semi-infinite geodesic.

Let ay = b} —x be the first step of the B” Busemann geodesic (2-13) started at x. {ay }xezz is a random
configuration with values in {—e;, —e;}. By weight recovery (2-8), al =—e; ifand only itBy_, —Y:=0.
Hence by Theorem 3.5(a) with A = 1, reversibility holds along a line: {ak e }keZ = {a” ke; }keZ

The first part of the theorem below gives a queueing characterization for the process {ak ¢, Jkez. To that

end, for the queueing mapping I = D(I, w) of (2-22) define the indicator variables
m =1 ooy = 1{customer k has to wait before entering service}. (3-9)

Let
& =inflk e Z>0 ax —key = = —e;}

denote the number of consecutive —e; steps that b*-* takes from a deterministic starting point x. Part (b)
of the theorem gives the distribution of &,. The Catalan triangle {C(n, k) : 0 < k < n} is given by

m+k)!n—k+1)
C(n, k)= D) . (3-10)

Information about C(n, k) is given above Lemma B.3 in Appendix B.

Theorem 3.6. Let 1 < p < 0.

(a) Let the service and arrival processes satisfy (w, 1) ~ vP) and define ny by (3-9). Then we have the
distributional equality

{Uay, = —e)lkez L Mk Ikez-

(b) Let x € 7% Then P{&, =0} =1 — p~ ' and forn € 7,

n—1 k
P{sx—n}—a—p—])ngC(n—l “W (3-11)

The distribution in (3-11) is proper; that is, Znez>0 P{&. = n} = 1. This follows for example from
Theorem 2.4(i) according to which the Busemann geodesic has direction strictly off the axes.

Remark 3.7. If we take (w, I) ~v*#) forl <A < pin Theorem 3.6 and define n; again by (3-9), we get
the distributional equality {l{B(k . t) ) = B(k L)k, t)}}kEZ = {nr}xez. The calculation that produced
part (b) gives the distribution I]J’{Sx =0}=(p—X)/p and

,Ok)x”

P{s”—n}——Za LGy

forneZ.y,

for the random variable
A,
ErP =inflk € Z>0: BY i 1yer x—ke, > By (ks yer x—ker )

Note that BY =B} tells us that )" = bA ¥ but not which step is chosen.

x—ejp,x x—ey,x
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4. Properties of queueing mappings

This section proves a property of the queueing mapping D (Lemma 4.4) on which the intertwining
property that comes in Section 5D rests. To prove Lemma 4.4 we develop a duality in the queueing setting
of Section 2C: namely, an LPP process defined in terms of weights (/, w) can be equivalently described
in terms of weights (7, @) defined by (2-22). Routine facts about the queueing mappings are collected in
Appendix A.

Fix an origin m € Z. Assume given nonnegative real weights
Iy UDizmy1,  and  (@i)izm+1- (“4-1)
From these define iteratively fork=m+1,m+2, ...
Lhi=wx+ i —heD)t, Sh=or+ (o —L)T, and & =L A Ji_y. (4-2)
There is a duality or reversibility of sorts here. For a fixed k, equations (4-2) are equivalent to
L=&+ =TT, hor=a+ =Tt and  wp = I A Jg. (4-3)

We turn this reversibility into a lemma as follows. Restrict the given J, I and w weights in (4-1) to
the interval [m, n]. Then on the interval [—n, —m] define the given weights J',, (I/)_p+1<i<—m and
(a)l{)—n-i-lfif—m as

Ii/ = I,,'Jrl, JLn = Jn, and a); = C’B,prl. (4—4)
Now apply (4-2) to these given weights to compute (7’ , Ji, wp) for k € [-n+ 1, —m]. First assume by
induction that J,é_l = J_i+1. The base case k — 1 = —n is covered by the definition in (4-4). Then
K=o+ =) =0 41+ g — Lag)*
=l A+ Uk — )T =Tk

The third equality above used the definition of @ in (4-2) and the conservation law
L+ Jk= Do + I (4-5)
that follows from (4-2). Thus J; = J_ for all k € [—n, —m]. Next
[ =wp+ I = It =@ g1+ Tpr — Tt
=T i A+ g1 — )T =Ty
Finally,
O =LNT_ =11 A1 = k41
as follows again from (4-2). We summarize this finding as follows.

Lemma 4.1. Fix m < n. Assume given Jy,, (1;)m+1<i<n and (o;)m+1<i<n. Compute (ik, J, Ok)m+1<k<n
from (4-2). Then define J',,, (I))—py1<i<—m and (&) _pt1<i<—m by (4-4) and apply (4-2) to compute
I, Jis @) —nt1<k<—m- The conclusion is that (7/, J @) = (I—kg1, Ik, w—41) fork € [-n+1, —m].
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. 1) w; o 1) (m, 1) a0 Ii @ (. 1)

ol L L
i

(m, 0) (i-1,0)  G,0) (1, 0) (m, 0) (,0)

Figure 3. Illustration of the weights (/, J, ) on the left and weights (f , J, w) on the
right. Pairs (k, a) € [m, n] x [0, 1] mark vertices of the two-level strip.

Next we use the weights given in (4-1) to construct a last-passage process on the two-level strip
[m, oo x[0, 1] in Z> In this construction, I; serves as a weight on the horizontal edge ((i — 1, 0), (i, 0))
on the lower 0-level, J,, is a weight on the vertical edge ((m, 0), (m, 1)), and w; is a weight at vertex (i, 1)
on the upper 1-level. (The left diagram of Figure 3 illustrates this.) The last-passage values Hy.0),(1,a)
are defined for (n, a) € [m, oo x[0, 1] as follows:

n
Hn,0).0n.00 =0 and  Hy,0),(2.0) = Z I; forn>m,
i=m+1

Hin,0y,0n.1) = I » (4-6)

n J n
Hon.0), .1 ={Jm+ a)i}v max i I; + a),-}, n>m.
oy i:%;rl mtlsj=n i;rl ;
If the given weights (4-1) come from the queueing setting of Section 2C, then Hy, 0y, (n,1) = én -Gy
But this connection is not needed for the present.

The next lemma gives alternative formulas for H in terms of the weights calculated in (4-2). Pictorially,
imagine I: as a weight on the edge ((i — 1, 1), (i, 1)) and @; as a weight on the vertex (i — 1, 0). (The right
diagram of Figure 3 illustrates this.) In (4-7), a sum expression of the form a; + - - - +a;_ is interpreted
as zero. The equation (4-8) makes sense also for £ = n in which case the right-hand side simplifies to J,,.

Lemma 4.2. Let m <n. Then

Honoyn) =Imi1 +- -+ L+ T+ hsr 4 -+ 1, foreach k € [m, n]. (4-7)
For each £ € [m,n — 1],
J n n
i= i=j i=

We make some observations before the proof. By the two top lines of (4-6), equivalent to (4-7) are the
increment formulas (for all n > m)

In = Hon,0),00,1) = Hon,0),0-1,1) - and Sy = Hon,0),61,1) = Hom,0),01,0)- (4-9)
Taking £ = m in (4-8) gives this dual representation for H:
J n n
Hpn,0),n,1) =  Mmax { > 5#2&} V{ > cT)l-+J,,}. (4-10)
i=j

m+1<j<n
== i=m+1 i=m+1
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Proof of Lemma 4.2. Let m < n and develop the definition (4-6). As in (2-2),

n—1 j n—1 n
S I Eay s N M L B

i=m+1 i=m+1 i=j i=m+1
= Hn,0),(—1,1) VY Hm,0),(n,0) + @n.

Set temporarily
An = Hon,0),01) = Hon,0),a-1,1) - and By = Hn,0),(n,1) =~ Hm,0),1,0)-
Then (4-11) gives the iterative equations
Ap=w,+Uy—B,-)" and By =w, 4+ (Buo1 — I)".

Definition (4-6) gives B,,;, = J,,;,. This starts an induction. Apply the equations above together with (4-2)
to obtain A,, = fn and B, = J, for all n > m + 1. This establishes (4-9), and (4-7) follows.

We prove (4-8) by induction as £ decreases. The base case £ = n comes from the just proved B, = J,.
Assume (4-8) for £ + 1. Then for ¢ the right-hand side of (4-8) equals

n

J n n
et 3T max {3 5 a3 deea )

i=t+1 i=l+2 i=j i=+2
= Hon,0),(¢+1.0NHim,0).6.1) = Hon,0).¢.00H Hom,0).00.0 = Hom, 01,60 P { Hon 0y, 0.1 = Hom0), 01,0}
= Hin,0),00,1) = Hm,0),(0,0)-
In the first equality we used @¢4 = 41 A J¢, (4-9) and the induction assumption. ]
The last line of (4-6) and formula (4-10) give dual representations of the quantity H, 0),(,1)- The

next lemma shows that equality persists if we drop the terms that involve J from both formulas. This
statement is the crucial ingredient of Lemma 4.4 below.

