Forum of Mathematics, Sigma (2020), Vol. 8:e46, 1-34
doi:10.1017/fms.2020.31 CAMBRIDGE
UNIVERSITY PRESS

RESEARCH ARTICLE

Non-existence of bi-infinite geodesics in the exponential
corner growth model

Marton Baldzs', Ofer Busani? and Timo Seppildinen?

]University of Bristol, School of Mathematics, Fry Building, Woodland Rd., Bristol BS8 1UG, UK,

E-mail: m.balazs @bristol.ac.uk; https://people.maths.bris.ac.uk/~mb13434/.

2University of Bristol, School of Mathematics, Fry Building, Woodland Rd., Bristol BS8 1UG, UK,

E-mail: o.busani @bristol.ac.uk; https://people.maths.bris.ac.uk/~dil18476/.

3University of Wisconsin-Madison, Mathematics Department, Van Vleck Hall, 480 Lincoln Dr., Madison, WI
53706-1388, USA, E-mail: seppalai @math.wisc.edu; http://www.math.wisc.edu/~seppalai.

Received: 3 April 2020; Revised: 6 May 2020; Accepted: 26 June 2020
2020 Mathematics Subject Classification: Primary — 60K35; Secondary — 60K37

Keywords and phrases: bi-infinite, corner growth model, directed percolation, geodesic, random growth model, last-passage
percolation, queues

Abstract

This paper gives a self-contained proof of the non-existence of nontrivial bi-infinite geodesics in directed planar last-
passage percolation with exponential weights. The techniques used are couplings, coarse graining, and control of
geodesics through planarity and estimates derived from increment-stationary versions of the last-passage percolation
process.
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1. Introduction
1.1. Bi-infinite geodesics in random growth

Since their inception over 50 years ago in the work of Eden [14] and Hammersley and Welsh [20],
random growth models have been central drivers of the mathematical theory of spatial random processes.
Particularly important classes of growth models are undirected first-passage percolation (FPP) and
directed last-passage percolation (LPP), where growth proceeds along optimal paths called geodesics.
The structure of these geodesics has been a challenging object of study.

Under natural assumptions, the existence of a geodesic between two points in space is straightforward.
A compactness argument gives the existence of a semi-infinite geodesic: that is, a one-sided infinite
path that furnishes the geodesic between any two of its points. The existence or non-existence of bi-
infinite geodesics has turned out to be a very hard problem. This question was first posed to H. Kesten
by H. Furstenberg in the context of FPP [25, page 258]. Apart from its significance for random growth,
this existence issue is tied to questions about ground states of certain disordered models of statistical
physics ([4, page 105], [29, Chapter 1]).

The development of mathematical techniques for infinite geodesics in two-dimensional FPP began
with the work of C. Newman and coauthors in the 1990s [28]. Licea and Newman [26] ruled out directed
bi-infinite geodesics with given direction in an unknown set of full Lebesgue measure. Much more
recently, a bi-infinite geodesic in any fixed direction has been ruled out, but subject to a local regularity
condition on the limit shape, by [17] in LPP and by [1, 12] in FPP. The new approach in these works was
based on Busemann functions. Bi-infinite FPP geodesics have also been ruled out in certain restricted
subsets of the lattice, such as half-planes [3, 36]. However, despite all the effort, a feasible strategy for
solving the bi-infinite existence problem in FPP without restrictive assumptions is not presently visible.

In the seminal paper of Johansson [23], the Tracy-Widom distribution of the limit fluctuation in LPP
was proved for geometric and exponential weights. This led to a large literature on exactly solvable
models in the Kardar-Parisi-Zhang (KPZ) class and gave rise to a new subject, integrable probability.
Deep results on exactly solvable models have identified the limiting objects, the KPZ fixed point [27],
and the directed landscape [13], and provide a benchmark for the expected behavior of LPP with
general weight distributions in accordance with the KPZ universality conjecture. While progress in
exactly solvable models in the past 20 years has been striking, for general LPP, basic questions such
as regularity of the limit shape and the order of fluctuations remain open. Moreover, the methods of
integrable probability are often so specialized that it seems unlikely that they can provide a roadmap for
approaching general growth models.

Parallel to the development of integrable probability, a suite of more robust probabilistic techniques
for deriving fluctuation bounds evolved. After the seminal paper of Cator and Groeneboom [9] on the
Poissonian planar growth model, [5] derived the 1/3 shape exponent and 2/3 transversal exponent in the
exponential LPP. These papers point the way to a proof of the KPZ exponents under a strictly concave
shape function and sufficiently mixing Busemann functions. This approach has also been successful for
a class of zero-range processes that goes beyond exactly solvable models [6].

Ergodic Busemann functions were developed for general LPP in [18]. The point of view was that
of queueing theory, where Busemann functions can be identified with fixed points of stationary queues
in tandem. The follow-up work [17] proved results about competition interfaces, directed semi-infinite
geodesics, and the nonexistence of bi-infinite geodesics in a particular direction, under regularity
assumptions on the shape function.

In exactly solvable planar directed LPP, techniques have now improved to the point where the existence
problem of bi-infinite geodesics can be given a complete solution. The first proof of nonexistence
in planar LPP with exponential weights appeared in the 2018 preprint [7] of Basu, Hoffman, and
Sly. Their work relies on fluctuation and moderate deviation estimates for the passage times that
come from integrable probability. These estimates were originally obtained through combinatorial
analysis, asymptotic analysis of Fredholm determinants, and random matrix methods. Further results
from these estimates were derived in the preprint [8] by Basu, Sidoravicius, and Sly, in particular
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Figure 1.1. An up-right path from (0,0) to (7,4) on the lattice Z*.

to control transversal fluctuations of geodesics, and then applied to the bi-infinite geodesic problem
in [7].

The concentration bounds used in [7] should hold for LPP models outside the exactly solvable ones;
but it is unclear how these bounds can be obtained from the conjectural basic properties of the general
LPP, such as strict concavity of the shape function and strong mixing of the Busemann functions. Our
paper does not have a result for general LPP, but our proof does lay out a possible route from fairly basic
properties of LPP to the non-existence of bi-infinite geodesics. We do this through deeper insight into
the queueing picture obtained in [15]. Going through the proofs in this paper, the reader should see that
our choice of the exponential distribution can be viewed as an assumption on the basic properties of the
model, conjectured to hold for any continuous distribution with sufficiently decaying moment. Along
the way, nothing beyond standard probability tools such as coupling and coarse graining is needed.

Next we state the main result and then relate our proof to existing literature. In particular, we contrast
our work with [7] in more detail.

1.2. Main result

The model studied is a version of nearest-neighbor directed LPP on the planar integer lattice, also
known as the corner growth model (CGM). Let w = {wy } <72 be an assignment of random weights on
the vertices of Z2. The weights w, are independent and identically distributed (i.i.d) random variables
with rate one exponential distribution: that is, P(w, > t) = e’ for each x € Z? and real ¢ > 0. The
last-passage value G , for coordinatewise ordered points x < y on 72 is defined by

ly=xi
G.y= max Z Wy (1.1)
x, €llx,y =

where Iy y is the set of nearest-neighbor up-right paths x. = (xi);_, that start at xo = x and end at
X, =y, with n = |y — x|; = the number of nearest-neighbor steps from x to y. Such paths are defined by
the requirement xz+; —xx € {ey, e2}. (See Figure 1.1.) When the weights have a continuous distribution
such as the exponential, (1.1) has a unique maximizing path 7*> € Il , called the ( point-to-point or
finite) geodesic.

A bi-infinite geodesic is a nearest-neighbor up-right path {xj }xcz indexed by all integers, with the
property that for all m < n, the path segment x{,,, o] = {xx}}_,, is the geodesic between x;, and x,,. A
straight line {x; = x+ke; }rcz, forx € Z%?andi € {1,2},is trivially a bi-infinite geodesic because there
are no alternative paths between any two of its points. Let us call a bi-infinite geodesic nontrivial if it
is not of this type. The main result is that the exponential CGM has no nontrivial bi-infinite geodesics.

Theorem 1.1. Assume that weights have i.i.d. exponential distribution. Then with probability one, there
are no nontrivial bi-infinite geodesics.
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1.3. Related work

Among past work on geodesics, our proof is in spirit aligned with the Damron-Hanson work on FPP
[11, 12] and with the general LPP work in [17, 22], in the sense that the stationary version of the process
lies at the heart of the matter. Compared to earlier work on the exponential CGM that utilized couplings
with the stationary version, such as [5, 31, 35], two specific new developments made this paper possible:

(i) The discovery in [15] of the stationary distribution of the joint LPP process with multiple charac-
teristic directions. A bivariate version of this distribution is constructed in Theorem 3.1 below.

(ii) A novel argument for controlling the location of the geodesic by coupling the bulk process with two
distinct stationary processes from two different directions (Lemma 5.5 below).

One can be fairly confident that these features extend to both zero-temperature and positive-
temperature polymer models in 1+1 dimensions that possess a tractable stationary version. This in-
cludes various last-passage models in both discrete and continuous space, such as those studied in
[2, 19, 24, 30, 33, 34], and the four currently known solvable polymer models [10]. In positive-
temperature polymer models, the analogous question concerns the existence of bi-infinite Gibbs mea-
sures, as discussed in [21]. These matters are left for future work.

As in [7] by Basu, Hoffman, and Sly, our proof comes in two parts:

(a) The main argument rules out bi-infinite geodesics with finite positive slope.

(b) An easier argument shows that no geodesic can come infinitely often arbitrarily close to an axis in
the macroscopic scale.

Beyond this superficial similarity, the two proofs are quite different in both parts (a) and (b).

Our part (a) in Section 5 is a straightforward estimation of the probability that a geodesic through
the origin connects the boundaries of a square at scale N. By contrast, [7] controls complicated events
that involve coalescence of geodesics. This yields additional results of interest, but the simplicity of the
bi-infinite geodesic problem is obscured. Their sharper tools give a better estimate of the probability of
a connection through the origin, namely O(N~'/3), while our cruder bound is O(N~'/?*). In Remark
5.6 we indicate the precise place where our estimates grow beyond optimal order of magnitude.

Part (b) in [7] utilizes fluctuations. Our part (b) in Section 6 uses the limit shape and planarity.

We conclude this introduction by observing that the non-existence of bi-infinite geodesics will be
a tool for further results. To cite an example, article [22] studies a random graph in the CGM that
represents an analogue of shocks in Hamilton-Jacobi equations. Theorem 4.3 in [22] shows that the
absence of bi-infinite geodesics implies certain coalescence properties of this ‘instability graph’.

