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Abstract

We establish estimates for the coalescence time of semi-infinite directed geodesics

in the planar corner growth model with i.i.d. exponential weights. There are four

estimates: upper and lower bounds on the probabilities of both fast and slow coales-

cence on the correct spatial scale with exponent 3/2. Our proofs utilize a geodesic

duality introduced by Pimentel and properties of the increment-stationary last-passage

percolation process. For fast coalescence our bounds are new and they have matching

optimal exponential order of magnitude. For slow coalescence we reproduce bounds

proved earlier with integrable probability inputs, except that our upper bound misses

the optimal order by a logarithmic factor.
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1 Introduction

Random growth models of the first- and last-passage type have been a central part

of the mathematical theory of spatial stochastic processes since the seminal work of

Eden [13] and Hammersley and Welsh [18]. In these models, growth proceeds along

optimal paths called geodesics, determined by a random environment. The interesting

and challenging objects of study are the directed semi-infinite geodesics. These pose an

immediate existence question because they are asymptotic objects and hence cannot be

defined locally in a simple manner. Once the existence question is resolved, questions

concerning their multiplicity and geometric behavior such as coalescence arise.

Techniques for establishing the existence, uniqueness, and coalescence of semi-

infinite geodesics were first introduced by Newman and co-authors in the 1990s [19,
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Coalescence estimates for the CGM

20, 22, 23] in the context of planar undirected first-passage percolation (FPP) with

i.i.d. weights. These methods were subsequently applied to the exactly solvable planar

directed last-passage percolation (LPP) model with i.i.d. exponential weights by Ferrari

and Pimentel [16] and Coupier [12]. This model is also known as the exponential corner

growth model (CGM).

A key technical point here is that the strict curvature hypotheses of Newman’s work

can be verified in the exactly solvable LPP model. A second key feature is that the

exponential LPP model can be coupled with the totally asymmetric simple exclusion

process (TASEP). This connection provides another suite of powerful tools for analyzing

exponential LPP.

The work of [12] and [16] established for the exponential LPP model that, almost

surely for a fixed direction, directed semi-infinite geodesics from each lattice point

are unique and they coalesce. An alternative approach to these results was recently

developed by one of the authors [28], by utilizing properties of the increment-stationary

LPP process.

Once coalescence is known, attention turns to quantifying it: how fast do semi-infinite

geodesics started from two distinct points coalesce? The scaling properties of planar

models in the Kardar-Parisi-Zhang (KPZ) class come into the picture here. This class

consists of interacting particle systems, random growth models and directed polymer

models in two dimensions (one of which can be time) that share universal fluctuation

exponents and limit distributions from random matrix theory. For surveys of the field,

see [11, 25].

It is expected that, subject to mild moment assumptions on the weights, planar FPP

and LPP are members of the KPZ class. It is conjectured in general and proved in exactly

solvable cases that a geodesic of length N fluctuates on the scale N2/3. Thus if two

semi-infinite geodesics start at distance k apart, we expect coalescence to happen on

the scale k3/2.

The first step in the study of the coalescence exponent was taken by Wüthrich [29].

He proved a lower bound with exponent 3/2− ε for LPP on planar Poisson points. This

was the first application of the first-passage percolation techniques of Newman and

coauthors in the context of an exactly solvable last-passage percolation model. The

second step in this direction was taken by Pimentel [24] for the exponential CGM. By

relying on the TASEP connection, he proved that in a fixed direction, the so-called

dual geodesic graph is equal in distribution (modulo a lattice reflection) to the original

geodesic tree. Next, by appeal to fluctuation bounds derived by coupling techniques in

[4], he derived an asymptotic lower bound on the coalescence time, with the expected

exponent 3/2.

The next step taken by Basu, Sarkar, and Sly [7] utilized the considerably more

powerful estimates from integrable probability. For the upper bound on the coalescence

time, they established not only the correct order of magnitude k3/2 but also upper and

lower probability bounds of matching orders of magnitude. In the same paper the

original estimate of Pimentel was also improved significantly.

Our goal in taking up the speed of coalescence is the development of proof techniques

that rely only on the stationary version of the model and avoid both the TASEP connection

and integrable probability. The applicability of this approach then covers all 1+1

dimensional KPZ models with a tractable stationary version. This includes not only

various last-passage models in both discrete and continuous space, but also the four

currently known solvable positive temperature polymer models [10]. Extension beyond

solvable models may also be possible, as indicated by the exact KPZ fluctuation exponents

derived in [5] for a class of zero-range processes outside currently known exactly solvable

models. This is work left for the future. Another somewhat philosophical point is that
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capturing exponents should be possible without integrable probability. This has been

demonstrated for fluctuation exponents by [4] for the exponential LPP and by [26] for a

positive-temperature directed polymer model.

The results of this paper come from a unified approach based on controlling the

exit point of the geodesic in a stationary LPP process and on Pimentel’s duality of

geodesics and dual geodesics. This involves coupling, random walk estimates, planar

monotonicity, and distributional properties of the stationary LPP process. Here are the

precise contributions of the present paper (details in Section 2.2):

(i) The upper and lower bounds for slow coalescence originally due to Basu et al. [7],

though our upper bound falls short of the optimal order by a logarithmic factor (The-

orem 2.2). Our contribution here is to give a proof without integrable probability

inputs.

(ii) Upper and lower bounds for fast coalescence of matching exponential order (Theo-

rem 2.3). These are new results.

(iii) A lower bound on the transversal fluctuations of a directed semi-infinite geodesic

which improves bounds obtainable without integrable probability (Theorem 2.8).

(iv) Strengthened exit time estimates for the stationary LPP process without inte-

grable probability, some uniform over endpoints beyond a given distance (Theo-

rems 4.1, 4.4, 4.5).

We mention two more general but related points about the exponential CGM.

(a) When all directions are considered simultaneously, the overall picture of semi-

infinite geodesics is richer than the simple almost-sure-uniqueness-plus-coalescence

valid for a fixed direction. Part of this was already explained by Coupier [12]. Recently

the global picture of uniqueness and coalescence was captured in [21]. Coalescence

bounds that go beyond the almost surely unique geodesics in a fixed direction are left as

an open problem for the future.

(b) Various geometric features of the exponential LPP process can now be proved

without appeal to properties of TASEP. An exception is a deep result of Coupier [12] on

the absence of triple geodesics in any random direction. This fact currently has no proof

except the original one that relies on the TASEP speed process introduced in [1].

Organization of the paper

Precise definition of the exponential LPP model and the main results appear in Section 2.

Section 3 collects known facts about the CGM used in the proofs. This includes properties

of the stationary growth process and the construction of the directed semi-infinite

geodesics in terms of Busemann functions. Section 4 derives new exit time estimates for

the geodesic of the stationary growth process, stated as Theorems 4.1, 4.4, and 4.5. In

the final Section 5 the exit time estimates and duality are combined to prove the main

results of Section 2. The appendix contains a random walk estimate and a moment bound

on the Radon-Nikodym derivative between two product-form exponential distributions.

Notation and conventions

Points x = (x1, x2), y = (y1, y2) ∈ R
2 are ordered coordinatewise: x ≤ y iff x1 ≤ y1 and

x2 ≤ y2. The `1 norm is |x|1 = |x1| + |x2|. The origin of R2 is denoted by both 0 and

(0, 0). The two standard basis vectors are e1 = (1, 0) and e2 = (0, 1). For a ≤ b in Z
2,

Ja, bK = {x ∈ Z
2 : a ≤ x ≤ b} is the rectangle in Z

2 with corners a and b. Ja, bK is a

segment if a and b are on the same horizontal or vertical line. We use Ja−e1, aK, Ja−e2, aK
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x

y

Figure 2.1: An up-right path between two integer points x and y.

to denote unit edges when it is clear from the context. Subscripts indicate restricted

subsets of the reals and integers: for example Z>0 = {1, 2, 3, . . .} and Z
2
>0 = (Z>0)

2 is

the positive first quadrant of the planar integer lattice. For 0 < α < ∞, X ∼ Exp(α)

means that the random variable X has exponential distribution with rate α, in other

words P (X > t) = e−αt for t > 0 and E(X) = α−1.

2 Main results

2.1 The corner growth model and semi-infinite geodesics

The standard exponential corner growth model (CGM) is defined on the planar integer

lattice Z
2 through independent and identically distributed (i.i.d.) weights {ωz}z∈Z2 ,

indexed by the vertices of Z2, with marginal distribution ωz ∼ Exp(1). The last-passage

value Gx,y between two coordinatewise-ordered vertices x ≤ y of Z2 is the maximal total

weight of an up-right nearest-neighbor path from x to y:

Gx,y = max
z

•
∈Πx,y

|y−x|1∑

k=0

ωzk (2.1)

where Πx,y is the set of paths z• = (zk)
|y−x|1
k=0 that satisfy z0 = x, z|y−x|1 = y, and

zk+1 − zk ∈ {e1, e2}. The almost surely unique maximizing path is the point-to-point

geodesic. Gx,y is also called (directed) last-passage percolation (LPP). If x ≤ y fails our

convention is Gx,y = −∞.

A semi-infinite up-right path (zi)
∞
i=0 is a semi-infinite geodesic if it is the maximizing

path between any two points on this path, that is,

∀k < l in Z≥0 : (zi)
l
i=k ∈ Πzk,zl and Gzk,zl =

l∑

i=k

ωzi .

For a point ξ ∈ R
2
≥0 \ {0}, the semi-infinite path (zi)

∞
i=0 is ξ-directed if zi/|zi|1 → ξ/|ξ|1

as i → ∞.

In the exponential CGM it is natural to index spatial directions ξ by a real parameter

ρ ∈ (0, 1) through the equation

ξ[ρ] =
(
(1− ρ)2, ρ2

)
. (2.2)

We call ξ[ρ] the characteristic direction associated to parameter ρ. This notion acquires

meaning when we discuss the stationary LPP process in Section 3. Throughout, N will

be a scaling parameter that goes to infinity. When ρ is understood, we write

vN =
(
bN(1− ρ)2c, bNρ2c

)
(2.3)
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(0, 0)

vN

(0, 0)

vN

rN2/3

rN2/3

δN2/3

δN2/3

Figure 2.2: Coalescence of ξ[ρ]-directed semi-infinite geodesics.