Lemma 4.3. Let m < n in Z. Assume given nonnegative weights J,_1, (Ii)m<i<n and (o;)m<i<n.
Compute (I, Jy, Ok )m<k<n from (4-2). Define

J
mn:max{Zl—i—Zw,} and Tmnzmax{Zc~0 Z~} (4-12)

m<J<n m<J<n
=J

Then T, , = Tm,n
Proof. The case m = n is the identity I, + w, = @, + in that follows from (4-2).
Let n > m + 1 and assume by induction that fm’n,l < Tin.n—1. Develop the definitions.
n

Tpn= max {Zl +Zw,} {Z '}+wn:Tm,n—lv{Zli}+wn- (4-13)

m<j<n—1 “
i=m i=m
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Similarly,

n

n
Tm,n = Tm,n—l v { Zat} + in = Tm,n—l A% { Z(lt AN Ji—l)} + w, + (In - Jn—l)+
i=m i=m

(4-14)

n

=< Tm,nfl \2 { Z Ii} +w, + (In - Jn71)+-

i=m
The induction assumption was used in the last step.

Case 1: [, < J,_;. This assumption kills the last term of (4-14) and gives

n

:fm,n =< Tm,n—l \% { Z Ii} +w, = Tm,n-

i=m
Case 2: I, > J,_1. For this case induction is not needed. We use the last-passage process H,—1,0),(-,)-
Conservation law (4-5) and (4-9) imply
L > Jioy &= I > Jy <= Hop-1,0),0-1,1) < Hon—1,0),(n,0)-
Then by (4-11),
n
Hm-1,0).00.1) = Hm—-1,0),(n,0) + @n = Z li +wp < Ty n-
i=m

On the other hand, by definition (4-6),

n
Hin-1,0),(n,1) = {Jm—l + sz} V T
i=m

Hence Hyy—1.0),(n,1) = Tim.n. By the dual formula (4-10),

n
H(m—l,O),(n,l) = Tm,n \% { Zat + Jn} = Tm,n-

i=m
We conclude that in Case 2, Tm,n <Tmn-

‘We have shown that Tm,n < Tpn.n- This suffices for the proof by the duality in Lemma 4.1 because the
roles of T, , and fm,n can be switched around. ]

The next lemma is the key property of the queueing mapping D that underlies our results. Its proof
relies on Lemma 4.3. Lemma 4.3 applies to the queueing setting described in Section 2C because
equations (2-21) and (2-24) ensure that the assumptions of Lemma 4.3 are satisfied.

z

Lemma 4.4. Assume given three sequences 1>, 1', »' € RZ, such that the queueing operations below

are well-defined. Let w?* =R, ") as defined in (2-21). Then we have the identity

D(D(I*,0*), D(I', ")) = D(DUI* 1", »'). (4-15)
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Proof. Choose G! and G? so that I} = G}, — G!_, fort =1, 2. Let
H; = sup iG2+Zl }
L:l<j i—t
and then

J k
H = sup {H +Z }— SUP{G +]lg§}§k[zl,-‘+2w3] } (4-16)

Jij<k i=t i=j

The sequence (ﬁk — Hk—l)kel is the output D(D(I%, 1Y), o).
For the left-hand side of (4-15) define first for D(I’, ') the sequence

Eif:sup{GﬁZ } refl,2).

C:e<j

Set I~k1 = 5% — 5,1_1. The output D(D(I%, v?), D(I', 0")) is given by the increments of the sequence

j k
2 2 2 1
Hk_ sup {G + E }_ sup {G +J?1<%X<k[,gewi+é,lii|}' 4-17)
i= i=j

jij<k —j U<k

The rightmost members of lines (4-16) and (4-17) are equal because the innermost maxima over the
quantities in square brackets [- - - ] agree, by Lemma 4.3. We have shown that H=H and thereby proved
the lemma. U

We extend Lemma 4.4 inductively.

Lemma 4.5. Let n > 2 and assume given n + 1 sequences IVI2 . 1Mol e [RRZO such that all the
queueing operations below are well-defined. Define iteratively

o =R o™ forj=2,...,n (4-18)
Then we have these identities for 1 <k <n —1:
DY T ol =
DD (p=kbpn L oM DU, 0Y), ., DU, 0Y)). (4-19)
Proof. The case n =2 is Lemma 4.4.
Let n > 3 and assume that the claim of the lemma holds when 7 is replaced by n — 1, for 1 <k <n—2.

We prove the claim for n.
First the case k = 1, beginning with the right-hand side of (4-19):

D@ (D™, ..., I*,0*), DU, 0") = D(D[D" V", ..., I?),0*], DU, »"))
=D(D[D" D", ... .15, 1'],0")
=D(D™WI",.... 1Y, 0")=D"TPu" ... 1" w").
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The first and last two equalities above are from definition (2-26) of D™, and the middle equality is
Lemma 4.4.
Now let 2 < k < n — 1. The first equality below is definition (2-26) for D**D. The second equality is
the induction assumption:
D(k+1)(D(n_k+1)(1n, o Ik+l, C()k+l), D(Ik, Cl)k), o D(Il, Cl)l))
=D(DP[D" D, I O, DUF, WY, .. DUIP, 0M)], DU, oY)
=D(D™[I", ..., I?,0*], DU", »")).
The last line above is the same as the left-hand side of the previous display. The calculation is completed
as was done there. O

In particular, for k =n — 1, (4-19) gives

D, . 1 0 =D (DU, "), ..., DU, »h)) (4-20)
and fork =1,
DV, 1N oYy =D(D™[I, ... I%,0*], DU, ")) (4-21)
5. Multiclass processes
The distribution (712 of the (n + 1)-tuple (Y; , B/, ..., B?"“") given in Theorem 3.2 is deduced

through studying two multiclass LPP processes. Fix a positive integer n, the number of levels or classes.
We define two discrete-time Markov processes on n-tuples of sequences, the multiline process and the
coupled process. Their state space is

0
1 .
A,,:{1:(1‘,12,...,1”)6(RZO)":Vie[n], lim ] §:1,g>1}. (5-1)
= m——00 |m
k=—m

At each step their evolution is driven by an independent sequence of i.i.d. exponential weights, so assume
that

o = (wp)kez 18 a sequence of i.i.d. variables wy; ~ Exp(1). (5-2)

SA. Multiline process. At time t € Z>, the state of the multiline process is denoted by
1) =U'@), ..., I"(1) € Ay.

The one-step evolution from time ¢ to ¢ 4 1 is defined as follows in terms of the mappings (2-22). Given
the time ¢ configuration I (1) =1 = (I', I?, ..., I") in the space A, and independent driving weights w,
define the time ¢ 4+ 1 configuration /(¢ + 1) = I=Y1%,..., 1" iteratively as follows:

setw' =wand I' = D(Il, a)l);

fori =2,3,...,n:

setw =R, o Yand I' = D(I', o). (5-3)
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Thus the driving sequence w acts on the first line /! directly, and is then transformed at each stage before
it is passed to the next line. Lemma A.3 guarantees that, for almost every w from (5-2), the Cesaro limit
lim,, s —oolm| ™" 3 0_, i =1 holds for each i € [n] and the new state I lies in A,.

Theorem 5.1. Assume (5-2). Then for each p = (py, ..., pp) € (1, 00)", the product measure v° defined
in (3-4) is invariant for the multiline process (I(t))icz.,-

Theorem 5.1 follows from Lemma B.2 in Appendix B: induction on k shows that IV, ... 1%, of L

) R LIPS independent with i ~vPi, oftl~pl 7 ~pPi. We do not have proof that v* is the unique
translation-ergodic stationary distribution with mean vector p, but have no reason to doubt this either.

5B. Coupled process. Attime t € Z>, the state of the coupled process is denoted by
N =@'®,....n" 1) € A,

where again n' (t) = (nfc (t))kez- The evolution is simple: the queueing operator D acts on each sequence
n' with service times w:

n(t+1) = (D' (1), ), D(n*(t), @), ..., D" (1), »)). (5-4)

We call 5(¢) the coupled process because it lives also on the smaller state space X, N A, (recall (3-2))
where the sequences 7' are coupled so that ' ~! < n’. This is the case relevant for the Busemann processes
because the latter are monotone (recall (2-6)). Inequality (2-28) and Lemma A.1 ensure that the Markovian
evolution 7(-) is well-defined on X, N A,. However, since the mapping (5-4) is well-defined for more
general states, we consider it on the larger state space A, of (5-1).

To state an invariance and uniqueness theorem for all parameter vectors p € (1, 00)"” we extend u”
of (3-5), by ordering p and by requiring that n' = n'*!
mapping D™ in (3-5) cannot be applied if some p; = p;;1. For if I and w are both i.i.d. Exp(p~!)

if p; = pi+1. This is necessary because the

sequences, then G in (2-18) is identically infinite because it equals a random constant plus the supremum
of a symmetric random walk.

Definition 5.2. Let p = (p1, p2, ..., pn) € (0, 00)". The probability measure u” on the space (Rio)" is
defined as follows.

(1) If0 < p; < p2 <--- < p, then apply (3-5).

(1) fO0< p; <pr<---<py,there exist m € [n], a vector ¢ = (01, ..., 0,) suchthat 0 < o; < --- < gy,
andindices 1 =iy <ip <--- <iy <ipy1=n+1suchthatp;, =---=p; _1=o0pforl=1,...,m. Let
I~v°, ¢ =D (I),andthendefinen=(n',...,n")eX, byp't=-..=pnT=¢lfort=1,...,m.
Define u” to be the distribution of 7.