Section 2 outlines the proof of Theorem 1.1 and describes the organization of the rest of the paper.
We provide a self-contained exposition of the entire proof, including proof sketches of many auxiliary
results that we use. We collect below some notation for easy reference.

1.4. Notation and conventions

Zso = {0,1,2,3,...} and Z>¢ = {1,2,3,...}. For real numbers a and b, a V b = max{a, b} and
[a,b] = [a,b] N Z 0 denotes the origin of both R and R2. C(&) and Ny(e) are constants that depend
on a parameter &, but their values can change from line to line.

For x = (x1,x2),y = (y1,y2) € R?, we use the following conventions. The standard basis vectors
are e; = (1,0) and e, = (0, 1). The ¢'-norm is |x|; = |x;| + |x2|. Integer parts and inequalities are
interpreted coordinatewise: |x] = (lxi],|x2]), and x < y means x; < y; and x, < y;. Notation
[x,y] represents both the line segment [x,y] = {tx + (1 —f)y : 0 < ¢ < 1} and the rectangle
[x,y] = {(z1,22) € R? 1 x; < z; < y; fori = 1,2}. The context makes clear which one is used. An open
line segment is |x,y[={tx+ (1 =)y : 0 <t < 1}. The lattice rectangle and line segment are denoted
by [x, y] = [x,y] N Z*. Path segments are abbreviated by 7, ,,] = (1)L, .
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Figure 2.1. The event Wy, .. The thickset portions of the boundary are O™-¢ and FLES They are
connected by the geodesic ¥ through the origin.

X = X — EX denotes a random variable X centered at its mean. X ~ Exp(2) for 0 < A < co means the
random variable X has exponential distribution with rate A: in other words, P(X > t) = e Y fort > 0.

2. Outline of the proof

We state two auxiliary theorems and use them to prove Theorem 1.1. Then we sketch the main ideas
behind the auxiliary theorems and explain the organization of the rest of the paper.

By the shift-invariance of the underlying weight distribution, it suffices to prove that with probability
one, no nontrivial bi-infinite geodesic goes through the origin. This task is split into two cases: either
the geodesic ultimately stays away from the axes on a macroscopic scale, or it comes infinitely often
macroscopically close to some axis.

For the first case, for large positive integers N and small € > 0, we rule out geodesics that connect
the southwest boundary of the lattice square [-N, N]? to its northeast boundary through the origin and
whose empirical average slope is in the range [, £~!]. Define these portions of the boundary of the
square: in the southwest

ON-¢ = ({=N} x [-N.-&N] ) U ([-N.-eN] x {-N}) 2D

and in the northeast

o™ ¢ = ({N}x[eN,N]) U ([eN,N] x {N}). (2.2)
Define the following event, illustrated in Figure 2.1:

WN’sz{EpointsueaN’gandvGEN’Ssuchthat 23)
the geodesic 7" goes through the origin}. '

‘We have the following quantitative control of this event.

Theorem 2.1. For each € > 0, there exists a constant C(g) > 0 such that P(Wy, ¢) < C(E)N‘ﬁ for all
N > 1.

Theorem 2.1 rules out all geodesics that stay macroscopically away from the axes. The next theorem
shows that there are no nontrivial geodesics that come macroscopically arbitrarily close to an axis.
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Theorem 2.2. The following statement holds with probability one. For i € {1,2} and each x € 2220’
{xx =x + kei}k ez, is the only semi-infinite geodesic that satisfies xo = x and lim k'xp - esi = 0.
k—o0

‘We combine the two theorems above to rule out all nontrivial bi-infinite geodesics.

Proof of Theorem 1.1, assuming Theorems 2.1 and 2.2. Fix a positive sequence &; \, 0. Define the

event
A=) U wi,

izl M>1N>M

Theorem 2.1 implies that P(A) = 1:

P(A€) =JP>(UU ﬂ WN,sj) s;P(U ﬂ WN,gj)= _ A}ianP( NOMWN,,;J,)

j M N:=M M N=M J

. ) N
< Z A%gnooP(WM’g.f) < Z A}gnooc(‘g])M 24 = ().
/ J

For i € {1,2}, let B; be the event that there are no semi-infinite geodesics {xx }x>0 such that xo = 0
and lim, _, | k~'xx - e; = 0 except for the trivial one, {x; = ke3_;}x €Zso- Let R reflect the weight
configuration across the origin: (Rw), = w_, for x € Z*. Define the event

B=B, NB,NR'BNnR'B,.

On the event B, every semi-infinite geodesic that either starts or ends at the origin satisfies the condition
that, far enough from the origin, it lies entirely inside a closed cone with apex at the origin and disjoint
from the coordinate axes. Theorem 2.2 and the reflection invariance of the distribution of the weights w
imply that P(B) = 1.

We claim that on the full-probability event A N B, there are no nontrivial bi-infinite geodesics through
the origin. To show this, suppose there exists a nontrivial bi-infinite geodesic 7 through the origin in the
weight configuration w. Consider the following dichotomy:

(i) 3j, M € Z~( such that 7 connects N> i to 9N & for all N >M,or
(ii) Vj, M € Zso, AN > M such that 7 misses either 8™> &/ or 9N &/ .

Alternative (i) forces w € A€. In alternative (ii), if 7 misses N i infinitely often for each &}, it
follows that lim, | k~'7y - ¢; = 0 for either i = 1 or 2. Thus w € B{ U BS. Similarly, missing 8"~ €/
infinitely often for each &; implies Rw € Bf U BS.

Thus a nontrivial bi-infinite geodesic through the origin is possible only on the zero-probability event
AU B°. m]

Sketch of the proof of Theorem 2.1. Theorem 2.1 comes from two distinct stages.

(i) In the first stage, the southwest boundary 8- is divided into blocks of size N>/3 and the northeast
boundary 8V+¢ into blocks of size N19/24. The probability that a geodesic connects two diagonally
opposite blocks through the origin is bounded by N=*/ (Lemma 5.5). The control here comes from
random walk bounds on the location where a geodesic crosses the y-axis. These bounds are developed
through a coupling with increment-stationary LPP processes.

(ii) The second stage shows that any geodesic that connects an N*/3-block through the origin to a
point outside its opposite N'*/?*-block violates the N2> KPZ wandering exponent. Through another
coupling argument, the probability of this happening is bounded by N~/ (Lemma 5.7).

Multiplying by the number of N?/3-blocks gives the estimate O(N'/3 - N=2/° 4+ N'/3 . N73/8) =
O(N~1/2%), O
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u u u

Figure 3.1. The independent increment variables from Theorem 3.1. Left: J* below x and JP above x
from part (i). Middle and right: [* and J¢ increments on down-right lattice paths from part (ii).

Sketch of the proof of Theorem 2.2. Comparison with increment-stationary LPP processes shows that
the quantity Go, x, — Ge,,x, blows up if 7, is a path above the x-axis but n~'n, comes arbitrarily close
to the x-axis. This rules out the possibility that . is a geodesic. O

The next two sections develop tools: Section 3 a coupling of increment-stationary LPP processes and
Section 4 bounds on geodesic fluctuations. The proof of Theorem 2.1 follows in Section 5 and that of
Theorem 2.2 in Section 6.

3. Stationary last-passage percolation

Pick 0 < A < p < 1 and a base vertex u € Z>. We construct two coupled LPP processes G’l and
G, . on the nonnegative quadrant u + Z >0 such that their increments are jointly stationary under lattlce
translations. Both processes use the same i.i.d. Exp(1) weights {w}, ¢, 22, in the bulk. They have
boundary conditions on the positive x- and y-axes centered at u, coupled in a way described in the next
theorem.

For @ € {4, p}, the definition of the process G,; , goes as follows. The boundary weights are denoted
by {Iuﬂel l;l+j€2 i,j € Zso}. Put Gy, = 0, and on the boundaries

k
¢ ke = 08 and G = Z @ fork,> 1. 3.1)

i=1

In the bulk for x = (x,x2) € u + Z>0,

a
Gu,x = max { Z Iu+lel + Gu+ke1+e2,x} max { Z u+jes + Gu+€1+f€2,x}

1<k<xi—u 1<l<x—uy (32)
_ a a
Guxe]VGuxez Wy

G, . does not use a weight at the base point u. Inside the braces above, Gy is the LPP process (1.1)
that uses the bulk weights w. Define increment variables for vertices x € u + Zio by
=Gy -Gy, and J7=Gy-Gy_,,. 3.3)

An important part of the next theorem for the sequel is the independence of various collections of
increment variables. These are illustrated in Figure 3.1.

Theorem 31.Let 0 < A < p < 1 and u € 72 There exists a coupling of the boundary weights
,JA J? i i,j € Zso} such that the joint process (G, ,G"..) has the following

{u+l€1 u+ie|’ “u+jer’ “u+jes
properties:

Downloaded from https://www.cambridge.org/core. UW-Madison Libraries Wisconsin Historical Society, on 16 Nov 2020 at 15:12:55, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.31

u,e
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(i) (Joint) The joint process of increments is stationary: for each v € u + Z>0’

(Gl =G Gl =GB ix € T2V £ {(GR s G nn) s x € T2} (3.4)

The following independence property holds along vertical lines: for each x € u +Z>0, the variables
{J)’}Jr]e2 Uy —x2+1<j<0}and {J° tjer ) > 1} are mutually independent.

(i) (Marginal) For both a € {A,p} and each v € u + Z>0,
i, j € Zso} are mutually independent with marginal distributions

(e .
the increment variables {1, er? I e

1%, ~Exp(l-«@) and J¢ ., ~Exp(a).

v+ie; v+jey

The same is true of the variables {I_ ieps Ty jer :0<i<vi—u,0<j<vy—ust
(iii) (Monotonicity) The boundary weights can be coupled with i.i.d. Exp(1) weights {fu+ie,» Tu+je,
> 1} independent of the bulk weights w so that these inequalities hold almost surely for all

ij>1:

A 4 . Y A
Nu+ie; < Iu+iel = Iu+ze and Nu+je, < ‘Iu+j62 Ju+j62 (3'5)

Proof. We construct a joint LPP process (Lﬁ, Lﬁ(’)x cu+Zoxz on the discrete right half-plane with origin
at u. In the interior, we have i.i.d. Exp(1) weights {w, : x; > u;} as before. For @ € {4, p}, let
= {Y’l} jezand YP = {Yp }jez beindependent sequences of i.i.d. variables with marginal distributions

~ Exp(a) 1ndependent of w. From these, we define the boundary weights J* = J; 4 s }jez and
Jp = {Juﬂe2 }jez on the y-axis through u by the equation (J°,J%) = (YP,D(Y*, YP)). D is the
departure process operator from (A.1) in Appendix A. This gives a pair of coupled sequences (J°, J?).
Marginally, {J;, e }jez areii.d. Exp(a).

