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Abstract

This paper gives a self-contained proof of the non-existence of nontrivial bi-infinite geodesics in directed planar last-

passage percolation with exponential weights. The techniques used are couplings, coarse graining, and control of

geodesics through planarity and estimates derived from increment-stationary versions of the last-passage percolation

process.
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1. Introduction

1.1. Bi-infinite geodesics in random growth

Since their inception over 50 years ago in the work of Eden [14] and Hammersley and Welsh [20],

random growth models have been central drivers of the mathematical theory of spatial random processes.

Particularly important classes of growth models are undirected first-passage percolation (FPP) and

directed last-passage percolation (LPP), where growth proceeds along optimal paths called geodesics.
The structure of these geodesics has been a challenging object of study.

Under natural assumptions, the existence of a geodesic between two points in space is straightforward.

A compactness argument gives the existence of a semi-infinite geodesic: that is, a one-sided infinite

path that furnishes the geodesic between any two of its points. The existence or non-existence of bi-

infinite geodesics has turned out to be a very hard problem. This question was first posed to H. Kesten

by H. Furstenberg in the context of FPP [25, page 258]. Apart from its significance for random growth,

this existence issue is tied to questions about ground states of certain disordered models of statistical

physics ([4, page 105], [29, Chapter 1]).

The development of mathematical techniques for infinite geodesics in two-dimensional FPP began

with the work of C. Newman and coauthors in the 1990s [28]. Licea and Newman [26] ruled out directed

bi-infinite geodesics with given direction in an unknown set of full Lebesgue measure. Much more

recently, a bi-infinite geodesic in any fixed direction has been ruled out, but subject to a local regularity

condition on the limit shape, by [17] in LPP and by [1, 12] in FPP. The new approach in these works was

based on Busemann functions. Bi-infinite FPP geodesics have also been ruled out in certain restricted

subsets of the lattice, such as half-planes [3, 36]. However, despite all the effort, a feasible strategy for

solving the bi-infinite existence problem in FPP without restrictive assumptions is not presently visible.

In the seminal paper of Johansson [23], the Tracy-Widom distribution of the limit fluctuation in LPP

was proved for geometric and exponential weights. This led to a large literature on exactly solvable

models in the Kardar-Parisi-Zhang (KPZ) class and gave rise to a new subject, integrable probability.

Deep results on exactly solvable models have identified the limiting objects, the KPZ fixed point [27],

and the directed landscape [13], and provide a benchmark for the expected behavior of LPP with

general weight distributions in accordance with the KPZ universality conjecture. While progress in

exactly solvable models in the past 20 years has been striking, for general LPP, basic questions such

as regularity of the limit shape and the order of fluctuations remain open. Moreover, the methods of

integrable probability are often so specialized that it seems unlikely that they can provide a roadmap for

approaching general growth models.

Parallel to the development of integrable probability, a suite of more robust probabilistic techniques

for deriving fluctuation bounds evolved. After the seminal paper of Cator and Groeneboom [9] on the

Poissonian planar growth model, [5] derived the 1/3 shape exponent and 2/3 transversal exponent in the

exponential LPP. These papers point the way to a proof of the KPZ exponents under a strictly concave

shape function and sufficiently mixing Busemann functions. This approach has also been successful for

a class of zero-range processes that goes beyond exactly solvable models [6].

Ergodic Busemann functions were developed for general LPP in [18]. The point of view was that

of queueing theory, where Busemann functions can be identified with fixed points of stationary queues

in tandem. The follow-up work [17] proved results about competition interfaces, directed semi-infinite

geodesics, and the nonexistence of bi-infinite geodesics in a particular direction, under regularity

assumptions on the shape function.

In exactly solvable planar directed LPP, techniques have now improved to the point where the existence

problem of bi-infinite geodesics can be given a complete solution. The first proof of nonexistence

in planar LPP with exponential weights appeared in the 2018 preprint [7] of Basu, Hoffman, and

Sly. Their work relies on fluctuation and moderate deviation estimates for the passage times that

come from integrable probability. These estimates were originally obtained through combinatorial

analysis, asymptotic analysis of Fredholm determinants, and random matrix methods. Further results

from these estimates were derived in the preprint [8] by Basu, Sidoravicius, and Sly, in particular
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Figure 1.1. An up-right path from (0, 0) to (7, 4) on the lattice Z2.

to control transversal fluctuations of geodesics, and then applied to the bi-infinite geodesic problem

in [7].

The concentration bounds used in [7] should hold for LPP models outside the exactly solvable ones;

but it is unclear how these bounds can be obtained from the conjectural basic properties of the general

LPP, such as strict concavity of the shape function and strong mixing of the Busemann functions. Our

paper does not have a result for general LPP, but our proof does lay out a possible route from fairly basic

properties of LPP to the non-existence of bi-infinite geodesics. We do this through deeper insight into

the queueing picture obtained in [15]. Going through the proofs in this paper, the reader should see that

our choice of the exponential distribution can be viewed as an assumption on the basic properties of the

model, conjectured to hold for any continuous distribution with sufficiently decaying moment. Along

the way, nothing beyond standard probability tools such as coupling and coarse graining is needed.

Next we state the main result and then relate our proof to existing literature. In particular, we contrast

our work with [7] in more detail.

1.2. Main result

The model studied is a version of nearest-neighbor directed LPP on the planar integer lattice, also

known as the corner growth model (CGM). Let l = {lG}G∈Z2 be an assignment of random weights on

the vertices of Z2. The weights lG are independent and identically distributed (i.i.d) random variables

with rate one exponential distribution: that is, P(lG > C) = 4−C for each G ∈ Z2 and real C ≥ 0. The

last-passage value �G,H for coordinatewise ordered points G ≤ H on Z2 is defined by

�G,H = max
G• ∈ΠG,H

|H−G |1∑

:=0

lG: , (1.1)

where ΠG,H is the set of nearest-neighbor up-right paths G• = (G: )=:=0
that start at G0 = G and end at

G= = H, with = = |H − G |1 = the number of nearest-neighbor steps from G to H. Such paths are defined by

the requirement G:+1 − G: ∈ {41, 42}. (See Figure 1.1.) When the weights have a continuous distribution

such as the exponential, (1.1) has a unique maximizing path cG,H ∈ ΠG,H called the ( point-to-point or

finite) geodesic.

A bi-infinite geodesic is a nearest-neighbor up-right path {G: }:∈Z indexed by all integers, with the

property that for all < < =, the path segment G [<,=] = {G: }=:=< is the geodesic between G< and G=. A

straight line {G: = G + :48}: ∈ Z, for G ∈ Z2 and 8 ∈ {1, 2}, is trivially a bi-infinite geodesic because there

are no alternative paths between any two of its points. Let us call a bi-infinite geodesic nontrivial if it

is not of this type. The main result is that the exponential CGM has no nontrivial bi-infinite geodesics.

Theorem 1.1. Assume that weights have i.i.d. exponential distribution. Then with probability one, there
are no nontrivial bi-infinite geodesics.
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1.3. Related work

Among past work on geodesics, our proof is in spirit aligned with the Damron-Hanson work on FPP

[11, 12] and with the general LPP work in [17, 22], in the sense that the stationary version of the process

lies at the heart of the matter. Compared to earlier work on the exponential CGM that utilized couplings

with the stationary version, such as [5, 31, 35], two specific new developments made this paper possible:

(i) The discovery in [15] of the stationary distribution of the joint LPP process with multiple charac-

teristic directions. A bivariate version of this distribution is constructed in Theorem 3.1 below.

(ii) A novel argument for controlling the location of the geodesic by coupling the bulk process with two

distinct stationary processes from two different directions (Lemma 5.5 below).

One can be fairly confident that these features extend to both zero-temperature and positive-

temperature polymer models in 1+1 dimensions that possess a tractable stationary version. This in-

cludes various last-passage models in both discrete and continuous space, such as those studied in

[2, 19, 24, 30, 33, 34], and the four currently known solvable polymer models [10]. In positive-

temperature polymer models, the analogous question concerns the existence of bi-infinite Gibbs mea-

sures, as discussed in [21]. These matters are left for future work.

As in [7] by Basu, Hoffman, and Sly, our proof comes in two parts:

(a) The main argument rules out bi-infinite geodesics with finite positive slope.

(b) An easier argument shows that no geodesic can come infinitely often arbitrarily close to an axis in

the macroscopic scale.

Beyond this superficial similarity, the two proofs are quite different in both parts (a) and (b).

Our part (a) in Section 5 is a straightforward estimation of the probability that a geodesic through

the origin connects the boundaries of a square at scale # . By contrast, [7] controls complicated events

that involve coalescence of geodesics. This yields additional results of interest, but the simplicity of the

bi-infinite geodesic problem is obscured. Their sharper tools give a better estimate of the probability of

a connection through the origin, namely $ (#−1/3), while our cruder bound is $ (#−1/24). In Remark

5.6 we indicate the precise place where our estimates grow beyond optimal order of magnitude.

Part (b) in [7] utilizes fluctuations. Our part (b) in Section 6 uses the limit shape and planarity.

We conclude this introduction by observing that the non-existence of bi-infinite geodesics will be

a tool for further results. To cite an example, article [22] studies a random graph in the CGM that

represents an analogue of shocks in Hamilton-Jacobi equations. Theorem 4.3 in [22] shows that the

absence of bi-infinite geodesics implies certain coalescence properties of this ‘instability graph’.

Section 2 outlines the proof of Theorem 1.1 and describes the organization of the rest of the paper.

We provide a self-contained exposition of the entire proof, including proof sketches of many auxiliary

results that we use. We collect below some notation for easy reference.

1.4. Notation and conventions

Z≥0 = {0, 1, 2, 3, . . . } and Z>0 = {1, 2, 3, . . . }. For real numbers 0 and 1, 0 ∨ 1 = max{0, 1} and

È0, 1É = [0, 1] ∩ Z. 0 denotes the origin of both R and R2. � (Y) and #0 (Y) are constants that depend

on a parameter Y, but their values can change from line to line.

For G = (G1, G2), H = (H1, H2) ∈ R2, we use the following conventions. The standard basis vectors

are 41 = (1, 0) and 42 = (0, 1). The ℓ1-norm is |G |1 = |G1 | + |G2 |. Integer parts and inequalities are

interpreted coordinatewise: ⌊G⌋ = (⌊G1⌋, ⌊G2⌋), and G ≤ H means G1 ≤ H1 and G2 ≤ H2. Notation

[G, H] represents both the line segment [G, H] = {CG + (1 − C)H : 0 ≤ C ≤ 1} and the rectangle

[G, H] = {(I1, I2) ∈ R2 : G8 ≤ I8 ≤ H8 for 8 = 1, 2}. The context makes clear which one is used. An open

line segment is ]G, H[ = {CG + (1 − C)H : 0 < C < 1}. The lattice rectangle and line segment are denoted

by ÈG, HÉ = [G, H] ∩ Z2. Path segments are abbreviated by c [<,=] = (c8)=8=<.
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Figure 2.1. The event ,#, Y . The thickset portions of the boundary are m# ,Y and m̂# ,Y . They are
connected by the geodesic cD,E through the origin.

- = - −�- denotes a random variable - centered at its mean. - ∼ Exp(_) for 0 < _ < ∞ means the

random variable - has exponential distribution with rate _: in other words, %(- > C) = 4−_C for C ≥ 0.

2. Outline of the proof

We state two auxiliary theorems and use them to prove Theorem 1.1. Then we sketch the main ideas

behind the auxiliary theorems and explain the organization of the rest of the paper.

By the shift-invariance of the underlying weight distribution, it suffices to prove that with probability

one, no nontrivial bi-infinite geodesic goes through the origin. This task is split into two cases: either

the geodesic ultimately stays away from the axes on a macroscopic scale, or it comes infinitely often

macroscopically close to some axis.

For the first case, for large positive integers # and small Y > 0, we rule out geodesics that connect

the southwest boundary of the lattice square È−#, #É2 to its northeast boundary through the origin and

whose empirical average slope is in the range [Y, Y−1]. Define these portions of the boundary of the

square: in the southwest

m#, Y
=
(
{−#} × È−#,−Y#É

)
∪
(
È−#,−Y#É × {−#}

)
(2.1)

and in the northeast

m̂#, Y
=
(
{#} × ÈY#, #É

)
∪
(
ÈY#, #É × {#}

)
. (2.2)

Define the following event, illustrated in Figure 2.1:

,#, Y =
{
∃ points D ∈ m #, Y and E ∈ m̂ #, Y such that

the geodesic cD,E goes through the origin
}
.

(2.3)

We have the following quantitative control of this event.

Theorem 2.1. For each Y > 0, there exists a constant � (Y) > 0 such that P(,#, Y) ≤ � (Y)#− 1
24 for all

# ≥ 1.

Theorem 2.1 rules out all geodesics that stay macroscopically away from the axes. The next theorem

shows that there are no nontrivial geodesics that come macroscopically arbitrarily close to an axis.
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Theorem 2.2. The following statement holds with probability one. For 8 ∈ {1, 2} and each G ∈ Z2
≥0

,

{G: = G + :48}: ∈ Z≥0
is the only semi-infinite geodesic that satisfies G0 = G and lim

:→∞
:−1G: · 43−8 = 0.