The black circle marks the coalescence point: on the left it is

z
ρ(brN2/3ce1, brN2/3ce2), and on the right z

ρ(bδN2/3ce1, bδN2/3ce2).
On the left for large r the geodesics are likely to coalesce outside

the rectangle J0, vN K, while on the right for small δ the geodesics are

likely to coalesce inside the rectangle J0, vN K.

for the lattice point moving in direction ξ[ρ].

The theorem below summarizes the key facts about directed semi-infinite geodesics

that set the stage for our paper. It goes back to the work of Ferrari and Pimentel [16] and

Coupier [12] on the CGM, and the general geodesic techniques introduced by Newman

and coworkers [19, 20, 22, 23]. A different proof is given in [28].

Theorem 2.1. Fix ρ ∈ (0, 1). Then the following holds almost surely. For each x ∈ Z
2

there is a unique ξ[ρ]-directed semi-infinite geodesic b
ρ,x = (b ρ,x

i )
∞
i=0 such that b

ρ,x
0 = x.

For each pair x, y ∈ Z
2, the geodesics coalesce: there is a coalescence point zρ(x, y) such

that b ρ,x ∩ b
ρ,y = b

ρ,z for z = z
ρ(x, y).

2.2 Coalescence estimates for semi-infinite geodesics in a fixed direction

The two main results below give upper and lower bounds on the probability that

two ξ[ρ]-directed semi-infinite geodesics initially separated by a distance of order N2/3

coalesce inside the rectangle J0, vN K. The theorems are separated according to whether

the starting points of the geodesics are close to each other or far apart on the scale

N2/3. See the illustration in Figure 2.2. As introduced in Theorem 2.1, zρ(x, y) is the

coalescence point of the geodesics b ρ,x and b
ρ,y.

Theorem 2.2. For each 0 < ρ < 1 there exist finite positive constants δ0, C1, C2 and

N0 that depend only on ρ and for which the following holds: whenever N ≥ N0 and

N−2/3 ≤ δ ≤ δ0,

C1δ ≤ P
{
z
ρ(bδN2/3ce1, bδN2/3ce2) 6∈ J0, vN K

}
≤ C2| log δ |2/3δ. (2.4)

The requirement δ ≥ N−2/3 in Theorem 2.2 is needed only for the lower bound and

only to ensure that bδN2/3c 6= 0.

Theorem 2.3. For each 0 < ρ < 1 there exist finite positive constants r0, C1, C2 and

N0 that depend only on ρ and for which the following holds: whenever N ≥ N0 and
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r0 ≤ r ≤ ((1− ρ)2 ∧ ρ2)N1/3,

e−C1r
3 ≤ P

{
z
ρ(brN2/3ce1, brN2/3ce2) ∈ J0, vN K

}
≤ e−C2r

3

. (2.5)

The requirement r ≤ ((1− ρ)2 ∧ ρ2)N1/3 in Theorem 2.3 is needed only for the lower

bound and only to ensure that both geodesics start inside the rectangle J0, vN K.

If we replace one of the starting points with the origin 0, the upper bound of The-

orem 2.2 and the lower bound of Theorem 2.3 hold automatically because b
ρ,0 stays

between b
ρ,(brN2/3c,0) and b

ρ,(0,brN2/3c). The following corollary states that the other

two tail estimates also hold with possibly different constants under this alteration in the

geometry.

Corollary 2.4. For each 0 < ρ < 1 there exist finite positive constants δ0, r0, C1, C2

and N0 that depend only on ρ and for which the following holds: whenever N ≥ N0,

N−2/3 ≤ δ ≤ δ0, and r ≥ r0,

(i) P
{
z
ρ(0, bδN2/3ce1) 6∈ J0, vN K

}
≥ C1δ and

(ii) P
{
z
ρ(0, brN2/3ce1) ∈ J0, vN K

}
≤ e−C2r

3

.

Remark 2.5. Two comments about the results.

(a) The statements of the theorems are valid for vN = (bNac, bNbc) for any fixed

a, b > 0, with new constants that depend also on a, b. The characteristic point vN of (2.3)

is simply one natural choice.

(b) The constants in the theorems that depend on ρ ∈ (0, 1) can be taken fixed

uniformly for all ρ in any compact subset of (0, 1).

For direct comparison with [7], we state two corollaries for geodesics whose locations

are not expressed in terms of the large parameter N .

Corollary 2.6. For each 0 < ρ < 1 there exist finite positive constants R0, C1 and C2

that depend only on ρ and for which the following holds: whenever k ≥ 1 and R ≥ R0,

C1R
−2/3 ≤ P

{
z
ρ(bk2/3ce1, bk2/3ce2) 6∈ J0, vRkK

}
≤ C2(logR)2/3R−2/3. (2.6)

Corollary 2.6 is derived from Theorem 2.2 as follows. Set R0 = N0 ∨ δ
−3/2
0 . Given

k ≥ 1 and R ≥ R0, let N = Rk ≥ N0 and δ = R−2/3 ≤ δ0. Now k2/3 = δN2/3. The next

Corollary 2.7 below is derived from Theorem 2.3 in a similar way.

Corollary 2.7. For each 0 < ρ < 1 there exist finite positive constants R1, C1 and

C2 that depend only on ρ and for which the following holds: whenever k ≥ 1 and

((1− ρ)2 ∧ ρ2)−1k−1/3 ≤ R ≤ R1,

e−C1R
−2 ≤ P

{
z
ρ(bk2/3ce1, bk2/3ce2) ∈ J0, vRkK

}
≤ e−C2R

−2

. (2.7)

Again, the lower bound R ≥ ((1− ρ)2 ∧ ρ2)−1k−1/3 is imposed only to ensure that both

geodesics start inside the rectangle J0, vRkK, for otherwise the probability in Corollary 2.7

is zero.

The lower bounds in Theorem 2.2 and Corollary 2.6 are optimal, but the upper bounds

are not due to the logarithmic factor. Optimal upper and lower bounds (both of order

R−2/3) were proved for Corollary 2.6 by Basu, Sarkar, and Sly [7] with inputs from

integrable probability. Thus in Theorem 2.2 and Corollary 2.6 our contribution is to

provide bounds without relying on integrable probability.

Both upper and lower bounds in Theorem 2.3 are new. The upper bound e−C2r
3

of

Theorem 2.3 improves significantly Pimentel’s [24] asymptotic (N → ∞) upper bound

Cr−3. The improved bound comes from duality and an exit time estimate with the
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optimal exponential order, obtained recently by Emrah, Janjigian, and one of the authors

in [14] without integrable probability inputs. This exit time estimate was also derived

independently by Bhatia [8] with integrable probability inputs. In the intervening period

between Pimentel’s work and the present paper, Pimentel’s bound was improved to

e−Cr3/2 (without sending N to infinity) in [7] with inputs from integrable probability, see

[7, Remark 6.5].

It is by now well-known that over distances of order N , geodesics fluctuate on the

scale N2/3. A by-product of our proof is the following lower bound on the size of the

transversal fluctuation of a semi-infinite geodesic. It is an improvement over previous

bounds obtained without integrable probability (see Theorem 5.3(b) in [27]).

Theorem 2.8. For each 0 < ρ < 1 there exist positive constants C, N0 and δ0 that

depend only on ρ for which the following holds: whenever N ≥ N0 and 0 < δ ≤ δ0,

P
{
b

ρ,(0,0) enters the rectangle JvN − δN2/3(e1 + e2), vN K
}
≤ C| log δ |2/3δ. (2.8)

The proofs in Section 5 show that the probability in (2.8) is essentially bounded above

by the probability in (2.4). With inputs from integrable probability, the upper bound

| log δ |2/3δ in (2.8) can be improved to δ, the optimal upper bound for (2.4) obtained in

[7].

We turn to develop the groundwork for the proofs.

3 Preliminaries on the corner growth model

This section covers aspects of the CGM used in the proofs. We provide illustrations,

some intuitive arguments, and references to precise proofs. The two main results are

a fluctuation upper bound for the exit point of a stationary LPP process (Theorem 3.5)

and the construction of semi-infinite geodesics with Busemann functions (Theorem 3.7).

These are proved in article [14] and lecture notes [27], without using anything beyond

the stationary LPP process.

3.1 Nonrandom properties

We begin with two basic features of LPP that involve increments. We state them for

our exponential case but in fact these properties do not need any probability. Let Gx,• be

defined by (2.1) and define increment variables for a ≥ x+ e1 and b ≥ x+ e2 by

Ixa = Gx,a −Gx,a−e1 and Jx
b = Gx,b −Gx,b−e2 .

The first property is a monotonicity valid for planar LPP. Proof can be found for

example in Lemma 4.6 of [27].

Lemma 3.1. For y such that the increments are well-defined,

Ix−e1
y ≤ Ixy ≤ Ix−e2

y and Jx−e2
y ≤ Jx

y ≤ Jx−e1
y .

Fix distinct lattice points x ≤ z and define a second LPP process G
(x)
z,• with base

point at z that uses boundary weights given by the increments of Gx,•, as illustrated in

Figure 3.1. Precisely, for y ≥ z,

G(x)
z,y = max

z
•
∈Πz,y

|y−z|1∑

k=0

ηzk (3.1)

where the weights are given by

ηz = 0, ηa = ωa for a ∈ z +Z
2
>0 (bulk),

ηz+ke1 = Ixz+ke1 , ηz+ke2 = Jx
z+ke1 for k ≥ 1 (boundary).

(3.2)
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Ixz+ • e1

Jx
z+ • e2

z

x

a

y

Figure 3.1: Illustration of Lemma 3.2. LPP process G
(x)
z,• uses boundary

weights defined by the LPP process Gx,•. Path x-a-y is the geodesic of

Gx,y and path z-a-y the geodesic of G
(x)
z,y. These geodesics share the

segment a-y.

Ix+ke1 ∼ Exp(1− ρ)

Jx+ke2 ∼ Exp(ρ) ωz ∼ Exp(1)

x

y

Figure 3.2: Increment-stationary LPP with base point x. If the dotted

line were the geodesic of Gρ
x,y, then the black triangle highlights the

exit point, and the exit time is Zx→ y = 2.

Proof of the lemma below is elementary and can be found in Lemma A.1 of [27].