For a € {4, p?lr, define the LPP values on the y-axis by
Ly =0, Ll‘fﬂez L;(] Dey = J,:’+je2 for j € Z.

This results in negative values L%
and now forx € u +Z-o X Z,

for j < 0. Complete the definitions by putting, again for @ € {4, p}

u+jer

LY = sup {me +Guserrjerx), 18 =LY -LY and JY=LY-L¢ (3.6)

X x—e| X x—ep*
Jij<x2—uy

The supremum is achieved at a finite j because the boundary variables J¢ are stochastically larger than
the bulk weights. This follows from the distributional properties established in the next paragraph.

For k > 0, denote the sequences of J-increments on the vertical line shifted by ke from the y-axis by
Jok = {J“ k}]ez {Jetkeysje, )7z and the sequences of weights by sk = {sf }iez = {Wutker+jes } jez.
J0 is the original boundary sequence J* we began with. Then, in terms of Lemma A.2, we have
the following. With (o, a1, @) = (1,p, 1), (J°,JY) has the distribution of (a',a?); and for each
k> 1and a € {4,p}, J** = D(J**! s*). Repeated application of Lemma A.2(iv) implies the

distributional equality (J*%, J4%) £ (J#, J) for all k > 0. Lemma A.2(v) gives the property that, for
any x € u +Zyo X Z, the increment variables

{J¢ tjer 1S 0} and {Jxﬂe2 Jj =1} are mutually independent. 3.7
The evolution in (3.6) satisfies a semigroup property: for each k, the values L for x; > u; + k + 1
satisfy

a _
L sup {Lu+kel+]ez + Gu+(k+1)e1+]e2 x}
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It follows that the entire process of increments is invariant under translations that keep it in the half-
space: for z € Z»o X Z,

{13 JL I ix €u+Zso X7}

Z+x+€1’ Z+X+€]’ Z+x°> v z+x

) (3.8)
JLI i x €eu+ZsogxZ}.

{ x+e;’ x+€1 ’

(The index is x + e; rather than x in the /-increments simply because these are not defined on the
boundary where x| = uy.)
We claim that for a € {4, p} and for any new base point v € u + Zso X Z,

U viers Ios je, * 1, J € Z>0} are mutually independent with marginal distributions

I1¢. ~Exp(l-a) and J¢ ., ~Exp(a).

v+ie| v+jes

(3.9)

Since everything is shift-invariant, we can take v = u. As observed above, J¢ is a sequence of i.i.d.
Exp(«@) random variables by Lemma A.2(i). Thus it suffices to prove the marginal statement about

{1% ivie; | > 1} because these variables are a function of {J;Y+jez’ Wy(i,j) & = 1,j < 0}, which are
1ndependent of {J e T2 1}.
The claim for {7 ;’_He : 1 > 1} follows from proving inductively the following statement for each
n>1:
{Lvie s Jitine, +je, © 1 < 0 < n, j < 0} are mutually independent with (3.10)
marginal distributions /7, ~Exp(1—a) and J\,. ;i ~ Exp(@). .
Begin with the case n = 1. From the inputs given by inter-arrival times {a; = Jivje, ©J S 0}

and service times {s; = Wuytei+je, : J < 0}, equations (A.3) compute the inter-departure times
{dj = J¢ re, tjer S S 0} and the sojourn time ty = I,;’+el Part of Lemma A.2(ii) then gives exactly
statement (3.10) for n = 1. (The dual-service variables §; j that also appear in Lemma A.2(ii) are not
needed here.)

Continue inductively. Assume that (3.10) holds for a given n. Then feed to the queueing operators

inter-arrival times {a; = J:+ne,+je2 : j < 0} and service times {S; = Wy+(n+l)ej+je, - J < 0}, all
independent of {/ wpie, S SIS n}. Compute the inter-departure times {d; = J;’+(n ertjes - Jj <0}
and the sojourn time 7o = I, (n41)e; Lemma A.2(ii) extends the validity of (3.10) to n + 1. Claim (3.9)
has been verified.

To prove Theorem 3.1, take the coupled boundary weights {I e Jb(t1+]ez i,j=21l,ae{d,p}}as

constructed above. The LPP process {GJ, : x € u + 7?2 O} defined by (3.1)—(3.2) is then exactly the
same as the restriction {L{ : x € u + 72 0} of L®. Namely, (3.2) can be rewritten as follows:

a a @
Gu’x - lslfg?c)f—ul {Lu+kel * Gu+kel+ez’x} lsfnslicli(—uz {Lu+€e2 * Gu+el+€ez’X}
@
= sup {Lu+jez + max [Gu+el+jez,u+kel + Gu+kel+ez,x] }
j<0 1<k <x;—u

max LY, +G
1<l<x—uy { utter wrertler, X}

_ ra
sup {Lu+jez + Gu+e1+je2,x} - Lx‘

JijSx2—uy

Invariance (3.4) comes from (3.8). The statement in part (i) about independence comes from (3.7). The
first statement of part (ii) of the theorem comes from (3 9) and the second statement from (3.10).
As the last step, we prove part (iii). The inequality J* whjer S < J4 . comes directly from (A.4), due to

u+jey
the construction (J°, J*) = (Y?, D(Y%,Y?)). Then (A.5) gives the inequality IM tie 15 +ie, DeCaUSE,
in terms of the notation used above, the sequence 1K = Ilftl+k€ e }jez satisfies I k= g(Jok-1 sk,
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10 Marton Baldzs et al.

Define
Nu+ie, = (1 — /l)Iquwl and  7y4je, =,0J5+je2 for i,j>1.

Inequalities (3.5) hold now. By the already proved part (ii) of the theorem, marginally {7+, }i>1 are
i.i.d. Exp(1) and {ny+je,};>1 are also i.i.d. Exp(1). These two sequences are independent of each other
because the weights {7,+i¢, }iz1 = {(1 — )12 . }i>1 are functions of {J,fﬂ.ez, Wy 121, j <0},
and these latter are independent of {J*

u+ie|

: j = 1}, by construction and by (3.7). Part (iii) is proved. O

u+je;

4. Bounds for geodesic fluctuations

Let G, . be a stationary LPP process with base point u as described in Theorem 3.1, with independent
boundary weights I,.4;, ~ Exp(1 — p) and Jy1je, ~ Exp(p) for i, j > 1. For a northeast endpoint
x € u+72, let Z}; , be the signed exit point of the geodesic 72" of G, , from the west and south
boundaries of u + ZZ>O. More precisely,

k e _PLULX
arg max {Zi:l Iu+iel +Gu+kel+ez,x}7 if 1 =u+ey,
Zix = , 4.1)
’ 4 se PUX .
—arg max { Yoot Jusjer + Gurterrer,x}> i7" =u+e.
I3

The open line segment of interior directions is denoted by ]es, e1[= {(s,1 —s) : 0 < s < 1}. The
parameter p € (0, 1) of the stationary LPP process is in one-to-one correspondence with a direction
vector & = (&1, 1 — &1) € ]ey, e[ through these equations:

(1-p)? p* B Vi-&
T-prep? Uopieg?) & PP i

Direction &(p) is called the characteristic direction associated with the parameter p. A key property
that distinguishes &(p) among all i € Jes, e[ is that |Z” J| = o(N) almost surely if and only if

E=£&(p) =

4.2)

u,u+|Nn
n = &(p). Write the characteristic direction as

£(p) = (&1(p). &£(p)) = alp]((1 - )%, p?)

by introducing
1

l= G

4.3)
Note the bounds 1 < a[p] < 2.

This section derives basic estimates for later use. We take the base point as the origin # = 0, but in
later applications the base point will vary. Abbreviate the sum of boundary weights on the x-axis as

=yk, Ir = = Gp - The starting point for the estimates is the variance formula of the next theorem.

2
Theorem 4.1. For (m, n) €72,

Var[G® m_ ]E[S (4.4)

0,(m,n)] == (1-p)2 p2 1— (zf’ >)+]'

Sketch of proof. We give the main steps of the argument. Detailed proofs appear in Lemma 4.6 of [5]
and in Section 5.3 of [35]. Utilizing

G5, Z’(z(»*ZJ(mJ) Zj<o]>+Z’<z n)
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and the independence of {I?. ., J? :1<i<m,1 < j<n}from Theorem 3.1(ii), deduce

(i,n)> " (m, j)
me ) +2C°V[Z’< 0 Z]I@n)] 4.5)

0
Var[GO’(m’n)] Var[ Z I( n)
The first two terms of (4.4) and (4.5) match Let I;l’p be increment variables (3.3) for a process whose
independent boundary weights satisfy Ik (i 0) ~ Exp(1) and J 216‘0].) ~ Exp(p). Complete the proof through

St S|l Sr)
- a0 221 am | =~ 32 wm ||,

i=1 i=1

+ Var

1
C = —E[s”°
ov slp l—p [ (ZO (mn)) ]

The line above comes by calculating the middle derivative in two ways. For the left equality, COIIdlthIl

on ", It B ’())) and differentiate its density. For the right equality, express the boundary variables It @ 0)

functions of uniform random variables and take the differentiation inside the expectation. m}

Next we derive a bound on the exit point. This CGM result is from [5], which adapted the seminal
result from [9]. A proof also appears in Section 5.4 of [35].

Theorem 4.2. For 0 < € < % and k > 0, there exists a finite constant B(g, k) such that

N2 8/3

P{|Z§’<m,n)| > t’} < B(e, K)( s + 5—4) forallm,n,N,€ > 1 (4.6)
whenever p € [g,1 — &] and |(m,n) — Né(p)|y < k.
Proof. 1t suffices to prove the bound
NZ N8/3
PAZ] oy 2 O < B 5+ ) @.7)

because the other probability ]P’{Zp mo) S —{} is obtained by reflection across the diagonal. We can
assume that £ < m, for otherwise the probablhty in (4.7) vanishes. Let 0 < r < 1 be a constant that will
be set small enough in the proof. Let
A=p+—.
PTN

We take r = r(g, ) at least small enough that rm/N < %(1 —p)form < N(1-p)®>+kand N > 1.
This guarantees that A € (p, #) is also a legitimate parameter for an increment-stationary CGM.

