
DNS Cache Poisoning Attack Reloaded: Revolutions with Side
Channels

Keyu Man
kman001@ucr.edu

University of California, Riverside

Zhiyun Qian
zhiyunq@cs.ucr.edu

University of California, Riverside

Zhongjie Wang
zwang048@ucr.edu

University of California, Riverside

Xiaofeng Zheng
zhengxiaofeng@qianxin.com

Qi-AnXin Group
Tsinghua University

Youjun Huang
huangyj@cernet.edu.cn
Tsinghua University

Haixin Duan
duanhx@tsinghua.edu.cn

Tsinghua University
Qi-AnXin Group

ABSTRACT
In this paper, we report a series of flaws in the software stack
that leads to a strong revival of DNS cache poisoning — a clas-
sic attack which is mitigated in practice with simple and effective
randomization-based defenses such as randomized source port. To
successfully poison a DNS cache on a typical server, an off-path
adversary would need to send an impractical number of 232 spoofed
responses simultaneously guessing the correct source port (16-bit)
and transaction ID (16-bit). Surprisingly, we discover weaknesses
that allow an adversary to “divide and conquer” the space by guess-
ing the source port first and then the transaction ID (leading to
only 216 + 216 spoofed responses). Even worse, we demonstrate a
number of ways an adversary can extend the attack window which
drastically improves the odds of success.

The attack affects all layers of caches in the DNS infrastructure,
such as DNS forwarder and resolver caches, and a wide range of
DNS software stacks, including the most popular BIND, Unbound,
and dnsmasq, running on top of Linux and potentially other oper-
ating systems. The major condition for a victim being vulnerable is
that an OS and its network is configured to allow ICMP error replies.
From our measurement, we find over 34% of the open resolver pop-
ulation on the Internet are vulnerable (and in particular 85% of
the popular DNS services including Google’s 8.8.8.8). Furthermore,
we comprehensively validate the proposed attack with positive
results against a variety of server configurations and network con-
ditions that can affect the success of the attack, in both controlled
experiments and a production DNS resolver (with authorization).

CCS CONCEPTS
• Networks → Cross-layer protocols; • Security and privacy
→ Network security.

KEYWORDS
DNS cache poisoning, side channel, off path attack, ICMP rate limit

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7089-9/20/11.
https://doi.org/10.1145/3372297.3417280

ACM Reference Format:
Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun Huang,
and Haixin Duan. 2020. DNS Cache Poisoning Attack Reloaded: Revolutions
with Side Channels. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’20), November 9–13, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3372297.3417280

1 INTRODUCTION
Domain name system (DNS) is an essential part of the Internet, orig-
inally designed to translate human-readable names to IP addresses.
Nowadays, DNS has also been overloaded with many other secu-
rity critical applications such as anti-spam defenses [38], routing
security (e.g., RPKI) [10]. In addition, DNS also plays a crucial role
in bootstrapping trust for TLS. TLS certificates are now commonly
acquired by proving the ownership of a domain [2]. Therefore, com-
promising the integrity of DNS records can lead to catastrophic
security failures, including fraudulent certificates being issued that
can compromise the underpinning of public key cryptography [9].

Historically, the very first widely publicized DNS cache poison-
ing attack was discovered by Kaminsky [39] in 2008, who demon-
strated that an off-path attacker can inject spoofed DNS responses
and have them cached by DNS resolvers. This has led to a num-
ber of DNS defenses being deployed widely, including source port
randomization [35] and “birthday protection” [29, 30]. Other de-
fenses such as 0x20 encoding [19] and DNSSEC [6] have also gained
some traction. Unfortunately, due to reasons such as incentives and
compatibility, these two defenses are still far from being widely
deployed as reported in recent studies [13, 16, 17, 36, 46, 53]. To
summarize, source port randomization becomes the most important
hurdle to overcome in launching a successful DNS cache poisoning
attack. Indeed, in the past, there have been prior attacks that at-
tempt to derandomize the source port of DNS requests [30, 32]. As
of now, they are only considered nice conceptual attacks but not
very practical. Specifically, [32] requires an attacker to bombard
the source port and overload the socket receive buffer, which is not
only slow and impractical (unlikely to succeed in time) but also
can be achieved only in a local environment with stringent RTT
requirement. In [30], it is assumed that a resolver sits behind a NAT
which allows its external source port to be derandomized, but such
a scenario is not applicable to resolvers that own public IPs.

In contrast, the vulnerabilities we find are both much more seri-
ous and generally applicable to a wide range of scenarios and condi-
tions. Specifically, we are able to launch attacks against all layers of

https://doi.org/10.1145/3372297.3417280
https://doi.org/10.1145/3372297.3417280
https://doi.org/10.1145/3372297.3417280

caches which are prevalent in modern DNS infrastructure [5, 8, 54],
including application-layer DNS caches (e.g., in browsers) [5], OS-
wide caches [5], DNS forwarder caches [34] (e.g., in home routers),
and the most widely targeted DNS resolver caches. The vulnerabili-
ties also affect virtually all popular DNS software stacks, including
BIND [18], Unbound [43], and dnsmasq [40], running on top of
Linux and potentially other OSes, with the major requirement being
the victim OS allowed to generate outgoing ICMP error messages.
Interestingly, these vulnerabilities result from either design flaws
in UDP standards or subtle implementation details that lead to
side channels based on a global rate limit of ICMP error messages,
allowing derandomization of source port with great certainty.

To demonstrate the impact, we devise attack methods target-
ing two main scenarios, including DNS forwarders running on
home routers, and DNS resolvers running BIND/Unbound. With
permissions, we also tested the attack against a production DNS
resolver that serves 70 million user queries per day, overcoming
several practical challenges such as noises, having to wait for cache
timeouts, multiple backend server IPs behind the resolver frontend,
and multiple authoritative name servers. In our stress test experi-
ment, we also evaluate the attack in even more challenging network
conditions and report positive results.

In this paper, we make the following contributions:
• We systematically analyze the interaction between application-

and OS-level behaviors, leading to the discovery of general UDP
source port derandomization strategies, the key one being a
side channel vulnerability introduced by a global rate limit of
outgoing ICMP error messages.

• We research the applicability of the source port derandomization
strategies against a variety of attack models. In addition, to allow
sufficient time in conducting the derandomization attack, we
develop novel methods to extend the attack window significantly,
one of them again leveraging the rate limiting feature (this time
in the application layer).

• We conduct extensive evaluation against a wide variety of server
software, configuration, and network conditions and report pos-
itive results. We show that in most settings, an attacker needs
only minutes to succeed in an end-to-end poisoning attack. We
also discuss the most effective and simple mitigations.

2 CURRENT STATE OF DNS CACHE
POISONING ATTACKS

The classic DNS cache poisoning attack in 2008 [39] targeted a
DNS resolver by having an off-path attacker tricking a vulnerable
DNS resolver to issue a query to an upstream authoritative name
server. Then the attacker attempts to inject rogue responses with
the spoofed IP of the name server. If the rogue response arrives
before any legitimate ones, and if it matches the “secrets” in the
query, then the resolver will accept and cache the rogue results.
Specifically, the attacker needs to guess the correct source/destina-
tion IP, source/destination port, and the transaction ID (TxID) of
the query. The transaction ID is 16-bit long. At the time when both
the source and destination port (i.e., 53) were fixed, 16-bit is the
only randomness. Thus an off-path attacker can simply brute force
all possible values with 65,536 rogue responses, not to mention a

few optimizations such as birthday attacks that can speed the attack
even further.

2.1 State-of-the-Art Defenses
A number of defenses have since then been promoted to mitigate
the threat of DNS cache poisoning. They effectively render the
original attack no longer feasible. We describe below the most
widely known and deployed defenses.
• Randomization of source port [35] is perhaps the most effective
and widely deployed defense as it increases the randomness from
16 bits to 32 bits. As an off-path attacker has to guess both the
source port and TxID at the same time.
• Randomization of capitalization of letters in domain names,
i.e., 0x20 encoding [19]. The offered randomness depends on the
number of letters and can be quite effective also, especially for
long names. Unfortunately, even though it is a simple change to
the protocol, in practice it has significant compatibility issues with
authoritative name servers encountered on the Internet [17, 21].
Therefore, most popular public resolvers now refrain from using
0x20 encoding by default. For example, Google DNS uses it only for
a set of whitelisted name servers [21]; Cloudflare has even recently
disabled 0x20 encoding altogether [16]. At the time of writing, we
find only two (i.e., openNIC and Verisign) out of the 16 popular
public DNS services we measured (see the other 14 in Table 2) use
it by default to a test name server we setup. And the result roughly
matches what was observed in a recent study [53].
• Randomization of the choice of name servers (server IP ad-
dresses) [31]. The offered randomness depending on the number
of name servers. In practice, most domains employ less than 10
name servers, translating to only 2 to 3 bits. In addition, it has been
shown that an attacker can induce query failures against certain
name servers and therefore effectively “pinning” a resolver to the
one remaining name server [30].
• DNSSEC [6]. The success of DNSSEC depends on the support
of both resolvers and authoritative name servers. However, only
a small fraction of domains is signed — 0.7% for .com domains,
1% for .org domains, and 1.85% for Top Alexa 10K domains, as
reported in 2017 [13]. In the same study, it is also reported that only
12% of the resolvers enabling DNSSEC actually attempt to validate
the received records. As a result, the overall deployment rate of
DNSSEC is far from satisfactory.

2.2 New Attack Surface in the DNS Hierarchy
As alluded to earlier, modern DNS infrastructure has multiple layers
of caching. Figure 1 provides a concise view: a client application
often initiates a DNS query (through an API call such gethost-
byname()) to an OS stub resolver — typically a separate system
process that maintains an OS-wide DNS cache. The stub resolver
does not perform any iterative queries; instead, it always forwards
the request to the next layer up, a DNS forwarder which also for-
wards queries to its upstream recursive resolver. DNS forwarders
are commonly found in Wi-Fi routers (e.g., in a home) and they
maintain a dedicated DNS cache also. It is the recursive resolver
that does the real job to iteratively query the authoritative name
servers. The answers are then returned and cached in each layer.