We combine the two theorems above to rule out all nontrivial bi-infinite geodesics.

Proof of Theorem 1.1, assuming Theorems 2.1 and 2.2. Fix a positive sequence Y 9 ց 0. Define the

event

� =

⋂

9≥1

⋂

" ≥1

⋃

# ≥"
,2

#, Y 9
.

Theorem 2.1 implies that P(�) = 1:

P(�2) =P
( ⋃

9

⋃

"

⋂

# ≥"
,#, Y 9

)
≤
∑

9

P

( ⋃

"

⋂

# ≥"
,#, Y 9

)
=

∑

9

lim
"→∞

P

( ⋂

# ≥"
,#, Y 9

)

≤
∑

9

lim
"→∞

P(,",Y 9
) ≤

∑

9

lim
"→∞

� (Y 9 )"− 1
24 = 0.

For 8 ∈ {1, 2}, let �8 be the event that there are no semi-infinite geodesics {G: }:≥0 such that G0 = 0

and lim
:→∞ :−1G: · 48 = 0 except for the trivial one, {G: = :43−8}: ∈ Z≥0

. Let ' reflect the weight

configuration across the origin: ('l)G = l−G for G ∈ Z2. Define the event

� = �1 ∩ �2 ∩ '−1�1 ∩ '−1�2.

On the event �, every semi-infinite geodesic that either starts or ends at the origin satisfies the condition

that, far enough from the origin, it lies entirely inside a closed cone with apex at the origin and disjoint

from the coordinate axes. Theorem 2.2 and the reflection invariance of the distribution of the weights l

imply that P(�) = 1.

We claim that on the full-probability event �∩�, there are no nontrivial bi-infinite geodesics through

the origin. To show this, suppose there exists a nontrivial bi-infinite geodesic c through the origin in the

weight configuration l. Consider the following dichotomy:

(i) ∃ 9 , " ∈ Z>0 such that c connects m#, Y 9 to m̂#, Y 9 for all # ≥ " , or

(ii) ∀ 9 , " ∈ Z>0, ∃# ≥ " such that c misses either m#, Y 9 or m̂#, Y 9 .

Alternative (i) forces l ∈ �2 . In alternative (ii), if c misses m̂#, Y 9 infinitely often for each Y 9 , it

follows that lim
:→∞ :−1c: · 48 = 0 for either 8 = 1 or 2. Thus l ∈ �2

1
∪ �2

2
. Similarly, missing m#, Y 9

infinitely often for each Y 9 implies 'l ∈ �2
1
∪ �2

2
.

Thus a nontrivial bi-infinite geodesic through the origin is possible only on the zero-probability event

�2 ∪ �2 . �

Sketch of the proof of Theorem 2.1. Theorem 2.1 comes from two distinct stages.

(i) In the first stage, the southwest boundary m# ,Y is divided into blocks of size #2/3 and the northeast

boundary m̂# ,Y into blocks of size #19/24. The probability that a geodesic connects two diagonally

opposite blocks through the origin is bounded by #−2/5 (Lemma 5.5). The control here comes from

random walk bounds on the location where a geodesic crosses the H-axis. These bounds are developed

through a coupling with increment-stationary LPP processes.

(ii) The second stage shows that any geodesic that connects an #2/3-block through the origin to a

point outside its opposite #19/24-block violates the #2/3 KPZ wandering exponent. Through another

coupling argument, the probability of this happening is bounded by #−3/8 (Lemma 5.7).

Multiplying by the number of #2/3-blocks gives the estimate $ (#1/3 · #−2/5 + #1/3 · #−3/8) =

$ (#−1/24). �
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Figure 3.1. The independent increment variables from Theorem 3.1. Left: �_ below G and �d above G

from part (i). Middle and right: �U and �U increments on down-right lattice paths from part (ii).

Sketch of the proof of Theorem 2.2. Comparison with increment-stationary LPP processes shows that

the quantity �0, c= − �42 , c= blows up if c= is a path above the G-axis but =−1c= comes arbitrarily close

to the G-axis. This rules out the possibility that c• is a geodesic. �

The next two sections develop tools: Section 3 a coupling of increment-stationary LPP processes and

Section 4 bounds on geodesic fluctuations. The proof of Theorem 2.1 follows in Section 5 and that of

Theorem 2.2 in Section 6.

3. Stationary last-passage percolation

Pick 0 < _ < d < 1 and a base vertex D ∈ Z2. We construct two coupled LPP processes �_
D,• and

�
d
D,• on the nonnegative quadrant D + Z2

≥0
such that their increments are jointly stationary under lattice

translations. Both processes use the same i.i.d. Exp(1) weights {lG}G ∈ D+Z2
>0

in the bulk. They have

boundary conditions on the positive G- and H-axes centered at D, coupled in a way described in the next

theorem.

For U ∈ {_, d}, the definition of the process �U
D,• goes as follows. The boundary weights are denoted

by {�U
D+841

, �U
D+ 942

: 8, 9 ∈ Z>0}. Put �U
D,D = 0, and on the boundaries

�U
D, D+ :41

=

:∑

8=1

�U841
and �U

D, D+ ;42
=

;∑

9=1

�U942
for :, ; ≥ 1. (3.1)

In the bulk for G = (G1, G2) ∈ D + Z2
>0

,

�U
D, G = max

1≤:≤G1−D1

{ :∑

8=1

�UD+841
+ �D+:41+42 , G

}∨
max

1≤ℓ≤G2−D2

{ ℓ∑

9=1

�UD+ 942
+ �D+41+ℓ42 , G

}

= �U
D, G−41

∨ �U
D, G−42

+ lG .

(3.2)

�U
D,• does not use a weight at the base point D. Inside the braces above, �G,H is the LPP process (1.1)

that uses the bulk weights l. Define increment variables for vertices G ∈ D + Z2
>0

by

�UG = �U
G − �U

G−41
and �UG = �U

G − �U
G−42

. (3.3)

An important part of the next theorem for the sequel is the independence of various collections of

increment variables. These are illustrated in Figure 3.1.

Theorem 3.1. Let 0 < _ < d < 1 and D ∈ Z2. There exists a coupling of the boundary weights
{�_

D+841
, �

d

D+841
, �_

D+ 942
, �d

D+ 942
: 8, 9 ∈ Z>0} such that the joint process (�_

D,• , �
d
D,•) has the following

properties:
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(i) (Joint) The joint process of increments is stationary: for each E ∈ D + Z2
≥0

,

{
(�_

D,E+G − �_
D,E , �

d
D,E+G − �

d
D,E ) : G ∈ Z2

≥0

} 3
=
{
(�_

D,D+G , �
d
D,D+G) : G ∈ Z2

≥0

}
. (3.4)

The following independence property holds along vertical lines: for each G ∈ D+Z2
>0

, the variables
{�_

G+ 942
: D2 − G2 + 1 ≤ 9 ≤ 0} and {�d

G+ 942
: 9 ≥ 1} are mutually independent.

(ii) (Marginal) For both U ∈ {_, d} and each E ∈ D + Z2
≥0

, the increment variables {�U
E+841

, �U
E+ 942

:

8, 9 ∈ Z>0} are mutually independent with marginal distributions

�UE+841
∼ Exp(1 − U) and �UE+ 942

∼ Exp(U).

The same is true of the variables {�U
E−841

, �U
E− 942

: 0 ≤ 8 < E1 − D1, 0 ≤ 9 < E2 − D2}.
(iii) (Monotonicity) The boundary weights can be coupled with i.i.d. Exp(1) weights {[D+841

, [D+ 942
:

8, 9 ≥ 1} independent of the bulk weights l so that these inequalities hold almost surely for all
8, 9 ≥ 1:

[D+841
≤ �_D+841

≤ �
d

D+841
and [D+ 942

≤ �
d

D+ 942
≤ �_D+ 942

. (3.5)

Proof. We construct a joint LPP process (!_
G , !

d
G)G ∈ D+Z≥0×Z on the discrete right half-plane with origin

at D. In the interior, we have i.i.d. Exp(1) weights {lG : G1 > D1} as before. For U ∈ {_, d}, let

Y_ = {._
9
} 9∈Z and Yd = {.d

9
} 9∈Z be independent sequences of i.i.d. variables with marginal distributions

. U
9

∼ Exp(U), independent of l. From these, we define the boundary weights J_ = {�_
D+ 942

} 9∈Z and

Jd = {�d
D+ 942

} 9∈Z on the H-axis through D by the equation (Jd, J_) = (Yd, � (Y_,Yd)). � is the

departure process operator from (A.1) in Appendix A. This gives a pair of coupled sequences (Jd, J_).
Marginally, {�U

D+ 942
} 9∈Z are i.i.d. Exp(U).

For U ∈ {_, d}, define the LPP values on the H-axis by

!U
D = 0, !U

D+ 942
− !U

D+( 9−1)42
= �UD+ 942

for 9 ∈ Z.

This results in negative values !U
D+ 942

for 9 < 0. Complete the definitions by putting, again for U ∈ {_, d}
and now for G ∈ D + Z>0 × Z,

!U
G = sup

9: 9≤G2−D2

{
!U
D+ 942

+ �D+41+ 942 ,G

}
, �UG = !U

G − !U
G−41

and �UG = !U
G − !U

G−42
. (3.6)

The supremum is achieved at a finite 9 because the boundary variables �U are stochastically larger than

the bulk weights. This follows from the distributional properties established in the next paragraph.

For : ≥ 0, denote the sequences of �-increments on the vertical line shifted by :41 from the H-axis by

JU,: = {�U,:
9

} 9∈Z = {�U
D+:41+ 942

} 9∈Z and the sequences of weights by s: = {B:
9
} 9∈Z = {lD+:41+ 942

} 9∈Z.
JU,0 is the original boundary sequence JU we began with. Then, in terms of Lemma A.2, we have

the following. With (f, U1, U2) = (1, d, _), (Jd, J_) has the distribution of (a1, a2); and for each

: ≥ 1 and U ∈ {_, d}, JU,: = � (JU,:−1, s: ). Repeated application of Lemma A.2(iv) implies the

distributional equality (Jd,: , J_,: ) 3
= (Jd, J_) for all : ≥ 0. Lemma A.2(v) gives the property that, for

any G ∈ D + Z≥0 × Z, the increment variables

{�_G+ 942
: 9 ≤ 0} and {�d

G+ 942
: 9 ≥ 1} are mutually independent. (3.7)

The evolution in (3.6) satisfies a semigroup property: for each : , the values !U
G for G1 ≥ D1 + : + 1

satisfy

!U
G = sup

9: 9≤G2−D2

{
!U
D+:41+ 942

+ �D+(:+1)41+ 942 ,G

}
.
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It follows that the entire process of increments is invariant under translations that keep it in the half-

space: for I ∈ Z≥0 × Z,

{�_I+G+41
, �

d
I+G+41

, �_I+G , �
d
I+G : G ∈ D + Z≥0 × Z}

3
= {�_G+41

, �
d
G+41

, �_G , �
d
G : G ∈ D + Z≥0 × Z}.

(3.8)

(The index is G + 41 rather than G in the �-increments simply because these are not defined on the

boundary where G1 = D1.)

We claim that for U ∈ {_, d} and for any new base point E ∈ D + Z≥0 × Z,

{�UE+841
, �UE+ 942

: 8, 9 ∈ Z>0} are mutually independent with marginal distributions

�UE+841
∼ Exp(1 − U) and �UE+ 942

∼ Exp(U).
(3.9)

Since everything is shift-invariant, we can take E = D. As observed above, JU is a sequence of i.i.d.

Exp(U) random variables by Lemma A.2(i). Thus it suffices to prove the marginal statement about

{�U
D+841

: 8 ≥ 1} because these variables are a function of {�U
D+ 942

, lD+(8, 9) : 8 ≥ 1, 9 ≤ 0}, which are

independent of {�U
D+ 942

: 9 ≥ 1}.
The claim for {�U

D+841
: 8 ≥ 1} follows from proving inductively the following statement for each

= ≥ 1:

{�UD+841
, �UD+=41+ 942

: 1 ≤ 8 ≤ =, 9 ≤ 0} are mutually independent with

marginal distributions �UD+841
∼ Exp(1 − U) and �UD+=41+ 942

∼ Exp(U).
(3.10)

Begin with the case = = 1. From the inputs given by inter-arrival times {0 9 = �U
D+ 942

: 9 ≤ 0}
and service times {B 9 = lD+41+ 942

: 9 ≤ 0}, equations (A.3) compute the inter-departure times

{3 9 = �U
D+41+ 942

: 9 ≤ 0} and the sojourn time C0 = �UD+41
. Part of Lemma A.2(ii) then gives exactly

statement (3.10) for = = 1. (The dual-service variables B

∧

9 that also appear in Lemma A.2(ii) are not

needed here.)