Couple the boundary weights so that / fel > Ife - In the first inequality below, use Sﬁ +G(k,1),(m,n) <

Gg (m.ny- The second equality follows from IL > I, . Recall that X = X — EX.

PAZY oy 2 O = PAFE 2 C2 ST+ G i), imm = Gl b
<SPk SE-80 <GY iy = Go i}
=P{S7 =57 2 G () = GG oy }
=B{S] =57 < Gl () = G ) ~ (ELSE = S{1=BIG () = Gl ) |- 48)
Compute and bound the means in the last probability above.
2
E[S7 - 7] =€(1 i& T ip) R —/l)g(l —py P = UTl(l—p) . % “o
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12 Marton Baldzs et al.

Introduce the quantities KIIV =m— N& (p) and K%V =n— N&(p) that satisfy |K]1V| + |K%v| < k. Then for
the means of the LPP values,

1 1 1 1
BLGO, ) ~ Gﬁ,<m,n>]=m(m‘m)+ (z‘;)
_ m n 2
-(m‘ﬂ)( =)
2
e p N Kn
alpIN (—fz)“‘f’“((l_@(l_p)‘z)“‘m o
a[p]N ) N Ky '
== P T "3
_ alplr? Ky Ky \ 7l
T A1-A)N ((1—1)(1—p)_ﬁ)ﬁ
alplr2e

rt
< WPITC L cle 0
-y OOy

Comparison of (4.9) and (4.10) shows that if we choose r and c3 small enough as functions of (&, «),
then there is a constant £y(g, k) > 1 such that for £ > €y(&, «) and p € [g, 1 — &], we have

ré?
E[S} - 871 > E[G{ (. G‘g,(m’n)] e 4.11)

We continue the bound on P{Zop - ¢} from line (4.8) and apply (4.11). Below, we pack the
(&, k)-dependent factors into a constant C = C(g, k).

2
o GA_P A p rt
PAZY oy 2 O < P{ST-S7 <Gl =Gl - e |
2 2
T _ P rt 1 P e
<P{S] -5 <—es o | +B{GY ) = Gl gy = 353 |
CN? 1 _ P CN? a 14
< 7 Var[S; —S€]+ Iz Var [G0 (m.n) G0 (mn)]
CN* CN? N
< 5 +— /i (Var[GO (mum)) +Var[G‘g’(m’n)] )
CN? CN?
< 5—3 7 (Var[G (m,n)] +m(A - p))
N> CN? 2 ¢
=C3 +C4 (— e 2+%+ [Sp ]+((1—p)2N+K)-r—)
4 4 (1-p) P l-p 2o (m.m) N
CN?> CN? CN? CN2
<t (BLZf, ] +0) < 5+ —EIZ{ ) (4.12)

Along the way, we used the following two inequalities. Fore < p <1< 1-¢/2,
Var[Gg (] < Var[G ]+ Cm(a~p)

holds by the variance formula (4.4) [35, Lemma 5.7]. Next, even though the i.i.d. terms Ife , are positively

correlated with Z'O 0.(m.ny> WE have the bound

BIST,, )< CBIZ],,,) T+1)

0,(m, n))+

because the terms If;l have high moments [35, Lemma 5.8].
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Define a constant b = {y + C, with (&, k) determined above (4.11), and C(&, k) from line (4.12)
above. Then

P R 2/3 (NP ON?
E[Z] ] —/0 B(ZL o 2 85)ds < DN +C/sz/3(s3 —E[ 25 o) ds
CN?*3 ¢
 pAr2/3 L rop 23 L IN2/3 41
=bN S +3b3E[Zo,(m,n)] < NP+ 3N + JE[Z] 0. ()1

From this, we obtain the bound ]E[Zp 0.(m ] < C (g, k)N?/3. Substituting this back into line (4.12) gives
the conclusion (4.7) for £ > €y(e, ). By mcreasing the constant B(e, k), we can cover all £ > 1. O

We state a corollary that quantifies the effect of deviating the endpoint from the characteristic
direction.

Corollary 4.3. For 0 < ¢ < é and k > 0, there exists a finite constant C (&, ) such that for m,n, N,
b>1,

P{z?

-3
b o)) 2 1} S Clex)b” (4.13)

and

-3
B{Z . n-tononyy < 71} < ClE0b (4.14)

whenever these conditions hold: p € [e,1 — €], |(m,n) — Né(p)|1 < «, and, in the case of (4.14), also
n—|bN*B| > 1.

Proof. For (4.13), introduce another scaling parameter M and a constant d via
M&(p)=n+bN*P and d=b(EL)" 2 be?.
Then | Mé:(p) ] = n+ |bN?3| while
n(1-p)? n(l = p)* —mp*
02

+dN*P = m+ dN?P + ——E =
P

Mé& (p) =

from which follows

LM£1(p)) = m+ | be®N*PP| - ke™?
By the shifting Lemma B.4 in Appendix B,

0
IP{ZO,(m, n+|bN23|) =

<P{Z) (e mem) 2 3

27723 -2
2 1} SP{Z5 (o). s o) 2 08N — e}

b82N2/3} < C(e)b3.

In the second-last inequality we assumed b > 2«ke~* which entails no loss of generality because we can
adjust C (&, k). The last inequality is from the upper bound (4.6).
For bound (4.14) apply again Lemma B.4 in Appendix B and then the upper bound (4.6):

P{Zz" ~1} < PZ{ (o < —bN?3} < C(e,k)b73. O

0, (m, n— LbNmJ) =

For directions & = (&1, &7) € |es, e[, x-coordinates m € Z, and r > 0, define
2
Chr = {m} x {y € Z: |mé&2/& - y| < rN3}.
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14 Marton Baldzs et al.

0

Figure 4.1. lllustration of the proof of Lemma 4.4. On the event {Z{i*p < 0, Zop; > 0}, geodesic vy
exits off the y-axis and v* off the x-axis. Dashed straight lines: [0, p] is the ray in direction &, [0, 0]
in direction &,. With high probability, the geodesics vy and v* sandwich the geodesic n%P, while not
wandering too far from the &-directed ray.

(35,,, is the vertical line segment of length 2rN?/3 centered on the &-directed ray at point (m, mé&,/&1).
Recall that 7%7 denotes the unique geodesic of Gy, p that uses i.i.d. Exp(1) weights. The next lemma

shows that for large r, the geodesic 7% L€V is very likely to intersect G5, ,..
Lemma 4.4. For 0 < 6,6 < 1,

holds forall N > 1 and 1 < r < 2(1‘/:F)N1/3 for any direction & = (£1,1 — &) € len, ey such that

& e, 1+8] and anyi € [6N&;, (1 = 8§)N&],

there exists a finite constant C = C(6, &) such that the following

P(n"WNélnel = o) <O (4.15)

Proof. Abbreviate p = (p1, p2) = |£N]. The proof shows that with high probability, 7%? is captured
between two geodesics of stationary LPP processes and then controls the probability that these geodesics
deviate from the &£-ray. Figure 4.1 illustrates the proof.

Take p* = p(&) + rN~5 and px = p(&) — rN~5 with characteristic directions £* = &(p*) and
&x = &(px). The upper bound on r guarantees that p*, px € [g’,1 — &’]. Let v* be the geodesic of
Gp and vy the geodesic of Gf ’;7 We couple the weights of the three LPP processes as follows. The
bulk weights {wy}, ¢ 72, are the same for each LPP process. On the axes, we couple so that, fori, j > 1,

*
Wie, < Iﬁ: /\Ife1 and wje, < Jf;; J]’De2 (4.16)
We can use here the coupling of Theorem 3.1(iii). However, the present proof does not need the
joint stationarity of the LPP processes with parameters p* and p*, and hence a simpler coupling is
adequate. In this simpler coupling, we take all the triples (wje,, Ile i, ) and (wje,, J;’ :2 Jp ) mutually
independent across the indices i, j and then couple within each trlple to have the 1nequaht1es (4.16) and
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the right marginal distributions
x~Exp(l), I ~Exp(l-a), and Jj, ~Exp(a).

We develop estimates to control the location of v4. Similar reasoning applies to v*. The mean value
theorem applied to the function & /&) = (l':;p)2 shows that there exist constants C; (&, 6), C2(g,8) > 0
such that

& &x

CirN3 < (
&1 Ex

)z < CyrN3 for i€ [[oN,N]. (4.17)

Given a € [6&1, (1 — 6)&], define the point 0 = ([aN ], |[aNExz/Ex1] ) on the £x-ray. Let G‘;.’:,[O]

be the stationary LPP process on the rectangle R = [0, p] with boundary weights on the south and west
sides given for i, j > 1 by

%, [0] _ ~pox _ (P* and JP°* 101 Px Px
o+ie| 0,0+ie; 0,0+(i—1)e; o+jer 0 0+]ez 0,0+(j-1)ey”

Superscript [0] indicates that the boundary weights come from Gg’:. By Lemma B.3, the crossing point

of the geodesic v4 through the south and west boundary of R is the exit point of the geodesic of
from that boundary. By (4.17)

Gg*, [0]
07 p

{V*meLaNJ 20 = } C {v*ﬁ[[5,5+2C2rN%e2]] =®}
c {z- 1 ¢ [-2CrN%, 0]}
From this,
B(va N CE,y | 5o =) S B(Z2% ¢ [2CarN3,0])

%}
. (4.18)
=P(Z2* > 0) +P(Z2* < -2CorN3).
s o,p

(The superscript [0] can be dropped from Z2 ’;)[ Vin probability statements because it makes no

difference to the distribution.) We show that the last two probabilities are small. Let
2
y=p2- 2Ng,
Exl
be the vertical distance between the rays & and £x along the east boundary of R. By (4.17),

CU’N% <y< Cer%.

Since p — ye, — o points in the characteristic direction of px, the bounds below follow from (4.13) and
(4.6) for a constant C = C(g, §), uniformly for &, € [ﬁ ﬁ] and a € [6&1, (1 - 6)&1]:

P(Z2* >0) < Cr3
o,p

and (with first an application of Lemma B.4)

p 2y 0 3
P(Z0% < =2CrN3) =B(Z8* < =2CorN* +|y])
2 -
< IP’(ZZ)’;j Lyles < —-CyrN3) < Cr73
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16 Marton Baldzs et al.