All layers of caches are technically subject to the DNS cache
poisoning attack. Unfortunately, most newly proposed attacks were
focused on resolvers [9, 29, 30, 32], and very limited investigations
have been done on stub resolvers [5] and forwarders [55].

Stub
Resolver

Forwarder Recursive
Resolver

Authoritative
name servers

Figure 1: DNS Infrastructure with Multiple Layers of
Caching

3 ATTACK OVERVIEW
We propose a general and novel attack, applicable to all modern
DNS software stack, influencing all layers of DNS caching. The key
characteristic is that it defeats the most effective and commonly
deployed defense — randomization of source port.
Threat Model. In this paper, we focus on the attacks against DNS
forwarders and resolvers due to their high impact. Similar to the
classic DNS cache poisoning attack, we assume the attacker is
off-path (not able to eavesdrop traffic between a forwarder and
resolver), and capability of IP spoofing. According to a recent study
in 2019 [47], 30.5% of ASes do not block packets with spoofed source
IP addresses. In practice, an attacker only needs to find one node
that can spoof IPs to carry out the attack. To demonstrate the ease
of this, we rented a bullet-proof-hosting node specifically publicly
advertised as IP-spoofing-capable ($50/month with unlimited data)
and found that it indeed can spoof “arbitrary IPs”.

In addition, the attacker needs to control a machine that is able
to trigger a request out of a forwarder or resolver. In the case of a
forwarder attack, this can happen when the attacker is located in a
LAN managed by a wireless router. For example, an attacker can
join a public wireless network in a coffee shop, a shopping mall,
or an airport. The attacker can also control a puppet whose sole
responsibility is to query the forwarder to launch the attack if direct
access to the LAN is impossible. In a resolver attack, this can include
any network (enterprise, organization, or institution) where the
attacker is an insider or owns a compromised machine. Moreover,
any public resolvers on the Internet also satisfy the requirement.
Attack Workflow. Regardless of a forwarder or resolver, as illus-
trated in Figure 2, our newly proposed attacks always start from
triggering either one to send a DNS query, followed by two key
steps as outlined below:

1○ Inferring source port. To overcome the randomization of source
port, we leverage a novel and universal side channel in networking
stacks to scan and discover which source ports were used to initiate
a DNS query, at a speed of at most 1,000 guesses per second.

2○ Extending attack window. Normally an outstanding query
will receive a reply from the upstream server in a matter of tens or
hundreds of milliseconds. This is insufficient, given that the attacker

1.vctm.com A ?

②Muting (§5)

1.vctm.com A ? sp=x, dp=53, id=y

1.vctm.com A v.c.t.m

1.vctm.com A a.t.k.r, sp=53, dp=x

1.vctm.com A a.t.k.r

dp=0, 1, 2, ……, x

① Port Scan (§4)

Cached

vctm.com NSDNS ServerAttacker

id=0, 1, 2, ……, y

sp=source port
dp=dest port
a.t.k.r=malicious IP

Figure 2: Attack Workflow

needs time to infer the source port and to inject rogue DNS replies.
We discover effective and novel strategies (different for forwarder
and resolver attack) that can greatly extend the attack window to
at least seconds (and even more than 10s), allowing realistic cache
poisoning opportunities. We will discuss this in §5.

Once the source port number is known, the attacker simply
injects a large number of spoofed DNS replies bruteforcing the
TxIDs, which can be done in high speed, given that most servers
have sufficient network bandwidth.

4 INFERRING DNS QUERY’S SOURCE PORT
In this section, we will describe the idea and procedure of inferring
DNS source ports. We will also measure the vulnerable software
and in-the-wild population when feasible.

4.1 Analysis of UDP Source Port Scannability
UDP is a stateless protocol and hence fundamentally different from
TCP. More specifically, it is stated in the UDP programming guide-
line (RFC 8085 [24]) that “UDP datagrams may be directly sent and
received, without any connection setup. Using the sockets API, ap-
plications can receive packets frommore than one IP source address
on a single UDP socket.” Furthermore, to ensure that an application
will receive data from only one particular source address, “these
applications MUST implement corresponding checks at the appli-
cation layer or explicitly request that the operating system filter
the received packets.”

These are surprisingly under-scrutinized statements. On a first
glance, they may be interpreted as applicable to UDP servers only,
which can bind to a local port, and subsequently receive packets
from “any remote IPs”. Surprisingly, from our experiments, it applies
to UDP clients as well — a client calling sendto() on a specific
remote IP and subsequently recvfrom() on the same socket can
technically receive packets from “any other IPs” as well. We have
verified this behavior on all modern operating systems, including
Windows, Linux, and MacOS.

This nuanced behavior has a profound impact on what an at-
tacker can learn through a trivial UDP port scan — when a DNS
server issues a query, its source port effectively becomes open to
the public. This allows an attacker to simply scan the ephemeral

port range with any UDP packet, which will trigger nothing upon
hitting the correct port (as the probe will be accepted by the OS but
discarded at the application layer), or an ICMP port unreachable
message upon missing it (by design).

Next, the UDP programming guideline (RFC 8085) further states
that “Many operating systems also allow a UDP socket to be con-
nected, i.e., to bind a UDP socket to a specific pair of addresses
and ports.” Indeed, modern socket APIs allow connect() on a UDP
socket but “this is only a local operation that serves to simplify the
local send/receive functions and to filter the traffic”. As a result,
when a DNS query is issued from a source port to a particular des-
tination IP address and port, the OS will accept incoming packets
from only the same remote IP and port. Specifically, when testing
the behavior on real network stacks, we find that they will reject a
packet with either a wrong IP or port, and respond with an ICMP
port unreachable message (as if the packet was a port scan attempt).
This effectively prevents the source port of a DNS query from being
scanned directly.

In summary, the scannability of source port is dependent on the
implementation of DNS software, i.e., whether a connect() API
call is issued on the UDP socket. Interestingly, we find that out of
the three most popular DNS forwarder and resolver software BIND,
Unbound, and dnsmasq, only BIND uses connect(). Nevertheless,
we develop different scanmethods that canwork for each (described
in §4.3 and §4.4, overcoming the challenge outlined in the next
section.

4.2 ICMP Rate Limit Challenge
Amajor hurdle to scan UDP source ports efficiently is the commonly
deployed rate limit of outgoing ICMP error messages on endhosts.
Even in the simple case where a source port is public-facing and can
be scanned directly by any IP address, an attacker’s scanning speed
is limited by the number of allowable ICMP packets per second (a
signal indicating a source port is not in use).

Historically, ICMP rate limit was first recommended to limit
the resource consumption on a router (described in RFC 1812 [7])
where an attacker can force it to generate a high volume of ICMP
error messages. Today, the rate limit mechanism is universally
implemented by all major OSes. Here we focus on the Linux’s
ICMP rate limiting behavior as it is the most popular server OS, but
will briefly describe the behaviors of other OSes afterwards.

For Linux, there are both a per-IP and global rate limit on how
many ICMP error packets can be sent out per second. The per-IP
rate limit was historically introduced in the very early versions
of Linux, i.e., present in kernel 2.4.10. The global rate limit was
introduced in kernel 3.18 as a way to alleviate the expensive per-IP
rate limit check (e.g., red-black tree operations) [22].

By default, the per-IP rate limit is one per second (with an accrued
max burst of 6) which will severely restrict the scanning speed; the
global rate limit is effectively 1,000 (with periodic max allowable
bursts of 50). Both are implemented in token bucket style, with the
per-IP tokens recovering at a rate one per second and the global
token recovering at a “nominal” rate of one per millisecond (but
the actual token increment happens only after at least 20ms has
elapsed since the last increment). The number of available tokens
is capped at 50 at all times.

We also tested Windows Server 2019 (version 1809), MacOS
10.15 and FreeBSD 12.1.0, all of which have global ICMP rate limits.
Specifically, their limits are 200, 250 and 200 respectively. Besides,
none of them has a per-IP rate limit.

4.3 Public-Facing Source Port Scan Method
Even though a source port can be directly probed by any attacker
IP in this case, e.g., as in unbound and dnsmasq, it is imperative to
bypass the per IP rate limit (present in Linux primarily) to achieve
faster scan speed. We develop three different probing methods that
can overcome the ICMP rate limit challenge.

1○ If the attacker owns multiple IP addresses, either multiple bot
machines or a single machine with an IPv6 address, then it is trivial
to bypass the per IP limit. IPv6 address allocation states that each
LAN is given a /64 prefix [33], effectively allowing any network to
use 264 public IP addresses. We have tested this from a machine
in a residential network that supports IPv6 and picked several IPs
within the /64 to send and receive traffic successfully.

2○ If an attacker owns only a single IPv4 address, it is still pos-
sible to ask for multiple addresses using DHCP. We verified that
multiple private IPv4 addresses can be obtained in a home network.
In addition, we have tested this in an educational network where
a single physical machine is able to acquire multiple public IPv4
addresses through this method as well.

3○ If an attacker owns a single IPv4 address and the above
method fails for some reason (e.g., statically assigned IPs), then
the last method is to leverage IP spoofing to bypass the per IP rate
limit, and the global rate limit as a side channel to infer whether
the spoofed probes have hit the correct source port or not, i.e., with
or without ICMP responses. As have been shown in the context
of TCP recently, global rate limit can introduce serious side chan-
nels [11, 12, 26]. Here we leverage the ICMP global rate limit to
facilitate UDP port scans which we describe next.

Figure 3 illustrates this. In observing the maximum globally
allowable burst of 50 ICMP packets in Linux, the attacker first
sends 50 spoofed UDP probe packets each with a different source IP
(bypassing the per-IP rate limit). If the victim server does not have
any source port open among the 50, then 50 ICMP port unreachable
messages will be triggered (but they are not directly observable
to the attacker). If the victim server does have 𝑛 open ports, then
only 50-𝑛 ICMP packets will be triggered (as the 𝑛 UDP probing
packets will be silently discarded at the application layer). Now,
the attacker sends a verification packet using its real IP address,
e.g., a UDP packet destined to a known closed port, such as 1. It
will either get no response (if the global rate limit is drained), or an
ICMP reply otherwise.