Lemma 3.2. Let x ≤ z and y ∈ z + Z
2
>0. Then the unique geodesics of Gx,y and G

(x)
z,y

coincide in the quadrant z +Z
2
>0.

3.2 Stationary last-passage percolation

The stationary LPP process Gρ is defined on a positive quadrant x+Z
2
≥0 with a fixed

base point x ∈ Z
2. It is parametrized by ρ ∈ (0, 1). Start with mutually independent

bulk weights {ωz : z ∈ x+Z
2
>0} and boundary weights {Ix+ke1 , Jx+le2 : k, l ∈ Z>0} with

marginal distributions

ωz ∼ Exp(1), Ix+ke1 ∼ Exp(1− ρ), and Jx+le2 ∼ Exp(ρ). (3.3)

The probability distribution of these weights is denoted by P
ρ. The LPP process Gρ

x,•

is defined on the boundary of the quadrant by Gρ
x,x = 0, Gρ

x,x+ke1
=

∑k
i=1 Ix+ie1 and

Gρ
x,x+le2

=
∑l

j=1 Jx+je2 for k, l ≥ 1. In the bulk we perform LPP that uses both the

EJP 25 (2020), paper 85.
Page 8/31

http://www.imstat.org/ejp/



Coalescence estimates for the CGM

boundary and the bulk weights: for y = x+ (m,n) ∈ x+Z
2
>0,

Gρ
x,y = max

1≤k≤m

{( k∑

i=1

Ix+ie1

)
+Gx+ke1+e2,y

}∨
max
1≤l≤n

{( l∑

j=1

Jx+je2

)
+Gx+le2+e1,y

}
.

(3.4)

The LPP value Ga,b inside the braces is the standard one defined by (2.1) with the i.i.d.

bulk weights ω. Call the almost surely unique maximizing path a ρ-geodesic. The exit

time Z
x→ y is the Z \ {0}-valued random variable that records where the ρ-geodesic from

x to y exits the boundary, relative to the base point x, with a sign that indicates choice

between the axes:

Gρ
x,y =





∑k
i=1 Ix+ie1 +Gx+ke1+e2,y, if Zx→ y = k > 0

∑l
j=1 Jx+je2 +Gx+le2+e1,y, if Zx→ y = −l < 0.

(3.5)

See Figure 3.2 for an illustration.

Define horizontal and vertical increments of Gρ
x,• as

Ixa = Gρ
x,a −Gρ

x,a−e1 and Jx
b = Gρ

x,b −Gρ
x,b−e2

(3.6)

for a ∈ x + Z>0 × Z≥0 and b ∈ x + Z
2
≥0 × Z>0. The definition above implies Ixke1 = Ike1

and Jx
le2

= Jle2 for k, l ≥ 1. The term (increment) stationary LPP is justified by the next

fact. Its proof is an induction argument and can be found for example in [27, Thm. 3.1].

Lemma 3.3. Let {yi} be any finite or infinite down-right path in x + Z
2
≥0. That is,

(yi+1−yi) ·e2 ≤ 0 ≤ (yi+1−yi) ·e1. Then the increments {Gρ
x,yi+1

−Gρ
x,yi

} are independent.
The marginal distributions of nearest-neighbor increments are Ixa ∼ Exp(1 − ρ) and

Jx
b ∼ Exp(ρ).

Now apply Lemma 3.2 to this stationary situation. Take z ∈ x+Z
2
≥0 and define the

LPP process G
(x),ρ
z, • with the recipe (3.1) where the boundary weights are the ones in (3.6).

By Lemma 3.3, these boundary weights have the same distribution as the original ones

in (3.3). Consequently G
(x),ρ
z,• is another stationary LPP process. Lemma 3.2 gives the

statement below which will be used extensively in our proofs.

Lemma 3.4. Let x ≤ z and y ∈ z + Z
2
>0. Then the unique geodesics of Gρ

x,y and G
(x),ρ
z,y

coincide in the quadrant z +Z
2
>0.

Since the boundary weights in (3.3) are stochastically larger than the bulk weights,

the ρ-geodesic prefers the boundaries. The characteristic direction ξ[ρ] = ((1− ρ)2, ρ2)

defined earlier in (2.2) is the unique direction in which the attraction of the e1- and

e2-axes balance each other out. A consequence of this is that the ρ-geodesic from x to

x+ vN spends order N2/3 steps on the boundary. Here we encounter the 2/3 wandering

exponent of KPZ universality. This is described in Theorems 3.5 and 4.5 below. The

macroscopic picture is in Figure 3.3. This matter is discussed more thoroughly in Section

3.2 of [27]. We record the upper bound for this exit time recently derived in [14].

Theorem 3.5. [14, Theorem 2.5] There exist positive constants r0, N0, C that depend

only on ρ such that for all r > r0, N ≥ N0, and |v − vN |1 ≤ N2/3,

P
ρ
{
|Z 0→ v| ≥ rN2/3

}
≤ e−Cr3 .

In the next corollary the Θ(N2/3) deviation is transferred from the base point 0 to the

endpoint vN . Figure 3.4 illustrates how Lemma 3.4 reduces claim (3.8) to Theorem 3.5.

(Corollary 3.6 is proved using the same method as Corollary 5.10 in the arXiv version of

[27].)
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Exp(1− ρ)

Exp(ρ)
ξ[ρ]

(0, 0)

Figure 3.3: A macroscopic view of point-to-point geodesics (dotted

lines) in stationary LPP from the base point at the origin (0, 0) to three

different endpoints (gray bullets). Only the geodesic in the characteris-

tic direction ξ[ρ] spends no macroscopic time on the boundary.

ξ[ρ]
ξ[ρ]

bN2/3

vN

bN2/3

(0, 0)

(0, 0)−bN2/3e1

Figure 3.4: Proof of (3.8). On the left the event Z 0→ vN−bbN2/3ce1 ≥ 1.

On the right a second base point is placed at −bbN2/3ce1 and the

increment variables on the e2-axis based at 0 are determined by the

LPP process based at −bbN2/3ce1. By Lemma 3.4, Z 0→ vN−bbN2/3ce1 ≥ 1

iff Z−bbN2/3ce1 → vN−bbN2/3ce1 ≥ bN2/3. This last event has probability

≤ e−Cb−3

by Theorem 3.5.

Corollary 3.6. There exist positive constants N0, C that depend only on ρ such that for

N ≥ N0 and b > 0,

P
ρ
{
Z

0→ vN+bbN2/3ce1 ≤ −1
}
≤ e−Cb3 and (3.7)

P
ρ
{
Z

0→ vN−bbN2/3ce1 ≥ 1
}
≤ e−Cb3 . (3.8)

3.3 Busemann functions and semi-infinite geodesics

The key to our results is that the directed semi-infinite geodesics can be defined

through Busemann functions, which themselves are instances of stationary LPP. Thus

estimates proved for stationary LPP provide information about the behavior of directed

semi-infinite geodesics.

The next theorem summarizes the properties of Busemann functions needed. It

is a combination of results from Section 4 of [27] and Lemma 4.1 of [28]. The dual

weights introduced in part (iii) below are connected with dual geodesics which will be

constructed later in Section 5.
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Theorem 3.7. Fix ρ ∈ (0, 1). Then on the probability space of the i.i.d. Exp(1) weights

{ωz}z∈Z2 there exists a process {Bρ
x,y}x,y∈Z2 with the following properties.

(i) With probability one, ∀x, y ∈ Z
2,

Bρ
x,y = lim

N→∞

(
Gx,uN

−Gy,uN

)

for any sequence uN such that |uN | → ∞ and uN/|uN |1 → ξ[ρ]/|ξ[ρ]|1 as N → ∞.

(ii) The unique ξ[ρ]-directed semi-infinite geodesic from x is defined by b
ρ,x
0 = x and

for k ≥ 0,

b
ρ,x
k+1 =




b

ρ,x
k + e1, if Bρ

b
ρ,x
k ,b ρ,x

k +e1
≤ Bρ

b
ρ,x
k ,b ρ,x

k +e2

b
ρ,x
k + e2, if Bρ

b
ρ,x
k ,b ρ,x

k +e2
< Bρ

b
ρ,x
k ,b ρ,x

k +e1
.

(3.9)

(iii) Define the dual weights by

qωρ
z = Bρ

z−e1,z ∧Bρ
z−e2,z for z ∈ Z

2.

Fix a bi-infinite nearest-neighbor down-right path γ = {xi}i∈Z on Z
2. This means

that xi+1 − xi ∈ {e1,−e2}. Then the random variables

{Bρ
xi,xi+1

: i ∈ Z}, {ωy : y ∈ Z
2 lies strictly to the left of and below γ},

and {qωρ
z : z ∈ Z

2 lies strictly to the right of and above γ}

are all mutually independent with marginal distributions

Bρ
x,x+e1 ∼ Exp(1− ρ), Bρ

x,x+e2 ∼ Exp(ρ) and ωy, qωρ
z ∼ Exp(1). (3.10)

Versions of parts (i) and (ii) above can be proved for general i.i.d. weights [17]. But

nothing like part (iii) with precise distributions for Busemann functions and dual weights

is known for LPP models that are not exactly solvable.

A Busemann function Bρ can be thought as a stationary LPP process in two ways.

One with north and east boundaries, denoted by Gρ,NE , and one with south and west

boundaries, denoted by Gρ. Here Gρ is as was given in (3.4), and Gρ,NE is defined as

follows (NE stands for north and east boundaries).

Fix an origin or base point x ∈ Z
2. Start with mutually independent bulk weights

{ωz : z ∈ x − Z
2
>0} and boundary weights {Ix−ke1 , Jx−le2 : k, l ∈ Z≥0} with marginal

distributions

ωz ∼ Exp(1), Ix−ke1 ∼ Exp(1− ρ), and Jx−le2 ∼ Exp(ρ).

On the boundaries define GNE,ρ
x,x = 0, GNE,ρ

x−ke1,x
=

∑k−1
i=0 Ix−ie1 and GNE,ρ

x+le2,x
=

∑l−1
j=0 Jx−je2

for k, l ≥ 1. In the bulk we perform LPP that uses both the boundary and the bulk

weights: for y = x− (m,n) ∈ x−Z
2
>0,

GNE,ρ
y,x = max

1≤k≤m

{( k−1∑

i=0

Ix−ie1

)
+Gy,x−ke1−e2

}∨
max
1≤l≤n

{( l−1∑

j=0

Jx−je2

)
+Gy,x−le2−e1

}
.