(iii) For general p = (p1, ..., pn) € (0, 00)", choose a permutation 7 such that wp = (o), .. ., Pr(@))
satisfies pr(1) < pr2) < -+ < przm). Let m act on weight configurations 1 = m',...,n") by mn =
™D, ..., " ™). Define u” = u™ om~!, or more explicitly

EM[f1=E""[f@n)]=E*"" '[f]

for bounded Borel functions f on (Rgo)”, where the measure ™ is the one defined in step (ii).
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If there is more than one ordering permutation in step (iii), there are identical sequences whose ordering
among themselves is immaterial. If p € (1, 0co0)" then w” is supported on the space A,, of (5-1). The next
existence and uniqueness theorem is proved in Section 5D.

Theorem 5.3. Assume (5-2).

(i) Invariance. Let p = (p1, 02, ..., pn) € (1, 00)" Then the probability measure u” of Definition 5.2 is
invariant for the Markov chain (1(t)):cz., defined by (5-4).

(ii) Uniqueness. Let i be a translation-ergodic probability measure on A, under which coordinates n};
have finite means p; = Eﬁ[n};] > 1. If i is invariant for the process n(t), then it = u” for p =
(P15 pn) € (1, 00)"

5C. Stationary multiclass LPP on the upper half-plane. We reformulate the coupled process as a
multiclass CGM on the upper half-plane. Fix the number n of classes. Assume given i.i.d. Exp(1)
random weights {wy },e7x7_,, and an initial configuration 7(0) = (n'(0), ..., n"(0)) € A, independent
of w. Define a vector of LPP processes G, = (G;, ..., GY) for x € Z x 7> as follows. First choose
initial functions {Gék,O)}kGZ with the property n,i(O) = G’ék’o) — Gl&kq,oy Then for (k,t) € Z x Z~¢ define

Gik,z) = 'Sl.lgk{Gl&j,O) +Gn.knts (5-5)
Jrl=

where G is the usual LPP process of (2-1) with weights Y, (w) = w,. Then lastly define the process
n@) = m'@), ..., n" @) for t € Z- as the increments

() =Gl —Gly_y, forie[n]andkeZ. (5-6)

Theorem 5.4. Let p = (p1, p2, ..., pu) € (1,00)". Then u” of Definition 5.2 is an invariant measure
of the increment process 1(-) defined above by (5-6) in the multiclass exponential corner growth model.
Measure u” is the unique invariant measure for n(-) among translation-ergodic probability measures on
A, with means given by p.

This follows from Theorem 5.3 simply by noting that (5-6) can be reformulated inductively as
n(6)= (D't —1).@), Dt — 1), @),.... D"t = 1), @), 1€Z, (5-7)
where @; = {w.1) }kez 1s the sequence of weights on level 7.
5D. Invariant distribution for the coupled process. This section proves Theorem 5.3. We separate the
invariance of u” and the uniqueness in Theorems 5.5 and 5.6 below. Their combination establishes

Theorem 5.3. The proof of the next theorem shows how the invariance of u” for n(¢) follows from the
invariance of v” for I (¢) and the fact that the mapping D intertwines the evolutions of I (¢) and 7(z).

Theorem 5.5. Let p = (p1, p2, ..., pp) € (1, 00)" Then P of Definition 5.2 is an invariant distribution
for the (Rgo)"—valued Markov chain n(t) defined by (5-4).

Proof. The general claim follows from the case 1 < p; < py < --- < p, because permuting the {n'} or
setting n' = 1/ produces the exact same change in the image of the mapping in (5-4).
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Soassume 1 < p; < p2 <--- < p,. Given a driving sequence w, denote by S and 7 the mappings on
the state spaces that encode a single temporal evolution step of the processes / (-) and n(-). In other words,
the mapping from time ¢ to 41 defined by (5-3) for the multiline process is encoded as I (t4+1) =S“ (I (¢)).
For the coupled process the step in (5-4) is encoded as n(t +1) = T*(n(t)). Let D = D™ denote the
mapping (3-3) that constructs the coupled configuration from the multiline configuration. Let Dy, S}’
and 7, denote the k-th Rzo—valued coordinates of the images of these mappings.

Let 7 ~ v” be a multiline configuration with product exponential distribution v°. We need to show
that if n has the distribution u” of D(I), then so does 7“(n) when w is an independent sequence of i.i.d.
Exp(1) weights. For the argument we can assume that n = D(I). As before let ' = w and iteratively
o/ =R/, w/~") for j =2,3, ..., n. The fourth equality below is (4-20). The other equalities are
consequences of definitions:

e = D', w)=D(DPU*, ... 1Y), 0") =D* Ak, T o)
“Z0 p® (D, o), DA, * Y, L, DU, "))
= DO(SP(D), Sp_ (D), ..., SP(D) = Di(S° ().

Since the above works for all coordinates k € [n], we have T*(n) = D(S®(I)). Since n =D(I), we have
verified the intertwining

T(D)) =D(S*(1)). (5-8)
By Theorem 5.1, S (1) L~ Consequently 7%(n) 4 D) ~ u”l. [l

Theorem 5.6. Assume (5-2). Let [i be a translation-ergodic probability measure on X, under which each
coordinate n}; has a finite mean. If i is invariant for the coupled process n(t), then L = u” for the mean
vector p of [i.

We prove Theorem 5.6 following [Chang 1994], by showing that the evolution contracts the p distance
between stationary and ergodic sequences. Let n = (nx)rez and & = (&;)xez be stationary processes taking
values in R . Their p distance is defined by

o(n,&)= inf E[|Xo—Yol1l, 5-9
P, &) (X%GM [1Xo— Yol1] (5-9)

where M is the set of jointly defined stationary sequences (X, Y) = (X, Yi)rez such that X 4 n and
y < &, E is the expectation on the probability space on which the coupling (X, Y) is defined, and |-|; is
the ¢! distance on RZ,.

From [Gray 2009: Theorem 9.2], we know that (i) p induces a metric on the space of translation-
invariant distributions and (ii) if n and & are both ergodic, there exists a jointly stationary and ergodic pair
(X, Y) at which the infimum in (5-9) is attained.

The following is a straightforward generalization of Theorem 2.4 of [Chang 1994] to R ,-valued sta-
tionary and ergodic sequences n = (', ..., n") and £ = (£', ..., &") where n = (ﬂ};)kez an&fi = (f/i)kez



80 WAI-TONG LOUIS FAN AND TIMO SEPPALAINEN

are random elements of [R{ZO. Let

=G ..., 7" =(D0n", ®),....DO", »))

and similarly E = ('51, ey E") denote the outcome of applying the queueing map D(-, ) to each
sequence-valued coordinate.

Proposition 5.7. Let  satisfy (5-2). Let the RY-valued stationary and ergodic processes n and § be
independent of w and have finite means that satisfy [E[n,i] = [E[é,f] =A; > 1l fori e[n]landk € Z. Then

P, §) < p(n, £). (5-10)
If n and & have different distributions the inequality in (5-10) is strict.

Before the proof we complete the proof of Theorem 5.6. Let p = E¥[n,] be the mean vector of fi. Let
n ~ wf and & ~ [i. By the known invariance of u” and the assumed invariance of i, 77 4 n and & 4 £.
Hence p(7, ’5) = p(n, &). The last statement of Proposition 5.7 forces &t = u”.
Proof of Proposition 5.7. Let (X, Y) = (X', ..., X"), (Y',..., Y")) be an arbitrary R¥!-valued jointly
stationary and ergodic process with marginals X < n and Y < &, independent of the 7weights w, with
(X, Y, w) coupled together under a probability measure P with expectation E. As above, write X =
(i,i)kez = D(X!, w) and Yi = (?,f)kez = D(Y', w) for the action of the queueing operator on the
individual sequences X I=(X /i)kez and Y' = (Y, ,é)kez. Inequality (5-10) follows from showing

E[|Xo — Yol11 < E[|Xo — Yol11. (5-11)

Define the process Z by Zi = X} v Y}. Then

n n
| Xo—Yoli =Y _|Xh—Yi| =) (Z)— X| - Y. (5-12)
i=1 i=1
Let Zi = D(Z', w). Then Z' > X' v ¥’ by monotonicity (2-28). Hence
n n n
1Xo—Yoli =Y IXo—¥il=) (2XGv ¥ —X)—Y) <> 2Z{— X — ¥)). (5-13)
i=1 i=1 i=1
The triple (X, Y, w) is jointly stationary and ergodic because w is an i.i.d. process independent of
the ergodic process (X, Y). Consequently, as translation-respecting mappings of ergodic processes,
both (X, Y, Z, w) and (? Y, 2) are jointly stationary and ergodic. The queueing stability condition
E(X}) > E(wo) implies E(X))) = E(X})), and by the same token E(Y}) = E(Y}) and E(Z}) = E(Z}).
This goes back to Loynes [1962] and follows also from Lemma A.3 in Appendix A. Taking expectations
on both sides of (5-12) and (5-13) gives (5-11).
For the strict inequality assume that  and ¢ are not equal in distribution and let (X, Y) be a jointly
ergodic pair that gives the minimum in (5-9). To deduce the strict inequality

Y EIX)vY <) EZ. (5-14)

i=1 i=1
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we can tap directly into the proof of part (ii) of Theorem 2.4 in [Chang 1994], once we show that X'
and Y’ must cross for some i € [n]. X’ and Y’ cross if with probability one there exist k, £ € Z such that
X, > Y} and X} < Y[.
Suppose X' and Y’ do not cross. Then P({X' > YYU{X' < Y'}) = 1. We show that this implies
X' =Y as. This gives us the contradiction needed, since X' = Y for all i € [1] implies that < £.
To show X' =Y’ a.s., write {X' =Y/} = AT UA™ as. for

AT ={X">Y"and X} > Y| for some k € Z},
A”={X" <Y"and X} < Y] for some k € Z)}.