If no port is found in the first batch, the attacker waits for at least
50ms for the rate limit counter to recuperate, and then start the
next round. Effectively, the scanning speed will be capped at 1,000
per second. It therefore takes 60+ seconds to enumerate the entire
port range consisting of 65536 ports. Nevertheless, it is a winning
battle as the attacker can simply repeat the experiment and the
probability that one experiment will succeed increases drastically
(we note that this is a simple Bernoulli trial).
Time consideration. This approach does have a strong timing
requirement. The only thing the attacker has to make sure is to

Spoofed
Packets

50 Probe Packets

50 ICMP
Replies

Verification Packet

50 Probe Packets

50−n ICMP
Replies

Verification Packet

ICMP Reply

Off-path
Attacker

Arbitrary
Hosts

Victim Server
with no ports open

Arbitrary
Hosts

Victim Server
with n ports open

Global
Counter=50

Global
Counter=0

Global
Counter=50

Global
Counter=n

Global
Counter=n-1

each spoof a
different IP

Figure 3: Fast Port Scanning of an Open Source Port

Spoofed
Packets

50 Probe Packets

1 ICMP
Reply

Verification Packet

50 Probe Packets

1 ICMP
Reply

Verification Packet

ICMP Reply

Off-path
Attacker

Upstream
Server

Victim Server
no active query

Upstream
Server

Victim Server
has n active queries

Global
Counter=50

Global
Counter=0

Global
Counter=50

Global
Counter=n

Global
Counter=n-1

all spoof the IP of
upstream server

Figure 4: Fast Port Scanning of a Private Source Port

send 50 spoofed probing packets and the verification packet in a
burst so that they are all processed within a 20𝑚𝑠 window; other-
wise, the victim may start recovering additional tokens. The other
requirement is that the attacker has to wait long enough for the
50 max tokens to recover. If the network condition is not ideal, the
attacker can simply wait longer than 50ms.
Binary search to narrowing down to an exact port. Assuming
there is a single open port out of the 50 in a specific probing round,
we can then employ a simple binary search to quickly narrow down
to the exact port. During each round of binary search, we always
probe the left half of range first. If it is a match, i.e., 50 spoofed
probing packets triggered 49 replies and the attacker can observe
one reply to its verification packet, then we continue to search
its left half. Otherwise, we assume the port lies in the right half
and will conduct a binary search there. Note that we will need to
send “padding packets” to ensure the global rate limit is drained
when none of the 50 guesses hit a correct port. Padding packets are
spoofed packets destined to known closed UDP ports, e.g., 1, that
are guaranteed to trigger ICMP replies.
Handling noises.DNS servers usually serve multiple clients at the
same time, creating multiple outstanding DNS queries and source
ports. As a result, the source port scan will likely discover many
irrelevant ports. However, most such queries are transient, and
the port scan process can quickly discover an open source port
disappearing during the binary search and return to the linear
search. In contrast, we assume that the attacker-triggered DNS
queries will last significantly longer, e.g., on the order of seconds
instead of milliseconds (see §5).

Another source of noises comes from packet losses and reorder-
ing. This may lead to both false positives, e.g., loss probing packets
or their replies, reordering between verification and probing pack-
ets, and false negatives, e.g., lost of the verification packet or its
reply (although very rare in practice). To mitigate reordering (which
may happen frequently if the jitter is large), we insert a delay, which
is empirically determined to be larger than twice the jitter, between
probe packets and the verification packet. When false positives do
occur, they are handled automatically in the binary search process–
it will detect no real port being open and return to linear search.

Even though they can be handled, excessive false positives will
drain the per-IP rate limit quickly. Specifically, given the token is
recovered at the slow rate of one per second, a false positive rate
that is higher than that will force the scan to halt until the token is

recovered. Effectively, a per-IP token is a “pass to scan”. To solve
this problem, the attacker may use two or more real IPs to gain
more “passes”.

In addition, DNS servers themselves may be subject to random
UDP port probing and therefore generate ICMP unreachable mes-
sages. This would cause false negatives: we may mistakenly think
there is no open port but in fact there is because the verification
packet will not trigger any ICMP unreachable replies due to the
noise draining the rate limit. Fortunately, not all ICMP replies are
subject to rate limit. For example, the most commonly triggered
ICMP echo replies are not subject to the limit.

4.4 Private Source Port Scan Method
As described in §4.1, if connect() is performed on a UDP socket,
the port effectively becomes “private” to the remote peer, invalidat-
ing the previous method.

Our idea then is to send spoofed UDP packets with the source IP
of the upstream DNS server. In the example of a DNS resolver being
the victim, we can send UDP packets probing different source ports
with spoofed IP of the authoritative name server. If it hits the correct
source port, then no ICMP reply will be generated. Otherwise, there
will be. We can then use the same global ICMP rate limit as a side
channel to infer if such an ICMP message has been triggered. At
first glance, this method can work but at a low speed of one port
per second, due to the per-IP rate limit on ICMP messages.

Surprisingly, after we analyze the source code of the ICMP rate
limit implementation, we find that the global rate limit is checked
prior to the per-IP rate limit. This means that even if the per-IP
rate limit may eventually determine that no ICMP reply should be
sent, a packet is still subjected to the global rate limit check and one
token is deducted. Ironically, such a decision is consciously made
by Linux developers to avoid invoking the expensive check of the
per-IP rate limit [22], involving a search process to locate the per-IP
data structure.

This effectively means that the per-IP rate limit can be disre-
garded for the purpose of our side channel based scan, as it only
determines if the final ICMP reply is generated but has nothing to
do with the global rate limit counter decrement. As a result, we can
continue to use roughly the same scan method as efficient as before,
achieving 1,000 ports per second. Figure 4 illustrates the slightly
modified scan workflow. Similar to Figure 3, the attacker first sends
50 probes where this time all of which uses the spoofed IP of the

Table 1: DNS Forwarder Behaviors in Home Routers

Router ICMP Reply Global ICMP Rate Limit Using connect() Spoofing Public IP in LAN Vulnerable
Verizon Fios Gateway (G1100) Y N Y N/A N

Xiaomi (R3) Y N N Y Y1
Huawei A1 (WS826) N N/A N/A N/A N

Netgear (WNDR3700v4) Y N N N Y2
Arris Spectrum Gateway (TR4400) Y N N Y Y1

TP-Link (Archer C59) Y N N Y Y1
Y1: vulnerable to an insider attack. Y2: vulnerable to an attack requiring collaboration between an insider and outsider.

upstream server. Due to per-IP rate limit, the victim server will
always generate only one ICMP reply (in steady state) as long as
there is at least one inactive port scanned, which is the case in both
the left and right side of the figure. In the case where the 50 probes
hit 𝑛 private open ports (to the upstream server), the global rate
limit counter still decrements to 𝑛 because the victim attempted to
generate 50 − 𝑛 ICMP replies. In contrast, when all 50 probes hit
inactive ports (left side of the figure), the counter decrements to 0.

The rest of the procedure is identical as before, where a binary
search can be launched to narrow down to a specific port.
Influence on public-facing source port scan. With this knowl-
edge, we can improve method 3○ in §4.3 as follows: instead of
spoofing 50 different IPs in each round of probing, we only need to
use a single spoofed IP (or a 2nd IP the attacker owns) instead of
many different IPs (which sometimes can be a hurdle).
Handling noises. We point out that there is inherently less noise
in this scan compared to the one on public-facing source ports.
This is because every source port is now effectively “open” to only
one single remote IP which is originally specified in connect().
Therefore, assuming the victim is a resolver, most of its queries (i.e.,
noise) will be destined to a different name server than a specific
attack target. Other noise conditions such as packet loss and re-
ordering still apply. Similarly, noise handling techniques also apply
(e.g., using more than one IP to alleviate the per-IP ICMP rate limit).

4.5 Vulnerable DNS Forwarder and Resolver
Population

A forwarder or resolver is considered vulnerable if the UDP source
port of a DNS query can be inferred successfully, ormore specifically
if it supports the global ICMP rate limit, and/or if it does not use
connect() (which makes the port public).
Vulnerable Forwarders. We surveyed six home router devices,
all of which act by default as a forwarder supporting DNS caching.
Their behaviors are summarized in Table 1.

Only one router (Huawei A1) fails to respond with even the
ICMP port unreachable message, which is a basic requirement of
the port scan. The Verizon Gateway is not vulnerable because it is
the only one using connect() yet without the global rate limit. We
find that all routers are running old Linux kernel versions in the
range of 2.6 to 3.10, which is why global rate limit is not observed.
We do believe that routers of newer generations will eventually
inherit the global rate limit. Nevertheless, since most of them do
not use connect() on the UDP socket, the source port of a DNS
query can be easily probed without leveraging the side channel
based on the global ICMP rate limit. In addition, we also measured
the IP spoofing capability within the LAN network. Specifically,

if an attacker can spoof the public IP of the resolver from within
the LAN network, which often operates on a private IP range, the
end-to-end attack can be conducted from a machine in the LAN
alone without any external collaborator. The result shows that three
routers fall under this category (Y1), and one can be attacked from
an outside machine capable of spoofing the resolver’s IP (Y2).
VulnerableResolvers.We study a list of 14 popular DNS providers
shown in Table 2 and show that 12 of them are vulnerable which
is very serious. Interestingly, we find that due to firewall policies
encountered in several providers, the source port of the probing
packet must be set to 53 and the destination port should be in the
ephemeral port range in order to trigger ICMP responses on some
servers.

Note that we also report the number of backend server IPs be-
hind the anycasted frontend IP (e.g., 8.8.8.8). These backend IPs
correspond to the reachable servers on which we can scan ports.
The presence of multiple such IPs increases the attack’s difficulty as
we need to decide which IP(s) to scan. To discover the backend IPs,
we simply send 100 queries from the same machine to the frontend
and record the observed IPs at an authoritative name server that
we own. For the cases where we encounter only a few IPs, we can
simply scan all of them simultaneously. For the cases of OpenDNS
and AliDNS which have over 100, we discuss possible techniques
to handle them later in §6. Note that OpenDNS and AliDNS exhibit
more than 100 IPs because our authoritative name server inten-
tionally discards incoming queries and they decide to retry with
potentially new IPs every time before giving up.