Continue inductively. Assume that (3.10) holds for a given =. Then feed to the queueing operators

inter-arrival times {0 9 = �U
D+=41+ 942

: 9 ≤ 0} and service times {B 9 = lD+(=+1)41+ 942
: 9 ≤ 0}, all

independent of {�U
D+841

: 1 ≤ 8 ≤ =}. Compute the inter-departure times {3 9 = �U
D+(=+1)41+ 942

: 9 ≤ 0}
and the sojourn time C0 = �U

D+(=+1)41
. Lemma A.2(ii) extends the validity of (3.10) to = + 1. Claim (3.9)

has been verified.

To prove Theorem 3.1, take the coupled boundary weights {�U
D+841

, �U
D+ 942

: 8, 9 ≥ 1, U ∈ {_, d}} as

constructed above. The LPP process {�U
D,G : G ∈ D + Z2

≥0
} defined by (3.1)–(3.2) is then exactly the

same as the restriction {!U
G : G ∈ D + Z2

≥0
} of !U. Namely, (3.2) can be rewritten as follows:

�U
D, G = max

1≤:≤G1−D1

{
!U
D+:41

+ �D+:41+42 , G

}∨
max

1≤ℓ≤G2−D2

{
!U
D+ℓ42

+ �D+41+ℓ42 , G

}

= sup
9≤0

{
!U
D+ 942

+ max
1≤:≤G1−D1

[
�D+41+ 942 ,D+:41

+ �D+:41+42 , G

] }

∨
max

1≤ℓ≤G2−D2

{
!U
D+ℓ42

+ �D+41+ℓ42 , G

}

= sup
9: 9≤G2−D2

{
!U
D+ 942

+ �D+41+ 942 ,G

}
= !U

G .

Invariance (3.4) comes from (3.8). The statement in part (i) about independence comes from (3.7). The

first statement of part (ii) of the theorem comes from (3.9) and the second statement from (3.10).

As the last step, we prove part (iii). The inequality �
d

D+ 942
≤ �_

D+ 942
comes directly from (A.4), due to

the construction (Jd, J_) = (Yd, � (Y_,Yd)). Then (A.5) gives the inequality �_
D+841

≤ �
d

D+841
because,

in terms of the notation used above, the sequence IU,: = {�U
D+:41+ 942

} 9∈Z satisfies IU,: = ((JU,:−1, s: ).
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10 Márton Balázs et al.

Define

[D+841
= (1 − _)�_D+841

and [D+ 942
= d�

d

D+ 942
for 8, 9 ≥ 1.

Inequalities (3.5) hold now. By the already proved part (ii) of the theorem, marginally {[D+841
}8≥1 are

i.i.d. Exp(1) and {[D+ 942
} 9≥1 are also i.i.d. Exp(1). These two sequences are independent of each other

because the weights {[D+841
}8≥1 = {(1 − _)�_

D+841
}8≥1 are functions of {�_

D+ 942
, lD+(8, 9) : 8 ≥ 1, 9 ≤ 0},

and these latter are independent of {�d
D+ 942

: 9 ≥ 1}, by construction and by (3.7). Part (iii) is proved. �

4. Bounds for geodesic fluctuations

Let �
d
D,• be a stationary LPP process with base point D as described in Theorem 3.1, with independent

boundary weights �D+841
∼ Exp(1 − d) and �D+ 942

∼ Exp(d) for 8, 9 ≥ 1. For a northeast endpoint

G ∈ D + Z2
>0

, let /
d
D,G be the signed exit point of the geodesic c

d,D,G
• of �

d
D,G from the west and south

boundaries of D + Z2
≥0

. More precisely,

/
d
D,G =




arg max
:

{ ∑:
8=1 �D+841

+ �D+:41+42 , G

}
, if c

d,D,G

1
= D + 41,

−arg max
ℓ

{ ∑ℓ
9=1 �D+ 942

+ �D+ℓ42+41 , G

}
, if c

d,D,G

1
= D + 42.

(4.1)

The open line segment of interior directions is denoted by ]42, 41 [= {(B, 1 − B) : 0 < B < 1}. The

parameter d ∈ (0, 1) of the stationary LPP process is in one-to-one correspondence with a direction

vector b = (b1, 1 − b1) ∈ ]42, 41 [ through these equations:

b = b (d) =
( (1 − d)2

(1 − d)2 + d2
,

d2

(1 − d)2 + d2

)
⇐⇒ d = d(b) =

√
1 − b1

√
b1 +

√
1 − b1

. (4.2)

Direction b (d) is called the characteristic direction associated with the parameter d. A key property

that distinguishes b (d) among all [ ∈ ]42, 41 [ is that |/d

D,D+⌊# [⌋ | = >(#) almost surely if and only if

[ = b (d). Write the characteristic direction as

b (d) = (b1(d), b2(d)) = U[d] ((1 − d)2, d2)

by introducing

U[d] = 1

(1 − d)2 + d2
. (4.3)

Note the bounds 1 ≤ U[d] ≤ 2.

This section derives basic estimates for later use. We take the base point as the origin D = 0, but in

later applications the base point will vary. Abbreviate the sum of boundary weights on the G-axis as

(
d

:
=
∑:

8=1 �
d

841
= �

d

0,:41
. The starting point for the estimates is the variance formula of the next theorem.

Theorem 4.1. For (<, =) ∈ Z2
>0

,

Var[�d

0, (<,=) ] = − <

(1 − d)2
+ =

d2
+ 2

1 − d
E
[
(
d

(/d

0, (<,=) )+
]
. (4.4)

Sketch of proof. We give the main steps of the argument. Detailed proofs appear in Lemma 4.6 of [5]

and in Section 5.3 of [35]. Utilizing

�
d

0, (<,=) =
<∑

8=1

�
d

(8,0) +
=∑

9=1

�
d

(<, 9) =
=∑

9=1

�
d

(0, 9) +
<∑

8=1

�
d

(8,=)
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and the independence of {�d(8,=) , �
d

(<, 9) : 1 ≤ 8 ≤ <, 1 ≤ 9 ≤ =} from Theorem 3.1(ii), deduce

Var
[
�

d

0, (<,=)
]
= −Var

[ <∑

8=1

�
d

(8,=)

]
+ Var

[ =∑

9=1

�
d

(0, 9)

]
+ 2Cov

[ <∑

8=1

�
d

(8,0) ,
<∑

8=1

�
d

(8,=)

]
. (4.5)

The first two terms of (4.4) and (4.5) match. Let �
_,d
G be increment variables (3.3) for a process whose

independent boundary weights satisfy �
_,d

(8,0) ∼ Exp(_) and �
_,d

(0, 9) ∼ Exp(d). Complete the proof through

Cov

[ <∑

8=1

�
d

(8,0) ,
<∑

8=1

�
d

(8,=)

]
= − m

m_
E

[ <∑

8=1

�
_,d

(8,=)

] ����
_=1−d

=
1

1 − d
E
[
(
d

(/d

0, (<,=) )+
]
.

The line above comes by calculating the middle derivative in two ways. For the left equality, condition

on
∑<

8=1 �
_,d

(8,0) and differentiate its density. For the right equality, express the boundary variables �
_,d

(8,0) as

functions of uniform random variables and take the differentiation inside the expectation. �

Next we derive a bound on the exit point. This CGM result is from [5], which adapted the seminal

result from [9]. A proof also appears in Section 5.4 of [35].

Theorem 4.2. For 0 < Y < 1
2

and ^ > 0, there exists a finite constant �(Y, ^) such that

P
{
|/d

0, (<,=) | ≥ ℓ
}
≤ �(Y, ^)

( #2

ℓ3
+ #8/3

ℓ4

)
for all <, =, #, ℓ ≥ 1 (4.6)

whenever d ∈ [Y, 1 − Y] and | (<, =) − #b (d) |1 ≤ ^.

Proof. It suffices to prove the bound

P
{
/
d

0, (<,=) ≥ ℓ
}
≤ �(Y, ^)

( #2

ℓ3
+ #8/3

ℓ4

)
(4.7)

because the other probability P{/d

0, (<,=) ≤ −ℓ} is obtained by reflection across the diagonal. We can

assume that ℓ ≤ <, for otherwise the probability in (4.7) vanishes. Let 0 < A < 1 be a constant that will

be set small enough in the proof. Let

_ = d + Aℓ

#
.

We take A = A (Y, ^) at least small enough that A</# < 1
2
(1 − d) for < ≤ # (1 − d)2 + ^ and # ≥ 1.

This guarantees that _ ∈ (d, 1+d
2
) is also a legitimate parameter for an increment-stationary CGM.

Couple the boundary weights so that �_
841

≥ �
d

841
. In the first inequality below, use (_

:
+� (:,1) , (<,=) ≤

�_
0, (<,=) . The second equality follows from �_

841
≥ �

d

841
. Recall that - = - − E- .

P{/d

0, (<,=) ≥ ℓ} = P{ ∃: ≥ ℓ : (
d

:
+ � (:,1) , (<,=) = �

d

0, (<,=) }
≤ P{ ∃: ≥ ℓ : (_: − (

d

:
≤ �_

0, (<,=) − �
d

0, (<,=) }
= P{ (_ℓ − (

d

ℓ
≤ �_

0, (<,=) − �
d

0, (<,=) }

= P

{
(_
ℓ
− (

d

ℓ
≤ �_

0, (<,=) − �
d

0, (<,=) −
(
E[(_ℓ − (

d

ℓ
] − E[�_

0, (<,=) − �
d

0, (<,=) ]
) }

. (4.8)

Compute and bound the means in the last probability above.

E[(_ℓ − (
d

ℓ
] = ℓ

( 1

1 − _
− 1

1 − d

)
=

ℓ

(1 − _) (1 − d) (_ − d) = 1

(1 − _) (1 − d) ·
Aℓ2

#
(4.9)
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Introduce the quantities ^1
#
= < − #b1(d) and ^2

#
= = − #b2 (d) that satisfy |^1

#
| + |^2

#
| ≤ ^. Then for

the means of the LPP values,

E[�_
0, (<,=) − �

d

0, (<,=) ] = <
( 1

1 − _
− 1

1 − d

)
+ =

( 1

_
− 1

d

)

=

( <

(1 − _) (1 − d) −
=

_d

)
(_ − d)

= U[d]#
( 1 − d

1 − _
− d

_

)
(_ − d) +

( ^1
#

(1 − _) (1 − d) −
^2
#

_d

)
(_ − d)

=
U[d]#
_(1 − _) (_ − d)2 +

( ^1
#

(1 − _) (1 − d) −
^2
#

_d

)
(_ − d)

=
U[d]A2ℓ2

_(1 − _)# +
( ^1

#

(1 − _) (1 − d) −
^2
#

_d

) Aℓ
#

≤ U[d]A2ℓ2

_(1 − _)# + �1 (Y, ^)
Aℓ

#
.

(4.10)

Comparison of (4.9) and (4.10) shows that if we choose A and 23 small enough as functions of (Y, ^),
then there is a constant ℓ0(Y, ^) ≥ 1 such that for ℓ ≥ ℓ0(Y, ^) and d ∈ [Y, 1 − Y], we have

E[(_ℓ − (
d

ℓ
] > E[�_

0, (<,=) − �
d

0, (<,=) ] + 23
Aℓ2

#
. (4.11)

We continue the bound on P{/d

0, (<,=) ≥ ℓ} from line (4.8) and apply (4.11). Below, we pack the

(Y, ^)-dependent factors into a constant � = � (Y, ^).

P{/d

0, (<,=) ≥ ℓ} ≤ P
{
(_
ℓ
− (

d

ℓ
≤ �_

0, (<,=) − �
d

0, (<,=) − 23

Aℓ2

#

}

≤ P
{
(_
ℓ
− (

d

ℓ
≤ −23

Aℓ2

2#

}
+ P

{
�_

0, (<,=) − �
d

0, (<,=) ≥ 23
Aℓ2

2#

}

≤ �#2

ℓ4
Var[(_ℓ − (

d

ℓ
] + �#2

ℓ4
Var[�_

0, (<,=) − �
d

0, (<,=) ]

≤ �#2

ℓ3
+ �#2

ℓ4

(
Var[�_

0, (<,=) ] + Var[�d

0, (<,=) ]
)

≤ �#2

ℓ3
+ �#2

ℓ4

(
Var[�d

0, (<,=) ] + <(_ − d)
)

=
�#2

ℓ3
+ �#2

ℓ4

(
− <

(1 − d)2
+ =

d2
+ 2

1 − d
E[(d

/
d

0, (<,=)
] + ((1 − d)2# + ^) · Aℓ

#

)

≤ �#2

ℓ3
+ �#2

ℓ4

(
E[/d

0, (<,=) ] + ℓ
)
≤ �#2

ℓ3
+ �#2

ℓ4
E[/d

0, (<,=) ] . (4.12)

Along the way, we used the following two inequalities. For Y ≤ d ≤ _ ≤ 1 − Y/2,

Var[�_
0, (<,=) ] ≤ Var[�d

0, (<,=) ] + �<(_ − d)

holds by the variance formula (4.4) [35, Lemma 5.7]. Next, even though the i.i.d. terms �
d

841
are positively

correlated with /
d

0, (<,=) , we have the bound

E[(d(/d

0, (<,=) )+
] ≤ �

(
E[(/d

0, (<,=) )
+] + 1

)

because the terms �
d

841
have high moments [35, Lemma 5.8].
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Define a constant 1 = ℓ0 + �, with ℓ0(Y, ^) determined above (4.11), and � (Y, ^) from line (4.12)

above. Then

E[/d

0, (<,=) ] =
∫ <

0

P(/d

0, (<,=) ≥ B) 3B ≤ 1#2/3 + �

∫ ∞

1# 2/3

(#2

B3
+ #2

B4
E[/d

0, (<,=) ]
)
3B

= 1#2/3 + �#2/3

212
+ �

313
E[/d

0, (<,=) ] ≤ 1#2/3 + 1
2
#2/3 + 1

3
E[/d

0, (<,=) ] .