AT is a shift-invariant event. By the joint ergodicity of (X, Y) and E (X 6 — Yé) =0,

. 1 i i
0=l lim oo D7 (X =YD

—n<k<n

= lim

n—o00 2n + 1 Z (Xlic_Yli)'IG_kA+=E[(X6—Yé).1A+] as.

—n<k<n

Thus X, =Y, a.s. on AT. By the shift-invariance of A", X} =Y/ a.s.on A" for all k € Z. But then it
must be that P(A™) = 0. Similarly P(A~) =0.

To summarize, we have shown that some X' and Y? must cross. Following the proof on page 1131-1132
of [Chang 1994] gives the strict inequality (5-14). The connection between the notation of [Chang 1994]
and ours is Sy = w, (T\,_;, T ) = (XL, X}) and (T2, _. TZ,_) = (Y], Y)). O

6. Proofs of the results for Busemann functions

We prove the theorems of Section 3 in the order in which they were stated.

6A. Continuity of n° and distribution of the Busemann process.

Proof of the continuity claim of Theorem 3.1. Fix p = (p1, ..., py) such that 0 < p; < --- < p,. Let
{,oh}hez>0 be a sequence of parameter vectors such that ot = (p{‘, e, ,o,i’) — (p1,..., pn) as h — oo.
We construct variables 1 ~ /M’h and n ~ u” such that n" — 7 coordinatewise almost surely.

Let I =(I',...,I") ~v” and define I,f’i = (,ol.h/,oi)lli. Then I" = (I, ..., I"") ~ v#" and we have
the pointwise limits I,ﬁ’ N I,ﬁ foralli € [n] and k € Z as h — oo. Furthermore, the assumption in (A-2)
holds:

0
_ 1 .
lim |— E - pi | =0 almost surely for all i € [n]. (6-1)
m——oo | |m| “ J
j=m

h— o0

Let n = D™ (1) and n = D" (I). Apply Lemma A.2 repeatedly to show that " — 1 coordinatewise
almost surely:

(1) ! = 1"1 — I' = n! needs no proof.
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(2) Lemma A.2 gives the limit 2 =DUM?, 1" — D(I?, I') = »? and that D(I"2, I™1) satisfies the
hypotheses of the lemma.

(3) For n"3 = DO "3 [h2 1y = D(DUI"3, 1"2), I'"1), by case (2), D(I"-3, I""?) satisfies the
hypotheses of Lemma A.2. Then Lemma A.2 gives D(DI"3, %), "V — D(D(I3, I?), I') and that
DX (I3, 172 ["1) satisfies the hypotheses of Lemma A.2.

(4) Proceed by induction. From the case of i — 1 sequences, DU=bphi phi=1 Ih’z) satisfies the
hypotheses of Lemma A.2. Apply the Lemma to conclude that the mapping for i sequences obeys the
limit

gl = DOt 2 el — ppUD (i it g2y gy
and also satisfies the assumptions of Lemma A.2. This is then passed on to be used for the case of i + 1
sequences.
This completes the proof of " — 7. O

Proof of Theorem 3.2. Introduce an (n+1)-st parameter value pg € (1, p1). By Lemma 2.3, the [R?’;gl—valued
Z-indexed process

DP0s-s Pn.€1 __ L0 P1 Pn
Bl - {(B(kfl,t),(k,t)’ B(kfl,t),(k,t)’ o B(kfl,t),(k,zf))}kEZ (6'2)

.....

is stationary and ergodic under translation of the k-index and furthermore B/ "' has the same

distribution as the sequence B”;""“' on the previous level # — 1. Lemma 3.3 gives B/ "
D(B ;" Y,). By the uniqueness given in Theorem 5.3, the distribution of B/***"**' must be the
invariant distribution g (P0--2n).
Let pgp \( 1. By Lemma 2.2, almost surely,
s DPOPLs s P P1 Pn
Plolgll Bt - {(Y(k,t)’ B(k—l,t),(k,t)’ RN B(k—l,t),(k,l))}kez’
while Theorem 3.1 gives the weak convergence p(?0P1Pn) — 1 (LP1sn) a5 oo N\ 1. O

The proof of Lemma 3.3 below relies on the iterative equations (2-24). Since these equations can
have solutions other than the one coming from the queuing mapping, additional conditions are needed as
specified in Lemma A.4 in Appendix A.

Proof of Lemma 3.3. We show that there is an event 2 of full probability on which the assumptions
of Lemma A.4 hold for the sequences (I,7,1, ) = (B“', B, Efj‘,?,) simultaneously for all
uncountably many p € (1, 00) and ¢t € Z.

Assumption (A-14) requires

0
li Yor — B = —co forallteZ.
m_lﬁloo;( k) = Big -1y @r1,0-1y) = —00  fora

=m

This holds almost surely simultaneously for all p in a dense countable subset of (1, co). By the mono-
tonicity (2-6) this extends to all p € (1, co) on a single event of full probability.
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Utilizing the recovery property (2-8) and additivity (2-7),

p p +
Yy + By -1y 0ei—1) — Ba—1.0-1).k-1.0))

_ pP o ) 0 +
= B(k—l,t),(k,t) A B(k,t—l),(k,t) + (B(k—],t),(k,t) - B(k,z—l),(k,z))

P
B(k—l,t),(k,t)

and
p P +
Y+ (B(k—l,t—l),(k—l,t) - B(k—l,t—l),(k,t—l))

_pP P P P +
- B(kfl,t),(k,t) A B(k,tfl),(k,t) + (B(k,tfl),(k,t) - B(kfl,t),(k,t))
— BP
= P11y
These equations are valid for all p and all (k, ¢) on a single event of full probability because this is true
of properties (2-8) and (2-7). Assumption (A-15) has been verified.

Lemma A.5 implies that with probability one, for all p in a dense countable subset of (1, 00), Y., =
B(‘;ﬁ —1).(k.t) for infinitely many £ < 0. Monotonicity (2-6) and recovery (2-8) extend this property to all

p € (1, 00) on the same event. O

6B. Triangular arrays and independent increments. To extract further properties of the distribution u?,
we develop an alternative representation for n = D" (I) of (3-3). Assume given I = (I',..., I") € Y,.
Define arrays N/ :1<j<i<n}and (% :1<j<i <n} of elements of R‘go as follows. The &
variables are passed from one i level to the next.

(i) Fori =1,setpb! =11 =¢gblL

(i) Fori =2,3,...,n,

ni,l — Ii,

)’)i’j:D(T]i’j_l,éi_l’j_l) forj:2,3,...,i, (6 3)
g1 = R(yi1, g1y for j=2,3,....1,

ghi = i

Step i takes inputs from two sources: from the outside it takes I’, and from step i — 1 it takes the
configuration &1~ 1+ = (g~11, gi=12  gi=hi=2 gi-Li=l _ pi-Li-1y,

Lemma A.3 ensures that the arrays are well-defined for I € )),. The inputs [ L ..., I" enter the
algorithm one by one in order. If the process is stopped after the step i = m is completed for some m < n,
it produces the arrays for (I', ..., I"™) € Y.

The arrays are illustrated in Figure 4. The following properties of the arrays come from Lemmas 6.1
and 6.2 and their proofs.

(i) The input of the D" -mapping lies on the left edge of the n-array: (n!, ..., p*H =", ..., I").
The output of the D" -mapping lies on the right-hand diagonal edges of both arrays:

oty = €L e g = DA LT~ e ),
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nl,l Sl,l
2,1 2,2 2,1 £2,2
noton” £ &%
n3,1 n3,2 )73,3 53,1 53,2 53,3
nn,l nn,Z nn,3 . 77n,n En,l én,Z gn,3 . Enn

Figure 4. Arrays Mi:1<j<i<n}and {7 :1<j<i<n)

(ii) The j-th column (n/-/, ni*1J . . n™J) of the n-array has the product distribution v P+t Pa)
It is obtained from the (j—1)-st column (y/-/ =1, p/+1i=1  ymi=1) by the mapping (5-3) with
n/=1i=1 = gJ=1J=1 a5 the external driving weights.

(ili) Row (41, g52, ... EV7) of the &-array has the product distribution v(P1- P2+ £i)
Lemma 6.1. Let [ = (I',...,I") € Y,. Let (j',....,7") = DWW U, ..., I") be given by the map-
ping (3-3). Let {n"/} be the array defined above. Then ' =n"' fori =1, ..., n.