Substituting this into (4.18) gives a constant C(¢, §) independent of &, a such that

P(vx N GH =g)<Cr

laN |,2Cyr
Similarly, one shows that

-3

P(v* nes =@)<Cr

laN |,2Cr — -
Combining the bounds above with Corollary 4.3 gives the next estimate, still with a constant C(¢&, §)
independent of &, a:

P{Zp*<0 Zp >0, v* nes + Q, v*ﬂe

-3
0.p LaN |,2Csr ¢®}21—Cr

LaN ],2Cyr
The proof of the lemma is complete once we show that the event above implies the complement of
(4.15): namely, that

{Zp*<0 Zp >0, v nes + 0, v*ne

laN],2Car laN ], 2Cr¢®}

c{nPneé, . o) 9
aN,2Cr :

The inclusion (4.19) holds because conditions Zp * <0, Zp > 0 imply that the geodesic 77 runs

between geodesics v4 and v*, with v« above 7%7 and v* below and to the right of 7%-7. This is where
the coupling (4.16) comes in. We argue one of the two cases: namely,

Zg ; > 0 implies that 7% never goes strictly to the right of v*. (4.20)

Let n = |p|; so that the geodesics end at nﬁ"’ = v¥ = p. Suppose claim (4.20) fails, so that at some index
8.

k, ﬂo’p = v} =zbut v}, = z+ ey while ﬂi’pl =z+e. Zp > 0 implies that k > 1 and z + e; lies in

the bulk Z¢. Since 7(x41,,] did not follow the bulk path VX

larger than that of v

(ks1.n the weight of 741, must be strictly

But now the first inequality of (4. 16) guarantees that path segment v*

[k+1,n]" [k+1,n]

is also inferior to 7|41, for the stationary LPP value Gp . Thus the separation did not happen. O

5. No bi-infinite geodesic away from the axes

This section proves Theorem 2.1. Recall the southwest boundary part 0V = ({-N} x [-N, —-eN] ) U
([-N,-&N] x {-=N}) from (2.1). The parameter € > 0 now stays fixed and hence will be suppressed
from some notation. As in (4.2), a point 0 = (01,07) € ON is associated with its direction vector
&£(0) = (£1(0),1 = &1(0)) € e, e1[ and rate parameter p(0) € (0, 1) through the relations

[ o o2 |\ _ (1-p(0))? p(0)?
¢lo) = (01 +02 o1+ 02) - ((1 —p(0))?+p(0)?" (1 -p(0))?+p(0)? oD
and
(o) = loa] V1I-¢£1(0) 5.2)

Vol + ozl V& (o) +yT—&1(0)

For all 0 € 8V, we have the bounds

1 1 €
&(o) € Lg ) (a ZJ and < p(o) < )
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(0,N)
(0, N?%)
T
(07 _N2/3>
px(0)
Zo7 —N2/3¢q
p*(0)
Zo, N2/3eg
Figure 5.1. Lemma 5.1. For large r, the exit point ZS*LS:;)ZHJe is far to the right from o on the scale
> 2

N?/3. By the uniqueness of finite geodesics, the same holds for Z‘g:c(") for all x € 3, and similarly for

exit points Zg,*x(o) above o.

The proof uses LPP values from points of 0"V to the vertical segment J = {0} x [-N %, N %]] This
latter is indexed by I = [[—N%, N%]]. For o € 9V, let

px(0) =p(0) —rN"3 and  p*(0) = p(0) +rN"3

2.
and consider the stationary LPP processes G/, . and G5, based at 0. The next lemma shows that a large

*
enough r forces the exit point of G’;,x to the x-axis and that of G’o’fx to the y-axis, arbitrarily far on
the N?/3 scale, with a probability bound that is uniform over o0 € " and x € J. See Figure 5.1 for an
illustration.

Lemma 5.1. For 0 < & < 1, there exist finite positive constants Cy(&), C1(&) such that, whenever d and

r satisfy
1<d<ieN'® and Cole)d <r < 2(1—“/‘;\/_)1\/1/3, (5.3)
+ V&
the following bounds hold for all N > 1, x € J, and o € N :
P{Z0%) > —aN*P} < Ci(s)r7? (5.4)
and
P{Z5°(* < aN?P} < ¢y (e)r 72, (5.5)

where px(0) = p(0) — FN3 and p*(0) = p(0) +rN73,

Proof. The upper bound r < Z(T‘/\E/E)NIB guarantees that p« (0), p*(0) € [&’,1—¢’] for all p(0), and
hence the estimates from the increment-stationary CGM apply.

We prove (5.5). (5.4) is similar. Represent 0 € 8¢ as 0 = —(aN,bN), where a vV b = 1 and
a Ab € [g,1]. Abbreviate p = p(0) and p* = p*(0). Then a/b = (l%p)z.
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Uniqueness of geodesics forces the o to | N%/3]e, geodesic to stay above the o to x € J geodesic.
Then apply Lemma B.3 and translate o to the origin 0O to deduce:

*

, LN23 Jey

*

* 2/3
P{Z0 < aN*I*} <P{Z” LN Jer— AN ey S T

< aN**} =p{z*
o

* (5.6)

_ o -

- P{Zo, (aN-|dN23|,bN+|N23]) < 1}'

Define a new scaling parameter M by

aN — dN*P® = M (p¥).

The assumption d < $eN'/* < 1aN'/3 guarantees that M > 0.
To apply (4.14) to the last probability in (5.6), we bound the deviation of bN + |[N*/3| from the
characteristic point M&,(p*).

M&(p*) — bN — [IN*?| > M&(p*) — bN — N*3

* 2 2
— (aN - dN2/3)(p—*) - aN(L) ~ N3
1-p 1-p

_ (. PP =20p% L p* 2 )
- (“’(1—p*>2(1—p>2 (7o) -
alp* PP = p*)* ar(p* +p = 20p*) —d(p*)’(1 - p)* = (1-p*)*(1 - p)?

— 23 )
(a —dN=1/3)2/3 (1-p*)*(1 - p)?

The above followed from definitions (4.2) and (4.3). Next bound the last line from below. The assumption
NG
r <

2(1+\/E)N1/3 guarantees that

p*+p—2pp* = co(e)

for a positive constant cg (&) whose precise value is immaterial. Use additionally a[p*] > 1, a > & and
d > 1 to get the lower bound

Mé&(p*) = bN — [N*| > M*P(cg(e)er —2d) > M*Pcq(e)r

where the last inequality follows from assuming r > 4dcg(g)"'e™! = Cy(g)d and defining c7(g)
suitably. Returning to (5.6), we have

p* 2/31 _ p*
P{Z . < dN*P} = P{ZO’ (aN-LdN | bNALN]) S -1}

p* _ -3
<PAZG (e (om) ). WM o) b r en )y < 1S C1()rTs
The last inequality comes from (4.14). The constant « in (4.14) can be fixed at 2 and ignored. |

We introduce a pair of parameters d = (d;, dz) € Zz>1 that control coarse graining on the scale N%/3,

d; on the southwest portion of the boundary of the square [~N, N]|? and d> on the northeast part. For
0 €N, let

2
Joa={uecd :lu-ol| < %d1N§}
and
0. = the unique minimal point of J, 4 in the coordinatewise partial order on 72 5.7

For an illustration of 0, o, and J,, 4 , see Figure 5.2.
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For a given point 0 € 6", we compare the LPP processes G, . from initial points u € J, 4 with

*
increment-stationary LPP processes G5* . and G_ . with base point o and parameters
1 1
px=ploc)—rN"5 and  p* =p(oc) +rN"3,

assumed to satisfy px, o* € (0, 1). The weights on the boundaries with corner at o, are coupled as in
Theorem 3.1(iii): fori, j > 1,
IP*

. p* X Pk
Wotiep =1, ctie Iu +ie and Wo+jer S ‘]0 ctjer s Joc+jez'

Associated with these LPP processes are vertical increment variables on the y-axis. We are concerned
now only with the range j € I, so the increment variables below are well-defined once —eN < —N?/3,
Foru € J, 4 and p € {px, p*}, let

J‘; = Guojer = Gu(j-ex and Jp ch Jex ch,(j—l)ez’ JEeL
Define the event
2
Ao = {ZS:,—FNZ/H < le Z . [N2/37e, > leS} . (5.8)

Lemma 5.2. Let N > Ny(&) so that the increment variables are well-defined for j € 1. On the event
Ao a4, we have the inequalities

Jj’?* <J¥ < Jj.’* Viel,ueJ,,. (5.9)
There exist constants Cy(€), C1(€) such that, whenever (dy, r) satisfy (5.3), then
P(AS 4) < Ci(e)r™  forallo € dN. (5.10)

Proof. We prove the second inequality of (5.9). The first one comes analogously.

Let G,y be the LPP process on the quadrant o +Zzzo that uses weights w defined by w4 je, = J o:+ jer
forj > 1, W, =0, and Wy +x = We_+x forx - e; > 0.

Suppose first that u = o, + Le; for some £ > 0. The uniqueness of finite geodesics together with the
first inequality of the event A, 4 in (5.8) implies that Zﬁ: x < —d|N 3 for all x € J. Hence both u and

u + e lie on the geodesic of G4* . for all x € J. Consequently,

Px Px  _
G Go(.,x - Gu,x+eg - Gu,x'

O¢,X+ep

Lemma B.1 gives the inequality

Gu,x+ez - au,x > Gu,x+ez - Gu,x~

The other case is that u = o, + ke for some k > 1. Then Gﬁ:,x = 505,x and G, x = Eu,x. This
time, the conclusion follows from Lemma B.2.

Bound (5.10) comes from Lemma 5.1. m]

Next we perform the analogous construction in the northeast quadrant. As in (2.2), N = {N} x
[eN,N] U[eN,N] x {N}. A point & = (51, 3,) € " is associated with a density p(2) € (0, 1) and
a direction £(0) € Jes, e1[ through the relations (5.1)—(5.2). For x,y € Z?* such that x < y, define a
reversed last-passage process Gy x = G,y in terms of the i.i.d. Exp(1) w-weights.

For each parameter value p € (0, 1), analogously with (3.1)—(3.2), we define statlonary last-passage
percolation processes G'O on the southwest quadrant o + 22 Let {IA e }l€Z>0 and {JA } jez., be

mutually independent boundary weights on the north and east, with marglnal dlstrlbutlons Ia e ™
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20 Marton Baldzs et al.