From this, we obtain the bound E[/d

0, (<,=) ] ≤ �1 (Y, ^)#2/3. Substituting this back into line (4.12) gives

the conclusion (4.7) for ℓ ≥ ℓ0(Y, ^). By increasing the constant �(Y, ^), we can cover all ℓ ≥ 1. �

We state a corollary that quantifies the effect of deviating the endpoint from the characteristic

direction.

Corollary 4.3. For 0 < Y < 1
2

and ^ > 0, there exists a finite constant � (Y, ^) such that for <, =, # ,
1 ≥ 1,

P
{
/
d

0, (<, =+⌊1# 2/3 ⌋) ≥ 1
}
≤ � (Y, ^)1−3 (4.13)

and

P
{
/
d

0, (<, =−⌊1# 2/3 ⌋) ≤ −1
}
≤ � (Y, ^)1−3 (4.14)

whenever these conditions hold: d ∈ [Y, 1 − Y], | (<, =) − #b (d) |1 ≤ ^, and, in the case of (4.14), also
= − ⌊1#2/3⌋ ≥ 1.

Proof. For (4.13), introduce another scaling parameter " and a constant 3 via

"b2 (d) = = + 1#2/3 and 3 = 1
( 1−d

d

)2 ≥ 1Y2.

Then ⌊"b2 (d)⌋ = = + ⌊1#2/3⌋ while

"b1 (d) =
=(1 − d)2

d2
+ 3#2/3

= < + 3#2/3 + =(1 − d)2 − <d2

d2
,

from which follows

⌊"b1 (d)⌋ ≥ < + ⌊1Y2#2/3⌋ − ^Y−2.

By the shifting Lemma B.4 in Appendix B,

P{/d

0, (<, =+⌊1# 2/3 ⌋) ≥ 1} ≤ P
{
/
d

0, ( ⌊" b1 (d) ⌋ , ⌊" b2 (d) ⌋) ≥ 1Y2#2/3 − ^Y−2
}

≤ P
{
/
d

0, ( ⌊" b1 (d) ⌋ , ⌊" b2 (d) ⌋) ≥
1
2
1Y2#2/3} ≤ � (Y)1−3.

In the second-last inequality we assumed 1 ≥ 2^Y−4 which entails no loss of generality because we can

adjust � (Y, ^). The last inequality is from the upper bound (4.6).

For bound (4.14) apply again Lemma B.4 in Appendix B and then the upper bound (4.6):

P{/d

0, (<, =−⌊1# 2/3 ⌋) ≤ −1} ≤ P{/d

0, (<,=) ≤ −1#2/3} ≤ � (Y, ^)1−3. �

For directions b = (b1, b2) ∈ ]42, 41 [, G-coordinates < ∈ Z, and A > 0, define

C
b
<,A = {<} ×

{
H ∈ Z : |<b2/b1 − H | ≤ A#

2
3

}
.
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Figure 4.1. Illustration of the proof of Lemma 4.4. On the event {/d★
0, ?

< 0, /
d★

0, ?
> 0}, geodesic a★

exits off the H-axis and a★ off the G-axis. Dashed straight lines: [0, ?] is the ray in direction b, [0, >̃]
in direction b★. With high probability, the geodesics a★ and a★ sandwich the geodesic c0, ? , while not
wandering too far from the b-directed ray.

C
b
<,A is the vertical line segment of length 2A#2/3 centered on the b-directed ray at point (<, <b2/b1).

Recall that c0, ? denotes the unique geodesic of �0, ? that uses i.i.d. Exp(1) weights. The next lemma

shows that for large A , the geodesic c0, ⌊b # ⌋ is very likely to intersect C
b
<,A .

Lemma 4.4. For 0 < X, Y < 1
3
, there exists a finite constant � = � (X, Y) such that the following

holds for all # ≥ 1 and 1 ≤ A <
√
Y

2(1+√Y) #
1/3: for any direction b = (b1, 1 − b1) ∈ ]42, 41 [ such that

b1 ∈
[

Y
1+Y ,

1
1+Y

]
and any 8 ∈ ÈX#b1, (1 − X)#b1É,

P
(
c0, ⌊# b ⌋ ∩ C

b

8,A
= ∅

)
≤ �A−3. (4.15)

Proof. Abbreviate ? = (?1, ?2) = ⌊b#⌋. The proof shows that with high probability, c0, ? is captured

between two geodesics of stationary LPP processes and then controls the probability that these geodesics

deviate from the b-ray. Figure 4.1 illustrates the proof.

Take d★ = d(b) + A#− 1
3 and d★ = d(b) − A#− 1

3 with characteristic directions b★ = b (d★) and

b★ = b (d★). The upper bound on A guarantees that d★, d★ ∈ [Y′, 1 − Y′]. Let a★ be the geodesic of

�
d★

0, ?
and a★ the geodesic of �

d★
0, ?

. We couple the weights of the three LPP processes as follows. The

bulk weights {lG}G ∈ Z2
>0

are the same for each LPP process. On the axes, we couple so that, for 8, 9 ≥ 1,

l841
≤ �

d★
841

∧ �
d★

841
and l 942

≤ �
d★
942

∧ �
d★

942
. (4.16)

We can use here the coupling of Theorem 3.1(iii). However, the present proof does not need the

joint stationarity of the LPP processes with parameters d★ and d★, and hence a simpler coupling is

adequate. In this simpler coupling, we take all the triples (l841
, �

d★
841

, �
d★

841
) and (l 942

, �
d★
942

, �
d★

942
) mutually

independent across the indices 8, 9 and then couple within each triple to have the inequalities (4.16) and
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the right marginal distributions

lG ∼ Exp(1), �U841
∼ Exp(1 − U), and �U942

∼ Exp(U).

We develop estimates to control the location of a★. Similar reasoning applies to a★. The mean value

theorem applied to the function b2/b1 = ( d

1−d )2 shows that there exist constants �1 (Y, X), �2 (Y, X) > 0

such that

�1A#
2
3 ≤

(
b2

b1

− b★2

b★1

)
8 ≤ �2A#

2
3 for 8 ∈ ÈX#, #É. (4.17)

Given U ∈ [Xb1, (1 − X)b1], define the point >̃ = ( ⌊U#⌋ , ⌊U#b★2/b★1⌋ ) on the b★-ray. Let �
d★, [0]
>̃, ?

be the stationary LPP process on the rectangle ' = È>̃, ?É with boundary weights on the south and west

sides given for 8, 9 ≥ 1 by

�
d★, [0]
>̃+841

= �
d★
0,>̃+841

− �
d★
0,>̃+(8−1)41

and �
d★, [0]
>̃+ 942

= �
d★
0,>̃+ 942

− �
d★
0,>̃+( 9−1)42

.

Superscript [0] indicates that the boundary weights come from �
d★
0,•. By Lemma B.3, the crossing point

of the geodesic a★ through the south and west boundary of ' is the exit point of the geodesic of �
d★, [0]
>̃, ?

from that boundary. By (4.17)

{
a★ ∩ C

b

⌊U# ⌋, 2�2A
= ∅

}
⊂
{
a★ ∩ È>̃, >̃ + 2�2A#

2
3 42É = ∅

}

⊂
{
/
d★, [0]
>̃, ?

∉ È−2�2A#
2
3 , 0É

}
.

From this,

P
(
a★ ∩ C

b

⌊U# ⌋, 2�2A
= ∅

)
≤ P

(
/
d★
>̃, ?

∉ È−2�2A#
2
3 , 0É

)

= P
(
/
d★
>̃, ?

> 0
)
+ P

(
/
d★
>̃, ?

< −2�2A#
2
3
)
.

(4.18)

(The superscript [0] can be dropped from /
d★, [0]
>̃, ?

in probability statements because it makes no

difference to the distribution.) We show that the last two probabilities are small. Let

H = ?2 −
b★2

b★1

#b1

be the vertical distance between the rays b and b★ along the east boundary of '. By (4.17),

�1A#
2
3 ≤ H ≤ �2A#

2
3 .

Since ? − H42 − >̃ points in the characteristic direction of d★, the bounds below follow from (4.13) and

(4.6) for a constant � = � (Y, X), uniformly for b1 ∈
[

Y
1+Y ,

1
1+Y

]
and U ∈ [Xb1, (1 − X)b1]:

P(/d★
>̃, ?

> 0) ≤ �A−3

and (with first an application of Lemma B.4)

P(/d★
>̃, ?

< −2�2A#
2
3 ) = P

(
/
d★
>̃, ?−⌊H⌋42

< −2�2A#
2
3 + ⌊H⌋

)

≤ P(/d★
>̃, ?−⌊H⌋42

< −�2A#
2
3 ) ≤ �A−3.
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Substituting this into (4.18) gives a constant � (Y, X) independent of b, U such that

P(a★ ∩ C
b

⌊U# ⌋, 2�2A
= ∅) ≤ �A−3.

Similarly, one shows that

P(a★ ∩ C
b

⌊U# ⌋, 2�2A
= ∅) ≤ �A−3.

Combining the bounds above with Corollary 4.3 gives the next estimate, still with a constant � (Y, X)
independent of b, U:

P
{
/
d★
0, ?

< 0, /
d★

0, ?
> 0, a★ ∩ C

b

⌊U# ⌋, 2�2A
≠ ∅, a★ ∩ C

b

⌊U# ⌋, 2�2A
≠ ∅

}
≥ 1 − �A−3.

The proof of the lemma is complete once we show that the event above implies the complement of

(4.15): namely, that

{
/
d★
0, ?

< 0, /
d★

0, ?
> 0, a★ ∩ C

b

⌊U# ⌋, 2�2A
≠ ∅, a★ ∩ C

b

⌊U# ⌋, 2�2A
≠ ∅

}

⊂
{
c0, ? ∩ C

b

U# , 2�2A
≠ ∅

}
.

(4.19)

The inclusion (4.19) holds because conditions /
d★
0, ?

< 0, /
d★

0, ?
> 0 imply that the geodesic c0, ? runs

between geodesics a★ and a★, with a★ above c0, ? and a★ below and to the right of c0, ? . This is where

the coupling (4.16) comes in. We argue one of the two cases: namely,

/
d★

0, ?
> 0 implies that c0, ? never goes strictly to the right of a★. (4.20)

Let = = |? |1 so that the geodesics end at c
0, ?
= = a★= = ?. Suppose claim (4.20) fails, so that at some index

: , c
0, ?

:
= a★

:
= I but a★

:+1
= I + 42 while c

0, ?

:+1
= I + 41. /

d★

0, ?
> 0 implies that : ≥ 1 and I + 42 lies in

the bulk Z>0. Since c [:+1,=] did not follow the bulk path a★[:+1,=] , the weight of c [:+1,=] must be strictly

larger than that of a★[:+1,=] . But now the first inequality of (4.16) guarantees that path segment a★[:+1,=]
is also inferior to c [:+1,=] for the stationary LPP value �

d★

0, ?
. Thus the separation did not happen. �

5. No bi-infinite geodesic away from the axes

This section proves Theorem 2.1. Recall the southwest boundary part m# = ({−#} × È−#,−Y#É ) ∪
(È−#,−Y#É × {−#}) from (2.1). The parameter Y > 0 now stays fixed and hence will be suppressed

from some notation. As in (4.2), a point > = (>1, >2) ∈ m# is associated with its direction vector

b (>) = (b1 (>), 1 − b1(>)) ∈ ]42, 41 [ and rate parameter d(>) ∈ (0, 1) through the relations

b (>) =
(

>1

>1 + >2

,
>2

>1 + >2

)
=

( (1 − d(>))2

(1 − d(>))2 + d(>)2
,

d(>)2

(1 − d(>))2 + d(>)2

)
(5.1)

and

d(>) =
√
|>2 |√

|>1 | +
√
|>2 |

=

√
1 − b1(>)√

b1(>) +
√

1 − b1 (>)
. (5.2)

For all > ∈ m# , we have the bounds

b (>) ∈
[( Y

1 + Y
,

1

1 + Y

)
,
( 1

1 + Y
,

Y

1 + Y

)]
and

√
Y

1 + √
Y
≤ d(>) ≤ 1

1 + √
Y
.
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Figure 5.1. Lemma 5.1. For large A , the exit point /d★ (>)
>, ⌊# 2/3 ⌋42

is far to the right from > on the scale

#2/3. By the uniqueness of finite geodesics, the same holds for /
d★ (>)
>,G for all G ∈ I, and similarly for

exit points /d★ (>)
>,G above >.