Proof. 1t suffices to prove " = n™™" because the same proof applies to all i. The construction of

the array can be reimagined as follows. Start with (nl’l, nz’l, R n”’l) ="', 1%,...,1"). Then for
£=2,3,...,n—1 iterate the following step that maps the (n — £ 4 2)-vector
(nn,l—l 77n—l,f—l nu—l ne—l,z—l)

to the (n — £ + 1)-vector

A —1,¢ +1,0 0,0
(A S A/ M|

:(D(nn,[—l Sn—],f—l) D(nn—l,[—l Sn—z,[—l) o D(nf-i-l,[—l SE,Z—I) D(n[,f—l nf—],f—l)).
The &-variables above satisfy

E(,(—l — R(nﬁ,é—l’ Se—l,@—l) — R(ng,f—l’ nﬁ—l,ﬁ—l)
S€+1,€—1 — R(n€+1,€—1 é[,[—l)

g__nfl,efl — R(nnfl,ﬁfl’ €n72,€71)‘
Thus (4-20) implies that

n yeees ] , N

)

—0+2 L—1 —1,4—1 0,0—1 —1,0—1\ __ —0+1 N —1,¢ +1,0
DR (et gy )= DD gty ntthe

9. (6-4)
In the derivation below, use the first line of (6-3) to replace each I’ with n>1. Then iterate (6-4) from
{=2to{=n—1to obtain
=", P P 1Y =DM ety et gt
— D(n—l) (nn,Z’ nn—l,Z’ o 773,2’ n2,2)
— .. = D(3)(nn,n—2, nn—l,n—Z’ nn—Z,n—Z) — D(nn,n—l, nn—l,n—l) — nn,n. n
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The next two lemmas describe the distributions of the arrays.

Lemma 6.2. Fix0 < p; < --- < p, and let the multiline configuration I = (I',...,I") have distribution
v(Prepn) Let {0/} < j<j<n and (€9 }1 < j<i<n be the arrays defined above. Then for each 1 <i, j <n, con-
figuration (n>7, nit17 . n™7) has distribution vi- Piv1- P and configuration (€5, 52 EDD)
has distribution v\ P2 P In particular, each n'J has distribution v* and each £/ has distribution v,

Proof. First we prove the claim for (n/-/, np/*1J/ .. n™7/). Recall that by definition £// = n/+/.
For j = 1, the definitions give gV = 771’1, 772’1, el n”’l) = 1%, ..., 1) ~ v P Pr)
Let j € [2, n]. Assume inductively that

(€101 = =it =l ity it P o),
The mapping from (/=1 ...y~ to (n//, ..., n™7) is the mapping (5-3) of the multiline process,
with £/=1J=1 a5 the external driving weights w. Namely, this mapping is carried out by iterating

itk = p(pithi=l gitk=lj-1y gIHk=l — Rpitki=l gitk=Lj-1)
fork=0,1,...,n—j. Then (nj’j, nj+1’j, el n”’j) ~ p(Pi:Pj+1:- Pn) follows from the invariance in
Theorem 5.1.

Next the proof for (¢°!, &2, ... &%), The claim is immediate for i = 1 because there is just one
sequence n'! =T1'=¢g11 ~vP1, Leti € [2, n] and assume inductively that (£/=1-1, /=12 gi=li=ly~
p(Pt. P2 Pi-1) By construction, n°»! = I' ~ v? is independent of £, and hence

(ni,l Ei—l,] {S-i—l,z . Si—],i—l) ~ v(p;,/h,pz ..... pi—l).
Now we transform the sequence above by repeated application of the mapping ("¢, £/~ 1.6) > (£0:¢, ity
defined by (6-3):
nl,€+1 — D(nl,f’ Sl*l,ﬂ)’
gt — R(pit, £171Y)
for ¢ =1,...,i — 1. The pair to be transformed next slides successively to the right. The succession of

sequences produced by this process is displayed below, beginning with the first one from above. The pair
to which the mapping is applied next is enclosed in the box. The distribution follows from Lemma B.2:

1 j— i—1,2 i—1,3 i—1,i—1 iy Pls P2y P3seens Pie
( nz,l’sz 1,1 ’sl vfl N sl i ) ~ U(,Oz £15 025 P35+0e Pi—1)

(si,l’ ni,z’si—l,z ) fi_l’3,..., Ei—l,i—l) ~ v(PI,Pi,PLP%---ypi—])

(51,1’“.’51,2—1, ni,é’éi—l,é , Et—l,f—i-l’.“’ 51—1,1—1) ~ PPl PE1, Pis POy Pet1 s Pi—1)

(%.i,lﬂ.”’ é_-i,i—l’ ni,i) ~ P11 i)

To complete the induction from i — 1 to i, set £ = pi*i, [l



86 WAI-TONG LOUIS FAN AND TIMO SEPPALAINEN

Remark 6.3 (notation). To keep track of the inputs when processes are constructed by queueing mappings
(2-22), superscripts indicate the arrival and service processes used in the construction. This works as
follows when the arrival process is I and the service process is w:

« G denotes a function that satisfies Iy = G,{ — G1€,1-

« G1@ s the process defined by (2-18) whose increments are the output INkI — 52 @ ék 1> and so
I =D, w).

o J1:® =S(I, w) is the process defined by (2-20) as Jkl’ ? = 5,{‘” —G}.
e o9 =R, w).
Lemma 6.4. Fix0 < p; < --- < p, and let the multiline configuration I = (I',...,I") have distribution

pPi) Letn = (n', ..., n") =D"™(I) and let {n"7} and {E"7} be the arrays constructed above. Then
foreachm € [2, n]| and k € Z, the following random variables are independent:

)1 2 1 — — —
{glm }ifkv {Slm }ifk’--"{gmm }l<k’ {77, }l<k 1s nk _n]rcn 1’ 7712'1 1_7721 2»---,771%_ﬂ]£a 77]1
Proof. Index k is fixed throughout the proof. We begin with the case m = 2.
By the definitions, 171 =1

52,1 _ R(T,Z,l,gl,l) _ R(Iz, 11) :512,11 and 772 _ D(Iz, 11) _ INIZ,I'.

Hence 521 = I2 A J and 77,% — n,i = (I2 — Jklz’lll)+ By Lemma B.2(a), {i12’11}1<k 1s Jklz’lll,
~I2 ]!

{a) }L<k 1 Ikz, I | are 1ndependent To be precise, Lemma B. 2(a) gives the independence of

},<k 1, {I }l<k 1, and Jk 1 . These are functions of {I? },<k 1, and thereby independent

i

of I kz’ 1 kl Properties of independent exponentials (Lemma B.1(i)) imply that

2 7l 1
kz’l =I}A J,{I_’II and nf —n} = (I} — Jkl 11 )" are mutually independent. (6-5)
Altogether we have that {%‘,-2’1},-51(, {U,-z}ifk—l’ 77,% — n,i, r],l are independent.

Let m > 3 and make an induction assumption:

-1,1 —1,m=2 - - - .
E T ickn o ETTY e " ik T = . g — ng. mi are independent. (6-6)

The previous paragraph verified this assumption for m = 3.
Since ™! = I'" is independent of all the variables in (6-6), apply Lemma B.2(a) to the pair & ml —
R(p™!, gm=Lly ym2 = p(y™!, gm~11) to conclude the independence of

,1 ,2 —1,2 —1,m-2
{glm }ifk, {77,m }i<ka {g'm }i<ka a{glm " }ifk’

B (6-7)
N, 0 = g — e me
This starts an induction on j =2, 3, ..., m — 1, whose induction assumption is the independence of
1 =1 1,j —1,m=2
{fim }isk,—u {-’E'mj }z<k {77, J}z<k {Sm }z<k,~~,{§,-m " }igk,
m—1 m—2 (6_8)

1
U TR Ly R T
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The induction step is the application of Lemma B.2(a) to the pair £&™/ = R(y™/, gm=1J), pmit! =
D(n™7, g™~ 1J) to conclude the independence of

L1 m,j—1 m,j m,j+1
(E" Yicks oo AE™ Yicks (E" Yick, T Vi,

m—1,j+1 m—1,m—1 m—1 m—1 _  m-2 2 11 (6-9)
Thus the induction assumption (6-8) for j has been advanced to j + 1 in (6-9).
At the end of the j-induction we have the independence of
e T e N T 6.10)
{n;n_l}ifk—b 7721 : - 771r<n 2’ D) nk - 7711» 7)]1
Split {n!""" 1},<k into the independent pieces {n; " },<k 1 and ;""" ' Combine the former with
{n"~ 1},<;< 1, Lemma B.2(a), and the transformations £~ = R(y™"~ 1, y"=1), " =D@m™ "1, 1)
mm 1, m—1
to form the independent Varlables {Em e ]},<k 1, {n"}i<k—1 and Jk 1 T° " Transform the inde-
-1 m— mm—1 _m—1

pendent palr ! J,? L ) into the independent pair of &"" ' = nk’" AL and
=t =" ! J”mm L )+ Attach & ! to the sequence {g"" Ni<k_1. After these steps,
we have the independence of

E" ik AE " izt 16 ik 611

iz ng =g e =T o —
Thus the induction assumption (6-6) has been advanced from m — 1 to m. O
Proof of Theorem 3.4. Fix 1 < p; < --- < p, and let the multiline configuration I = a°, ..., 1M
have distribution v Let n = (0, ..., n") = D"*tD(I). By Theorem 3.2 proved above,
(Y,, B, ..., B 4 n ~ pbPieaP) Lemma 6.4 gives the independence of the components of
the vector
('711”71%_’711"'"’7 _nk )_(Y)HB),?Ielx_Y szelx B,flelx"‘ B)fnelx Bfnellx)

(Above k € Z and x € 7 are arbitrary.)