In addition, we also measured the general population of open
resolvers. Compared with public resolvers, which are usually ad-
vertised and intended to serve the public, open resolvers, however,
are generally unlisted and are intended to serve smaller numbet
of clients. We obtain a list of open resolvers from Censys [23] and
managed to probe a set of 138,924 live IPs, among which there are
70,503 whose backend and frontend IPs are identical, indicative of
the absence of anycast. Further, 41.3% of the 138,924 cases generate
ICMP replies (following the same practice of using source port 53
in the probing packets), out of which 67.56% exhibit a global rate
limit, and 53.93% use connect() on the socket. Overall, 34.36% of
all cases are vulnerable because they either support the global rate
limit or do not use connect()). Most of them are not vulnerable
simply because of the lack of ICMP replies.

5 EXTENDING THE ATTACKWINDOW
The longer the attack window, the more ports an attacker can scan,
and also more time to inject rogue records. Therefore, our goal is
to “mute” upstream servers and prevent them from being able to

Table 2: Popular Public Resolver Behaviors

Name Address Example Backend Addr. # of Backends ICMP Global Rate Limit Using connect() Vulnerable
Google 8.8.8.8 172.253.2.4 15 Y Y N Y

CloudFlare 1.1.1.1 172.68.135.169 2 Y Y Y Y
OpenDNS 208.67.222.222 208.67.219.11 107 Y Y Y Y
Comodo 8.26.56.26 66.230.162.182 2 Y Y N Y
Dyn 216.146.35.35 45.76.11.166 1 Y Y N Y
Quad9 9.9.9.9 74.63.16.243 11 Y Y Y Y

AdGuard 176.103.130.130 66.42.108.108 3 Y Y N Y
CleanBrowsing 185.228.168.168 45.76.171.37 1 Y Y Y Y

Neustar 156.154.70.1 2610:a1:300c:128::143 2 Y Y N Y
Yandex 77.88.8.1 77.88.56.132 19 Y Y Y Y

Baidu DNS 180.76.76.76 106.38.179.6 16 Y Y Y Y
114 DNS 114.114.114.114 106.38.179.6 11 Y N N Y

Tencent DNS 119.29.29.29 183.194.223.102 45 Y N N N1

Ali DNS 223.5.5.5 210.69.48.38 160 N N/A N/A N
1 Though meeting the requirements, it is not vulnerable due to interference of fast UDP probing encountered (likely caused by firewalls).

respond to the DNS queries triggered by the attacker. Depending
on the attack target (i.e., a forwarder or resolver), we come up with
two novel strategies. Ironically, one of the strategies again leverage
the “rate limiting” feature commonly deployed at the application
layer, which can be turned to the attacker’s advantage.

5.1 Extending Window in a Forwarder Attack
We propose a novel strategy as follows: the attacker first sends a
query of his own domain, e.g., www.attacker.com to the forwarder,
which will eventually trigger the upstream resolver to query the
attacker-controlled authoritative name server. The name server is
intentionally configured to be unresponsive so that the forwarder
would wait maximum amount of time possible (as the resolver is
also halted) while leaving an open source port. At a first glance,
this is pointless because we are not interested in poisoning an
attacker’s own domain. However, due to the unique role of DNS
forwarders [34], they rely completely on upstream resolvers to
perform validations on responses.

More specifically, according to RFC 8499 [34], recursive resolvers’
responsibility is to handle the complete resolution of a name and
provide a “final answer” to its client. This includes recursively han-
dling referrals and CNAMEs and assemble a final answer, including
any CNAME redirects by design. More importantly, resolvers are re-
quired to perform integrity checks such as the bailiwick check [25],
whereas forwarders are not. This means that forwarders by design
trust the upstream resolvers and its response. This is not a secu-
rity flaw; rather, it is a design choice to prevent forwarders from
duplicating the work of resolvers. This observation is also made a
in recent study dedicated to the security of DNS forwarders [60].

As a result, a rogue response (potentially injected by an attacker
from either LAN or outside) shown in Figure 5 will be accepted by
a forwarder and both the attacker’s and victim’s domain records
will be cached. This strategy is extremely effective because we can
impose the maximum wait time on the forwarder (i.e., creating the
largest possible attack window). Specifically, most forwarders have
a very lenient timeout (sometimes close to a minute e.g., in dns-
masq), and will stop mostly because the upstream resolver failing

first (ranging from 5 to 30 seconds) generating a SERVFAIL response
(or NXDOMAIN) message. To prevent resolvers from generating such
messages too early, we also employ a technique that can sometimes
keep a resolver engaged longer. The trick is to have the attacker-
owned authoritative name server respond in a slow pace with a
chain of CNAME records, creating an illusion that it is making
progress. This can delay resolver’s response for over a minute in
some cases (e.g., CloudFlare).

Answer www.attacker.com CNAME www.victim.com
www.victim.com A 1.2.3.4

Figure 5: Example Rogue Response Acceptable by a For-
warder (the victim domain record also cached)

5.2 Extending Window in a Resolver Attack
We propose to take advantage of the security feature of rate limiting
in authoritative name servers, as a way to mute name servers and
extending window in a resolver attack. Modern DNS name server
software such as BIND, NSD, PowerDNS, all support a common
security feature called response rate limiting (RRL) [57, 59], as a mit-
igation of the DNS amplification attack [57] where a large number
of malicious DNS queries are issued to authoritative name servers
spoofing a victim’s IP address. To limit the number of amplified
DNS reply packets, the RRL feature allows a configurable per-IP,
per-prefix, or even global limit of triggered responses. Specifically,
if the limit is reached, then responses are either getting truncated
or dropped. There are also dedicated DNS firewalls with similar
features [14].

Ironically, this feature can be leveraged maliciously to mute a
name server if an attacker can inject spoofed DNS queries (with
the target resolver’s IP) at a rate higher than the configured limit.
Depending on the actual limit (some are configured to be very low),
it may be trivial to create a sufficiently high “loss rate” so that the
resolver’s legitimate query has an extremely low probability of
getting a response. To understand how likely such a strategy can

Figure 6: Response Loss Rate under Different Query Rate

succeed, we conduct an experiment to measure the response rate
of name servers used by top 10K Alexa websites.
Measurement methodology. To trigger RRL, we send 1K queries
per second for 15 seconds, followed by another around of 4kpps test
of 15 seconds to each name server IP; the two tests are separated by
a two-second gap to avoid interference. If there are multiple name
servers for a given domain, we pick the first one. In both cases,
the queries are uniformly distributed (instead of sent in bursts) all
attempting to ask the A record of the www subdomain. The rational is
that 1kpps and 4kpps represent sufficiently low throughput, roughly
0.6Mbps and 2.5Mbps respectively, which is easily achievable by
any attacker on the Internet.
Ethical considerations. We consciously took a number of mea-
sures to limit the impact on the operations of these servers. First, we
ask for A records in our queries, which generally result in smaller
responses, to conserve the target network’s resources; yet, a prior
report [58] suggests that rate limiting behaviors are generally ag-
nostic to the type of queries (so this would not impact the result of
our measurement). Second, the domain names in the queries are
always the same, resulting in minimal processing overhead on the
server (the result is likely cached in memory and easy to fetch).
Third, we choose to send evenly spaced queries (instead in burst)
to avoid stressing the server. In general, the traffic of 4kpps is small
compared to a normal load experienced by a name server of a Top
Alexa site. Finally, we set up a web server on the IP address used to
conduct the probing, serving a webpage with opt out instructions
(we also configured the reverse DNS name of the IP to direct visitors
to our webpage). In total, we received and honored four requests.
Results.We sort the domains by the loss rate observed in the 4kpps
test in descending order and present the results in Figure 6. Overall,
there are about 25% domains whose name servers experienced
higher than 1% loss rate. This is in line with a recent measurement
reporting about 17% cases with loss behaviors [20]. The difference
is likely due to their lower rate of queries at 500pps.

We now try to analyze what fraction of these domains are vul-
nerable (can be muted successfully). Here we define a domain to
be vulnerable if its name server exhibits an induced loss rate of
66.7% or higher; the threshold is determined empirically as will be
discussed in §7.2. Specifically, there are 13,110 domains that would
already satisfy the criteria and fall victim to a simple DoS attack at
a rate of 4kpps.

Figure 7: DNS Response Used to Overwrite Cache
Field Value

Question {nonce}.www.victim.com

Answer

Authoritative www.victim.com NS ns.attacker.com

Additional

In addition, we also inspect the remaining cases where the loss
rate increased from the 1kpps test to the 4kpps one. There are
roughly 5,000 cases where the diff is 2% or higher. We believe that
the majority of them can be further increased given increased probe
rate, and therefore potentially vulnerable as well. Therefore, we
have a total of 18110 (13,110 and 5,000) cases out of the 100K (18%)
which we consider vulnerable.

Finally, out of the 75% cases where both 1kpps and 4kpps tests
experienced no loss, we believe there may be many more vulner-
able cases which we simply cannot uncover due to the relatively
low probing speed. Due to ethical concerns, however, we refrain
from probing at an even higher speed. To peek into those cases,
we manage to obtain permission from a collaborator to test an
authoritative name server configured for non-profit website. We
are able to probe the server at a much higher rate (late at night to
avoid disruption). Initially when probed at a rate 4kpps, no loss
is observed. Interestingly, it started to experience loss when the
probing rate is increased to 25kpps. Specifically, when the rate is
increased to 50kpps, the loss rate jumps to 75%. We checked with
our collaborator on whether the server is indeed configured to use
such a high rate limit. To our surprise, there is no rate limit config-
ured at all. To understand this behavior, we replicate a BIND server
locally (replicating the configuration) and verified that indeed it is
fairly easy to trigger high loss rate with comparable probing speeds.
We find that it is because the application (i.e., BIND) not reading
from the socket queue fast enough, which causes overflows. Indeed,
historical DoS attacks similar to this, e.g., by flooding queries with
random names, have been observed in practice [44]. To mitigate
such threats, the official BIND explicitly guideline recommends rate
limit [52], which would paradoxically make it vulnerable to our
attack instead.