The proof uses LPP values from points of m# to the vertical segment I = {0} × È−# 2
3 , #

2
3 É. This

latter is indexed by � = È−# 2
3 , #

2
3 É. For > ∈ m# , let

d★(>) = d(>) − A#− 1
3 and d★(>) = d(>) + A#− 1

3

and consider the stationary LPP processes �
d★

>,• and �
d★
>,• based at >. The next lemma shows that a large

enough A forces the exit point of �
d★

>,G to the G-axis and that of �
d★
>,G to the H-axis, arbitrarily far on

the #2/3 scale, with a probability bound that is uniform over > ∈ m# and G ∈ I. See Figure 5.1 for an

illustration.

Lemma 5.1. For 0 < Y < 1, there exist finite positive constants �0 (Y), �1 (Y) such that, whenever 3 and
A satisfy

1 ≤ 3 ≤ 1
2
Y#1/3 and �0 (Y)3 ≤ A ≤

√
Y

2(1 + √
Y )

#1/3, (5.3)

the following bounds hold for all # ≥ 1, G ∈ I, and > ∈ m# :

P
{
/
d★ (>)
>,G ≥ −3#2/3} ≤ �1 (Y)A−3 (5.4)

and

P
{
/
d★ (>)
>,G ≤ 3#2/3} ≤ �1 (Y)A−3, (5.5)

where d★(>) = d(>) − A#− 1
3 and d★(>) = d(>) + A#− 1

3 .

Proof. The upper bound A ≤
√
Y

2(1+√Y ) #
1/3 guarantees that d★(>), d★(>) ∈ [Y′, 1− Y′] for all d(>), and

hence the estimates from the increment-stationary CGM apply.

We prove (5.5). (5.4) is similar. Represent > ∈ m#, Y as > = −(0#, 1#), where 0 ∨ 1 = 1 and

0 ∧ 1 ∈ [Y, 1]. Abbreviate d = d(>) and d★ = d★(>). Then 0/1 = ( 1−d
d
)2.
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18 Márton Balázs et al.

Uniqueness of geodesics forces the > to ⌊#2/3⌋42 geodesic to stay above the > to G ∈ I geodesic.

Then apply Lemma B.3 and translate > to the origin 0 to deduce:

P
{
/
d★

>,G ≤ 3#2/3} ≤ P
{
/
d★

>, ⌊# 2/3 ⌋42
≤ 3#2/3}

= P
{
/
d★

>, ⌊# 2/3 ⌋42−⌊3# 2/3 ⌋41
≤ −1

}

= P
{
/
d★

0, (0#−⌊3# 2/3 ⌋, 1#+⌊# 2/3 ⌋) ≤ −1
}
.

(5.6)

Define a new scaling parameter " by

0# − 3#2/3
= "b1 (d★).

The assumption 3 ≤ 1
2
Y#1/3 ≤ 1

2
0#1/3 guarantees that " > 0.

To apply (4.14) to the last probability in (5.6), we bound the deviation of 1# + ⌊#2/3⌋ from the

characteristic point "b2 (d★).

"b2 (d★) − 1# − ⌊#2/3⌋ ≥ "b2 (d★) − 1# − #2/3

= (0# − 3#2/3)
(

d★

1 − d★

)2
− 0#

(
d

1 − d

)2
− #2/3

= #2/3
(
0A

d★ + d − 2dd★

(1 − d★)2(1 − d)2
− 3

( d★

1 − d★

)2
− 1

)

= "2/3 · U[d
★]2/3(1 − d★)4/3

(0 − 3#−1/3)2/3 · 0A (d
★ + d − 2dd★) − 3 (d★)2(1 − d)2 − (1 − d★)2(1 − d)2

(1 − d★)2(1 − d)2
.

The above followed from definitions (4.2) and (4.3). Next bound the last line from below. The assumption

A ≤
√
Y

2(1+√Y ) #
1/3 guarantees that

d★ + d − 2dd★ ≥ 26(Y)

for a positive constant 26 (Y) whose precise value is immaterial. Use additionally U[d★] ≥ 1, 0 ≥ Y and

3 ≥ 1 to get the lower bound

"b2 (d★) − 1# − ⌊#2/3⌋ ≥ "2/3(26 (Y)YA − 23) ≥ "2/327 (Y)A

where the last inequality follows from assuming A ≥ 4326 (Y)−1Y−1 ≡ �0 (Y)3 and defining 27(Y)
suitably. Returning to (5.6), we have

P
{
/
d★

>,G ≤ 3#2/3}
= P

{
/
d★

0, (0#−⌊3# 2/3 ⌋, 1#+⌊# 2/3 ⌋) ≤ −1
}

≤ P
{
/
d★

0, ( ⌊" b1 (d★) ⌋, ⌊" b2 (d★) ⌋−⌊" 2/3A 27 (Y) ⌋ )
≤ −1

}
≤ �1 (Y)A−3.

The last inequality comes from (4.14). The constant ^ in (4.14) can be fixed at 2 and ignored. �

We introduce a pair of parameters 3 = (31, 32) ∈ Z2
≥1

that control coarse graining on the scale #2/3,

31 on the southwest portion of the boundary of the square È−#, #É2 and 32 on the northeast part. For

> ∈ m# , let

I>,3 = {D ∈ m# : |D − > |1 ≤ 1
2
31#

2
3 }

and

>2 = the unique minimal point of I>,3 in the coordinatewise partial order on Z2. (5.7)

For an illustration of >, >2 and I>,3 , see Figure 5.2.
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For a given point > ∈ m# , we compare the LPP processes �D,• from initial points D ∈ I>,3 with

increment-stationary LPP processes �
d★
>2 ,• and �

d★

>2 ,• with base point >2 and parameters

d★ = d(>2) − A#− 1
3 and d★ = d(>2) + A#− 1

3 ,

assumed to satisfy d★, d
★ ∈ (0, 1). The weights on the boundaries with corner at >2 are coupled as in

Theorem 3.1(iii): for 8, 9 ≥ 1,

l>2+841
≤ �

d★
>2+841

≤ �
d★

>2+841
and l>2+ 942

≤ �
d★

>2+ 942
≤ �

d★
>2+ 942

.

Associated with these LPP processes are vertical increment variables on the H-axis. We are concerned

now only with the range 9 ∈ �, so the increment variables below are well-defined once −Y# < −#2/3.

For D ∈ I>,3 and d ∈ {d★, d★}, let

�D9 = �D, 942
− �D, ( 9−1)42

and �
d

9
= �

d

>2 , 942
− �

d

>2 , ( 9−1)42
, 9 ∈ � .

Define the event

�>,3 =

{
/
d★

>2 ,−⌈# 2/3 ⌉42
< −31#

2
3 , /

d★

>2 , ⌈# 2/3 ⌉42
> 31#

2
3

}
. (5.8)

Lemma 5.2. Let # ≥ #0 (Y) so that the increment variables are well-defined for 9 ∈ �. On the event
�>,3 , we have the inequalities

�
d★

9
≤ �D9 ≤ �

d★
9

∀ 9 ∈ �, D ∈ I>,3 . (5.9)

There exist constants �0 (Y), �1 (Y) such that, whenever (31, A) satisfy (5.3), then

P
(
�2
>,3

)
≤ �1 (Y)A−3 for all > ∈ m# . (5.10)

Proof. We prove the second inequality of (5.9). The first one comes analogously.

Let �̃G,H be the LPP process on the quadrant >2+Z2
≥0

that uses weights l̃ defined by l̃>2+ 942
= �

d★
>2+ 942

for 9 ≥ 1, l̃>2 = 0, and l̃>2+G = l>2+G for G · 41 > 0.

Suppose first that D = >2 + ℓ42 for some ℓ ≥ 0. The uniqueness of finite geodesics together with the

first inequality of the event �>,3 in (5.8) implies that /
d★
>2 ,G < −31#

2
3 for all G ∈ I. Hence both D and

D + 42 lie on the geodesic of �
d★
>2 ,G for all G ∈ I. Consequently,

�
d★
>2 ,G+42

− �
d★
>2 ,G = �̃D,G+42

− �̃D,G .

Lemma B.1 gives the inequality

�̃D,G+42
− �̃D,G ≥ �D,G+42

− �D,G .

The other case is that D = >2 + :41 for some : ≥ 1. Then �
d★
>2 ,G = �̃>2 ,G and �D,G = �̃D,G . This

time, the conclusion follows from Lemma B.2.

Bound (5.10) comes from Lemma 5.1. �

Next we perform the analogous construction in the northeast quadrant. As in (2.2), m̂# = {#} ×
ÈY#, #É ∪ ÈY#, #É × {#}. A point >̂ = (>̂1, >̂2) ∈ m̂# is associated with a density d(>̂) ∈ (0, 1) and

a direction b (>̂) ∈ ]42, 41 [ through the relations (5.1)–(5.2). For G, H ∈ Z2 such that G ≤ H, define a

reversed last-passage process �̂H,G = �G,H in terms of the i.i.d. Exp(1) l-weights.

For each parameter value d ∈ (0, 1), analogously with (3.1)–(3.2), we define stationary last-passage

percolation processes �̂
d

>̂,• on the southwest quadrant >̂ + Z2
≤0

. Let { �̂d
>̂−841

}8∈Z>0
and {�̂d

>̂− 942
} 9∈Z>0

be

mutually independent boundary weights on the north and east, with marginal distributions �̂
d

>̂−841
∼
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Exp(1 − d) and �̂
d

>̂− 942
∼ Exp(d), independent of the boundary variables �

d

>+841
, �

d

>+ 942
in the southwest

quadrant. Put �̂
d

>̂, >̂
= 0 and on the boundaries

�̂
d

>̂, >̂−:41
=

:∑

8=1

�̂
d

>̂−841
and �̂

d

>̂, >̂−;42
=

;∑

9=1

�̂
d

>̂− 942
. (5.11)

Then in the bulk for G = (G1, G2) ∈ >̂ + Z2
<0

,

�̂
d

>̂, G
= max

1≤:≤>̂1−G1

{
:∑

8=1

�̂
d

>̂−841
+ �̂ >̂−:41−42 , G

}∨
max

1≤ℓ≤>̂2−G2




ℓ∑

9=1

�̂
d

>̂− 942
+ �̂ >̂−ℓ42−41 , G



. (5.12)

For a southwest endpoint ? ∈ >̂ + Z2
<0

, let /̂
d

>̂, ?
be the signed exit point of the geodesic ĉ

d,>̂, ?
• of �̂

d

>̂, ?

from the north and east boundaries of >̂ + Z2
≤0

. Precisely,

/̂
d

>̂, G
=




arg max
:≥1

{ ∑:
8=1 �̂

d

>̂−841
+ �̂ >̂−:41−42 , G

}
, if ĉ

d,>̂, G

1
= >̂ − 41,

−arg max
ℓ≥1

{ ∑ℓ
9=1 �̂

d

>̂− 942
+ �̂ >̂−ℓ42−41 , G

}
, if ĉ

d,>̂, G

1
= >̂ − 42.

For >̂ ∈ m̂# , let

Î>̂,3 =
{
E ∈ m̂# : |E − >̂ |1 ≤ 1

2
32#

2/3}

and (with an illustration in Figure 5.2),

>̂2 = the unique maximal point of Î>̂,3 in the coordinatewise partial order on Z2. (5.13)

Define again parameters

d★ = d(>̂2) − A#− 1
3 and d★ = d(>̂2) + A#− 1

3 .

The weights on the boundaries with corner at >̂2 are coupled as in Theorem 3.1(iii): for 8, 9 ≥ 1,

l>̂2−841
≤ �̂

d★
>̂2−841

≤ �̂
d★

>̂2−841
and l>̂2− 942

≤ �̂
d★

>̂2− 942
≤ �̂

d★
>̂2− 942

.

Define increment variables on the vertical edges {(G + 41, G + 41 + 42) : G ∈ I} shifted by 41 from I. For

E ∈ Î>̂,3 , 9 ∈ �, and d ∈ {d★, d★}, let

�̂E9 = �̂E,41+( 9−1)42
− �̂E,41+ 942

and �̂
d

9
= �̂

d

>̂2 , 41+( 9−1)42
− �̂

d

>̂2 , 41+ 942
.

Define the event

�>̂,3 =

{
/̂
d★

>̂2 , ⌈# 2/3 ⌉42+41
< −32#

2
3 , /̂

d★

>̂2 ,−⌈# 2/3 ⌉42+41
> 32#

2
3

}
. (5.14)

We have this analogue of Lemma 5.2.