(3.11)

The LPP value Ga,b inside the braces is the one defined by (2.1) with i.i.d. bulk weights

ω.

Two stationary LPP processes can be defined by taking Busemann increments as

boundary weights. Fix again a base point x ∈ Z
2.

EJP 25 (2020), paper 85.
Page 11/31

http://www.imstat.org/ejp/



Coalescence estimates for the CGM

• Construct Gρ,NE
y,x for y ≤ x as in (3.11) using the NE boundary weights Ix−ke1 =

Bρ
x−(k+1)e1,x−ke1

and Jx−le2 = Bρ
x−(l+1)e2,x−le2

and bulk weights {ωz : z ∈ x−Z
2
>0}.

• Construct Gρ
x,y′ for y′ ≥ x as in (3.4) using the SW boundary weights Ix+ke1 =

Bρ
x+(k−1)e1,x+ke1

and Jx+le2 = Bρ
x+(l−1)e2,x+le2

and bulk weights {qωρ
z :∈ x+Z

2
>0}.

These two constructions satisfy the definitions of stationary LPP processes due to

Theorem 3.7(iii). Their key properties relative to the Busemann function are

Gρ,NE
y,x = Bρ

y,x for all y ≤ x (3.12)

and Gρ
x,y′ = Bρ

x,y′ for all y′ ≥ x. (3.13)

This is in Theorem 4.4 of [27].

As the last point, we state an independence property for a coupling of Busemann

functions in two different directions. This fact was used to show the non-existence of

bi-infinite geodesics [2] and local stationarity of the CGM [3]. It follows from the queuing

map construction for the joint distribution (in various directions) of Busemann function

from [15].

Proposition 3.8. [3, Lemma 4.5] Let 0 < η < λ < 1. There exists a coupling of

Busemann functions Bη and Bλ such that for any fixed x ∈ Z
2 and for every k, l ∈ Z>0,

the following sets of random variables (on the horizontal line through x) are independent:

{
Bη

x+ie1,x+(i+1)e1

}
−k≤i≤−1

and
{
Bλ

x+ie1,x+(i+1)e1

}
0≤i≤l−1

.

4 Exit time estimates

This section proves estimates on the exit time for stationary LPP processes defined

in (3.4) and (3.5). These results are applied in Section 5 to prove the main theorems

stated in Section 2. The first theorem is the main intermediate result towards the lower

bound of Theorem 2.3. We also introduce useful lemmas that are used again later in the

proof of Theorem 4.5.

Theorem 4.1. For each 0 < ρ < 1 there exist finite positive constants r0(ρ), C(ρ) and

N0(ρ) such that for all N ≥ N0(ρ) and r0 ≤ r ≤ [(1− ρ)2 ∧ ρ2]N1/3,

P
ρ
{
∀z outside J0, vN K we have |Z 0→ z| ≥ rN2/3

}
≥ e−Cr3 .

To prove this bound we tilt the probability measure to make the event likely and

pay for this with a moment bound on the Radon-Nikodym derivative. This argument

was introduced in [6] in the context of ASEP, and adapted to a lower bound proof of the

longitudinal fluctuation exponent in the stationary LPP in Section 5.5 of the lectures

[27]. The key idea is a perturbation of the parameter ρ of the stationary LPP process to

ρ± rN−1/3. This allows us to control the exit point on the scale N2/3. The general idea

of utilizing perturbations of order N−1/3 goes back to the seminal paper [9].

Lemma 4.2 below is an auxiliary estimate for the proof of Theorem 4.1. It utilizes a

perturbed parameter λ = ρ+ rN−1/3, assumed to satisfy

ρ < λ ≤ c(ρ) < 1 (4.1)

for some constant c(ρ) < 1, as r and N vary. Lemma 4.2 shows that, for small enough

a > 0 and large enough b, r > 0, the λ-geodesic to a target point wN slightly perturbed

from vN exits the e1-axis through the interval [[arN2/3e1, brN
2/3e1]] with high probability.

This is illustrated on the right of Figure 4.1. The constants 1− ρ and 2/ρ2 in Lemma 4.2

come from the following observation (left diagram of Figure 4.1). Start two rays at (0, 0)
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vNuN ξ[ρ]

ξ[λ]

(0, 0)

vN
wN

arN2/3 brN2/3 Exp(1− λ)

Exp(λ)

(0, 0)

Figure 4.1: Left: Illustration of estimate (4.2). Right: Illustration of

Lemma 4.2. The dotted lines have characteristic slope ξ[λ]. Conse-

quently, with high probability, the geodesic from 0 to wN exits through

the interval [[arN2/3e1, brN
2/3e1]].

in the directions ξ[ρ] and ξ[λ] and let uN be the lattice point closest to the ξ[λ]-directed

ray such that uN · e2 = vN · e2. Then

(1− ρ)rN2/3 ≤ vN · e1 − uN · e1 ≤ 2

ρ2
rN2/3. (4.2)

Lemma 4.2. Let λ = ρ+ rN−1/3 and wN = vN −b 1
10 (1− ρ)rN2/3ce1. There exist positive

constants C,N0 that depend only on ρ such that, for any r > 0 and N ≥ N0 such that (4.1)

holds, we have

P
λ

(
1
10 (1− ρ)rN2/3 ≤ Z

0→wN ≤ 10
2

ρ2
rN2/3

)
≥ 1− e−Cr3 .

Before the proof of Lemma 4.2, we separate an observation about geodesics in the

next lemma, illustrated by the left diagram of Figure 4.2. It comes from the idea of

Lemma 3.2 of constructing nested LPP processes with boundary weights defined by

increments of an outer LPP process. (Lemma 4.3 is proved as Lemma A.3 in the appendix

of [27].)

Lemma 4.3. Fix two base points (0, 0) and (m,−n) with m,n > 0. From these base

points define coupled LPP processes G
(u)
(0,0), •

and G
(u)
(m,−n), •

whose boundary weights

come from the increments of an LPP process Gu,• whose base point u satisfies u ≤ (0, 0)

and u ≤ (m,−n). Then for z ∈ ((0, 0) +Z
2
>0) ∩ ((m,−n) +Z

2
>0), Z

0→ z ≤ m if and only if

Z
(m,−n)→ z < −n.

Proof of Lemma 4.2. Let a = 1
10 (1− ρ), b = 10 2

ρ2 .

It suffices to show that if r > 0 and N ≥ N0 are such that (4.1) holds, then

P
λ
(
Z

0→wN < arN2/3
)
≤ e−Cr3 , (4.3)

P
λ
(
Z

0→wN > brN2/3
)
≤ e−Cr3 . (4.4)

By (4.2) the distance between the origin and the black dot on the x-axis on the right

of Figure 4.1 is bounded above by 2
ρ2 rN

2/3 = 1
10brN

2/3. So the distance between the

black dot and brN2/3e1 is at least brN
2/3 − 1

10brN
2/3 = 9

10brN
2/3. Apply Lemma 3.4 to

switch from the geodesic based at the origin to one based at the black dot, and apply
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(0, 0)

(m,−n)

u

z

(0, 0)

(arN2/3,−h)

wN

brN2/3

Figure 4.2: Left: An illustration of Lemma 4.3. As shown in the picture

Z
(0,0)→ z ≤ m if and only if Z(m,−n)→ z < −n. Right: Applying Lemma

4.3 in the proof of Lemma 4.2 to assert that Pλ
(
Z

0→wN ≤ barN2/3c
)
=

P
λ
(
Z

(barN2/3c,−h)→wN < −h
)
.

Theorem 3.5 to the LPP process G
(0),ρ
blackdot, •

:

P
λ
(
Z

0→wN > brN2/3
)
≤ P

λ
(
Z

0→ vN > brN2/3
)

≤ P
λ
(
Z

black dot → vN ≥ 9
10brN

2/3
)
≤ e−Cr3 .

To prove (4.3) choose h so that (barN2/3c,−h) is the closest integer point to the

(−ξ[λ])-directed ray starting at wN (see Figure 4.2). Lemma 4.3 gives

P
λ
(
Z

0→wN ≤ barN2/3c
)
= P

λ
(
Z

(barN2/3c,−h)→wN < −h
)
.

Theorem 3.5 states that it is unlikely for the λ-geodesic from (barN2/3c,−h) to wN to

exit late in the scale N2/3 from the y-axis, because the direction is the characteristic one

ξ[λ]. Thus it suffices to show h is bounded below by some k(ρ)rN2/3.

Using the lower bound from (4.2), the distance between the black dot and (0, 0) is

bounded below by (1 − ρ)rN2/3 = 10arN2/3. The distance between the black dot and

barN2/3ce1 is bounded below by 9arN2/3, and the distance between the white dot and

barN2/3ce1 is bounded below by 8arN2/3. The slope of the line going through wN and

white dot is λ2

(1−λ)2 . Thus, we have

h ≥ λ2

(1− λ)2
8arN2/3.

Since λ is bounded above and below by constants that depend on ρ, we get

h ≥ k(ρ)rN2/3

which finishes the proof.

Proof of Theorem 4.1. For two fixed constants 0 < a < b, we increase the weights on the

intervals JbarN2/3ce1, bbrN2/3ce1K and JbarN2/3ce2, bbrN2/3ce2K. The new weights are

chosen so that their characteristic directions obey the left diagram of Figure 4.3 for

large N ≥ N0(ρ).
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vN

arN2/3 brN2/3

arN2/3

brN2/3

(0, 0)

wN
L

(0, 0)

vN

D

ξ[ρ]

ξ[η]

ξ[λ]

Figure 4.3: Left: Two dotted lines have slopes ξ[λ] and ξ[η]. right: Decomposi-

tion of the north and east boundaries of J0, vN K into regions L (light gray) and

D (dark gray). A small perturbation of vN to wN keeps the endpoint of the −ξ[λ]

ray from wN in the interval [arN2/3, brN2/3].

On the e1-axis, define

λ = ρ+
r

N1/3
.

The assumption 0 < r ≤ [(1− ρ)2 ∧ ρ2]N1/3 guarantees that 0 < λ ≤ ρ+ (1− ρ)2 < 1. Use

Exp(1− λ) as the heavier weights and pick

a =
1

10
(1− ρ), b = 10

2

ρ2

as in Lemma 4.2.