In addition, we can leverage this technique to extend the attack
window against a forwarder since RRL is also deployed on resolvers
to limit the rate of incoming queries. By following the same proce-
dure and ethical standard in the previous measurements and a rate
of 4kpps probing against the resolver IPs obtained on 14, 2019 from
Censys [23], we observe surprisingly 121,195 out of 136,547 exhibit
a loss rate of more than 66.7%, indicating it is generally possible to
mute resolvers on the Internet.

6 PRACTICAL ATTACK CONSIDERATIONS
Bypassing the TTL of cached records. If an attacker attempts
to poison a benign domain such as www.victim.com by directly
triggering DNS queries of www.victim.com on a resolver, it may
cache the unwanted legitimate A record, for example, due to oc-
casional failures to mute their upstream servers. This forces the
attacker to wait for the cache timeouts before initiating the next
attack attempt.

However, according to a recent study [41], the cached A record of
www.victim.com could be overwritten by injecting a non-existent
NS record of www.victim.com. Specifically, an attacker always
sends queries asking for A records of domain names with random
prefixes, e.g., {nonce}.www.victim.comwhere {nonce} is a random
value. This forces the resolver to initiate a new query to the au-
thoritative name server of victim.com as the record is not cached.
Then the attacker attempts to inject a rogue response as shown in
Figure 7, claiming that www.victim.com is a standalone zone with
its own authoritative server ns.attacker.com. The resolver will
then query ns.attacker.com for all future requests asking for A
record of www.victim.com, after the original cached record expires.
This is because the attack has effectively inserted a new NS record
of the www.victim.com zone. And resolvers are by design advised
to use the most accurate delegation it has in the cache, which in
this case is the NS record of www.victim.com instead of the one of
victim.com [41]. We have verified that this method works against
the latest versions of both BIND and Unbound.
Timeouts and retransmitted queries. When a DNS query is
triggered either on a forwarder or resolver and there is no legitimate
reply received from their upstream, they will not wait forever. Most
of them have a timeout determining when to close the current socket
(and therefore the corresponding source port) and retransmit. This
means that some of these source ports may be short-lived and
difficult to catch. Therefore, it is important to understand their
behaviors in more depth.

In most DNS software such as BIND and Unbound, we conduct
controlled experiments with the help of documentation and source
code analysis, and summarize their behaviors (which generally
match what we observe in real resolvers). Specifically, when con-
figured as forwarders, they have a similar behavior to resolvers
but typically have a longer timeout (and it is generally easier to
extend their attack window using different strategies). So, we focus
on resolvers’ behaviors below.

In the case when there is no failure, both BIND and Unbound
maintain a default retransmission timeout (RTO) — 0.8s for BIND,
and a dynamically computed value based on RTT (to the authorita-
tive name server) for Unbound. If timeouts occur (e.g., the name
server is unresponsive or muted), they will contact another name
server in a round robin manner if more than one is available. If
all of them failed to respond, they will exponentially back off by
doubling the RTO — BIND starts the backoff only after 3 consecu-
tive failure whereas Unbound does it after every failure). Finally,
there is another hard-stop condition — default 10s total wait time
for BIND and 16 to 32 trials for Unbound (depending on the type of
query). A SERVFAIL will be sent back to the client if the hard-stop
condition is met.

Here we refer to the RTO as the “attack window” as it represents
the duration where a source port remains unchanged. When the
window ends, a different source port will be chosen, nullifying
any previous port scan progress — a new port may happen to pop
back into the range that is just scanned. It is important to note that
when the attack window is too small (e.g., 1s), even if the port is
correctly identified, it will still take time to inject 64K rogue DNS
records (at a flooding rate of 100kpps, it may still take a few hundred
milliseconds), which may not finish before the window closes.

Generally speaking, if the authoritative name server is muted for
an extended duration, we do expect to see larger attack windows (as
RTOs double over failed attempts). With BIND being more reluctant
in doubling the RTO and having a tighter hard-stop condition (de-
fault 10s), we believe it is a more difficult attack target. We describe
an experiment against such a difficult case in §8.
Handlingmultiple authoritative name servers.Many domains
in practice are configured with multiple authoritative name server
IPs, for redundancy and security. Some consider this as a specific de-
fense against DNS cache poisoning attacks against resolvers (called
“IP randomization”) [31], as it increases the randomness of a DNS
query. According to a recent measurement study [49], second level
domains like example.com under TLDs like .com, .net and .org
have a median of only 2 NS only (and a mean of 2.3, 2.4, and 2.4);
therefore this is not a strong defense by itself.

There are two ways to handle this. First, a general strategy is
to simultaneously mute all the authoritative name servers, given
that on average few of them exist. This will help the RTO to grow
exponentially after a resolver experiences repeated failures when
contacting all the name servers.

Second, if a resolver is Unbound, it has a unique behavior where
it will stop contacting a name server (blacklisting the server) and
switch “permanently” (i.e., minutes) to other available ones, should
it repeatedly fail to hear from the originally-contacted server [31].
The authors in [31] therefore take advantage of this behavior to
perform what they call “name server pinning”. In our case, we need
to allow periodic successful responses (by suspending the muting
process); this is to avoid the last name server being blocked as well.
Handlingmultiple backend servers behindDNS resolversAs
described in §4.5, many public DNS resolvers have multiple back-
end servers (with different IPs) that perform the actual queries.
Interestingly, we find that the backend server selection is typically
heavily skewed towards a few (even when we do see 100+ in total
for some providers), likely determined based on location and past
performance measurements. This allows us to focus on only a few
IPs at the same time, which is easily achievable consider each IP
only requires a scan traffic of 1kpps.

7 END-TO-END ATTACKS
In this section, we evaluate our attack in realistic settings, including
a forwarder used in a home, and a production resolver with a
realistic configuration and network conditions.

7.1 Attacking a Forwarder (Home Router)
Experiment Setup. Given that most vulnerable routers have a
fairly similar behavior shown in Table 1, we choose Xiaomi R3 (a
Wi-Fi home router) as a representative case study to launch end-
to-end attacks. It is used as the one and only gateway in an actual
home where 10 to 15 devices are connected to the Internet through
the wireless router all the time. In addition, Xiaomi R3’s upstream
DNS server is set to CloudFlare DNS (1.1.1.1). Its DHCP server is
by default configured to provide 253 IPv4 addresses in a /24 network.
Finally, the attack machine is a Raspberry Pi, which also connects
to the router wirelessly.

Since Xiaomi R3 does not deploy global ICMP rate limit and its
forwarder software does not call connect() on UDP sockets, we

use strategy 2○ in §4.3 (obtaining multiple IPs through DHCP) to
bypass its per-IP rate limit. For extending the attack window, we
use strategy 1 as described in §5.1 with a malicious name server.
Attack Process. The attack is divided into two phases, In Phase
I, the attacker tries to acquire 240 IP addresses using the DHCP
strategy. Afterwards, the attack goes into Phase II where the fol-
lowing repeats: the attacker issues a query to the forwarder asking
for an arbitrary subdomain, e.g., nonce.attacker.com. If SERV-
FAIL/NXDOMAIN is received or if an attacker has waited for longer
than 1 minute, indicating something is wrong, we will repeat the
attack process by issuing another query. Otherwise, if a NOERROR
response is received, it means a forged response is injected suc-
cessfully. In Phase II, the attacker uses acquired IP addresses to
scan open ports on the router. We rotate among the available IPs
and make sure that we never go above the per-IP rate limit (which
is 1pps in steady state). After a port is found open, we confirm
that it stays open for at least one second by repeatedly probing
the same port. If it does, we start injecting rogue responses. The
experiment is repeated 20 times and we report the success rate,
average time-to-succeed, and other statistics.
Results. Overall, the attack is very effective, with a success rate
of 100% out of the 20 experiments (we consider it a success if the
attack finishes within 30 minutes). The average time-to-succeed
is 271s, with a breakdown of 103s in Phase I and 168s in Phase
II. The standard deviation of Phase II is 109s with the maximum
of 739s and the minimum of 83s. The variance is large because
the attack time is mainly determined by the attack window size,
which is the timeout before a resolver decides to give up and return
SERVFAIL/NXDOMAIN, as mentioned in §5.1, and the timeout on
CloudFlares’ resolver varies a lot (from seconds to more than one
minute for unknown reasons). Also, the attack needs to scan 36,325
ports on average to succeed; the average port scan speed is 210pps,
which roughly matches the expected rate of 240pps when using
240 IPs to scan. Besides, the attack generates 78 MB of traffic.

7.2 Attacking a Production Resolver
Even though the attack canwork in principle against a large fraction
of public DNS resolvers, due to obvious legal and ethical concerns,
we refrain from targeting any of them. Fortunately, we obtained au-
thorization to test the attack against a production resolver managed
by a collaborator.
Experiment Setup.The resolver processes about 70million queries
daily with thousands of real users across multiple institutions and is
configured as an open resolver. Because of this, it will be noisy and
representing a challenging attack target. Another behavior note-
worthy is that it has two backend servers, both of which appear
to use connect() on the UDP sockets. Interestingly, we were told
that they are running Unbound, and we suspect that the connect()-
like behavior can be due to stateful UDP firewalls responsible for
filtering out-of-state packets. We are given an attack machine in
an adjacent network — 4 hops away from the resolver, which has a
1Gbps Ethernet and can perform IP spoofing.

Also, we setup a test domain and host it on an authoritative
server controlled by us so that we poison only our own test domain.
We configure the BIND software with a response rate limit at a low
rate of 10pps to minimize the impact on the network. Once the limit

is reached, we allow 1 out of 5 responses — an effective loss rate
of 80%. This forms the setup of baseline experiments, and we have
conducted 20 rounds of them one in daytime and the other after
midnight local time (as shown in Table 3). In addition, to understand
the effect of response rate limit on the authoritative name server,
we vary the mute level by allowing a loss rate of 75%, 66.7%, to 50%
— the lower the loss rate, the more difficult the attack is.