Exp(1 - p) and E_jez ~ Exp(p), independent of the boundary variables I J? . in the southwest

o+ie;’ YV o+jer
quadrant. Put G’g 5 = 0 and on the boundaries
k 1
G° =ZI71. and G° _ =ZJE - (5.11)
0,0-ke; —ie| 0,0-ley o—je
i=1 j=1
Then in the bulk for x = (x1,x7) € 0+ Z2<0’
k 14
G° = max 2171, +G 5o max ZJE 4G yper . (512
o, x | <k<5,-x| £ o—iey o—-kej—ep, x | <0 <5y, Z o—jes o—-ley—ey, x ( )

2
<0’

from the north and east boundaries of 0 + Zio. Precisely,

For a southwest endpoint p € 0 +Z2 , let Zg , be the signed exit point of the geodesic 7P of Gg »

k = PP x|~
argmax {35 P +Gspp-er)s T =0,

—~ o-ie;
7P = k>1 - ~
0,x _ t ~ : 20, X~
ar%gax Dy J2 et Gioterey ) A" =0—e.

For o € N ,let
’j\a,d ={ve N v-o) < %d2N2/3}
and (with an illustration in Figure 5.2),
0. = the unique maximal point of Eg,d in the coordinatewise partial order on Z>. (5.13)
Define again parameters
px=p@.)~rN"3 and  p* = p(3.)+rN 3.

The weights on the boundaries with corner at o, are coupled as in Theorem 3.1(iii): fori, j > 1,

TP* > * TP*
=~ ~ < I- = . < Jo < J- .
Wo.—iey = Iocfiel - IOriel and - w5 —je, < Jocfjez - Joc*jez

Define increment variables on the vertical edges {(x + e1,x + ] + €2) : x € J} shifted by e from J. For
velsa jel,andp € {px, p*}, let

v _ A~ ) A . TP _ AP _ AP
J —Gv,e1+(]—1)e2 G"’el”ez and Jf T T oc,e1+(j-es Oc,e1+jer’
Define the event
Bsy =17+ < -d,N3, 77" > dyN3 (5.14)
0.d oc, [N Nerte ? 0, ~[N?Pexte ' )

We have this analogue of Lemma 5.2.

Lemma 5.3. Let N > Ny(&) so that the increment variables are well-defined for j € I. On the event
Bj. 4, we have the inequalities

* —~ —~
PT<T<T* VjelveTzy, (5.15)
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There exist constants Cy(€), C1(€) such that, whenever (dy, r) satisfy (5.3), then

P(BS ) < Ci(e)r™  forall e V. (5.16)

Let o € &V,5 € 8N and consider LPP from points u € J, 4 to the interval J on the y-axis and
reverse LPP from points v € J5 4 to the shifted interval ey + J. Abbreviate * = p*(0,), Ax = px(0¢)

and p* = p*(0c) , px = px(0c).
A given sequence of steps {X} defines a two-sided walk S(X) by

;-l:lXj nZl

Sn(X)= 0 n=0
0

j:n+lXj n < 0.

Use this notation to define three random walks indexed by the edges {((0, ), (1,j)) : j € I} that run
along the y-axis. The steps are defined by

u,v _ = ) * e T
X; —J}‘—JJY, Yj—Jj*—J- and Y; =J, —-Ji*.
The corresponding walks are denoted by
SV = §(X*Y), S =S¥’), and S=S(Y).

Recall the events defined in (5.8) and (5.14).

Lemma 5.4. The processes
(S, :me[-N*3,-1]} and {S,:ne[1,N*3]} are independent.
On the event Ay, q N\ Bg 4, forallu € J, g and v € ig’d,

Sp < S“v <S8 for ne[1,N*3]

! (5.17)
and S, <SwV <S8, forne [[—N2/3,—1]]-

Proof. The independence of the stationary LPP processes defined on the southwest and northeast

quadrants implies that the processes {Jp * Jp }jer and {J o J’l }jer are independent of each other.

Theorem 3.1(i) 1mp11es that within these processes, {Jp *}j<o0 and {Jp * }j»1 are independent, as are

{J *}j>1 and {J } j<o0. (Note the switch in the direction of indexing: since the geodesics of G'O
proceed southwest instead of northeast, application of Theorem 3.1 requires reversal of lattice dlrectlons )

Inequalities (5.17) come from the inequalities (5.9) and (5.15). m]
Next observe that the walk S*-¥ controls the edge along which the geodesic 7>V steps away from the
y-axis.
Gu,v = Sup {Gu,(O,n) +Gv,(1,n)}
up<n<v
= sup {Gu,0,0) + [Gu,0,m) = Gu,0,0)] + av,(l,()) - [év,(l,()) - av,(l,n)]}
up<n<v

sup {Gy (0,0 + év,(l,O) +S5, )

uy<n<vy
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In consequence,

foru€J,gandv € ia,d, the geodesic 7> goes along the edge ((0, j), (1, j))

if and only if j = argmax {S}"} : (5.18)

ury<n<wv

that is, if and only if the almost surely unique maximum of S;;"" is taken at n = j.
Leto € 0N and o= —0 € 6N as in Figure 5.2. Let o, € J, 4 be defined by (5.7)and o, € Jgd by
(5.13). We will take d; # da, s0 0, # —o, is possible. Foru € J, g and v € Jo,d, define the event

U"Y = {geodesic 7*¥ uses edge ((0,0), (1,0))}. (5.19)

Lemma 5.5. Let r = N and d = (1, N%). There exist constants C(g), No(&) such that for all 0 € 0N
and N = Ny(¢),

P U U) < C(e)N25,

ue Jn,d, Vv E i;)d
Proof. Fix o € 0N.Forany u €9, 4,v € ig,d, by (5.18),

u*v ¢ < sup SV < 0} ﬂ{ sup SV < 0}.
0<I<N2/3 -N23<i<0

By Lemma 5.4, on the event A, 4 N B5 4,

U { sup S;"V<O}§{ sup Sl<0}

= 0<I<N?3 0<I<N2/3
ue jo.d, Vv e Jﬁ,d

and U { sup SV < O} - { sup S, < O}.
= -N23<i<0 ~-N23<1<0
u Ejuyd,v Ejg‘d

Thus on the event A, ¢ N B 4,

U u*v c { sup S; < 0} N { sup S, < 0}.
= 0<I<N?2/3 -N23<i<0
u€lod,velsa

By the independence claim of Lemma 5.4,

IP( g ) U“"’)SP( sup s,<o) ( sup S <0)+P(ACdUBC ). (5.20)

0<I<N?2/3 -N2/3<i<0
u Ejo,d, Vv E jJ.d

Let p = p(o.) and A = p(0,). Since p(0) = p(0), there is a constant C(&) such that, for N > 1,
lp— A < C(&)(da+d)N"3 < C(e)N~/%, (5.21)

Each step of the random walk S on [[1,N %]] is the difference of independent exponential random

variables with parameters p* = p +rN 3 and Ax = A —rN -3, Similarly, each step of the random
walk " on [-N 23, —1] is the difference of independent exponential random variables with parameters
px =p—rN=3 and A* = 1+rN~3. Take r = N15. Then for N > No(&), we have p* > Ax. (By (5.21),
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Figure 5.2. The square [-N,N]? with two possible arrangements of the segments J,. 4, ﬁo’d and
F5.a= 3"(17 4 Y 3"(27 4 on the boundary of the square. In both cases, 0 = —o.

we can take No(g) = C(g)'%0.) Inequality (C.1) with @ = p* and 8 = A4 gives the bound

IN

C [ _(p=a+2N VAN p-asan
N3 p+a
C (1 (p—/l+2rN‘§

NY p+A

P( sup S§; <0

1
0<I<N?23 p+rN3

IA

2 \N?3
) ) + C(d1+d2+r)N‘%.

With r = N& and d = (dy,dy) = (1, N%), the last line is dominated by the last term. Thus there is a
constant C3(&) > 0 not depending on o, such that

IP( sup S; < 0) < CN°F. (5.22)
0<I<N?2/3
Similarly, one shows that
P( sup S <0)<aNh, (5.23)
—-N23<1<0

With r = NT5, (5.10) and (5.16) give for N > No(&)
P(AS ,UBS,) < Cr3=CN5. (5.24)

To complete the proof, substitute (5.22), (5.23), and (5.24) into (5.20). m]

Remark 5.6. In the proof above, we can observe where the optimal estimate is lost. Namely, if the
probability P(Az a Y Bs d) could be ignored in (5.20), we could take r and d; to be constants. This

would result in the bound C3N~1/3 in (5.22) and (5.23). The end result would be an upper bound of order
N~2/3 on the probability that two opposite blocks of size N%/3 are connected by a geodesic through the
origin. Since geodesics fluctuate on the scale N>/3, this is the expected order.

Let 0 € " and 0 = —o be as before above Lemma 5.5. For d = (dy, d»), set
Fsa={ved :|o-v > 1d:N3}.
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Lemma 5.7. Let d = (1, Né). There are finite constants C (&) and No(g) such that, for any N > Ny(g)
and o € OV,

IP( U U“’V) < C(e)N~3 (5.25)

ue jo,d, Vv e /3\‘5’(1
Proof. Define the sets of boundary points

65}5,[, ={ve ?g,d :3du e ’3\5,[1 such that v ~ u}
0Joa={velpa:Tuc oV \ Jp.q such that v ~ u},

where v ~ u means that v and u are adjacent in the graph Z2. Their cardinalities satisfy 1 < |6§"g, al <
|0J0,al < 2. (For example, 0F5 4 is a singleton if J5 ; contains one of the endpoints (N, |eN]) or

(LeN], N) of 8N .) We denote the points of dF; 4 by ¢', ¢ and those of 87, 4 by h', h2, labeled so that
these inequalities are satisfied:

IA
\%

-~ 2 1 -~ 2
01=2q), qp=20224;

01> hi, hj

9i
hy

\%
A

0y < h%

Geometrically, starting from the north pole (0, N) and traversing the boundary of the square [-N, N]?
clockwise, we meet the points (those that exist) in this order: ¢! — 0 — ¢*> — h' — o — h? (Figure
5.3).

For points u € AN, v e dN let

Puv =gV n{x € Z? :x; =m}
be the intersection of the geodesic 7*>" with the vertical line at x; = m. For ¢ > 0, let

Vo —
V1 —

DY = { inf 1y +

m,t )
p=(p1, p2) € Ppi”

22 (m - uy) —172| > t} (5.26)
Uy

be the event that along this vertical line, the geodesic 7*-" deviates by distance at least ¢ from the straight
line segment from u to v. We now show that the event in (5.25) implies that one of the geodesics 7 />4’
deviates by at least order d, N>/3 from the straight line segment [/’ g'].