The distribution of an increment ;" — n;'~ ! can be computed from the 2-component mapping
o™y =DD a1y =, DA™, 1Y) where (I, ™) ~ vPn-1-Pn The first equation
of (2-24) gives

m ym—1
= = - = =g T

The right-hand side has the distribution in (3-7) with (A, p) = (0m—1, Pm) because, by the structure of the
m—1

queueing mapping, I;" and Jk[ini] are independent exponentials with parameters p,-! and ,0,;1_1 —p L
A computation of the Laplace transform of the increment X (p) — X (1) of the process defined by (3-6)
gives, for p > A >1and @ > 0,
14+ Aa

Ele-eX(p-x0y, _ 1 T4 6-12
le ] 1+ pa (12
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This is the Laplace transform of the distribution in (3-7). Thus n}' — ~! has the same distribution as

X(pm) = X (om—1)-
To summarize, the nondecreasing cadlag processes B;_,, . and X (-) have identically distributed initial

values (both B! = Y, and X (1) are Exp(1)-distributed) and identically distributed independent

xX—eyp,Xx
increments. Hence the processes are equal in distribution. ]

6C. Bivariate Busemann process on a line. The remainder of this section proves statements for the
sequence {(B?lc—l,t),(k,t)’ B(‘;(_l’l)’(k’l))}kez that has distribution u*#). We use the following notation: Let
p>1>0, (I', 1> ~v* P and (n', n?) =DD U, I1?) = (", D(I?, I")). Then (5!, n*) ~ u*P). Let
J=J0 0 =52, 1.

Proof of Theorem 3.5. The next auxiliary lemma identifies a reversible Markov chain.

Lemma 6.5. Let X; = J;_1 — Il.z. Then {X;}icz and {X;r},-ez are stationary reversible Markov chains.
{X. }iez is not a Markov chain.

Proof. From the second equation of (2-24),

Xiv1=Ji = I'2+1 = Iil + i1 = Ii2)+ - 11'2+1 = Xi+ + Iil - Ii2+1

1

Since J;_; is a function of (1!, Ikz)kfi,l, X, is independent of (Iil, Il.2+1). Schematically, we can express
the transition probability as X; 1 = X;"+Exp(A~') —Exp(p~'), where the three terms on the right-hand
side are independent.

Similarly, using conservation (2-25) and the dual equations (4-3),
Xi=Jia—F=J =0} =@+ Ui — ) —nf = X5 + @i — ) (6-13)

Ji and 77,~2 are independent by Lemma B.2(a), and hence the triple (J/;, r]l.z, Il.2+1) is independent. Conse-
quently so is the triple

Xit1, Biv1,n)) = (i = T2, i AT D)
and we can express (6-13) as X; = X;Srl +Exp(A~!) — Exp(p~!) where again the three terms on the
right-hand side are independent. The transitions from X; to X;;; and back are the same.

From the equations above we obtain equations that show X l+ as a reversible Markov chain.
Writing temporarily U; = Iil_] — Il.z, we get these equations for X;_ ;:

X =X+ U = (X, +UDT +Uin) .
Conditioned on X; >0, X; ~Exp(A~! — p~1). Thus

P(X;, =0]X; =0)=P(X; + Ui;1 20| X; > 0)

(6-14)
= P{Exp(. "' — p™ ) + Uiy >0}
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For the next calculation, note that X;_| < 0 implies X; = X;r_1 + U; = U; and then X;1; = Ul.Jr +Uitr.

P(X;,,=0,X; =0,X;_, >0)
P(X; =0,X,_,>0)
PU;i+Ui+120,U;>20,X; 1 <0)
- P(U; = 0,X,_1 <0)
=PWU;+Ui;11 20|U; =20)
= P{Exp(A™") + Ui11 > 0}

P(X;1=0|Xi_=0’Xi_—1>0)=

(6-15)

We used above the independence of X;_; from (U;, U;11) and then the conditional distribution U; ~
Exp(k‘l), given that U; > 0. The conditional distributions in (6-14) and (6-15) do not agree, and
consequently X;~ is not a Markov chain. (Il

Since n,% — n,i = n,% — Ik1 = (Ik2 — Jr—1)T = X, we conclude that 77,% — n,i is not a Markov chain, but it
is a function of a reversible Markov chain. Part (a) of Theorem 3.5 has been proved.

We give here two more auxiliary lemmas.
Lemma 6.6. The process (n,l, U;%)kez is not a Markov chain.
Proof. The construction gives n,%Jrl = Ik1+1 + (Ikz+l — Ji)T. On the right, the variables Ik1+1 and Isz are
independent and independent of J; and (n}., n%) j<k- The conclusion of the lemma follows from showing
that conditioning on n,l = n,% gives Jr an unbounded distribution, while conditioning on )7,1_1 < 771%—1 and
n,i = 77;% implies J; < r],i_ L+ n,l. Thus conditioning on (n,l, n,%) does not completely decouple 17,% 4 from
the earlier past.

From the three independent variables (Jx—1, / kl, I kz) the queueing formulas define

m=I0, n=L0+U}—nh-)" and JSi=L'+ U —IHT (6-16)
The condition n,i = 17,% is equivalent to J;_; > Ikz, and conditioning on this implies
Jiot = IE~Bxp(l" = p7h).

Thus J; is unbounded.
For the second scenario consider the five independent variables (J;_p, 1 kl_l, I k2—1’ I kl, 1 k2) and augment
(6-16) with the equations of the prior step:

mo=0L, n, =L +Ur, —Jt and S =1+ (ha— 12 )T (6-17)

Now 7711—1 < 17,%_1 implies Jy_; = Ikl_1 and then ’711 = 7;,% implies J; = Ik1 + Jio1 — Ik2 = Ik1 + Ikl_1 — Ikz.
Hence J;, < Ik1 + Iktl = n,i + ’71£71' The lemma is proved.

With service process 1! = n!, arrival process 7> and departure process 1> the queueing explanation of
the proof is that n}( = n,f implies that customer & had to wait before entering service, and hence delays
from the past can influence the next interdeparture time n,% ‘- ]

Lemma 6.7. The pair ((n,i, 77,%), (77;1+1, U,%H)) and its transpose ((n,iH, n,%_H), (n,i, 77,%)) are not equal in
distribution.
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Proof. By the queueing construction, n,l a=1 k] 41 1s independent of (n,l, n,%) because the latter pair is a
function of (I}, I 2)l<k. To see that n,l =1 ! is not independent of (n,i e n,% +1)» write

1771
’71%+1 ’7k+1 = (Ik—i—l —J)" = (Ik-H 1 = k-1 — Ik2]+ )"
where all four variables in the last expression are independent. (I

Part (b) of Theorem 3.5 follows from the two lemmas above. O

Proof of Theorem 3.6 and Remark 3.7. Part (a) comes from translating the condition B&_l) e key = Yie,
into a statement about the queueing mapping [ =D, w).
By (2-13),
Pler =0} =P{B{_, < Bl J=1-p"
from the independence and exponential distributions in Theorem 2.1(ii). From (3-7),
o —A

0

A
xX— e1x>Bx elx}_

Pig;* =0} = P{BY

To calculate P{&;* = n} for n > 1 we put x on the x-axis and use the distribution (Eé’e‘, B 4

(', n*) ~ u®P given by Theorem 3.2, with the notation from the start of Section 6C. By setting A = 1
the same calculation gives P{§;, = n} because Yo= l_?(l)’e‘.

Bp

_ pit _ pi
B (n—1)ey,ne; — B(nfl)el,nel}

e1,2e° """

P, =n}=P{B’, ,>B"

nej

P _ npi P
—e;,0° B0,81 _BO,el ’ Bel 2e;

=PI, =1, m=10,....n2=1)}
=P{3>J 1, [} <Jo. I3 <J,.... 1] < J,_1) (6-18)
The last equality used n?> = I! + (I7 — J;_;) " repeatedly: n? > I is equivalent to I> > J;_;.
l l l l l 4

Next apply repeatedly the equation J; = Il.1 +(Ji—1— 11.2)Jr inside the last probability in (6-18). Ig >J_1
implies Jy = Iol. Then 112 < Jo implies J; = 111 + Jo— 112 = 111 + I(} — 112. Assume inductively that

Ji=L I — =T (6-19)
Then II.ZJrl < J; implies
J =L+l =Ry =1+ A+ = = = 1) = I,
and the induction goes from i to i + 1. Substitute (6-19) for Jy, ..., J,—1 in the last probability in (6-18).