As a comparison, we also simulated more realistic network con-
ditions by imposing additional delay, jitter, and loss on the same
attack machine. The exact numbers are presented in Table 3 where
the baseline represents the unmodified network condition and al-
tered represents the simulated condition. We take the numbers with
reference to recent Internet measurements [27][15]. We believe an
attacker is likely able to find networks with even better conditions.
To deal with increased false positives caused by the simulated net-
work condition, we used two IPs to launch the attack in the altered
experiment; this is to avoid halting the scan too frequently due to
the per-IP token being drained (see §4.3).

Finally, we are also interested in understanding the influence
of the parameter “name server mute level”, on the viability of the
attack and will conduct a controlled experiment varying the “mute
level” where all other parameters are the same as those in baseline.
Attack Process. The process similarly starts from the attacker gen-
erating queries asking for nonce.attacker.com. Since the resolver
has two backend server IPs, we launch the port scans on both IPs
simultaneously. At the same time, we mute all authoritative name
servers with queries at a rate of 20pps so that the resolver will
experience a constant loss rate of 80%. The experiment is repeated
20 times and 5 times for the baseline and altered respectively.
Results. As shown in Table 3, we achieved a perfect 100% success
rate for the first baseline experiment Base(D) (at daytime), with an
average time of 504s to succeed. The standard deviation is 399s
with the maximum being 1404s and the minimum being 13s (which
is simply due to luck). On average, only 69 MB of attack traffic is
generated, which is similar to that in the forwarder attack even
though resolver attacks takemuch longer to succeed. This is because
a forwarder attack is much more likely to enter the TxID bruteforce
phase (6 times vs. twice), which generates about 10 MB of traffic
every time. Specifically, strategy 2○ used in the forwarder attack
does not have a binary search phase and an open port is simply
confirmed twice before it enters the TxID bruteforce phase whereas
the binary search phase employed in the resolver attack checks
repeatedly the existence of an open port.

After inspecting the detailed log, we found that even though
Base(D) experiment has a near perfect network condition, many
more packets were sent compared to the forwarder attack. This is
because of the frequent change of source ports caused by either
resolver retries (i.e., RTOs) or new queries initiated by the attacker
(if the resolver happens to receive a legitimate response), resulting
in many small and fragmented attack windows. In fact, we find
more than half of these fragmented attack windows to be smaller
than 1 second, making them undesirable. Interestingly, we do find a
decent fraction of large attack windows (10% of them with a 30s or
larger). Such long attack windows match the profile of an Unbound
resolver — 16 maximum allowed retransmissions, each doubling the
RTO. In §8, we demonstrate that a BIND attack with much smaller

Table 3: Production Resolver Attack Results

Exp. RTT
range

Probe loss Name sever
mute level

Average
time taken

Success
rate

Base(D) 0.2-1.2ms ∼0% 80% 504s 20/20∗
Base(M) 0.2-1.2ms ∼0% 80% 410s 20/20∗
Mute Lv. 0.2-1.2ms ∼0% 75% 1341s 18/20∗
Mute Lv. 0.2-1.2ms ∼0% 66.7% 2196s 20/20#
Mute Lv. 0.2-1.2ms ∼0% 50% 8985s 9/20#
Altered 37-43ms 0.20% 80% 930s 5/5∗
*: 1-hour threshold. #: 3-hour threshold. D: Day. M: Midnight

attack windows appears to be still feasible but taking much longer
time to succeed.

As shown in Table 3, the Base(M) experiment has the same exact
setup as the Base(D) except that it is conducted after midnight
where background traffic and noises will be generally lower. We
observe the same 100% success rate and the average time to succeed
decreasing from 504s to 410s. This is expected as our attack is
sensitive to noises.

In addition, for the mute level experiments shown in Table 3, all
but 50% mute level (i.e., loss rate) can still achieve a near perfect
success rate and can finish generally within an hour (note the
threshold of success being 3 hours for the 66.7% mute level). For 50%
mute level, the attack succeeded only 9 out of 20 cases. Moreover,
the average time taken is 8,985s or 2.5 hours.

Finally, for the altered experiment, we also achieved a perfect
100% success rate. Specifically, the time to succeed is 2005s, 538s,
792s, 1287s and 29s respectively. On average, the attack time is 930s
and 131 MB of traffic is generated. Note that the scan speed in the
altered experiment is higher than that in the baseline experiment.
This is because we used two IPs in the altered experiment, reducing
the frequency of halting during scans.

We also find that the increased loss rate and jitter causes more
false positives, where we incorrectly consider a port discovered
(as the verification packet successfully solicits an ICMP). This is
commonly caused by any loss of probing packets which can create
two problems: (1) we waste much time filtering these false positives
during the binary search stage, reducing the effective scanning
speed; (2) The scan can still be halted because of frequent draining
of the per-IP ICMP tokens even though we used two IPs.

8 DISCUSSION
Attack against Unbound vs. BIND. As mentioned previously, a
BIND attack would be much tougher than Unbound as most of
the fragmented attack windows will be generally smaller, as it is
more reluctant in doubling the RTO and have a tighter hard-stop
condition (as discussed in §6). To understand if is ever feasible to
attack a BIND resolver, we construct an extreme experiment with 4
name servers, and a default hard-stop condition of 10s wait time
on the BIND resolver, resulting in the resolver almost always stuck
in a small attack window of 0.8s, as querying 4 name servers for
3 rounds already take 9.6s (before the RTO backoff can kick in).
The experiment is conducted in a similar network environment
to baseline. Surprisingly, we run the experiment twice and both
succeeded (one in 0.54 hours and the other in 1.25 hours). We find
that it is indeed possible to succeed in scanning a port as well

as injecting rogue records all in a 0.8s window. One attack we
inspected showed that the port scan took 600ms and the record
injection took 200ms.
UDP source port inference on other operating systems. In
addition to Linux, we have verified that other major OS kernels
are vulnerable as well, albeit with lower global rate limit — 200 in
Windows and FreeBSD, and 250 in MacOS. It is concerning that
not a single OS is aware of the side channel potential of global
rate limits, despite the recent serious side channels specifically
leverage a challenge ACK global rate limit in TCP [11]. We argue
that all global rate limits in networking stacks need to be scrutinized
regardless of their original design goal. We believe this work can
serve as another valuable reference.
Other vulnerable protocols. Any protocols based on UDP are
affected by the source port inference. A prominent example is
QUIC [37] and HTTP/3 [48] which are poised to replace the tradi-
tional TCP-based web protocols with a much more efficient UDP-
based protocols. They are already widely deployed in Google’s web
services [56]. In addition, VoIP, video streaming, and delay-sensitive
online games may also use UDP, which are subject to port inference,
and even off-path packet injection attacks.
Best practices in configuring response rate limiting (RRL).
Even though response rate limit on authoritative name servers
is an important mitigation against DNS reflection/amplification
attacks, if not done carefully, it can allow the extension of attack
window in a DNS cache poisoning attack. We endorse the RRL
behavior (which was configurable but not always used) where a
server still responds with truncated messages when a rate limit is
reached [59] instead of being silent. This way, the amplification
factor is no longer favorable to a DDoS attacker. Yet, it sends a strong
signal to the resolver indicating something bad is going on, and the
resolver should immediately react, e.g., either switching the source
port and sending a new query, or falling back to TCP altogether (as
recommended in [59]). This strategy can reduce the susceptibility
of RRL being maliciously taken advantage of, compared to the cases
where a server is completely muted (with 100% loss). Unfortunately,
as we show in the resolver attack, even a 66.7% drop rate would
already make a server vulnerable, not to mention that a determined
attacker with more resources can simply flood the server with
expensive queries (e.g., to non-existing domains [44]).

8.1 Defenses
The proposed attack is fundamentally an off-path attack and there-
fore can be mitigated by additional randomness and cryptographic
solutions. Besides DNSSEC and 0x20 encoding, there is also an
emerging feature called DNS cookie that is standardized in RFC
7873 [1] in 2016. At a high level, it requires both client and server to
exchange some additional secrets unknown to an off-path attacker;
it therefore has the potential to defeat most (if not all) off-path DNS
attacks. Note that this feature requires both resolvers and authori-
tative name servers to upgrade in order to see benefits. As of now,
only BIND has implemented this feature and have it turned on by
default in 9.11.0 forward [28] (released in 2016). We find about 5%
of the open resolvers that we measured have enabled this feature
by default. However, as any other unproven technology (the lesson

regarding 0x20 [16]), it remains to be seen if issues such as compat-
ibility will prevent it from being widely adopted. Interestingly, we
already found both DNSPod (operated by Tencent) and a resolver
in a private company drop queries with DNS cookie options, likely
for compatibility concerns.

In addition, our attack relies on the two fundamental compo-
nents: (1) inferring source port of a DNS query; (2) extending attack
window. Each of them can be a security threat on its own and
therefore we discuss how to address both.

For (1), the simplest mitigation is to disallow outgoing ICMP
replies altogether (as is done by many servers), at the potential cost
of losing some network troubleshooting and diagnostic features.
Otherwise, we need to address the global rate limit. As with patches
on TCP global counters [51], we suggest a randomized ICMP global
rate limit, including possibly randomizing the max allowable burst
(currently 50), minimum number of tokens recovered each time
(currently 20), minimum idle time to recover tokens (currently
20ms), and number of token recovered per time unit (currently
1 per millisecond). When the side channel is mitigated, we also
recommend resolvers adopt the use of connect() on their UDP
sockets so that their source ports will not be public-facing and
directly scannable.

For (2), we have discussed best practices to use RRL to prevent
an attacker from muting authoritative name servers easily. Other
simple mitigation strategies include: (1) setting the timeout of DNS
queries more aggressively (e.g., always below 1s). This way, the
source port will be short-lived and disappear before the attacker
can start injecting rogue responses. The downside, however, is the
possibility of introducing more retransmitted queries and overall
worse performance. (2) Employing anycast to make it harder for
an attacker to DoS a specific authoritative name server used by a
victim resolver.