Foro € 0N, u € 83, 4andv € 6@5"1 decompose as u = o +¢" and v = 0+ ¢”. These vectors satisfy

le“l; < LdiN3, Je"]s = LdoN3, el VeS| <2(1—e)N, and ele} <O. (5.27)

§6,d is the union of two disjoint pieces separated by fg’d, one of which can be empty. f?é 4 isto the
left and above jg’d, separated from ’j\g’d by the point g'. §'% o is to the right and below f]\,id, separated
from 5,7"1 by the point ¢>. They can be expressed as follows:

Tl _ T Y v T2 T Y v
?a’d—{ve?g’d.eISOSez} and ?a,d—{ve?g,d.eZSOSel}.

Decompose the point appearing in (5.26) suitably, using v; —u; = 0;+e} — (0; +el') = —20;+e} —e.

V) — Up Vo) —Uup V) — Uz
Uy + (m—uy) =0, - o1 +ey + (m —ef)
V1 — Ui V1 —Uuj v
v A4 u u
oe, —oi1¢e ope; —oe Vo — Uy
= 1 C—— 24l ———Z(m—el). (5.28)
V1 — Uy V1 — Uy Vi —Uuj
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The first term on the last line is of order ®(d,N?/?) because there is no cancellation in the numerator.
It is positive if v € 51\“(17 , and negative if v € ?{27 4 This term dominates because dy >> d.

From the calculation above, we bound signed vertical distances from the x-axis to the line segment
[u, v]. In addition to (5.27), we utilize —N < o; < —eN, 2Ne < v; —u; < 2N, and the slope bound

e 2Tl < o7l
vi—ul

First, foru € J, g and v € 5% 2 We bound below the positive distance from the origin to [u, v], so
we take m = 0. The e¥-terms on line (5.28) are collected together into a single error term.

V) — U eNleY
o+ 27 s | |1_(

N -1 u
—+1l+e )le |1
Vi — U 2N 2Ne (529)

\%

LedyN3 = 257'd\N3 > LedyN5.

In the last inequality, we used (d, d») = (1, N'/3) and took N > (16&72)8.
Foru e J, g4andv e 5"(27 4+ We bound above the negative distance from the point (1,0) to [u,v] and
hence take m = 1: '

<
[\v]
—~
—
|
<
~
IA

8N|€v|1 N 1 u 1
+ — —2—+(2—+1+s )|e i +&
Vi —Uup N Ne (530)

IA

1 2 -1 2 1 2
—18d2N3 +3&7d|N3 < —§8d2N3.

Now suppose that for some u € J, 4 and v € 575’61, the geodesic 7Y goes through the edge
((0,0), (1,0)). We have two cases:

() Ifve F (13 o then the geodesic 7 h'.q' stays below and to the right of 7*¥ because both its endpoints
are below and to the right of the endpoints of 7%V, Then (5.29) with u = h' and v = ¢' shows that
at x-coordinate x = 0, the geodesic n-4" deviates from the straight line segment [h', ¢!] by at
least %sdgN 3. This case is illustrated in Figure 5.3.

(i) Ifv € ?2 » then the geodesic 74 stays above and to the left of 7. Now (5.30) with u = h>

and v = g® shows that at x-coordinate x = 1, the geodesic n"%4* deviates from the straight line
2
segment [h%, ¢*] by at least $ed,N3.

Put cases (i) and (ii) together, and apply Lemma 4.4:

hl,l hZ, 2 3 3
B U ) S PO s UPLE ) S €I =N

u€ldod,veTFs

The proof is complete. O

Lemma 5.8. There is a constant C(g) such that for any o € %,

IP( U U”"’)SC(S)N_%

u€dyq,vedN

Proof. Since 8N =T ;U F5 4,
P( U Uu,v) SP( U U”’V)+P( U Uu,v)
u€Jpq,vedy ueloaveFsq u€Jod,v €35

and Lemmas 5.5 and 5.7 give the claimed bound. m}
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h2
Io,d
hl

Figure 5.3. Case (i) in the proof of Lemma 5.7. The geodesic n*>" connects J, 4 and 5"{17 o through the

edge ((0,0), (1,0)). The geodesic n h'a" lies below 7 and hence well below the [A', ¢'] line segment
(dashed line).

We come to the final step of the proof that geodesics that connect 8V and N through the origin are
rare. Recall the event Wy, o defined in (2.3).

Proof of Theorem 2.1. A geodesic through the origin takes after that either an e; or an e; step. By
symmetry, it suffices to control only one case. We prove

IP( U U“’V)SC(E)N—ﬁ (5.31)

uedN,vedoN

for the event U*>V defined in (5.19). As before, d = (1, N %). To coarse grain N let

OV =N ({(-N+iar NP -W)} o NN+ janviDY ).

Then decompose

U Ut U U Uy,

~ N ~
uedN,veoN 00N yeg, 4,vedN

As |ON] < C(s)dl_lNl_% = C(S)N%, a union bound and Lemma 5.8 give (5.31):

IP( g U“’V)s D P( g U“’V)SC(a)N%N—%zag)N—ﬁ. o

ueoN,vedN 0eON u€dy g, vedN

6. No nontrivial axis-directed geodesic
First we complete the proof of Theorem 2.2 with the lemma below and then prove the lemma.

Lemma 6.1. Let nx = (1,1 — k1) €]ez, e[ be a monotone sequence of directions such that
My <M1 <-or <Mt <o andlimgseo i = €. Let wy o = w(n, k) = (Lnne,1 ), n—nne,1]) € 22,
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be lattice points such that lim,_,co n™'w,, ;. = 1y for each k. Then

kli_>_rr;o nlL_ngo [GO,w(n,k) - Gez,w(n,k)] =00 P-almost surely. 6.1)
Proof of Theorem 2.2. It is enough to prove the case e for x = 0.

Fix n; and w,, & as in Lemma 6.1, and let ¢ be the event of full probability on which (6.1) holds.
Fix w € Qo, and suppose that at this w, there is a semi-infinite geodesic 7 = {7, } ez, such that mp = 0,
ne=(€—1,1) for some £ > 1, and lim | n~'n, - es = 0. We derive a contradiction.

By connecting e; = (0, 1) to the point 7, = (£ — 1, 1) (now fixed) with a horizontal path, we get the
lower bound

~

-1
Gez,ﬂ" > W, + Gmﬂ,ﬂn forn > €.

i

Il
(=}

That n is a geodesic from mgp = 0 implies Go,x, = Go,x, + G ,,,,x, for n > . Thus

-1
Go.ny = Germy < Gomp = Y w1y foralln > ¢, (6.2)
i=0

By the assumptions li_mn‘lﬂn ey =0 and ng € ey, e1[, and by the crossing lemma, for each k there
are infinitely many indices n such that

GO,ﬂn - Gez,ﬂn 2 GO»Wn,k - Gez,wn,k~
Hence, for each k&,

m [GO,nn - Gez,nn] = m [GO,W,,,;c - Gez,w,,,k]'

n—oo n—oo

Limit (6.1) now contradicts (6.2) because the right-hand side of (6.2) is fixed and finite. m]

Proof of Lemma 6.1. Letr < oo, and begin by bounding as follows:

P{ lim Tim [Gowimnt) = Gerwinio] 27} 2 Tim P{ lim [Gowini) = Gerwinio] >}

k—00 n—o0

(6.3)
We show that the last probability converges to one as k — oo.
Choose parameters Ay so that
VI=1i,
1> 4> p(nk) = (6.4)

VI =m0+ '

Define the reverse stationary LPP processes G ik(n k) ox for x € wy i + Zio as in (5.11)—(5.12), with
parameter A and northeast base point w, . As before, for x € w,, x + Zio, let
T _ A ~ph
Jw(n,k),x - Gw(n,k),x - Gw(n,k),x+e2
denote vertical increment variables with distribution ffv"(n ox ™ Exp(Ax). Similarly to the argument
in Lemma 5.3, when the geodesic of 6;&"(”’/()’0 takes a —e step from w,, f, that is, Z;lvk(n,k),o > 0, the
increments satisfy
_— ~ ~
ka(n,k),O S Gwnh),0 = Gwnk),er = Gow(nie) = Gez,w(n,k)- (6.5)

The inequality follows from a combination of Lemmas B.1 and B.2.
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1- Nk,1

0 Mk, 1

Figure 6.1. When the geodesic is forced to go downward from the northeast corner, the geodesic chooses
the distance s on the east side to maximize the sum of Exp(Ay) weights on the east side and the bulk
LPP value between the origin and the point (g 1,1 — 1K1 — S).

To take advantage of this, we record the limiting shape functions. The stationary LPP process almost
surely satisfies

15 A _onka . L=mep
A G0 = T T T

(6.6)

~A F Ak
Let ka(n k),0 [Zwk(n k),0

paths that satisfy the condition Z% w0 < 0 or, equivalently, take first a —e; step from w,, . The limit
can be calculated from a macroscopic variational formula (see Figure 6.1 for justification):

< O] denote the last-passage value computed by maximizing over only those

152 F A _ S
Jim n™ Gl ), O[Zwk(n,k),O <0] = OSSZ‘E’W l{ﬂ +g(Mi,1, 1 =it — S)}

=g(Mi,1, 1 = ni1).

6.7)

That the supremum is achieved at s = 0 is a consequence of (6.4). Increasmg Ay strictly above the
characteristic value p (%) as in (6.4) has the effect that the geodesic of G W (k)0 spends a macroscopic
distance on the horizontal boundary w,,  + Z.pe;. Hence, forcing the —e; step from the corner w, i is
suboptimal, and it can be checked directly that

1-
Nk,1 + Nk,1

-1 PP 80,1, 1 = nic,1). (6.8)

We deduce a probability bound from (6.5).

P(Gowink) = Gerwingy <) SP(Zp5, 10 o <O)+B(TK 00 <7)
_ _ A Sk A
=P{G w00 = 0w om0 <0 fl—em

By (6.6), (6.7), and (6.8), the first probability on the last line vanishes as n — co. Switch to complements
to get

th P(GO,w(n,k) - Geg,w(n,k) > r) = e~

n—oo

From this, upon replacing r by r + ¢ for € > 0,

P{ 'Eo [Gow(nt) = Gerwini] > 7}

> P{Go,w(n,k) — Gey,wink) > 1+ ¢ for infinitely many n} > ¢ W Ake,
By assumption, n7x,; — 1. Hence we can satisfy (6.4) while also having Az — 0. Thus the lower
bound in (6.3) equals one. O
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Appendix A. Queues

We formulate last-passage percolation over a bi-infinite strip as a queueing operator. The inputs are
two bi-infinite sequences: the inter-arrival process a = (aj);ez and the service process s = (s;)jez.
The queueing interpretation is that a; is the time between the arrivals of customers j — 1 and j, and
s is the service time of customer j. The operations below are well-defined as long as lim,;,—,_c Z?:m
(si = ajy1) = —o0.