Lemma 5.3. Let # ≥ #0 (Y) so that the increment variables are well-defined for 9 ∈ �. On the event
�>̂,3 , we have the inequalities

�̂
d★

9
≤ �̂E9 ≤ �̂

d★
9

∀ 9 ∈ �, E ∈ Î>̂,3 . (5.15)
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There exist constants �0 (Y), �1 (Y) such that, whenever (32, A) satisfy (5.3), then

P
(
�2
>̂,3

)
≤ �1 (Y)A−3 for all >̂ ∈ m̂# . (5.16)

Let > ∈ m# , >̂ ∈ m̂# and consider LPP from points D ∈ I>,3 to the interval I on the H-axis and

reverse LPP from points E ∈ Î>̂,3 to the shifted interval 41 + I. Abbreviate _★ = d★(>̂2), _★ = d★(>̂2)
and d★ = d★(>2) , d★ = d★(>2).

A given sequence of steps {- 9 } defines a two-sided walk ((-) by

(= (-) =



∑=
9=1 - 9 = ≥ 1

0 = = 0

−∑0
9==+1 - 9 = < 0.

Use this notation to define three random walks indexed by the edges {((0, 9), (1, 9)) : 9 ∈ �} that run

along the H-axis. The steps are defined by

-
D,E
9

= �D9 − �̂E9 , . ′
9 = �

d★
9

− �̂_
★

9 , and . 9 = �
d★

9
− �̂

_★
9
.

The corresponding walks are denoted by

(D,E = ((-D,E ), (
′
= ((. ′), and ( = ((. ).

Recall the events defined in (5.8) and (5.14).

Lemma 5.4. The processes

{(′
< : < ∈ È−#2/3,−1É } and {(= : = ∈ È1, #2/3É } are independent.

On the event �>,3 ∩ �>̂,3 , for all D ∈ I>,3 and E ∈ Î>̂,3 ,

(= ≤ (D,E= ≤ (
′
= for = ∈ È1, #2/3É

and (
′
= ≤ (D,E= ≤ (= for = ∈ È−#2/3,−1É.

(5.17)

Proof. The independence of the stationary LPP processes defined on the southwest and northeast

quadrants implies that the processes {�d★
9
, �

d★

9
} 9∈� and {�̂_★

9
, �̂_

★

9
} 9∈� are independent of each other.

Theorem 3.1(i) implies that within these processes, {�d★
9
} 9≤0 and {�d

★

9
} 9≥1 are independent, as are

{�̂_★
9
} 9≥1 and {�̂_★

9
} 9≤0. (Note the switch in the direction of indexing: since the geodesics of �

d

>̂2 ,•
proceed southwest instead of northeast, application of Theorem 3.1 requires reversal of lattice directions.)

Inequalities (5.17) come from the inequalities (5.9) and (5.15). �

Next observe that the walk (D,E controls the edge along which the geodesic cD,E steps away from the

H-axis.

�D,E = sup
D2≤=≤E2

{
�D, (0,=) + �̂E, (1,=)

}

= sup
D2≤=≤E2

{
�D, (0,0) + [�D, (0,=) − �D, (0,0) ] + �̂E, (1,0) − [�̂E, (1,0) − �̂E, (1,=) ]

}

= sup
D2≤=≤E2

{�D, (0,0) + �̂E, (1,0) + (D,E= }.
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In consequence,

for D ∈ I>,3 and E ∈ Î>̂,3 , the geodesic cD,E goes along the edge ((0, 9), (1, 9))
if and only if 9 = arg max

D2≤=≤E2

{(D,E= } :
(5.18)

that is, if and only if the almost surely unique maximum of (
D,E
= is taken at = = 9 .

Let > ∈ m# and >̂ = −> ∈ m̂# , as in Figure 5.2. Let >2 ∈ I>,3 be defined by (5.7) and >̂2 ∈ Î>̂,3 by

(5.13). We will take 31 ≠ 32, so >̂2 ≠ −>2 is possible. For D ∈ I>,3 and E ∈ Î>̂,3 , define the event

*D,E
= {geodesic cD,E uses edge ((0, 0), (1, 0))}. (5.19)

Lemma 5.5. Let A = #
2
15 and 3 = (1, # 1

8 ). There exist constants � (Y), #0 (Y) such that for all > ∈ m#

and # ≥ #0 (Y),

P

( ⋃

D ∈ I>,3 , E ∈ Î>̂,3

*D,E

)
≤ � (Y)#−2/5.

Proof. Fix > ∈ m# . For any D ∈ I>,3 , E ∈ Î>̂,3 , by (5.18),

*D,E ⊆
{

sup
0<;≤# 2/3

(
D,E

;
< 0

}
∩
{

sup
−# 2/3≤;<0

(
D,E

;
< 0

}
.

By Lemma 5.4, on the event �>,3 ∩ �>̂,3 ,

⋃

D ∈ I>,3 , E ∈ Î>̂,3

{
sup

0<;≤# 2/3
(
D,E

;
< 0

}
⊆
{

sup
0<;≤# 2/3

(; < 0
}

and
⋃

D ∈ I>,3 , E ∈ Î>̂,3

{
sup

−# 2/3≤;<0

(
D,E

;
< 0

}
⊆
{

sup
−# 2/3≤;<0

(
′
; < 0

}
.

Thus on the event �>,3 ∩ �>̂,3 ,

⋃

D ∈ I>,3 , E ∈ Î>̂,3

*D,E ⊆
{

sup
0<;≤# 2/3

(; < 0
}
∩
{

sup
−# 2/3≤;<0

(
′
; < 0

}
.

By the independence claim of Lemma 5.4,

P

( ⋃

D ∈ I>,3 , E ∈ Î>̂,3

*D,E
)
≤ P

(
sup

0<;≤# 2/3
(; < 0

)
P

(
sup

−# 2/3≤;<0

(
′
; < 0

)
+ P

(
�2
>,3 ∪ �2

>̂,3

)
. (5.20)

Let d = d(>2) and _ = d(>̂2). Since d(>̂) = d(>), there is a constant � (Y) such that, for # ≥ 1,

|d − _ | ≤ � (Y) (32 + 31)#− 1
3 ≤ � (Y)#−5/24. (5.21)

Each step of the random walk ( on È1, #
2
3 É is the difference of independent exponential random

variables with parameters d★ = d + A#− 1
3 and _★ = _ − A#− 1

3 . Similarly, each step of the random

walk (
′
on È−#2/3,−1É is the difference of independent exponential random variables with parameters

d★ = d − A#− 1
3 and _★ = _ + A#− 1

3 . Take A = #
2
15 . Then for # ≥ #0 (Y), we have d★ > _★. (By (5.21),
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Figure 5.2. The square È−#, #É2 with two possible arrangements of the segments I>,3 , Î>,3 and

F̂>̂,3 = F̂1
>̂,3

∪ F̂2
>̂,3

on the boundary of the square. In both cases, >̂ = −>.

we can take #0 (Y) = � (Y)120.) Inequality (C.1) with U = d★ and V = _★ gives the bound

P

(
sup

0<;≤# 2/3
(; < 0

)
≤ �

#
1
3

(
1 −

(
d − _ + 2A#− 1

3

d + _

)2 )# 2/3

+ d − _ + 2A#− 1
3

d + A#− 1
3

≤ �

#
1
3

(
1 −

(
d − _ + 2A#− 1

3

d + _

)2 )# 2/3

+ � (31 + 32 + A)#− 1
3 .

With A = #
2
15 and 3 = (31, 32) = (1, # 1

8 ), the last line is dominated by the last term. Thus there is a

constant �3 (Y) > 0 not depending on >, such that

P

(
sup

0<;≤# 2/3
(; < 0

)
≤ �3#

− 1
5 . (5.22)

Similarly, one shows that

P

(
sup

−# 2/3≤;<0

(
′
; < 0

)
≤ �3#

− 1
5 . (5.23)

With A = #
2
15 , (5.10) and (5.16) give for # ≥ #0 (Y)

P
(
�2
>,3 ∪ �2

>̂,3

)
≤ �A−3

= �#− 2
5 . (5.24)

To complete the proof, substitute (5.22), (5.23), and (5.24) into (5.20). �

Remark 5.6. In the proof above, we can observe where the optimal estimate is lost. Namely, if the

probability P
(
�2
>,3

∪ �2
>̂,3

)
could be ignored in (5.20), we could take A and 32 to be constants. This

would result in the bound�3#
−1/3 in (5.22) and (5.23). The end result would be an upper bound of order

#−2/3 on the probability that two opposite blocks of size #2/3 are connected by a geodesic through the

origin. Since geodesics fluctuate on the scale #2/3, this is the expected order.

Let > ∈ m# and >̂ = −> be as before above Lemma 5.5. For 3 = (31, 32), set

F̂>̂,3 = {E ∈ m̂# : |>̂ − E |1 > 1
2
32#

2
3 }.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.31
Downloaded from https://www.cambridge.org/core. UW-Madison Libraries Wisconsin Historical Society, on 16 Nov 2020 at 15:12:55, subject to the Cambridge Core



24 Márton Balázs et al.

Lemma 5.7. Let 3 = (1, # 1
8 ). There are finite constants � (Y) and #0 (Y) such that, for any # ≥ #0 (Y)

and > ∈ m# ,

P

( ⋃

D ∈ I>,3 , E ∈ F̂>̂,3

*D,E
)
≤ � (Y)#− 3

8 (5.25)

Proof. Define the sets of boundary points

mF̂>̂,3 = {E ∈ F̂>̂,3 : ∃D ∈ Î>̂,3 such that E ∼ D}
mI>,3 = {E ∈ I>,3 : ∃D ∈ m# \ I>,3 such that E ∼ D},

where E ∼ D means that E and D are adjacent in the graph Z2. Their cardinalities satisfy 1 ≤ |mF̂>̂,3 | ≤
|mI>,3 | ≤ 2. (For example, mF̂>̂,3 is a singleton if Î>̂,3 contains one of the endpoints (#, ⌊Y#⌋) or

(⌊Y#⌋, #) of m̂# .) We denote the points of mF̂>̂,3 by @1, @2 and those of mI>,3 by ℎ1, ℎ2, labeled so that

these inequalities are satisfied:

@1
1 ≤ >̂1 ≤ @2

1, @1
2 ≥ >̂2 ≥ @2

2

ℎ1
1 ≥ >1 ≥ ℎ2

1, ℎ1
2 ≤ >2 ≤ ℎ2

2.

Geometrically, starting from the north pole (0, #) and traversing the boundary of the square È−#, #É2

clockwise, we meet the points (those that exist) in this order: @1 → >̂ → @2 → ℎ1 → > → ℎ2 (Figure

5.3).

For points D ∈ m# , E ∈ m̂# let

P
D,E
< = cD,E ∩

{
G ∈ Z2 : G1 = <

}

be the intersection of the geodesic cD,E with the vertical line at G1 = <. For C > 0, let

�
D,E
<,C =

{
inf

?=(?1 , ?2) ∈PD,E
<

���D2 +
E2 − D2

E1 − D1

(< − D1) − ?2

��� > C
}

(5.26)

be the event that along this vertical line, the geodesic cD,E deviates by distance at least C from the straight

line segment from D to E. We now show that the event in (5.25) implies that one of the geodesics c ℎ8, @8

deviates by at least order 32#
2/3 from the straight line segment [ℎ8 , @8].

For > ∈ m# , D ∈ mI>,3 and E ∈ mF̂>̂,3 decompose as D = > + 4D and E = >̂ + 4E . These vectors satisfy

|4D |1 ≤ 1
2
31#

2
3 , |4E |1 ≥ 1

2
32#

2
3 , |4E1 | ∨ |4E2 | ≤ 2(1 − Y)#, and 4E1 4

E
2 ≤ 0. (5.27)

F̂>̂,3 is the union of two disjoint pieces separated by Î>̂,3 , one of which can be empty. F̂1
>̂,3

is to the

left and above Î>̂,3 , separated from Î>̂,3 by the point @1. F̂2
>̂,3

is to the right and below Î>̂,3 , separated

from Î>̂,3 by the point @2. They can be expressed as follows:

F̂
1
>̂,3

= {E ∈ F̂>̂,3 : 4E1 ≤ 0 ≤ 4E2 } and F̂
2
>̂,3

= {E ∈ F̂>̂,3 : 4E2 ≤ 0 ≤ 4E1 }.

Decompose the point appearing in (5.26) suitably, using E8−D8 = >̂8 +4E8 − (>8 +4D8 ) = −2>8 +4E8 −4D
8
.

D2 +
E2 − D2

E1 − D1

(< − D1) = >2 −
E2 − D2

E1 − D1

>1 + 4D2 + E2 − D2

E1 − D1

(< − 4D1 )

=
>24

E
1
− >14

E
2

E1 − D1

−
>24

D
1
− >14

D
2

E1 − D1

+ 4D2 + E2 − D2

E1 − D1

(< − 4D1 ). (5.28)
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The first term on the last line is of order Θ(32#
2/3) because there is no cancellation in the numerator.