9 RELATEDWORK
DNS blind forgery attacks and cache poisoning. After the ma-
jor DNS cache poisoning attack presented in 2008 [39], many de-
fenses have been applied, making such blind off-path attacks much
more difficult. Several studies continued to investigate the feasi-
bility of new attacks in the presence of state-of-the-art defenses.
For example, Herzberg and Shulman [30] proposed a method to de-
randomize the source port of a resolver behind NAT by occupying
all but one port on the NAT with the help of a dummy machine
in the same network as the resolver, and also proposed a name-
server-pinning method leveraging IP fragmentation. Unfortunately,
the attack is not applicable for resolvers that own a public IP ad-
dress (which we believe to be the common case). Alharbi et al. [5]
conducted a similar attack to exhaust the local ports on a client
machine and poisoned the OS-wide DNS cache.

Later, another work by the Herzberg and Shulman [31] proposed
a novel IP fragmentation technique to target resolvers. This tech-
nique eliminates the requirements of guessing randomized source
port number, server address, and query name, etc. Instead, only IPID
becomes the secret that needs to be guessed. The key assumption
is the response of a victim domain is voluntarily fragmented (e.g.,
when DNSSEC is enabled). A more recent work by Brandt et al. [9]

relaxed the constraint by injecting ICMP fragmentation needed er-
ror messages to an authoritative name server to proactively lower
its MTU (with respect to the resolver) and induce fragmentation.
The attack depends on the exact server configuration, as many
simply reject such ICMP packets or uphold a minimum MTU larger
than needed to fragment a DNS response. In addition, predicting
IPID precisely has become more challenging over time as more ran-
domness is introduced [4]. Despite this, Wang et al. [60] developed
a novel attack targeting DNS forwarders by forcing fragmentation
using attacker-owned authoritative name servers.

Overall, different from previous works, we leverage a universal
network side channel based on the ICMP global rate limit, which we
show to be prevalent. In addition, our attack also works perfectly
against all layers of DNS caches (not just resolvers).
Network side channel vulnerabilities For decades, researchers
have been using network side channels to infer sensitive network
information, e.g., port scans [26], TCP sequence number infer-
ence [11, 45, 50], and others [3, 42].

The only work that can be classified as a side channel in the
DNS source port inference is by Herzberg and Shulman [32]. The
authors proposed to use low-rate bursts of packets to overload
specific source ports on resolvers that can potentially cause the
legitimate DNS reply destined to those ports getting dropped. This
creates a timing side channel — longer end-to-end response time
(observed by the malicious client triggering the request) indicates
that a port is used, and shorter indicates it is not. Unfortunately, this
requires an attacker and the resolver to be co-located in low-latency
network environment, e.g., LAN, due to its sensitivity to network
noise. In contrast, our source port scan technique is much more
direct and reliable and hence can be carried out from far away.

In addition, the concept of leveraging global rate limit in network
protocols as a side channel has been documented in several impor-
tant works. For example, TCP RST rate limit [12, 26], TCP challenge
ACK rate limit [11] have been demonstrated and reported in the
past. The ICMP rate limit is in principle no different, although it is
perhaps even more subtle as it shows up during interactions across
layers (i.e., UDP and ICMP).

10 CONCLUSION
This paper presents a novel and general side channel based on
global ICMP rate limit, universally implemented by all modern
operating systems. This allows efficient scans of UDP source ports
in DNS queries. Combined with techniques to extend the attack
window, it leads to a powerful revival of the DNS cache poisoning
attack, demonstrated with real-world experiments under realistic
server configuration and network conditions. Finally, we suggest
practical mitigations that can be used to raise the bar against such
attacks.

11 ACKNOWLEDGMENT
We wish to thank the anonymous reviewers for their valuable
comments and suggestions. This work was supported by the Na-
tional Science Foundation under Grant No. 1652954, 1619391, and
1839511.

REFERENCES
[1] D. Eastlake 3rd and M. Andrews. 2017. RFC 7873, Domain Name System (DNS)

Cookies. https://tools.ietf.org/html/rfc7873.
[2] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan

Flores-López, J. Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric
Rescorla, Seth Schoen, and Brad Warren. 2019. Let’s Encrypt: An Automated
Certificate Authority to Encrypt the Entire Web. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’19).

[3] G. Alexander and J. R. Crandall. 2015. Off-path round trip time measurement
via TCP/IP side channels. In 2015 IEEE Conference on Computer Communications
(INFOCOM).

[4] Geoffrey Alexander, Antonio M. Espinoza, and Jedidiah R. Crandall. 2019. De-
tecting TCP/IP Connections via IPID Hash Collisions. In PoPETS.

[5] Fatemah Alharbi, Jie Chang, Yuchen Zhou, Feng Qian, Zhiyun Qian, and Nael
Abu-Ghazaleh. 2019. Collaborative Client-Side DNS Cache Poisoning Attack.
In IEEE INFOCOM 2019-IEEE Conference on Computer Communications. IEEE,
1153–1161.

[6] D. Atkins and R. Austein. 2004. RFC 3833: Threat Analysis of the Domain Name
System (DNS). Technical Report. https://tools.ietf.org/html/rfc3833

[7] F. Baker. 1995. Requirements for IP Version 4 Routers. Technical Report. https:
//tools.ietf.org/html/rfc1812

[8] Adib Behjat. 2011. DNS Forwarders. https://www.isc.org/blogs/dns-forwarders/.
[9] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael Waidner.

2018. Domain validation++ for MitM-resilient PKI. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2060–2076.

[10] R. Bush and R. Austein. 2017. RFC 8210: The Resource Public Key Infrastructure
(RPKI) to Router Protocol, Version 1. Technical Report. https://tools.ietf.org/html/
rfc8210

[11] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy,
and Lisa M. Marvel. 2016. Off-Path TCP Exploits: Global Rate Limit Considered
Dangerous. In Proceedings of the 25th USENIX Conference on Security Symposium
(Austin, TX, USA) (SEC’16). USENIX Association, USA, 209–225.

[12] Yue Cao, Zhongjie Wang, Zhiyun Qian, Chengyu Song, Srikanth V. Krish-
namurthy, and Paul Yu. 2019. Principled Unearthing of TCP Side Channel
Vulnerabilities. In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security (London, United Kingdom) (CCS ’19). As-
sociation for Computing Machinery, New York, NY, USA, 211–224. https:
//doi.org/10.1145/3319535.3354250

[13] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran, David
Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and Christo Wilson. 2017.
A Longitudinal, End-to-End View of the DNSSEC Ecosystem. In 26th USENIX
Security Symposium (USENIX Security 17). USENIX Association, Vancouver, BC,
1307–1322. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/chung

[14] CloudFlare. [n.d.]. Shield Your DNS Infrastructure From DDoS Attacks With
Cloudflare’s DNS Firewall. https://www.cloudflare.com/dns/dns-firewall/.

[15] European Commision. 2014. Quality of Broadband Services in the EU. http:
//ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=10816.

[16] Cloudflare community. 2018. Case randomization recently disabled? https:
//community.cloudflare.com/t/case-randomization-recently-disabled/61376.

[17] Cloudflare community. 2018. Incorrect resolution for my domain. https:
//community.cloudflare.com/t/incorrect-resolution-for-my-domain/17966.

[18] Internet Systems Consortium. 2020. BIND 9. https://www.isc.org/bind/.
[19] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke Lee.

2008. Increased DNS Forgery Resistance through 0x20-Bit Encoding: Security
via Leet Queries. In Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS ’08).

[20] Casey Deccio, Derek Argueta, and Jonathan Demke. 2019. A Quantitative Study
of the Deployment of DNS Rate Limiting. In 2019 International Conference on
Computing, Networking and Communications (ICNC). IEEE, 442–447.

[21] Google Public DNS. 2019. Introduction: DNS security threats and mitigations.
https://developers.google.com/speed/public-dns/docs/security.

[22] Eric Dumazet. 2014. icmp: add a global rate limitation. https://github.com/
torvalds/linux/commit/4cdf507d54525842dfd9f6313fdafba039084046.

[23] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J. Alex
Halderman. 2015. A Search Engine Backed by Internet-Wide Scanning. In 22nd
ACM Conference on Computer and Communications Security.

[24] L. Eggert, G. Fairhurst, and G. Shepherd. 2017. RFC 8085: UDP Usage Guidelines.
Technical Report. https://tools.ietf.org/html/rfc8085

[25] R Elz and R Bush. 1997. RFC 2181: Clarifications to the DNS specification.
https://tools.ietf.org/html/rfc2181.

[26] Roya Ensafi, Jong Chun Park, Deepak Kapur, and Jedidiah R. Crandall. 2010.
Idle Port Scanning and Non-Interference Analysis of Network Protocol Stacks
Using Model Checking. In Proceedings of the 19th USENIX Conference on Security
(Washington, DC) (USENIX Security’10). USENIX Association, USA, 17.

[27] FCC. 2018. Eighth Measuring Broadband America Fixed Broadband Re-
port. https://www.fcc.gov/reports-research/reports/measuring-broadband-

america/measuring-fixed-broadband-eighth-report.
[28] Suzanne Goldlust, Cathy Almond, and Mark Andrews. 2017. DNS Cookies in

BIND 9. https://kb.isc.org/docs/aa-01387.
[29] Amir Herzberg and Haya Shulman. 2011. Unilateral antidotes to DNS poisoning.

In International Conference on Security and Privacy in Communication Systems.
Springer, 319–336.

[30] Amir Herzberg and Haya Shulman. 2012. Security of Patched DNS. In ESORICS
2012, Sara Foresti, Moti Yung, and Fabio Martinelli (Eds.).

[31] Amir Herzberg and Haya Shulman. 2013. Fragmentation considered poisonous,
or: One-domain-to-rule-them-all. org. In 2013 IEEE Conference on Communications
and Network Security (CNS). IEEE, 224–232.

[32] Amir Herzberg and Haya Shulman. 2013. Socket Overloading for Fun and Cache-
Poisoning. In Proceedings of the 29th Annual Computer Security Applications
Conference (ACSAC ’13).