On the e2-axis, we define

η = ρ− r

N1/3
,

and the heavier weights are Exp(η). The condition 0 < r ≤ [(1− ρ)2 ∧ ρ2]N1/3 guarantees

that 0 < ρ− (1−ρ)2∧ρ2 ≤ η < ρ. Note that Lemma 4.2 continues to hold if a is decreased

and b is increased. The constants a, b,N0 can always be adjusted so that the situation in

the left diagram of Figure 4.3 appears.

Recall the old environment of the stationary ρ-LPP process:

ωz ∼ Exp(1) for z ∈ Z
2
>0

ωke1 ∼ Exp(1− ρ) for k ≥ 1

ωle2 ∼ Exp(ρ) for l ≥ 1.

The new environment ω̃ increases the weights in the two intervals on the axes:

ω̃z = ωz for z /∈ JbarN2/3ce1, bbrN2/3ce1K ∪ JbarN2/3ce2, bbrN2/3ce2K

ω̃ke1 =
1− ρ

1− λ
ωke1 for ke1 ∈ JbarN2/3ce1, bbrN2/3ce1K

ω̃le2 =
ρ

η
ωle2 for le2 ∈ JbarN2/3ce2, bbrN2/3ce2K.

Denote the probability measure for the environment ω̃ by P̃. The goal is the estimate

P̃(A) ≡ P̃
{
∀z outside J0, vN K we have |Z 0→ z| ≥ arN2/3

}
≥ 1/2 (4.5)
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where A denotes the event in braces. We check that this implies Theorem 4.1. The

Cauchy-Schwartz inequality gives

1/2 ≤ P̃(A) = E
ρ[1AfN ] ≤

(
P

ρ(A)
)1/2(

E
ρ[f2]

)1/2
(4.6)

where f is the Radon-Nikodym derivative. Lemma A.2 gives the bound

E
ρ[f2] ≤ eCr3 (4.7)

and then (4.6) and (4.7) imply the lower bound

P
ρ(A) ≥ 1

2e
−Cr3 .

Note that the event A in (4.5) has the lower bound ≥ arN2/3. To replace this with

≥ rN2/3, as required for Theorem 4.1, modify the constant C.

To show (4.5) we bound its complement:

P̃
{
∃z outside J0, vN K such that |Z 0→ z| ≤ arN2/3

}
≤ e−Cr3 . (4.8)

We treat the case 1 ≤ Z
0→ z ≤ arN2/3 of (4.8). The same arguments give the

analogous bound for the case −arN2/3 ≤ Z ≤ −1. Define wN = vN − b 1
10 (1− ρ)rN2/3ce1,

and break up the northeast boundary of J0, vN K into two regions L and D as in the

diagram on the right of Figure 4.3.

First consider geodesics that hit D. Let σ 0→ x
1 denote the exit time of the optimal

0 → x path among those paths whose first step is e1.

P̃
{
∃z ∈ D : 1 ≤ Z

0→ z < arN2/3
}
≤ P̃

{
∃z ∈ D : σ0→ z

1 < arN2/3
}

≤ P̃
{
σ0→wN
1 < arN2/3

}
≤ P̃

{
σ0→wN
1 /∈ JbarN2/3ce1, bbrN2/3ce1K

}

≤ P
λ
{
σ0→wN
1 /∈ JbarN2/3ce1, bbrN2/3ce1K

}

≤ P
λ
{
Z

0→wN /∈ JbarN2/3ce1, bbrN2/3ce1K
}
≤ e−Cr3 .

(4.9)

The second inequality comes from the uniqueness of maximizing paths: the maximizing

path to wN cannot go to the right of a maximizing path to D. The switch from P̃ to P
λ in-

creases the boundary weights on the e1 axis outside the interval JbarN2/3ce1, bbrN2/3ce1K,
hence the fourth inequality. The last inequality is from Lemma 4.2.

Consider the light gray region L. The switch from P̃ to P
ρ decreases certain boundary

weights outside the range Je1, darN2/3 − 1ee1K and gives the first inequality below.

P̃
{
∃z ∈ L : 1 ≤ Z

0→ z < arN2/3
}
≤ P

ρ
{
∃z ∈ L : 1 ≤ Z

0→ z < arN2/3
}

≤ P
ρ
{
∃z ∈ L : Z 0→ z ≥ 1

}
≤ P

ρ
{
Z

0→wN ≥ 1
}
≤ e−Cr3 .

(4.10)

The last inequality follows from bound (3.8) in Corollary 3.6.

Combining (4.9) and (4.10) gives

P̃
{
∃z outside J0, vN K such that 1 ≤ Z

0→ z ≤ arN2/3
}
≤ e−Cr3 .

The proof is complete.

The next theorem is the main intermediate result towards the lower bound of Theo-

rem 2.2.

Theorem 4.4. For each 0 < ρ < 1 there exist finite positive constants δ0(ρ), C(ρ) and

N0(ρ) such that for all N ≥ N0(ρ) and N−2/3 ≤ δ ≤ δ0(ρ),

P
ρ
{
∃z outside J0, vN K such that |Z 0→ z| ≤ δN2/3

}
≥ C(ρ)δ.
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piN
2/3

r0N
2/3

r0N
2/3

(0, 0)

Figure 4.4: Partition of the range of Z 0→ vN in the event in (4.11). The

origin is not necessarily a partition point.

Proof. Utilizing Theorem 3.5, fix constants r0, C0 and N0 (depending on ρ) such that, for

N ≥ N0,

P
ρ
{
|Z 0→ vN+e1+e2 | ≤ r0N

2/3
}
≥ 1/2. (4.11)

Set v′N = vN + e1 + e2. Given small δ > N−2/3, partition [−r0, r0] as

−r0 = p0 < p1 < · · · < p
b
2r0
δ c

< p
b
2r0
δ c+1

= r0

with mesh pi+1 − pi ≤ δ. See Figure 4.4. By (4.11) there exists an integer i? ∈ [0, b 2r0
δ c]

such that

P
ρ
{
pi?N

2/3 ≤ Z
0→ v′

N ≤ pi?+1N
2/3

}
≥

1
2δ

2r0
= C(ρ)δ. (4.12)

We cannot control the exact location of i?. We compensate by varying the endpoint

around v′N . Let

AN = Jv′N − r0N
2/3e1, v

′
N K ∪ Jv′N − r0N

2/3e2, v
′
N K

denote the set of lattice points on the boundary of the rectangle J0, v′N K within distance

r0N
2/3 of the upper right corner v′N . We claim that for any integer i ∈ [0, b 2r0

δ c],

P
ρ
{
∃z ∈ AN : |Z 0→ z| ≤ δN2/3

}
≥ P

ρ
{
piN

2/3 ≤ Z
0→ v′

N ≤ pi+1N
2/3

}
. (4.13)

Then bounds (4.12) and (4.13) imply

P
ρ
{
∃z ∈ AN : |Z 0→ z| ≤ δN2/3

}
≥ C(ρ)δ, (4.14)

and Theorem 4.4 directly follows from (4.14).

We prove claim (4.13). If pi ≤ 0 ≤ pi+1, (4.13) is immediate. We argue the case

pi+1 > pi > 0, the other one being analogous. Set z = (bpiN2/3c − 1)e1 and apply

Lemma 3.4 to the LPP process G
(0),ρ
z, • . Then

P
ρ
{
piN

2/3 ≤ Z
0→ v′

N ≤ pi+1N
2/3

}
≤ P

ρ
{
1 ≤ Z

0→ v′

N−(bpiN
2/3c−1)e1 ≤ δN2/3

}

≤ P
ρ
{
∃z ∈ AN : |Z 0→ z| ≤ δN2/3

}
.

The remainder of this section proves the main intermediate result towards the upper

bound of Theorem 2.2. It quantifies the lower bound on the exit point on the scale N2/3.

This strengthens the estimates accessible without integrable probability, for previously

no quantification was attained (Theorem 2.2(b) in [4]). The proof is based on the ideas

from the recent work of [2, 3].
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r0N
2/3

ξ[ρ]

r0N
2/3(0, 0)

Figure 4.5: The setup for proving (4.13).

qrN2/3

w−

N

w+
N

(0, 0)

vN

ξ[ρ]

D

L+

L−

Figure 4.6: The north and east boundaries of J0, vN K are decomposed

into L± (light gray) and D (dark gray). The parameter q is less than

some small constant that depends only on ρ.

Theorem 4.5. For each 0 < ρ < 1 there exist finite positive constants δ0(ρ), C(ρ) and

N0(ρ) such that for all 0 < δ ≤ δ0(ρ) and N ≥ N0(ρ),

P
ρ
{
∃z outside J0, vN K such that |Z 0→ z| ≤ δN2/3

}
≤ C| log δ |2/3δ.

Proof. We prove the case 1 ≤ Z ≤ δN2/3. The proof for −δN2/3 ≤ Z ≤ −1 is similar. It

suffices to look at the north and east boundaries of J0, vN K since any geodesic from 0 to

outside of J0, vN K crosses the boundary. Decompose these boundaries into three parts D
and L± as in Figure 4.6, with

w+
N = vN − bqrN2/3ce1 and w−

N = vN − bqrN2/3ce2

where q is a small positive constant chosen later, and r =
(
| log δ |/C)1/3 where C is the

constant in the right-hand side of the estimate in Theorem 3.5. The dark gray set D
comprises the vertices between w+

N and w−
N in the north-east corner of the boundary of

the rectangle J0, vN K.
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ξ[η]

ξ[λ]
ξ[ρ]

D

w+
N

vN

w−

N

δN2/3 αrN2/3
−δN2/3

−αrN2/3−rN2/3 0

Figure 4.7: Illustration of the set D, the nested LPP processes, and

three characteristic directions. The parameters q = α are less than

some small constant that depends only on ρ, δ is a small positive

constant in (0, δ0), and r is a large constant with r = (| log δ |/C)1/3.