It is positive if E ∈ F̂1
>̂,3

and negative if E ∈ F̂2
>̂,3

. This term dominates because 32 >> 31.

From the calculation above, we bound signed vertical distances from the G-axis to the line segment

[D, E]. In addition to (5.27), we utilize −# ≤ >8 ≤ −Y# , 2#Y ≤ E8 − D8 ≤ 2# , and the slope bound

Y ≤ E2−D2

E1−D1
≤ Y−1.

First, for D ∈ I>,3 and E ∈ F̂1
>̂,3

, we bound below the positive distance from the origin to [D, E], so

we take < = 0. The 4D-terms on line (5.28) are collected together into a single error term.

D2 +
E2 − D2

E1 − D1

(−D1) ≥
Y# |4E |1

2#
−
( #

2#Y
+ 1 + Y−1

)
|4D |1

≥ 1
4
Y32#

2
3 − 2Y−131#

2
3 ≥ 1

8
Y32#

2
3 .

(5.29)

In the last inequality, we used (31, 32) = (1, #1/8) and took # ≥ (16Y−2)8.

For D ∈ I>,3 and E ∈ F̂2
>̂,3

, we bound above the negative distance from the point (1, 0) to [D, E] and

hence take < = 1:

D2 +
E2 − D2

E1 − D1

(1 − D1) ≤ − Y# |4E |1
2#

+
( #

2#Y
+ 1 + Y−1

)
|4D |1 + Y−1

≤ − 1
4
Y32#

2
3 + 3Y−131#

2
3 ≤ − 1

8
Y32#

2
3 .

(5.30)

Now suppose that for some D ∈ I>,3 and E ∈ F̂>̂,3 , the geodesic cD,E goes through the edge

((0, 0), (1, 0)). We have two cases:

(i) If E ∈ F̂1
>̂,3

, then the geodesic c ℎ1, @1

stays below and to the right of cD,E because both its endpoints

are below and to the right of the endpoints of cD,E . Then (5.29) with D = ℎ1 and E = @1 shows that

at G-coordinate G = 0, the geodesic c ℎ1, @1

deviates from the straight line segment [ℎ1, @1] by at

least 1
8
Y32#

2
3 . This case is illustrated in Figure 5.3.

(ii) If E ∈ F̂2
>̂,3

, then the geodesic c ℎ2, @2

stays above and to the left of cD,E . Now (5.30) with D = ℎ2

and E = @2 shows that at G-coordinate G = 1, the geodesic c ℎ2, @2

deviates from the straight line

segment [ℎ2, @2] by at least 1
8
Y32#

2
3 .

Put cases (i) and (ii) together, and apply Lemma 4.4:

P

( ⋃

D ∈ I>,3 , E ∈ F̂>̂,3

*D,E

)
≤ P

(
�

ℎ1, @1

0, �1 (Y)32# 2/3 ∪ �
ℎ2, @2

1, �1 (Y)32# 2/3
)
≤ � (Y)3−3

2 = � (Y)#− 3
8 .

The proof is complete. �

Lemma 5.8. There is a constant � (Y) such that for any > ∈ m# ,

P

( ⋃

D ∈ I>,3 , E ∈ m̂#

*D,E
)
≤ � (Y)#− 3

8

Proof. Since m̂# = Î>̂,3 ∪ F̂>̂,3 ,

P

( ⋃

D ∈ I>,3 , E ∈ m̂#

*D,E
)
≤ P

( ⋃

D ∈ I>,3 , E ∈ F̂>̂,3

*D,E
)
+ P

( ⋃

D ∈ I>,3 , E ∈ Î>̂,3

*D,E
)

and Lemmas 5.5 and 5.7 give the claimed bound. �
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Figure 5.3. Case (i) in the proof of Lemma 5.7. The geodesic cD,E connects I>,3 and F̂1
>̂,3

through the

edge ((0, 0), (1, 0)). The geodesic c ℎ1, @1

lies below cD,E and hence well below the [ℎ1, @1] line segment
(dashed line).

We come to the final step of the proof that geodesics that connect m# and m̂# through the origin are

rare. Recall the event ,#, Y defined in (2.3).

Proof of Theorem 2.1. A geodesic through the origin takes after that either an 41 or an 42 step. By

symmetry, it suffices to control only one case. We prove

P

( ⋃

D ∈ m# , E ∈ m̂#

*D,E
)
≤ � (Y)#− 1

24 (5.31)

for the event *D,E defined in (5.19). As before, 3 = (1, # 1
8 ). To coarse grain m# let

O
#
= m# ∩

({
(−# + 831⌊#

2
3 ⌋ ,−#)

}
8∈Z≥0

⋃ {
(−#,−# + 9 31⌊#

2
3 ⌋)

}
9∈Z≥0

)
.

Then decompose

⋃

D ∈ m# , E ∈ m̂#

*D,E ⊆
⋃

> ∈O#

⋃

D ∈ I>,3 , E ∈ m̂#

*D,E .

As |O# | ≤ � (Y)3−1
1
#1− 2

3 = � (Y)# 1
3 , a union bound and Lemma 5.8 give (5.31):

P

( ⋃

D ∈ m# , E ∈ m̂#

*D,E
)
≤

∑

> ∈O#

P

( ⋃

D ∈ I>,3 , E ∈ m̂#

*D,E
)
≤ � (Y)# 1

3 #− 3
8 = � (Y)#− 1

24 . �

6. No nontrivial axis-directed geodesic

First we complete the proof of Theorem 2.2 with the lemma below and then prove the lemma.

Lemma 6.1. Let [: = ([:,1, 1 − [:,1) ∈ ]42, 41 [ be a monotone sequence of directions such that
[1,1 < [2,1 < · · · < [:,1 < · · · and lim:→∞ [: = 41. Let F=,: = F(=, :) = (⌊=[:,1⌋, =− ⌊=[:,1⌋) ∈ Z2

>0
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be lattice points such that lim=→∞ =−1F=,: = [: for each : . Then

lim
:→∞

lim
=→∞

[
�0,F (=,:) − �42 ,F (=,:)

]
= ∞ P-almost surely. (6.1)

Proof of Theorem 2.2. It is enough to prove the case 41 for G = 0.

Fix [: and F=,: as in Lemma 6.1, and let Ω0 be the event of full probability on which (6.1) holds.

Fix l ∈ Ω0, and suppose that at this l, there is a semi-infinite geodesic c = {c=}=∈Z≥0
such that c0 = 0,

cℓ = (ℓ − 1, 1) for some ℓ ≥ 1, and lim
=→∞ =−1c= · 42 = 0. We derive a contradiction.

By connecting 42 = (0, 1) to the point cℓ = (ℓ − 1, 1) (now fixed) with a horizontal path, we get the

lower bound

�42 , c= ≥
ℓ−1∑

8=0

l (8,1) + � cℓ+1 , c= for = > ℓ.

That c is a geodesic from c0 = 0 implies �0, c= = �0, cℓ + � cℓ+1 , c= for = > ℓ. Thus

�0, c= − �42 , c= ≤ �0, cℓ −
ℓ−1∑

8=0

l (8,1) for all = > ℓ. (6.2)

By the assumptions lim =−1c= · 42 = 0 and [: ∈ ]42, 41 [, and by the crossing lemma, for each : there

are infinitely many indices = such that

�0, c= − �42 , c= ≥ �0,F=,:
− �42 ,F=,:

.

Hence, for each : ,

lim
=→∞

[�0, c= − �42 , c= ] ≥ lim
=→∞

[�0,F=,:
− �42 ,F=,:

] .

Limit (6.1) now contradicts (6.2) because the right-hand side of (6.2) is fixed and finite. �

Proof of Lemma 6.1. Let A < ∞, and begin by bounding as follows:

P
{

lim
:→∞

lim
=→∞

[
�0,F (=,:) − �42 ,F (=,:)

]
≥ A

}
≥ lim

:→∞
P
{

lim
=→∞

[
�0,F (=,:) − �42 ,F (=,:)

]
> A

}
.

(6.3)

We show that the last probability converges to one as : → ∞.

Choose parameters _: so that

1 > _: > d([: ) =
√

1 − [:,1√
1 − [:,1 + √

[:,1
. (6.4)

Define the reverse stationary LPP processes �̂
_:

F (=,:) ,G for G ∈ F=,: + Z2
<0

as in (5.11)–(5.12), with

parameter _: and northeast base point F=,: . As before, for G ∈ F=,: + Z2
<0

, let

�̂
_:

F (=,:) ,G = �̂
_:

F (=,:) ,G − �̂
_:

F (=,:) ,G+42

denote vertical increment variables with distribution �̂
_:

F (=,:) ,G ∼ Exp(_: ). Similarly to the argument

in Lemma 5.3, when the geodesic of �̂
_:

F (=,:) ,0 takes a −41 step from F=,: , that is, /̂
_:

F (=,:) ,0 > 0, the

increments satisfy

�̂
_:

F (=,:) ,0 ≤ �̂F (=,:) ,0 − �̂F (=,:) ,42
= �0,F (=,:) − �42 ,F (=,:) . (6.5)

The inequality follows from a combination of Lemmas B.1 and B.2.
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Figure 6.1. When the geodesic is forced to go downward from the northeast corner, the geodesic chooses
the distance B on the east side to maximize the sum of Exp(_: ) weights on the east side and the bulk
LPP value between the origin and the point ([:,1, 1 − [:,1 − B).

To take advantage of this, we record the limiting shape functions. The stationary LPP process almost

surely satisfies

lim
=→∞

=−1�̂
_:

F (=,:) ,0 =
[:,1

1 − _:

+ 1 − [:,1

_:

. (6.6)

Let �̂
_:

F (=,:) ,0
[
/̂
_:

F (=,:) ,0 < 0
]

denote the last-passage value computed by maximizing over only those

paths that satisfy the condition /̂
_:

F (=,:) ,0 < 0 or, equivalently, take first a −42 step from F=,: . The limit

can be calculated from a macroscopic variational formula (see Figure 6.1 for justification):

lim
=→∞

=−1�̂
_:

F (=,:) ,0
[
/̂
_:

F (=,:) ,0 < 0
]
= sup

0≤B≤1−[:,1

{ B

_:

+ 6([:,1, 1 − [:,1 − B)
}

= 6([:,1, 1 − [:,1).
(6.7)

That the supremum is achieved at B = 0 is a consequence of (6.4). Increasing _: strictly above the

characteristic value d([: ) as in (6.4) has the effect that the geodesic of �̂
_:

F (=,:) ,0 spends a macroscopic

distance on the horizontal boundary F=,: + Z<041. Hence, forcing the −42 step from the corner F=,: is

suboptimal, and it can be checked directly that

[:,1

1 − _:

+ 1 − [:,1

_:

> 6([:,1, 1 − [:,1). (6.8)

We deduce a probability bound from (6.5).

P
(
�0,F (=,:) − �42 ,F (=,:) ≤ A

)
≤ P

(
/̂
_:

F (=,:) ,0 < 0
)
+ P(�̂_:

F (=,:) ,0 ≤ A)

= P
{
�̂

_:

F (=,:) ,0 = �̂
_:

F (=,:) ,0 [/̂
_:

F (=,:) ,0 < 0]
}
+ 1 − 4−_:A .

By (6.6), (6.7), and (6.8), the first probability on the last line vanishes as = → ∞. Switch to complements

to get

lim
=→∞
P
(
�0,F (=,:) − �42 ,F (=,:) > A

)
≥ 4−_:A .

From this, upon replacing A by A + Y for Y > 0,

P
{

lim
=→∞

[
�0,F (=,:) − �42 ,F (=,:)

]
> A

}

≥ P
{
�0,F (=,:) − �42 ,F (=,:) > A + Y for infinitely many =

}
≥ 4−_:A−_: Y .

By assumption, [:,1 → 1. Hence we can satisfy (6.4) while also having _: → 0. Thus the lower

bound in (6.3) equals one. �
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Appendix A. Queues

We formulate last-passage percolation over a bi-infinite strip as a queueing operator. The inputs are

two bi-infinite sequences: the inter-arrival process a = (0 9 ) 9∈Z and the service process s = (B 9 ) 9∈Z.
The queueing interpretation is that 0 9 is the time between the arrivals of customers 9 − 1 and 9 , and

B 9 is the service time of customer 9 . The operations below are well-defined as long as lim<→−∞
∑0

8=<

(B8 − 08+1) = −∞.