[33] R. Hinden and S. Deering. 2006. IP Version 6 Addressing Architecture. Technical
Report. https://tools.ietf.org/html/rfc4291

[34] P. Hoffman, A. Sullivan, and K. Fujiwara. 2019. RFC 8499: DNS Terminology.
Technical Report. https://tools.ietf.org/html/rfc8499

[35] A. Hubert and R. van Mook. 2009. RFC 5452: Measures for Making DNS More
Resilient against Forged Answers. Technical Report. https://tools.ietf.org/html/
rfc5452

[36] Geoff Huston. 2019. The state of DNSSEC validation. https://blog.apnic.net/2019/
03/14/the-state-of-dnssec-validation/.

[37] Ed. J. Iyengar, Ed. andM. Thomson. 2020. QUIC: A UDP-Based Multiplexed and
Secure Transport. Technical Report. https://tools.ietf.org/html/draft-ietf-quic-
transport-27

[38] A. J. Kalafut, C. A. Shue, and M. Gupta. 2011. Touring DNS Open Houses for
Trends and Configurations. IEEE/ACM Transactions on Networking 19, 6 (2011),
1666–1675.

[39] Dan Kaminsky. 2008. Black ops 2008: It’s the end of the cache as we know it.
Black Hat USA (2008).

[40] Simon Kelley. 2020. Dnsmasq - network services for small networks. http:
//www.thekelleys.org.uk/dnsmasq/doc.html.

[41] Amit Klein, Haya Shulman, and Michael Waidner. 2017. Internet-wide study
of DNS cache injections. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 1–9.

[42] Jeffrey Knockel and Jedidiah R. Crandall. 2014. Counting Packets Sent Between
Arbitrary Internet Hosts. In 4th USENIX Workshop on Free and Open Communi-
cations on the Internet (FOCI 14). USENIX Association, San Diego, CA. https:
//www.usenix.org/conference/foci14/workshop-program/presentation/knockel

[43] NLnet Labs. 2020. Unbound DNS Resolver. https://nlnetlabs.nl/projects/unbound/
about/.

[44] Cricket Liu. 2015. A new kind of DDoS threat: The “Nonsense Name” at-
tack. https://www.networkworld.com/article/2875970/a-new-kind-of-ddos-
threat-the-nonsense-name-attack.html.

[45] lkm. 2007. Blind TCP/IP Hijacking is Still Alive. http://phrack.org/issues/64/13.
html.

[46] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming Zhang,
Chunying Leng, Ying Liu, Zaifeng Zhang, and JianpingWu. 2019. An End-to-End,
Large-Scale Measurement of DNS-over-Encryption: How Far Have We Come?.
In Proceedings of the Internet Measurement Conference (Amsterdam, Netherlands)
(IMC ’19). Association for Computing Machinery, New York, NY, USA, 22–35.
https://doi.org/10.1145/3355369.3355580

[47] Matthew Luckie, Robert Beverly, Ryan Koga, Ken Keys, Joshua A. Kroll, and
k claffy. 2019. Network Hygiene, Incentives, and Regulation: Deployment of
Source Address Validation in the Internet. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for Computing Machinery, New York, NY, USA, 465–480.
https://doi.org/10.1145/3319535.3354232

[48] Ed. M. Bishop. 2020. Hypertext Transfer Protocol Version 3 (HTTP/3). Technical
Report. https://datatracker.ietf.org/doc/draft-ietf-quic-http/

[49] Moritz Müller, Giovane C. M. Moura, Ricardo de O. Schmidt, and John Heidemann.
2017. Recursives in the Wild: Engineering Authoritative DNS Servers. In Pro-
ceedings of the 2017 Internet Measurement Conference (London, United Kingdom)
(IMC ’17). Association for Computing Machinery, New York, NY, USA, 489–495.
https://doi.org/10.1145/3131365.3131366

[50] Zhiyun Qian and Z Morley Mao. 2012. Off-path TCP sequence number inference
attack-how firewall middleboxes reduce security. In 2012 IEEE Symposium on
Security and Privacy. IEEE, 347–361.

[51] Alan Quach, Zhongjie Wang, and Zhiyun Qian. 2017. Investigation of the 2016
Linux TCP Stack Vulnerability at Scale. SIGMETRICS Perform. Eval. Rev. (2017).

[52] Vicky Ris, Suzanne Goldlust, and Alan Clegg. 2020. BIND Best Practices - Au-
thoritative. https://kb.isc.org/docs/bind-best-practices-authoritative.

[53] Paul Schmitt, Anne Edmundson, Allison Mankin, and Nick Feamster. 2019. Obliv-
ious DNS: Practical Privacy for DNS Queries. In PoPETS.

[54] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2013. On
measuring the client-side DNS infrastructure. In Proceedings of the 2013 conference
on Internet measurement conference. ACM, 77–90.

https://tools.ietf.org/html/rfc7873
https://tools.ietf.org/html/rfc3833
https://tools.ietf.org/html/rfc1812
https://tools.ietf.org/html/rfc1812
https://www.isc.org/blogs/dns-forwarders/
https://tools.ietf.org/html/rfc8210
https://tools.ietf.org/html/rfc8210
https://doi.org/10.1145/3319535.3354250
https://doi.org/10.1145/3319535.3354250
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/chung
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/chung
https://www.cloudflare.com/dns/dns-firewall/
http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=10816
http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=10816
https://community.cloudflare.com/t/case-randomization-recently-disabled/61376
https://community.cloudflare.com/t/case-randomization-recently-disabled/61376
https://community.cloudflare.com/t/incorrect-resolution-for-my-domain/17966
https://community.cloudflare.com/t/incorrect-resolution-for-my-domain/17966
https://www.isc.org/bind/
https://developers.google.com/speed/public-dns/docs/security
https://github.com/torvalds/linux/commit/4cdf507d54525842dfd9f6313fdafba039084046
https://github.com/torvalds/linux/commit/4cdf507d54525842dfd9f6313fdafba039084046
https://tools.ietf.org/html/rfc8085
https://tools.ietf.org/html/rfc2181
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eighth-report
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-eighth-report
https://kb.isc.org/docs/aa-01387
https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc8499
https://tools.ietf.org/html/rfc5452
https://tools.ietf.org/html/rfc5452
https://blog.apnic.net/2019/03/14/the-state-of-dnssec-validation/
https://blog.apnic.net/2019/03/14/the-state-of-dnssec-validation/
https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://tools.ietf.org/html/draft-ietf-quic-transport-27
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://www.usenix.org/conference/foci14/workshop-program/presentation/knockel
https://www.usenix.org/conference/foci14/workshop-program/presentation/knockel
https://nlnetlabs.nl/projects/unbound/about/
https://nlnetlabs.nl/projects/unbound/about/
https://www.networkworld.com/article/2875970/a-new-kind-of-ddos-threat-the-nonsense-name-attack.html
https://www.networkworld.com/article/2875970/a-new-kind-of-ddos-threat-the-nonsense-name-attack.html
http://phrack.org/issues/64/13.html
http://phrack.org/issues/64/13.html
https://doi.org/10.1145/3355369.3355580
https://doi.org/10.1145/3319535.3354232
https://datatracker.ietf.org/doc/draft-ietf-quic-http/
https://doi.org/10.1145/3131365.3131366
https://kb.isc.org/docs/bind-best-practices-authoritative

[55] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2014. DNS
Record Injectino Vulnerabilities in Home Routers. http://www.icir.org/mallman/
talks/schomp-dns-security-nanog61.pdf. Nanog 61.

[56] Sergio De Simone. [n.d.]. The Status of HTTP/3. https://www.infoq.com/news/
2020/01/http-3-status//.

[57] US-Cert. 2019. Alert (TA13-088A) - DNS Amplification Attacks. https://www.us-
cert.gov/ncas/alerts/TA13-088A.

[58] Paul Vixie. 2019. On the Time Value of Security Features in DNS. http://www.
circleid.com/posts/20130913_on_the_time_value_of_security_features_in_dns/.

[59] Paul Vixie and Vernon Schryver. 2012. DNS Response Rate Limiting (DNS RRL).
https://ftp.isc.org/isc/pubs/tn/isc-tn-2012-1.txt.

[60] Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang, Dongjie Zhou, Baojun Liu,
Keyu Man, Shuang Hao, Haixin Duan, and Zhiyun Qian. 2020. Poison Over
Troubled Forwarders: A Cache Poisoning Attack Targeting DNS Forwarding
Devices. In 29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, 577–593. https://www.usenix.org/conference/usenixsecurity20/
presentation/zheng

http://www.icir.org/mallman/talks/schomp-dns-security-nanog61.pdf
http://www.icir.org/mallman/talks/schomp-dns-security-nanog61.pdf
https://www.infoq.com/news/2020/01/http-3-status//
https://www.infoq.com/news/2020/01/http-3-status//
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A
http://www.circleid.com/posts/20130913_on_the_time_value_of_security_features_in_dns/
http://www.circleid.com/posts/20130913_on_the_time_value_of_security_features_in_dns/
https://ftp.isc.org/isc/pubs/tn/isc-tn-2012-1.txt
https://www.usenix.org/conference/usenixsecurity20/presentation/zheng
https://www.usenix.org/conference/usenixsecurity20/presentation/zheng

	Abstract
	1 Introduction
	2 Current State of DNS Cache Poisoning Attacks
	2.1 State-of-the-Art Defenses
	2.2 New Attack Surface in the DNS Hierarchy

	3 Attack Overview
	4 Inferring DNS Query's Source Port
	4.1 Analysis of UDP Source Port Scannability
	4.2 ICMP Rate Limit Challenge
	4.3 Public-Facing Source Port Scan Method
	4.4 Private Source Port Scan Method
	4.5 Vulnerable DNS Forwarder and Resolver Population

	5 Extending the Attack Window
	5.1 Extending Window in a Forwarder Attack
	5.2 Extending Window in a Resolver Attack

	6 Practical Attack Considerations
	7 End-to-End Attacks
	7.1 Attacking a Forwarder (Home Router)
	7.2 Attacking a Production Resolver

	8 Discussion
	8.1 Defenses

	9 Related Work
	10 Conclusion
	11 acknowledgment
	References