From inputs (a, s), three output sequences

d=D(a,s), t=S(a,s), and S=R(a,s) (A1)

are constructed through explicit mappings: the inter-departure process d = (d;)jcz, the sojourn
process t = (1) jez, and the dual service times $ = (5);ez.

The formulas are as follows. Choose a sequence G = (G j);¢z that satisfies a; = G; — G j_;. Define
the sequence G = (G ;)jez by

G, = sup {Gk+2sl} (A2)

k: k<]
The supremum above is taken at some finite k. Then set
deGj—Gj_l, [jZGj—Gj, and \szaj/\l‘j_l. (A.3)

The outputs (A.3) do not depend on the choice of G as long as a; = G; — G;_;. Letting k be a
maximizer for G;_; in (A.2), we obtain the inequality

j !
dj=G; =Gy 2 (Ge+ ysi) = (Gt ) si) =5 (A4)
i=k i=k

If we start with two coordinatewise ordered inter-arrival processes a; < a’; (for all j) and use the same
service process s to compute sojourn processes t = S(a, s) and t’ = S(a’, s), the inequality is reversed:

/=G, G = sup {G' G’+Zs,}< sup {Gk—G +Z }:tj. (A5)
kik<j k:k<j ik

Note that to compute {d;,;,5; : j < m}, only inputs {a;,s; : j < m} are needed.
The next lemma is a deterministic property of the mappings.

Lemma A.1. The identity D(D(b,a),s) = D(D(b, R(a,s)), D(a,s)) holds whenever the sequences
a, b, s are such that the operations are well-defined.

Proof. Choose (A;) and (B;) sothat A; — A;_; = a; and B; — B;_1 = b;. Then the output of D (b, a)
is the increment sequence of

¢
E[ = sup{Bk + Z ai}.
k<t P
Next, the output of D(D (b, a), s) is the increment sequence of
¢

m
tin = (e s = pup (B s [ 24 ars D)
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Similarly, define first

ij sup {Ak+z } and B{»_sup{Bk+Z }

kik<j k<t p—y

Then the output of D (D (b, R(a,s)), D(a,s)) is the increment sequence of

4 m
el S35 s o [ S50 S

< j=t k<m i=k j=t

It remains to check that

l

m 14 m
max [ZE,-+ZJ,-]= max [Z Z ]
Ck<t<ml 4 - ‘ C:k<l<m
i=k j=t i=k

j=t
This can be verified with a case-by-case analysis. See Lemma 4.3 in [15]. O

Specialize to stationary M/M/1 queues. Let o be a service rate and |, @, arrival rates. Assume
o > a; > @y > 0. Letb',b?, s be mutually independent i.i.d. sequences with marginals b% ~ Exp(ay)
for k € {1,2} and 5; ~ Exp(o). Define a jointly distributed pair of arrival sequences by (a',a%) =
(bl, D(b?, bl)). From these and services s, define jointly distributed output variables:

k= p(ak,s), tF=5(a*s), and § =R(ak,s) forke{1,2}.

Lemma A.2. We have the following properties.

(i) Marginally a is a sequence of i.i.d. Exp(a») variables.
(ii) For fixed k € {1,2} and m € Z, the random variables {d;f}js,n, tk ., and {Ef }j<m are mutually

independent with marginal distributions dj? ~ Exp(ay), t* ~ Exp(o — ay), and EI; ~ Exp(o).

(ili) For a fixed k € {1,2}, sequences d* and € are mutually independent sequences of i.i.d. random
variables with marginal distributions dj? ~ Exp(ay) and EI; ~ Exp(o).

(iv) (d',d?) 4 (a',a%): in other words, we have a distributional fixed point for this joint queueing
operator.
(v) For any m € Z, the random variables {a%}is,n and {a} }j=m+1 are mutually independent.

Proof. Parts (i)—(iii) are basic M/M/1 queueing theory. Proofs can be found, for example, in Lemma
B.2 in Appendix B of [15].

For part (iv), the marginal distributions of d' and d? are the correct ones by Lemma A.2(iii). To
establish the correct joint distribution, the definition of (a', a%) points us to find ani.i.d. Exp(a;) random
sequence z that is independent of d! and satisfies d*> = D(z,d'). From the definitions and Lemma A.1,

d’> = D(a%s) = D(D(b%,a'),s) = D(D(b%, R(a',s)), D(a',s)) = D(D(b2,8"),d).
By assumption, b2, a!, s are independent. Hence, by Lemma A .2(iii), b2, §',d! are independent. So we
take z = D(b?, EI), which is an i.i.d. Exp(a;) sequence by Lemma A.2(iii). This proves part (iv).

We know that marginally a' and a® are i.i.d. sequences. In queueing language, observation (V)
becomes obvious. Namely, since a> = D(b?, a'), the statement is that past inter-departure times {a%}i <m
are independent of future inter-arrival times {a} }j=m+1. Rigorously, (A.2) and (A.3) show that variables
{a?}i<m are functions of ({6?};<m , {a} }i<m), which are independent of {a;}jZm_;.]. o
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Appendix B. Coupling and monotonicity in last-passage percolation

In this section, w = (wy), 72 is a fixed assignment of real weights. G , is the last-passage value defined
by (1.1). No probability is involved.

Lemma B.1. Suppose weights w and w satisfy wosie, = Worieyy Worje; < Wotjer, aNd Wy = Wy for
i,j>zlandx € o+ Z2>0. As in (1.1), define LPP processes

[y=oli ly—oli

Go,y = max Z wy, and G,y = max Z Wy, for yeo+Zz>0.
x, €llp,y =0 -

2
>0’

Then for all y € o + Z7,, the increments over nearest-neighbor edges satisfy

Go,y+el - Go,y > Go,y+e1 - Go,y and Go,y+ez - Go,y < Go,y+ez - Go,y-

Proof. The statements are true by construction for edges (y,y + ¢;) that lie on the axes o + Zxge;.
Proceed by induction: assuming the inequalities hold for the edges (y,y + ¢2) and (y,y + e1), deduce
them for the edges (y + ez, y +e1 +e3) and (y + e,y +e1 +e3). O

Lemma B.2 (Crossing Lemma). The inequalities below are valid whenever the last-passage values
are defined.

G0+el,x+ez - G0+el,x < Go,x+ez - Go,x < G0+€2,X+€2 - G0+€2,X (Bl)

Go+ez,x+e1 - Go+ez,x < Go,x+e1 - Go,x < Go+e1,x+e1 - Go+e1,x~
Proof. The proofs of all parts are similar. We prove the second inequality in (B.1): that is,
Go,xter = Go,x < Gores, xver =~ Goser, x- (B.2)
The geodesics 7, x+e, and Tp+e,, x must cross. Let u be the first point where they meet. Note that
Gow+Gux <Gox a0d Goreru + Gu, xves < Gorey, vrer- (B.3)

Add the two inequalities in (B.3), and rearrange to obtain (B.2). _
This inequality can also be proved from Lemma B.1, by writing G oe,, x+e; = Gotes, x = Go, x+es —

Go, x With environment We4y = We+y When y2 > 0 and We+ie, = —M for large enough M. O
Fix base points # < v on Z2. On the quadrant v +ZZZO, put a corner weight r7,, = 0 and define boundary

weights
Nvtke; = Gu,vike; = Gu,vi(k-1)e;, fork € Zopandi € {1,2}.

In the bulk, use ny = wy forx € v + Zio. Denote the LPP process in v + ZZZO that uses weights
{UX}XE\HZZ by

>0
[x=v i

G‘[,”L = max Nxi» XEV +ZZZO.
x, €Il x 0

The superscript [u] indicates that G!*] uses boundary weights determined by the process G, with
base point u. Figure B.1 illustrates the next lemma. The proof of the lemma is elementary.

Lemma B.3. Letu < v <y inZ>. Then Guy=Guy+ G‘[,"; The restriction of any geodesic of G,y to
v+ Zzzo is part of a geodesic of G‘[,”; The edges with one endpoint in v + Zio that belong to a geodesic

u .
ofG‘[,’; extend to a geodesic of G, .
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ey

v Jw

Figure B.1. Illustration of Lemma B.3. Path u-x-y is a geodesic of Gy, and path v-x-y is a geodesic
[u]
of Gy y.

U@

Assume now that the weights are such that geodesics are unique. Define the exit point Z,, ,, as in

(4.1). For k > 1, let Ziﬂ(el’p be the exit point of the geodesic of G !

wtker, p* The lemma below follows
from taking v = u + ke in Lemma B.3.

Lemma B.4. For positive integers m, Z,, , = k + m if and only ifZL[E{el p =M

Appendix C. Random walk bounds

Lemma C.1. Let « > 8 > 0, and let S, = Y} _, Zi be a random walk with step distribution Zj ~
Exp(a) — Exp(B) (difference of two independent exponentials). Then there is an absolute constant C
independent of all the parameters such that for n € Z,

P(S] >O,S2>0,...,Sn>O)S

and
P(Sl<0,S2<0,...,Sn<O)§%( _EZ;gj)n a;ﬁ .1
Proof. Define the events
AYP =($;>0,...,8,>0} and B P ={S;>0,...,5.,.1 >0, S, <0}
for n € Z¢ and also the decreasing limit A%P = Mps1 Ay # Then
P(ATP) = i P(BIP) + P(ASP). (€2)
k=n+1
Lemma B.3 in Appendix B of [15] calculated
P(ByP) = Cyey % (C.3)

where C, = L (¥

here compared with Lemma B.3 of [15]. From (2:)2‘2" ~ (7n)~12, we can fix a constant c( such that
Ci-1 £ Co4k71k73/2.
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The assumption o > f gives EZ; = &' = B! < 0, and hence 3,5, P(BS*) = 1 and P(AZP) = 0.
Thus (C.2) and (C.3), together with 7, ., k732 <on712 give

g @ of Ve S C(@-pP k!
P(Ay )—a+ﬁZCk_1((ﬂ+a)2) Sa+ﬂk:2n+lk (1 (a/+ﬂ)2)

2c0 1 (a=pB)*\n
oep Wil Garpr)

Since —S,, is obtained from §,, by switching & and g around,

k=n+1

(C.4)

P(S1<0.....5, < 0) = P(AS") = 3 P(BE")+ P(AL"),

k=n+1

Bound the series above as in (C.4) (with « and 8 interchanged), and add P(Afo’a) = % This last fact
appears on page 600 of Resnick [32] and in Example VI.8(b) on page 193 of Feller II [16]. O
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