From inputs (a, s), three output sequences

d = � (a, s), t = ((a, s), and s

∧

= '(a, s) (A.1)

are constructed through explicit mappings: the inter-departure process d = (3 9 ) 9∈Z, the sojourn
process t = (C 9 ) 9∈Z, and the dual service times s

∧

= (B∧9 ) 9∈Z.
The formulas are as follows. Choose a sequence � = (� 9 ) 9∈Z that satisfies 0 9 = � 9 − � 9−1. Define

the sequence �̃ = (�̃ 9 ) 9∈Z by

�̃ 9 = sup
:: :≤ 9

{
�: +

9∑

8=:

B8

}
. (A.2)

The supremum above is taken at some finite : . Then set

3 9 = �̃ 9 − �̃ 9−1, C 9 = �̃ 9 − � 9 , and B

∧

9 = 0 9 ∧ C 9−1. (A.3)

The outputs (A.3) do not depend on the choice of � as long as 0 9 = � 9 − � 9−1. Letting : be a

maximizer for �̃ 9−1 in (A.2), we obtain the inequality

3 9 = �̃ 9 − �̃ 9−1 ≥
(
�: +

9∑

8=:

B8

)
−
(
�: +

9−1∑

8=:

B8

)
= B 9 . (A.4)

If we start with two coordinatewise ordered inter-arrival processes 0 9 ≤ 0′9 (for all 9) and use the same

service process s to compute sojourn processes t = ((a, s) and t′ = ((a′, s), the inequality is reversed:

C ′9 = �̃ ′
9 − � ′

9 = sup
:: :≤ 9

{
� ′

: − � ′
9 +

9∑

8=:

B8

}
≤ sup

:: :≤ 9

{
�: − � 9 +

9∑

8=:

B8

}
= C 9 . (A.5)

Note that to compute {3 9 , C 9 , B

∧

9 : 9 ≤ <}, only inputs {0 9 , B 9 : 9 ≤ <} are needed.

The next lemma is a deterministic property of the mappings.

Lemma A.1. The identity �
(
� (b, a), s

)
= �

(
� (b, '(a, s)), � (a, s)

)
holds whenever the sequences

a, b, s are such that the operations are well-defined.

Proof. Choose (� 9 ) and (� 9 ) so that � 9 − � 9−1 = 0 9 and � 9 − � 9−1 = 1 9 . Then the output of � (b, a)
is the increment sequence of

�̃ℓ = sup
:≤ℓ

{
�: +

ℓ∑

8=:

08

}
.

Next, the output of � (� (b, a), s) is the increment sequence of

�< = sup
ℓ≤<

{
�̃ℓ +

<∑

9=ℓ

B 9

}
= sup

:≤<

{
�: + max

ℓ: :≤ℓ≤<

[ ℓ∑

8=:

08 +
<∑

9=ℓ

B 9

]}
.
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Similarly, define first

�̃ 9 = sup
:: :≤ 9

{
�: +

9∑

8=:

B8

}
and �

∧

ℓ = sup
:≤ℓ

{
�: +

ℓ∑

8=:

B

∧

8

}
.

Then the output of �
(
� (b, '(a, s)), � (a, s)

)
is the increment sequence of

�̃< = sup
ℓ≤<

{
�

∧

ℓ +
<∑

9=ℓ

0̃ 9

}
= sup

:≤<

{
�: + max

ℓ: :≤ℓ≤<

[ ℓ∑

8=:

B

∧

8 +
<∑

9=ℓ

0̃ 9

]}
.

It remains to check that

max
ℓ: :≤ℓ≤<

[ ℓ∑

8=:

B

∧

8 +
<∑

9=ℓ

0̃ 9

]
= max

ℓ: :≤ℓ≤<

[ ℓ∑

8=:

08 +
<∑

9=ℓ

B 9

]
.

This can be verified with a case-by-case analysis. See Lemma 4.3 in [15]. �

Specialize to stationary M/M/1 queues. Let f be a service rate and U1, U2 arrival rates. Assume

f > U1 > U2 > 0. Let b1, b2, s be mutually independent i.i.d. sequences with marginals 1:
9
∼ Exp(U: )

for : ∈ {1, 2} and B 9 ∼ Exp(f). Define a jointly distributed pair of arrival sequences by (a1, a2) =(
b1, � (b2, b1)

)
. From these and services s, define jointly distributed output variables:

d:
= � (a: , s), t: = ((a: , s), and s

∧:
= '(a: , s) for : ∈ {1, 2}.

Lemma A.2. We have the following properties.

(i) Marginally a2 is a sequence of i.i.d. Exp(U2) variables.
(ii) For fixed : ∈ {1, 2} and < ∈ Z, the random variables {3:

9
} 9≤<, C:<, and {B∧:9 } 9≤< are mutually

independent with marginal distributions 3:
9
∼ Exp(U: ), C:< ∼ Exp(f − U: ), and B

∧:
9 ∼ Exp(f).

(iii) For a fixed : ∈ {1, 2}, sequences d: and s

∧: are mutually independent sequences of i.i.d. random
variables with marginal distributions 3:

9
∼ Exp(U: ) and B

∧:
9 ∼ Exp(f).

(iv) (d1, d2) 3
= (a1, a2): in other words, we have a distributional fixed point for this joint queueing

operator.
(v) For any < ∈ Z, the random variables {02

8 }8≤< and {01
9 } 9≥<+1 are mutually independent.

Proof. Parts (i)–(iii) are basic M/M/1 queueing theory. Proofs can be found, for example, in Lemma

B.2 in Appendix B of [15].

For part (iv), the marginal distributions of d1 and d2 are the correct ones by Lemma A.2(iii). To

establish the correct joint distribution, the definition of (a1, a2) points us to find an i.i.d. Exp(U2) random

sequence z that is independent of d1 and satisfies d2 = � (z, d1). From the definitions and Lemma A.1,

d2
= � (a2, s) = �

(
� (b2, a1), s

)
= �

(
� (b2, '(a1, s)), � (a1, s)

)
= �

(
� (b2, s

∧1), d1
)
.

By assumption, b2, a1, s are independent. Hence, by Lemma A.2(iii), b2, s

∧1
, d1 are independent. So we

take z = � (b2, s

∧1), which is an i.i.d. Exp(U2) sequence by Lemma A.2(iii). This proves part (iv).

We know that marginally a1 and a2 are i.i.d. sequences. In queueing language, observation (v)

becomes obvious. Namely, since a2 = � (b2, a1), the statement is that past inter-departure times {02
8 }8≤<

are independent of future inter-arrival times {01
9 } 9≥<+1. Rigorously, (A.2) and (A.3) show that variables

{02
8 }8≤< are functions of ({12

8 }8≤< , {01
8 }8≤<), which are independent of {01

9 } 9≥<+1. �
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Appendix B. Coupling and monotonicity in last-passage percolation

In this section,l = (lG)G∈Z2 is a fixed assignment of real weights.�G,H is the last-passage value defined

by (1.1). No probability is involved.

Lemma B.1. Suppose weights l and l̃ satisfy l>+841
≥ l̃>+841

, l>+ 942
≤ l̃>+ 942

, and lG = l̃G for
8, 9 ≥ 1 and G ∈ > + Z2

>0
. As in (1.1), define LPP processes

�>,H = max
G• ∈Π>,H

|H−> |1∑

:=0

lG: and �̃>,H = max
G• ∈Π>,H

|H−> |1∑

:=0

l̃G: for H ∈ > + Z2
≥0.

Then for all H ∈ > + Z2
≥0

, the increments over nearest-neighbor edges satisfy

�>,H+41
− �>,H ≥ �̃>,H+41

− �̃>,H and �>,H+42
− �>,H ≤ �̃>,H+42

− �̃>,H .

Proof. The statements are true by construction for edges (H, H + 48) that lie on the axes > + Z≥048 .

Proceed by induction: assuming the inequalities hold for the edges (H, H + 42) and (H, H + 41), deduce

them for the edges (H + 42, H + 41 + 42) and (H + 41, H + 41 + 42). �

Lemma B.2 (Crossing Lemma). The inequalities below are valid whenever the last-passage values
are defined.

�>+41 , G+42
− �>+41 , G ≤ �>, G+42

− �>, G ≤ �>+42 , G+42
− �>+42 , G (B.1)

�>+42 , G+41
− �>+42 , G ≤ �>, G+41

− �>, G ≤ �>+41 , G+41
− �>+41 , G .

Proof. The proofs of all parts are similar. We prove the second inequality in (B.1): that is,

�>, G+42
− �>, G ≤ �>+42 , G+42

− �>+42 , G . (B.2)

The geodesics c>, G+42
and c>+42 , G must cross. Let D be the first point where they meet. Note that

�>,D + �D, G ≤ �>, G and �>+42 ,D + �D, G+42
≤ �>+42 , G+42

. (B.3)

Add the two inequalities in (B.3), and rearrange to obtain (B.2).

This inequality can also be proved from Lemma B.1, by writing �>+42 , G+42
− �>+42 , G = �̃>, G+42

−
�̃>, G with environment l̃>+H = l>+H when H2 > 0 and l̃>+841

= −" for large enough " . �

Fix base points D ≤ E on Z2. On the quadrant E+Z2
≥0

, put a corner weight [E = 0 and define boundary

weights

[E+:48 = �D, E+:48 − �D, E+(:−1)48 for : ∈ Z>0 and 8 ∈ {1, 2}.

In the bulk, use [G = lG for G ∈ E + Z2
>0

. Denote the LPP process in E + Z2
≥0

that uses weights

{[G}G ∈ E+Z2
≥0

by

�
[D ]
E, G = max

G• ∈ΠE, G

|G−E |1∑

8=0

[G8 , G ∈ E + Z2
≥0.

The superscript [D] indicates that � [D ] uses boundary weights determined by the process �D,• with

base point D. Figure B.1 illustrates the next lemma. The proof of the lemma is elementary.

Lemma B.3. Let D ≤ E ≤ H in Z2. Then �D,H = �D,E +� [D ]
E,H . The restriction of any geodesic of �D,H to

E + Z2
≥0

is part of a geodesic of � [D ]
E,H . The edges with one endpoint in E + Z2

>0
that belong to a geodesic

of � [D ]
E,H extend to a geodesic of �D,H .
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Figure B.1. Illustration of Lemma B.3. Path D-G-H is a geodesic of �D,H , and path E-G-H is a geodesic

of � [D ]
E,H .

Assume now that the weights are such that geodesics are unique. Define the exit point /D, ? as in

(4.1). For : ≥ 1, let /
[D ]
D+:41 , ?

be the exit point of the geodesic of �
[D ]
D+:41 , ?

. The lemma below follows

from taking E = D + :41 in Lemma B.3.

Lemma B.4. For positive integers <, /D, ? = : + < if and only if / [D ]
D+:41 , ?

= <.

Appendix C. Random walk bounds

Lemma C.1. Let U > V > 0, and let (= =
∑=

:=1 /: be a random walk with step distribution /: ∼
Exp(U) − Exp(V) (difference of two independent exponentials). Then there is an absolute constant �
independent of all the parameters such that for = ∈ Z>0,

P((1 > 0, (2 > 0, . . . , (= > 0) ≤ �√
=

(
1 − (U − V)2

(U + V)2

)=

and

P((1 < 0, (2 < 0, . . . , (= < 0) ≤ �√
=

(
1 − (U − V)2

(U + V)2

)=
+ U − V

U
. (C.1)

Proof. Define the events

�
U,V
= = {(1 > 0, . . . , (= > 0} and �

U,V
= = {(1 > 0, . . . , (=−1 > 0, (= < 0}

for = ∈ Z>0 and also the decreasing limit �
U,V
∞ =

⋂
=≥1 �

U,V
= . Then

%(�U,V
= ) =

∞∑

:==+1

%(�U,V

:
) + %(�U,V

∞ ). (C.2)

Lemma B.3 in Appendix B of [15] calculated

%(�U,V
= ) = �=−1

U=V=−1

(U + V)2=−1
(C.3)

where �= =
1

=+1

(2=
=

)
, = ≥ 0, are the Catalan numbers. Note that parameters U and V are switched around

here compared with Lemma B.3 of [15]. From
(2=
=

)
2−2= ∼ (c=)−1/2, we can fix a constant 20 such that

�:−1 ≤ 204:−1:−3/2.
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The assumption U > V gives �/: = U−1 − V−1 < 0, and hence
∑

=≥1 %(�U,V
= ) = 1 and %(�U,V

∞ ) = 0.

Thus (C.2) and (C.3), together with
∑∞

:==+1 :
−3/2 ≤ 2=−1/2, give

%(�U,V
= ) = U

U + V

∞∑

:==+1

�:−1

(
UV

(V + U)2

) :−1

≤ 20U

U + V

∞∑

:==+1

:−3/2
(
1 − (U − V)2

(U + V)2

) :−1

≤ 220U

U + V
· 1√

=

(
1 − (U − V)2

(U + V)2

)=
.

(C.4)

Since −(= is obtained from (= by switching U and V around,

%
(
(1 < 0, . . . , (= < 0

)
= %(�V,U

= ) =
∞∑

:==+1

%(�V,U

:
) + %(�V,U

∞ ).

Bound the series above as in (C.4) (with U and V interchanged), and add %(�V,U
∞ ) = U−V

U
. This last fact

appears on page 600 of Resnick [32] and in Example VI.8(b) on page 193 of Feller II [16]. �
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