Consider first, the dark gray portion D. Take 0 < δ ≤ δ0 = 9
10 , where the bound 9

10

may be decreased later in the proof. Our goal is to estimate

P
ρ{∃z ∈ D such that 1 ≤ Z

0→ z ≤ δN2/3}. (4.15)

To do this, we place the stationary LPP process on 0 + Z
2
≥0 as a nested LPP process

inside a larger stationary LPP process on the quadrant −brN2/3ce1 +Z
2
≥0, as shown in

Figure 4.7. From the relation between geodesics of two nested LPP processes given in

Lemma 3.4,

P
ρ{∃z ∈ D : 1 ≤ Z

0→ z ≤ δN2/3 }
≤ P

ρ{∃z ∈ D : brN2/3c − δN2/3 ≤ Z
−brN2/3ce1 → z ≤ brN2/3c+ δN2/3 }

Thus, it suffices to obtain an upper bound for the second line above. To continue, we

describe the rest of the setup shown in Figure 4.7.

The probability in (4.15) vanishes if δN2/3 < 1 and hence we can always assume

N ≥ δ−3/2. (4.16)

Introduce the perturbed parameters

λ = ρ+
r

N1/3
and η = ρ− r

N1/3
. (4.17)

We require the following bounds to hold for these two parameters

ρ < λ ≤ ρ+
ρ ∧ (1− ρ)

2
< 1 and 0 < ρ− ρ ∧ (1− ρ)

2
≤ η < ρ. (4.18)

The point of the choice ρ± ρ∧(1−ρ)
2 is only to bound λ and η from above and below by two

constants strictly inside (0, 1) and that depend only on ρ. These two requirements can be

rewritten as

N ≥
(

2r

ρ ∧ (1− ρ)

)3

.
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With (4.16), this bound on N is automatically satisfied as long as δ−3/2 ≥
(

2r
ρ∧(1−ρ)

)3
.

With r =
( | log δ |

C

)1/3
, we can ensure this by considering δ > 0 subject to

δ ≤ δ0(ρ) =
(
1
2C(ρ ∧ (1− ρ))

)3 ∧ 9
10 . (4.19)

Our next step is to fix q and α small enough so that the ξ[η]- and ξ[λ]-directed rays

started at the points ±bαrN2/3ce1 avoid D as shown in Figure 4.7. As in Figure 4.1, let

uN be the lattice point closest to where the ξ[λ]-ray from the origin crosses the north

boundary of [[0, vN ]]. Then from (4.2) we have

vN · e1 − uN · e1 ≥ (1− ρ)rN2/3.

Shift the starting point of the ξ[λ]-ray from the origin to bαrN2/3ce1, and let u′
N be

the new crossing point on the north boundary of [[0, vN ]]. By picking q = α = 1−ρ
10 , the

following lower bound holds:

w+
N · e1 − u′

N · e1 ≥ 1− ρ

2
rN2/3. (4.20)

This gives us the desired picture for ξ[λ] shown in Figure 4.7. The argument for the

ξ[η]-directed ray is similar. We may need to decrease α and q further to achieve this

but their values depend only on ρ. At last, once α is fixed, r =
( | log δ |

C

)1/3
allows us to

decrease δ0 further so that δ < 1
3αr for each 0 < δ ≤ δ0. This completes the description

of the setup in Figure 4.7.

Now, to bound

P
ρ
{
∃z ∈ D : brN2/3c − δN2/3 ≤ Z

−brN2/3ce1 → z ≤ brN2/3c+ δN2/3
}
,

we first bound the probability

P
ρ
{
∃z ∈ D : Z−brN2/3ce1 → z = brN2/3c+ t0

}
(4.21)

where t0 is a fixed integer in [[−bδN2/3c, bδN2/3c]].
For z ∈ D and i ∈ [[−bαrN2/3c+ 1, bαrN2/3c]], define horizontal increments

Ĩzi = G(i−1,1),z −G(i,1),z

on the horizontal line y = 1. Define a 2-sided walk {Zz,t0
n }n∈[[−bαrN2/3c+1,bαrN2/3c]] by

setting Zz,t0
t0 = 0 and

Zz,t0
n − Zz,t0

n−1 = In − Ĩzn.

The boundary weights In are those of the ρ-LPP process in the quadrant−brN2/3ce1+Z
2
≥0.

On the event {
Z

−brN2/3ce1 → z = brN2/3c+ t0
}

the geodesic goes through the vertical unit edge [[(t0, 0), (t0, 1)]]. This implies that the

walk {Zz,t0
n }n∈[[−bαrN2/3c+1,bαrN2/3c]] attains its unique maximum at n = t0. To see this,

note that for n ∈ [[−bαrN2/3c+ 1, bαrN2/3c]] \ {t0}, we have almost surely

Gρ
−brN2/3ce1,(t0,0)

+G(t0,1),z > Gρ
−brN2/3ce1,(n,0)

+G(n,1),z

=⇒ Gρ
−brN2/3ce1,(t0,0)

−Gρ
−brN2/3ce1,(n,0)

> G(n,1),z −G(t0,1),z. (4.22)
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Ĩ , Iλ and Iη

αrN2/3

I

−αrN2/3

Bλ and Bη

Bλ and Bη

−rN2/3 0

vN + e1 + e2

w+
N

w−

N

Figure 4.8: Setup for the stationary LPP processes with Busemann

increments.

From this,

• for n > t0, (4.22) =⇒ −∑n
i=t0+1 Ii > −∑n

i=t0+1 Ĩ
z
i =⇒ 0 > Zz,t0

n − Zz,t0
t0 ;

• for n < t0, (4.22) =⇒ ∑t0
i=n+1 Ii >

∑t0
i=n+1 Ĩ

z
i =⇒ Zz,t0

t0 − Zz,t0
n > 0.

Since δ ≤ 1
3αr, t0 ∈ [− 1

3αrN
2/3, 1

3αrN
2/3]. Also because the value of the walk at t0 is

zero, we now have

(4.21) ≤ P

{
∃z ∈ D : argmax

n∈[[−bαrN2/3c+1,bαrN2/3c]]

{Zz,t0
n } = t0

}

≤ P

({
∃z ∈ D : Zz,t0

n < 0 for n ∈
(
t0, t0 + b 1

2αrN
2/3c

]}
(4.23)

⋂{
∃z ∈ D : Zz,t0

n < 0 for n ∈
[
t0 − b 1

2αrN
2/3c, t0

)})

Due to the relative positions of w±
N and z, Lemma 3.1 implies that

Ĩ
w−

N
i ≤ Ĩzi ≤ Ĩ

w+

N
i ∀ i ∈ [[−bαrN2/3c+ 1, bαrN2/3c]] and z ∈ D. (4.24)

Hence for any z ∈ D,

Zz,t0
n ≥ Z

w+

N ,t0
n for n > t0 and Zz,t0

n ≥ Z
w−

N ,t0
n for n < t0.

Therefore, we may bound (4.23) by

(4.23) ≤ P

({
Z

w+

N ,t0
n < 0 for n ∈

(
t0, t0 + b 1

2αrN
2/3c

]}
(4.25)

⋂{
Z

w−

N ,t0
n < 0 for n ∈

[
t0 − b 1

2αrN
2/3c, t0

)})
.

We bring the Busemann increments defined by the bulk weights {ωx}x∈−brN2/3ce1+Z
2
>0

into the picture. To each edge on the the north and east sides of the rectangle

[[−brN2/3ce1, vN + e1 + e2K, we attach λ- and η-directed Busemann increments, cou-

pled as in Proposition 3.8. This is depicted in Figure 4.8. Together with the bulk weights

in [[−brN2/3ce1 + e2, vN K, these define stationary LPP processes with north and east
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boundaries, denoted by Gλ,NE
x,vN+e1+e2 and Gη,NE

x,vN+e1+e2 for x ∈ J(−brN2/3c, 1), vN K. This is

the construction explained after Theorem 3.7.

On the horizontal line y = 1 we have for i ∈ [[−bαrN2/3c+1, bαrN2/3c]] the increments

Iλi = Gλ,NE
(i−1,1),vN+e1+e2

−Gλ,NE
(i,1),vN+e1+e2

= Bλ
(i−1,1),(i,1)

and Iηi = Gη,NE
(i−1,1),vN+e1+e2

−Gη,NE
(i,1),vN+e1+e2

= Bη
(i−1,1),(i,1),

(4.26)

where the latter equalities are instances of (3.12).

Lemma 4.6. The event

A =
{
∀i ∈ [[−bαrN2/3c+ 1, bαrN2/3c]] : Iηi ≤ Ĩ

w−

N
i ≤ Ĩ

w+

N
i ≤ Iλi

}
(4.27)

satisfies P(Ac) ≤ e−Cr3 .

Proof. The middle inequality is already in (4.24). We give the proof for

P
{
∀i ∈ [[−bαrN2/3c+ 1, bαrN2/3c]] : Ĩ w+

N
i ≤ Iλi

}
≥ 1− e−Cr3 .

The similar argument for the remaining part is omitted.

We argue first that Ĩ
w+

N
i ≤ Iλi is implied for the entire range of indices i when the

geodesic of Gλ,NE
(bαrN2/3c,1),vN+e1+e2

exits the north boundary to the left of the point w+
N +e2.

For x ∈ J(−brN2/3c, 1), w+
N + e2K, let G

λ,N

x,w+

N+e2
denote the last-passage time from x to

w+
N + e2 that uses the Bλ increment weights on the north boundary (superscript N for

north).

The exit time Z
λ,NE, x→ vN+e1+e2 records the signed distance from the vertex vN +

e1 + e2 to the point where the geodesic of Gλ,NE
x,vN+e1+e2 enters the north (as a positive

value) or the east (as a negative value) boundary of the rectangle Jx, vN + e1 + e2K. Since

geodesics cannot cross, the event

{
Z

λ,NE, (bαrN2/3c,1)→ vN+e1+e2 > qrN2/3
}

implies ⋂

i∈[[−bαrN2/3c+1,bαrN2/3c]]

{
Z

λ,NE, (i,1)→ vN+e1+e2 > qrN2/3
}
.

This further implies

Gλ,N

(i−1,1),w+

N+e2
−Gλ,N

(i,1),w+

N+e2
= Gλ,NE

(i−1,1),vN+e1+e2
−Gλ,NE

(i,1),vN+e1+e2
(4.28)

∀i ∈ [[−bαrN2/3c+ 1, bαrN2/3c]].