Use the independence of the variables J_1, {Il.l, Il.z},-zo. Let Sy denote the sum of m i.i.d. Exp(«) random
variables, with S and § denoting independent sums.

Plgr =ny=P{l§ > J_1, If <Iy, +I} <1} +1;, ..., 12+---+11 <L +-+I}
k n

= P{I}>J ) P(SE <Sh Vme[n]}——zc(n lk)m

—  m

(6-20)

The last line comes from the independence of Ig and J_1, their distributions I(? ~ Exp(,o_l) and J_j ~
Exp()F1 —p~ 1), and Lemma B.3. [l



JOINT DISTRIBUTION OF BUSEMANN FUNCTIONS IN THE CORNER GROWTH MODEL 91

Appendix A. Queues

We prove elementary lemmas about the queueing mappings. Unless otherwise stated, the weights are real
numbers without any probability distributions.

Lemma A.1. Fix0<a <b. Let | = (I)ez and o = (w;) jez in R satisfy

1
lim —Zl>b and  lim —Zwi:a. (A-1)

m——00 m m——00 |m| i

Then I = D(I, w) is well-defined and satisfies lim, lm|~! Z(.) I > b.

1=m

Proof. Assumption (2-17) is obviously satisfied. Without loss of generality assume Go = 0. Let
0 <& < (b —a)/3. Then for large enough n,

G_,,— sup {Gk+2w,}= sup {— 20: I,-+ia)i}— 20: w;

kik<—n kik<—n

i=k-+1 i=k i=—n+1
< sup {—|k|(b—e)+|kl(a+e)} —n(a—e) =n(=b+3e).
k:k<—n
Since YV_ i1 Ii = Go— G, this proves lim ____|m|~'0_ I, > b. O

Lemma A.2. Fix 0 < a < b. Assume given nonnegative real sequences I = (I;)icz, © = (0;)icz,
M = (Ii(lz))iez and o™ = (a)l.(h))iez where h € 7. is an index. Assume Ii(h) — I; and a)lgh) — w; as
h — oo for all i € Z, and furthermore,

0

— 1 — 1

: M _pl— m | —Y o®—a|= -
mll)r{loo ‘ P E I b ' =0 and m1—1>1£100 ' ] w; a|=0. (A-2)
h—o00 i=m h— o0 i=m

Then I = D(I, w) and & = R(I, w) are well-defined, as are I = DI™ , ™) and 3" = RU™ , ™)
for large enough h. We have the limits

lim " =1 and lim 3" =&  forallieZ (A-3)
h—o0 h—o00
and
S I S B
- L HONE _ - L ~(h) _ _ )
mliTm‘|m|Zli b‘_O and mg@w’mlzwl a|=0. (A-4)
h—o00 i=m h—o00 i=m

Proof. Assumption (2-17) is satisfied to make 1" = D(I”, ™) well-defined for large enough .
We can assume G(()h) = 0. Compute 1" = D™, ™M) as the increments of the function

l
G = sup{G(h) +)° a)}h)}. (A-5)
k<t .
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Let ko be a maximizer in (2-18) for ég. Then

14 4
lim G > lim {G,ﬁf)” +>° w}")} =G+ Y o =G (A-6)

h— o0 h— o0 i=ko i=ko

Let k(h) be a maximizer in (A-5). If limy_.o, G\ < G fails then it must be that k(h) — —oo along
a subsequence. But we can write

i

¢
~h) _ ~(h) (h)
G, —Gk(h)—l- Z w

i=k(h)
0 0 l 0
h h h h
i) YNAES SRTLEH () SELER ) SPTLY (A7)
i=k(h)+1 i=k(h) i=1 i=0+1

which converges to —oo as k(h) — —oo by the assumptions and thereby contradicts (A-6). We have now
proved that

Jim GW=G, foralltez (A-8)
—00
and thereby verified (A-3) for 1.

Let0 <& < (b—a)/3. By assumption (A-2) there exist finite 7y (¢) and /&1 (¢) such that, when n > n(¢)
and h > hj(e),

—n 0 0 0
5@, = sup {G,(Ch) + wah)} = sup {— Z Ii(h) + Za)fh)} - Z a)i(h)
kik=—n i=k kk==n i1 i=k i=—n+1
< sup {—lkl(b—¢)+|kl(@a+e)} —n(a—e)=n(—b+3e).
k:k<—n
From this,
o am
lim sup —— < —b+3e. (A-9)
m=>=00 > (e) M|
Since Z?:m I~l.(m = 5g’) - 5%’11 and ééh) > a)(()h) > 0, this proves
1O
lim  inf — Y " >b-3e A-10
m—>—oco h=hi(e) |m| _Zm b (A-10)

For the complementary upper bound, get a lower bound for 5,(:)_1 by taking k = £ in (A-5).

0 0
7y _ A~ ~(h) ~(h) hy _ ~) (h)
Zli =G, -G, =Gy, -G, =G, +Zli .

i=m i=m

Apply limit (A-8) and assumption (A-2). Limit (A-4) has been proved for ™,
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The limits for @ follow from the other limits and the generally valid identity
Wi + I = @ + I (A-11)
that comes from equations (2-21) and (2-24). O

For reference elsewhere in the paper we state the simple consequence of Lemma A.2 where the
sequences are constant functions of .

Lemma A3. Fix0<a <b. Let I = (Iy)kez and v = (w;) jez in Rio satisfy

1 1
lim — Y ;=b and lim —Za)i =a. (A-12)
m——00 |m| Pt m——o00 |m| —

Then [ = D(I, w) and @ = R(I, w) are well-defined and satisfy

1 1
lim —Y fi=b and lim — > & =a. (A-13)
m——oo |m| m——oo |m| -
i=m i=m
For the purpose of verifying that Busemann functions obey the queueing operation [ =D, w), it
is convenient to have a lemma that deduces this from assuming the iterative equations (2-24). The first

lemma below makes a statement without randomness.

Lemma A.4. Let {fk, Ji, Iy, Wi }kez be nonnegative real numbers that satisfy the three assumptions below:

0
lim Z(wi — Ii41) = —oc. (A-14)
=m
Lh=wr+ U — )t and Te=wp+ (o1 — L)' forallk € 7. (A-15)
Jy = wr  for infinitely many k < 0. (A-16)

Then I = D(I, w) and J = S(I, w).
Proof. Rewrite the second equation of (A-15) as follows. Let Wy = Jy — w and Uy = wy — Ix41. Then
Wi = (W1 + U™ (A-17)

This is Lindley’s recursion from queueing theory and W; is the waiting time of customer k. Equation
(A-17) iterates inductively to give

k—1 k—1 +
Wk:{<Wg+ZU,-)\/< . max_ 12U,~>} for all £ < k. (A-18)
i=t m bt l=m e

‘We claim that

k—1 +
Wy = < sup Y Ui> for all k € Z. (A-19)

m:m<k—1 i=m
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Dropping the first term on the right in (A-18) and letting £ — —oo gives > in (A-19). By assumption
(A-16) Wy, =0 for some £ < k. Then (A-18) gives also < in (A-19).

The proof is completed by making explicit the content of (A-19). Let G and G be as defined in the
definition of the mappings D and S. Then from (A-19) and (2-23) deduce

k—1 k—1
Je = + ( sup Z(a)i - i+1)>+ =wi + < sup {Gm -G+ Zwi}>+
m:m=<k—1,_ m:m<k—1 i=m
=wp 4+ (Gi1 — G =wr + Gr_1 V G — G = G — Gy
Thus J = S(I, w). Finally, from the first equation of (A-15) and I} = Gy — G¢—1,
L=+ Uk — )t =L — T+ o+ (er — 10T = Lo+ Ji — Jie
= It + (G — G) — (G—1 — Gy—1) = G — Gy O
Here is a version for a random sequence.
Lemma A.5. Let {ik, Ji, Ik, wxlrez be finite nonnegative random variables that satisfy assumptions
(1)—(ii1) below:
(1) limy,— _oo Z?:m (w; — I;11) = —0o0 almost surely.
(1) {Jk, wr}lrez is a stationary process.
(iii)) Equations
k=i + U= D)t and  Je= o+ ko — 10" (A-20)
are valid for all k € Z, almost surely.
Then Jy. = wy. for infinitely many k < 0 with probability one, and I = D(I, w) and J = S(I, w) almost
surely.

Proof. Lemma A.4 gives the conclusion once we verify that assumption (A-16) holds almost surely. Using
the waiting time notation W from the previous proof, it suffices to show that

P{W, = 0 for infinitely many £ <0} =1 (A-21)

The complementary event is B = {there exists m < 0 such that W > 0 for all K <m}. B is a shift-invariant
event. On the event B, the right-hand side of (A-17) is strictly positive for all K < m (for a random m).
This implies, for all k < m,

m—1 m—1
0 < Wy = Woot + Ut = Wz + Una +- Ut === Wt ) Ui = Wt ) (0 = L),
i=k i=k

By assumption (i) of the lemma, W; — oo a.s. on the event B as k — —oo. Let ¢ < co. By the
shift-invariance of B and the stationarity of the process {W; = Jy — wi}rez,

P(Wo>c, By=P(Wy>c¢,B) > P(B) ask— —oo.