In the derivation below, Lemma 3.1 gives the first inequality. The equality in the second

line is (4.28) which is valid on the event
{
Z

λ,NE, (bαrN2/3c,1)→ vN+e1+e2 > qrN2/3
}
:

Ĩ
w+

N
i = G(i−1,1),w+

N
−G(i,1),w+

N
≤ Gλ,N

(i−1,1),w+

N+e2
−Gλ,N

(i,1),w+

N+e2

= Gλ,NE
(i−1,1),vN+e1+e2

−Gλ,NE
(i,1),vN+e1+e2

= Iλi

∀i ∈ [[−bαrN2/3c+ 1, bαrN2/3c]].

This finishes the proof that Zλ,NE,(bαrN2/3c,1)→ vN+e1+e2 > qrN2/3 implies Ĩ
w+

N
i ≤ Iλi for

all i ∈ [[−bαrN2/3c+ 1, bαrN2/3c]].
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ξ[λ]

v+N + e1 + e2

(0, 0)

w+
N + e2

(αrN2/3, 1)

ξ[λ]

v+N + e1 + e2

(αrN2/3, 1)

triangle

Bλ

Bλ

Figure 4.9: Left: The likely behavior of the geodesic of Gλ,NE
(bαrN2/3c,1),vN+e1+e2

.

It enters the north boundary to the left of w+
N+e2. Right: The unlikely behavior

of the geodesic of Gλ,NE
(bαrN2/3c,1),vN+e1+e2

. In this case, the dark dotted line is

the geodesic between the black dot and (bαrN2/3c, 1). It spends an atypically

large amount of time on the boundary.

Finally, we show that

P

{
Z

λ,NE, (bαrN2/3c,1)→ vN+e1+e2 > qrN2/3
}
≥ 1− e−Cr3 .

This follows from the standard exit time estimate. As shown in the left diagram of

Figure 4.9, the geodesic of Gλ,NE
(bαrN2/3c,1),vN+e1+e2

(gray dotted line) tends to follow the

characteristic direction ξ[λ] which means it enters the north boundary on the left of

w+
N + e2. Else, by Lemma 4.3, there exists a parameter-λ stationary LPP process whose

geodesic (black dotted line in the right diagram of Figure 4.9) in the characteristic

direction spends excessive time on the boundary. The precise argument goes as follows.

Consider the right triangle whose vertices are the black, gray and white dots high-

lighted in the right diagram of Figure 4.9. The distance between the white and gray dots

is bounded below by 1−ρ
2 rN2/3 by (4.20). Then, the distance between the black dot and

the gray dot is at least λ2

(1−λ)2
1−ρ
2 rN2/3 where λ2

(1−λ)2 is the slope of the hypotenuse. By

Theorem 3.5, the probability that the geodesic shown as the black dotted line remains

on the boundary throughout the segment between the black and the gray dot is bounded

above by e−Cr3 . Here C depends on λ, and bounds (4.18) turn this into a dependence

on ρ. This completes the proof of Lemma 4.6.

With these new horizontal increments Iλ and Iη, define two more 2-sided random

walks Zλ,t0
n and Zη,t0

n with Zλ,t0
t0 = Zη,t0

t0 = 0 and

Zλ,t0
n − Zλ,t0

n−1 = In − Iλn,

Zη,t0
n − Zη,t0

n−1 = In − Iηn,

On the event A from (4.27),

Zλ,t0
n ≤ Z

w+

N ,t0
n for n > t0 and Zη,t0

n ≤ Z
w−

N ,t0
n for n < t0.
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We continue our bound

P(event in (4.25) ∩A) ≤ P

({
Zλ,t0
n < 0 for n ∈

(
t0, t0 + b 1

2αrN
2/3c

]}
(4.29)

⋂{
Zη,t0
n < 0 for n ∈

[
t0 − b 1

2αrN
2/3c, t0

)})
.

From Proposition 3.8, the increment variables {Iλ(i,1)}i>t0 ∪ {Iη(i,1)}i≤t0 are independent,

and these are independent of the boundary weights {Ii} by construction. Thus, the two

events on the right-hand side above are independent. This gives

(4.29) = P

{
Zλ,t0
n < 0 for n ∈

(
t0, t0 + b 1

2αrN
2/3c

]}

· P
{
Zη,t0
n < 0 for n ∈

[
t0 − b 1

2αrN
2/3c, t0

)}
.

The steps of the random walks in the two probabilities above have distributions Exp(1−
ρ) − Exp(1 − λ) and Exp(1 − η) − Exp(1 − ρ), respectively. By Lemma A.1 each of the

probabilities is bounded above by C(ρ)rN−1/3 where C(ρ) is a constant that depends

only on ρ by virtue of (4.18).

To summarize, we have shown

P
ρ{∃z ∈ D : Z−brN2/3ce1 → z = brN2/3c+ t0 }
≤ P(Ac) + P

ρ
(
{∃z ∈ D : Z−brN2/3ce1 → z = brN2/3c+ t0 } ∩A

)

≤ e−Cr3 +
(
C(ρ)rN−1/3)2.

With a union bound over t0,

P
ρ{∃z ∈ D : brN2/3c − δN2/3 ≤ Z

−brN2/3ce1 → z ≤ brN2/3c+ δN2/3}
≤ P(Ac) + P

ρ
(
{∃z ∈ D : brN2/3c − δN2/3 ≤ Z

−brN2/3ce1 → z ≤ brN2/3c+ δN2/3} ∩A
)

≤ e−Cr3 + (2δN2/3)
(
C(ρ)rN−1/3)2

= e−Cr3 + C(ρ)2δr2.

Letting r =
(
C−1| log δ|

)1/3
, this gives the desired upper bound C(ρ)δ| log δ |2/3 with a

new constant C(ρ). This completes the proof for the dark region D of Figure 4.6.

For geodesics that enter L+ we use monotonicity that comes from uniqueness of

finite geodesics:

P
ρ
{
∃v ∈ L+ : 1 ≤ Z

0→ v ≤ δN2/3
}
≤ P

ρ
{
∃v ∈ L+ : Z 0→ v ≥ 1

}

≤ P
ρ
{
Z

0→w+

N ≥ 1
}
≤ e−Cr3 = δ.

The last inequality comes from bound (3.8) from Corollary 3.6.

For geodesics that enter L−, this follows from Lemma 4.3. First, from the uniqueness

of finite geodesics, it suffices to look at the point w−
N since

P
ρ
{
∃v ∈ L− : 1 ≤ Z

0→ v ≤ δN2/3
}
≤ P

ρ
{
Z

0→w−

N ≤ δN2/3
}
.

Trace back a (−ξ[ρ])-directed ray from the point w−
N . Up to a ρ-dependent constant, this

ray crosses the x-axis at b (1−ρ)2

ρ2 qrN2/3ce1 (the white dot in Figure 4.10). Decrease δ0

further if necessary so that δ < δ0 ≤ (1−ρ)2

2ρ2 qr. Then the distance between the black and

white dots in Figure 4.10 is at least
(1−ρ)2

2ρ2 qrN2/3.

Let h be the positive integer such that (bδrN2/3c,−h) is the closest lattice point to the

(−ξ[ρ])-directed ray from w−
N . Then, h ≥ 1

2qrN
2/3. From Lemma 3.1, whenever Z 0→w−

N ≤
δN2/3 (gray dotted line), then Z

(bδN2/3c,−h)→w−

N < −h (black dotted line). Theorem 3.5

bounds this probability by e−Cr3 . This completes the proof of Theorem 4.5.
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(0, 0)

(δN2/3,−h)

w−
N

Figure 4.10: From Lemma 4.3, if Z 0→w−

N ≤ δN2/3 (gray dotted line),

then Z
(bδN2/3c,−h)→w−

N ≤ −h (black dotted line).

5 Dual geodesics and proofs of the main theorems

The main theorems from Section 2 are proved by applying the exit time bounds of

Section 4 to dual geodesics that live on the dual lattice. First define south and west

directed semi-infinite paths (superscript sw) in terms of the Busemann functions from

Theorem 3.7:

b
sw,ρ,x
0 = x, and for k ≥ 0

b
sw,ρ,x
k+1 =




b
sw,ρ,x
k − e1, if Bρ

b
sw,ρ,x
k −e1,b

sw,ρ,x
k

≤ Bρ
b

sw,ρ,x
k −e2,b

sw,ρ,x
k

b
sw,ρ,x
k − e2, if Bρ

b
sw,ρ,x
k −e2,b

sw,ρ,x
k

< Bρ
b

sw,ρ,x
k −e1,b

sw,ρ,x
k

.

(5.1)

Recall the dual weights {qωρ
x = Bρ

x−e1,x ∧ Bρ
x−e2,x}x∈Z2 introduced in part (iii) of Theo-

rem 3.7.

Let e∗ = 1
2 (e1 + e2) = ( 12 ,

1
2 ) denote the shift between the lattice Z

2 and its dual

Z
2∗ = Z

2 + e∗. Shift the dual weights to the dual lattice by defining ω∗
z = qωρ

z+e∗ for

z ∈ Z
2∗. By Theorem 3.7(iii) these weights are i.i.d. Exp(1). The LPP process for these

weights is defined as in (2.1):

G∗
x,y = max

z
•
∈Πx,y

|y−x|1∑

k=0

ω∗
zk
. (5.2)

Shift the southwest paths to the dual lattice by defining

b
∗,ρ,z
k = b

sw,ρ,z+e∗

k − e∗ for z ∈ Z
2∗ and k ≥ 0.

These definitions reproduce on the dual lattice the semi-infinite geodesic setting de-

scribed in Section 3.3, with reflected lattice directions. This is captured in the next

theorem that summarizes the development from Section 4.2 of [28].

Theorem 5.1. Fix ρ ∈ (0, 1). Then the following hold almost surely.

(i) For each z ∈ Z
2∗, the path b

∗,ρ,z is the unique (−ξ[ρ])-directed semi-infinite

geodesic from z in the LPP process (5.2). Precisely,

lim
n→∞

b
∗,ρ,z
n

n
= −ξ[ρ] and ∀k < l in Z≥0 : G∗

b
∗,ρ,z
l ,b∗,ρ,z

k
=

l∑

i=k

ω∗
b

∗,ρ,z
i

.
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x

x+ e1 + e2

x+ e∗

Figure 5.1: The equivalent events b
ρ,x
1 = x + e1 (dark gray arrow),

b
sw,ρ,x+e1+e2
1 = x + e2 (light gray arrow), and b

∗,ρ,x+e∗

k = x + e∗ − e1
(dotted arrow). The dark gray and dotted arrows never cross.

(ii) The semi-infinite geodesics and the dual semi-infinite geodesics are equal in dis-

tribution, modulo the e∗-shift and lattice reflection: {b∗,ρ,z}z∈Z∗2

d
= {−e∗ −

b
ρ,−(z+e∗)}z∈Z∗2 .

(iii) The collections of paths {b ρ,z}z∈Z2 and {b∗,ρ,z}z∈Z∗2 almost surely never cross

each other.

Part (ii), the distributional equality of the tree of directed geodesics and the dual,

was first proved in [24]. The non-crossing property of part (iii) can be seen from a simple

picture. The additivity of the Busemann functions gives

Bρ
x,x+e1 +Bρ

x+e1,x+e1+e2 = Bρ
x,x+e2 +Bρ

x+e2,x+e1+e2 . (5.3)

By (3.9) b
ρ,x
1 = x + e1 if and only if Bρ

x,x+e1 ≤ Bρ
x,x+e2 . By (5.3) this is equivalent to

Bρ
x+e2,x+e1+e2 ≤ Bρ

x+e1,x+e1+e2 which is the same as b
sw,ρ,x+e1+e2
1 = x+ e2, and this last

is equivalent to b
∗,ρ,x+e∗

k = x + e∗ − e1. An analogous argument works for the e2 step.

The conclusion is that the increments of b ρ,• out of x and b
∗,ρ,• out of x+ e∗ cannot cross.

See Figure 5.1.

To connect the dual semi-infinite geodesics with ρ-geodesics, define a stationary

LPP process G∗, ρ
−e∗,• exactly as in (3.4) with boundary weights on the south and east

boundaries, but on the dual quadrant −e∗ + Z
2
≥0 based at −e∗. The boundary weights

are defined by shifting Busemann function values to the dual lattice:

I∗, ρ−e∗+ke1
= Bρ

(k−1)e1,ke1
and J∗, ρ

−e∗+le2
= Bρ

(l−1)e1,le1
.

The bulk weights are {ω∗
x : x ∈ Z

∗2, x ≥ e∗}.
Proposition 5.2. For any w ∈ e∗ + Z

2
≥0 the following holds. The edges of the semi-

infinite geodesic b
∗,ρ,w that have at least one endpoint in e∗ +Z

2
≥0 are also edges of the

geodesic of G∗, ρ
−e∗,w.

Proposition 5.2, illustrated in Figure 5.2, is another version of Lemma 3.2. It is

proved as Prop. 5.1 in [28] but without the shift to the dual lattice, so in terms of the

southwest geodesics in (5.1) for the weights qωρ.

We are ready to prove the main results.

Proof of Theorem 2.2. Referring to Figure 5.3, geodesics b ρ,(0,bδN2/3c) and b
ρ,(bδN2/3c,0)

(gray dotted lines) coalesce outside J0, vN K if and only if some dual geodesic started

outside of J0, vN K − e∗ (black dotted line) enters the square J(0, 0), (bδN2/3c, bδN2/3c)K.
From Proposition 5.2, the restrictions of these dual geodesics are the ρ-geodesics of the

stationary LPP process on −e∗ +Z
2
≥0 with Busemann boundary weights on the south and

west. Consequently

P
{
z
ρ(bδN2/3ce1, bδN2/3ce2) 6∈ J0, vN K

}
= P

ρ
{
∃z /∈ J0, vN K : |Z 0→ z| ≤ δN2/3

}
. (5.4)

The bounds claimed in Theorem 2.2 follow from Theorems 4.4 and 4.5.
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−e∗

w

−e∗

w

Figure 5.2: Illustration of Proposition 5.2. On the left the dual semi-

infinite geodesic b
∗,ρ,w (light dotted path). On the right the geodesic of

G∗, ρ
−e∗,w (dark dotted path). The two paths coincide in the bulk.

x∗

(0, δN2/3)

(δN2/3, 0)

vN − e∗

−e∗

Figure 5.3: Geodesics b ρ,(bδN2/3c,0) and b
ρ,(0,bδN2/3c) (gray dotted lines)

coalesce outside J0, vN K. Equivalently, some dual point x∗ outside of

J0, vN K− e∗ sends a dual geodesic (black dotted line) into the rectangle

J(0, 0), (bδN2/3c, bδN2/3c)K.

Proof of Theorem 2.3. Referring to Figure 5.4, geodesics b ρ,(0,brN2/3c) and b
ρ,(brN2/3c,0)

(gray dotted lines) coalesce inside J0, vN K if and only if every dual geodesic started from

the north and east boundaries of J−e∗, vN + e∗K (black dotted lines) avoids the square

J(0, 0), (brN2/3c, brN2/3c)K. From Proposition 5.2, the restrictions of these dual geodesics

are the ρ-geodesics of the stationary LPP process on −e∗+Z
2
≥0 with Busemann boundary

weights on the south and west,

P
{
z
ρ(brN2/3ce1, brN2/3ce2) ∈ J0, vN K

}
= P

ρ
{
∀z /∈ J0, vN K : |Z 0→ z| ≥ rN2/3

}
. (5.5)

The lower bound claimed in Theorem 2.3 follows from Theorem 4.1. The claimed upper

bound is a trivial weakening of Theorem 3.5.

Proof of Corollary 2.4. From the duality, it suffices to show

(i) P
ρ
{
∃z outside J0, vN K such that 1 ≤ Z

0→ z ≤ δN2/3
}
≥ C1δ;

(ii) P
ρ
{
∃z outside J0, vN K such that 1 ≤ Z

0→ z ≤ rN2/3
}
≥ 1− e−C2r

3

.
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vN + e∗

(rN2/3, 0)

(0, rN2/3)

−e∗

u∗ u∗ + e1

Figure 5.4: None of the the ρ-geodesics will enter the gray square

because they are bounded away by the two dual geodesics (black

dotted lines) drawn above.

We establish (ii) from the special case

P
ρ
{
1 ≤ Z

0→ vN+b 1
10

rN2/3ce1 ≤ rN2/3
}
≥ 1− e−C2r

2

. (5.6)

Furthermore, from (5.6) the proof of Theorem 4.4 can be adapted to prove (i), by

partitioning [0, rN2/3] into intervals of size ≤ δrN2/3 and repeating the argument.

Inequality (5.6) comes from the estimates

P
ρ
{
Z

0→ vN+b 1
10

rN2/3ce1 ≤ −1
}
≤ e−Cr3 (5.7)

P
ρ
{
Z

0→ vN+b 1
10

rN2/3ce1 > rN2/3
}
≤ e−Cr3 . (5.8)

Inequality (5.7) is bound (3.7) of Corollary 3.6. For (5.8), apply Lemma 3.4 to the

process G
(0), ρ
z, • with the new base point z = b 1

10rN
2/3ce1, and then Theorem 3.5:

P
ρ
{
Z

0→ vN+b 1
10

rN2/3ce1 ≥ rN2/3
}
≤ P

ρ
{
Z

0→ vN ≥ 9
10rN

2/3
}
≤ e−Cr3 .

Proof of Theorem 2.8. If the semi-infinite geodesic b
ρ,(0,0) enters the interior of the

square JvN − (δN2/3, δN2/3), vN K as shown in Figure 5.5, we obtain a ρ-geodesic from

Proposition 5.2 whose exit time satisfies |ZNE,0→ vN | ≤ δN2/3. Applying the exit time

estimate Theorem 4.5 finishes the proof.

A Appendix

Below is the random walk estimate for the proof of Theorem 4.5. It is proved as

Lemma C.1 in Appendix C of [2].

Lemma A.1. Let α > β > 0. Let Sn =
∑n

k=1 Zk be a random walk with step distribution

Zk ∼ Exp(α)−Exp(β) (difference of independent exponentials). Then there is an absolute

constant C independent of all the parameters such that for n ∈ Z>0,

P(S1 < 0, S2 < 0, · · · , Sn < 0) ≤ C√
n

(
1− (α− β)2

(α+ β)2

)n

+
α− β

α
. (A.1)
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vN

(0, 0)

b
ρ,(0,0)

Figure 5.5: The square in the picture is JvN − (δN2/3, δN2/3), vN K. We

obtain a ρ-geodesic with north and east boundaries from the semi-

infinite geodesic in gray.

Next the moment bound on the Radon-Nikodym for the proof of Theorem 4.1.

Lemma A.2. Let a > 0, b ∈ R, and N ∈ Z>0. For ρ > 0, let Qρ be the probability

distribution on the product space Ω = R
baN1/3c under which the coordinates Xi(ω) = ωi

are i.i.d. Exp(ρ) random variables. Assume that

N ≥ |b|3ρ−3(1− η)−3 (A.2)

for some η ∈ (0, 1). Let f denote the Radon-Nikodym derivative

f(ω) =
dQρ+bN−1/3

dQρ
(ω).

Then

EQρ

[f2] ≤ exp

{
ab2

ρ2
+

10a|b|3

3ρ3ηN1/3

}
.

Proof. Let λ = ρ+bN−1/3. Assumption (A.2) implies that |λ−ρ| ≤ (1−η)ρ so in particular

the distribution Exp(λ) is well-defined. Note the inequality

∣∣∣∣log(1 + x)− x+
x2

2

∣∣∣∣ ≤
∞∑

k=3

|x|k
k

≤ |x|3
3η

(A.3)

valid for η ∈ (0, 1) and |x| ≤ 1− η. Apply it below to x = bρ−1N−1/3 and x = 2bρ−1N−1/3.

EQρ

[f2] =

∫

Ω

( baN2/3c∏

i=1

λe−λωi

ρe−ρωi

)2

Q(dω) =

(
λ2

ρ2

∫ ∞

0

e−2(λ−ρ)xρe−ρxdx

)baN2/3c

=

(
λ2

ρ(2λ− ρ)

)baN2/3c

= exp
{
baN2/3c

[
2 log λ− log ρ− log(2λ− ρ)

]}

= exp
{
baN2/3c

[
2 log(1 + bρ−1N−1/3)− log(1 + 2bρ−1N−1/3)

]}

≤ exp

{
ab2

ρ2
+

10a|b|3

3ρ3N1/3

}
.
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