We conclude that Wy = oo a.s. on the event B, and hence P(B) = 0. Claim (A-21) has been verified. [l



JOINT DISTRIBUTION OF BUSEMANN FUNCTIONS IN THE CORNER GROWTH MODEL 95

Remark A.6 (nonstationary solution to Lindley’s recursion). Some result such as Lemma A.5 is needed,
for there can be another solution to Lindley’s recursion that blows up as n — —oo. Suppose {U} is
ergodic and EU; < 0. Pick any random N such that Z,[(V:m Uy <O forallm < N. Set

N
Wn:—ZUk forn <N,
k=n

Wyni1 =0,
Wy=Wy_1+ Un—1)+ forn> N +2.

One can check that W, = (W,_; +U,_1)" holds for all n € Z.

Appendix B. Exponential distributions

The next lemma is elementary. The mapping (I, J, W) +— (I’, J', W’) in the lemma is an involution, that
is, its own inverse.

Lemma B.1. Let o, 8 > 0. Assume given independent variables W ~ Exp(a + B), I ~ Exp(«), and
J ~ Exp(B). Define
I'=sw+dU -7,

J=W+UT-J), (B-1)
W =1nJ.
(1) I —J and I N J are independent.

() (I — J)" ~Ber(B/(a + B)) - Exp(w), that is, the product of a Bernoulli with success probability
B/(a + B) and an independent rate o exponential.

(iii) The triple (I', J', W’) has the same distribution as (I, J, W).

We use the previous lemma to establish some facts about the queueing operators. To be consistent
with the queueing discussion we parametrize exponentials with their means 7 and p.

Lemma B.2. Let 0 < 1 < p. Let (Iy)rez and (wj) jez be mutually independent random variables such
that I ~ Exp(p™") and w; ~ Exp(t"). Let I = D(I, ») as defined by (2-18) and (2-19), & = R(I, )
as defined by (2-21), and J, = ék — Gy asin (2-20). Let A, = ({ij}jgk» Ji, {c~oj}j§k).
(a) {Ar}kez is a stationary, ergodic process. For each k € Z, the random variables { I~j} i<k Jis {@)} <k
are mutually independent with marginal distributions

fj ~ Exp(p_l), wj~ Exp(r_l) and Ji ~ Exp(r‘l — p_l).
(b) I and & are independent sequences of i.i.d. variables.

Proof. Part (b) follows from part (a) by dropping the J; coordinate and letting k — oo. Stationarity and
ergodicity of {A} follow from its construction as a mapping applied to the independent i.i.d. sequences
I and w.
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The distributional claims in part (a) are proved by coupling (ik, Ji—1, @p)kez With another sequence
whose distribution we know. Construct a process (ﬁ, j;(, 1, Wr)k>1 as follows. First let j) be an
Exp(t*l — ,0*1) variable that is independent of (/, w). Then for k =1, 2, 3, .. ., iterate the steps

h=oc+ = J)?,
Jo= o+ (k1 — 10T, (B-2)
or =L A Ty

We prove the following claim by induction for each m > 1:

The variables Ty, ..., Iy, Jo, @1, . .., O are mutually independent,
with marginal distributions T ~ Exp(p™"), J,, ~Exp(t~' —p~') and @; ~Exp(zr™!).  (B-3)

By construction, the variables (I, jz), ) are independent with distributions

(Exp(p~ 1), Exp(z~!' —p7 1), Exp(z™1)).

The base case m = 1 of (B-3) comes by applying Lemma B.1 to the mapping (B-2) with k = 1. Now
assume (B-3) holds for m. Then (1,41, fn, wm+1) are independent with distributions

(Exp(p™ 1), Exp(r~' —p7 1), Exp(z™ 1)

o~

because, by construction, J,, is a function of ([, ..., I, jf), w1, ..., wy) and thereby independent
of (Im+1, ®m+1). By Lemma B.1, mapping (B-2) turns the triple (Im+1, Jm, me) into the triple
(Im+1, Jm+1, ®m+1) of independent variables, which is also independent of 11, .. Im, D1y ..., DO
Statement (B-3) has been extended to m + 1.

Our next claim is as follows:

There exists (almost surely a random index) mgo > O such that J,,, = fmo. (B-4)

Suppose first that Jy > f). Then (2-24) and (B-2) imply that J; > j;: for all £k > 0. If (B-4) fails then
Ji > j;( for all £ > 0. But then for all £ > 0,
k
=1 tor—Li=---= JO+Z(wj —1;) — —oo almost surely, as k — oo,
j=1
which contradicts the fact that J; > O for all k. Thus in this case (B-4) happens. The case Jy < ./IB is
symmetric.
Through equations (2-24) and (B-2), (B-4) implies that Iy = Ir, Ji = Ji, and & = @ for all k > my.

Part (a) follows from (B-3), because for any ¢, (ig_,,, e ig, J¢, @o—n, ..., @) has the same distribution
as (I—n, .., Ix, Jx, @k—n, . .., @) which agrees with Teens s Iy Ty @k—ps - - -, @x) With probability
tending to one as k — oo. (I

Next we compute a competition probability for two independent homogeneous Poisson processes on
[0, o) with rates @ and B. Let {0;};>1 be the jump times of the rate « Poisson process and {z;};>; the
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jump times of the rate 8 Poisson process. For n > 1 define the events
A, ={o; <t foralli €[n]},
B,={0; <7t foralli € [n—1], 0, > 1,}.

The Catalan numbers {C, : n > 0} are defined by

co_ 1 (2n> B-5
"Tan+i\n ) (B-3)

The following properties of the Catalan triangle {C (n, k) : 0 <k < n} given in (3-10) can be deduced with
elementary arguments. C(n, 0)=1, C(n, k)= ("I*)= (%) fork >0, C(n,k)=C(n, k—D+C(n—1,k),

Y Cnby=Cn+1.i) for0<i<n, (B-6)
k=0
and "
Y Cnky=Con+1.m)=Cn+1,n+1)=Cpyi. (B-7)
k=0
Lemma B.3. Forn > 1,
n—1 n ok
o' B
PA)=Y Cn—1,k) ————, B-8
(An) gm ) G (B-8)
an—llgn
P(B,) =C (B-9)

Remark B.4. The generating function of the Catalan numbers is

1-V1—4
fo =Y Ca"= """ forlxl <l

2x
n>0

Hence from (B-9),

oo .
B of I ifg>a,
> P(B) = f ) =1 .
- a+p" \(a+ph) Eifp<a.
In other words, the rate a process stays forever ahead of the rate B process with probability (1 — 8/a)™.

Proof. We compute P(B),) first and then obtain P(A,) by inclusion-exclusion.
Since Cy =1, (B-9) holds for n = 1. For n > 2 condition on (o, 7,):

P(Bn)zf ) OP(a,b){U,- <V, fori € [n—1]} P((on, 7x) €d(a, b)), (B-10)

where under P 3y, 0 < U < --- < U,_ are the order statistics of n — 1 i.i.d. uniform random variables
on [0,a] and 0 < V| < --- < V,_; are the same on [0, b], independent of the {U;}. We calculate the
probability inside the integral.
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Below, first use the equal probability of the permutations of {x;} among themselves and {y;} among
themselves. Note that a > b and the conditions x; < y; force all {x;, y;} to lie in [0, b]. Then use the equal
probability of all permutations of {x;, y;} together. The Catalan number Cy is the number of permutations
of {x1,..., Xk, ¥1, ..., yx}suchthat x; <--- <xg, y; <---<yrand x; <y; forall i (see Corollary 6.2.3
and item dd on page 223 of [Stanley 1999]).

. ((n—1DhH?
Pap (Ui =Viforieln—1]) = @byt Li<yviem-ndxdy
X|<--<Xp_1<a
Vi<-<Yu—1<b

(n—1? /‘ (n—1H2 2=

—C,_ dxdy=C,_ : .
" aby ! xay aby T @2n—2)!

X< <Xpo] <YL <+ <Yp—1<b

Substitute this back into (B-10). Use the gamma densities of o,, and 7,,.

— 1 2 bn—l n—1 b n—1
P(B,) = Cn_lu/ . % e % . & ﬁe*ﬁb da db
(2” - 2)' O<b<a<oo anil F(I’l) F(n)
nQgn n—1 gn
— Cﬂ_[i/ p2—2 pmaa=pBb g, dp — Cn_i a—l[j_l
(21’1 - 2)' O<b<a<oo (ﬂ + Ol) "

We prove (B-8). The case n = 1 is elementary. Let n > 2 and assume (B-8) for n — 1. Abbreviate
p=pB/(a+pB)and g = /(¢ + B). Use (B-6) and (B-7) below.

n—2
P(A)=P(A, )= PB)=¢"")Y Ctn=2,k)p" = Crrg" ' p"
k=0
n—2 n—2 n—1
="' Y C-2, (P =pH=q") Y Cn—2,k)p’
k=0 k=0 j=k
n—1 jA(n-=2) n—1
=q") Y Cn-2kp =g Zcm—l JAm=2)pl =¢"Yy Cin—1,j)p/. O
j=0 k=0 j=0 j=0
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