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ABSTRACT 

Predicting glass-transition temperature (𝑇𝑔) of glass-forming polymers is of critical importance as 

it governs the thermophysical properties of polymeric materials, such as relaxation dynamics, 

modulus, specific heat, dielectric properties. The cheminformatics approaches based on machine 

learning algorithms are becoming very useful in predicting the quantitative relationships between 

key molecular descriptors and various physical properties of materials. In this work, we developed 

a modeling framework by integrating cheminformatics methods and coarse-grained molecular 

dynamics (CG-MD) simulations to predict 𝑇𝑔 of diverse sets of polymers. The best predictive 

machine learning-based QSPR model identified the most prominent molecular descriptors 

influencing the 𝑇𝑔 of a hundred of polymers. Informed by the model, CG-MD simulations are 

performed to further delineate mechanistic interpretation and systematic dependence of these 

influential molecular features on 𝑇𝑔 by investigating three major CG model parameters, namely 

the cohesive interaction, chain stiffness, and grafting density. The CG-MD simulations reveal that 

the higher intermolecular interaction and chain stiffness elevates the 𝑇𝑔 of CG polymers, where 

their relative influences are coupled with the existence of side chains grafted on the backbone. This 

synergistic modeling approach provides valuable insights into the roles of key molecular features 

influencing the 𝑇𝑔 of polymers, paving the way to establish a materials-by-design framework for 

polymeric materials via molecular engineering.  

Keywords: Glass-transition temperature, polymeric materials, QSPR, cheminformatics, coarse-

grained modeling, molecular dynamics simulations. 



1. INTRODUCTION  

Understanding and predicting the glass-transition temperature (𝑇𝑔) of amorphous polymers is of 

critical importance due to its crucial role in governing their thermal and mechanical behaviors. 

Consequently, 𝑇𝑔  is often considered as one of the most important descriptors of a polymeric 

material in various engineering and technological applications. The dramatic change in dynamics 

of polymers during the glass-forming process is found to be closely relevant to various 

thermodynamic and kinetic attributes (e.g. rapid loss in entropy and cooling rate dependence).1–4 

Quantifying 𝑇𝑔  is important to classify the polymers to the different categories of elastomer, 

plastics, and hard plastics for purposes of practical usages. Experimentally, 𝑇𝑔 can be measured by 

various techniques, such as differential scanning calorimetry (DSC), thermomechanical analysis 

(TMA), and dynamical mechanical analysis (DMA).5 In parallel with experiments, computational 

assessment, and prediction of 𝑇𝑔  become increasingly demanding to accelerate design and 

development of polymer materials. More importantly, it provides valuable insights into the 

physical mechanisms of complex glass-forming behaviors of polymers by delineating the 

underlying relationships between 𝑇𝑔 and essential chemical features at a fundamental molecular 

level.  

Due to the rapid development of computational capacity, various computational techniques 

have been used to assess the physical properties of polymeric materials, including physics-based 

and data-driven based modeling. Among these techniques, the machine learning-based 

Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) modeling approach has 

drawn considerable attention for the development of a predictive mathematical relationship linking 

chemical structure and activity/property of a series of chemical compounds. They are based upon 

various machine learning techniques, e.g. regression analysis, genetic algorithms, artificial neural 



networks, to train the dataset for making predictions of various properties.6 QSPR models can 

predict the properties of chemical compounds and help in streamlining the subsequent process, 

such as synthesizing and testing, thereby saving resources and time. Various physical properties 

of polymeric materials have been predicted with a significant level of confidence using 

QSAR/QSPR methods, such as refractive index,7 dielectric constant,8 intrinsic viscosity,9 and 

diffusion constant.10 Moreover, these methods have been successfully applied in the 

pharmaceutical industry for the development of new drugs and drug delivery agents.11 Such 

success further provokes applications of QSPR to study 𝑇𝑔 for diverse set polymeric materials for 

the design and selection of new materials.  

Over the past decade, numerous attempts have been made towards the prediction of 𝑇𝑔 of 

polymers using the QSPR approach. Bicerano developed a QSPR-enabled predictive model for 𝑇𝑔 

with a high-level fidelity (i.e., 𝑅2  of 0.95) for a dataset of about 320 different polymers by 

evaluating the solubility parameter and topological bond connectivity parameters of the monomer 

structures.12 Using the Comprehensive Descriptors for Structural and Statistical Analysis 

(CODESSA) program, Katritzky et al. 13 have developed a four-parameter QSPR model with a 𝑅2 

of 0.928 for a set of 𝑇𝑔  values for a small set of 22 different linear-chain homopolymers and 

copolymers with medium molecular weight.13 In a later study,14 they developed a five-descriptor 

QSPR model for 𝑇𝑔 values of 88 high molecular weight homopolymers, where the descriptors are 

independent of the molecular weight. However, it is important to note that the models in studies12-

14 are not properly validated since no external dataset was used. Several other studies have adopted 

similar approaches based on QSPR to develop models using extended descriptors and diverse 

dataset for improvement of 𝑇𝑔  predictions.15–19 Integrations of QSPR and other computational 

techniques, such as quantum chemistry, have been proposed to better the estimate of  descriptors 



and predict the 𝑇𝑔  of diverse set of polymers with improved accuracy.8,20 A very interesting 

recently published two works by Missio and Schwartz 17,18 are reporting the application of artificial 

neural networks (ANN) to predict 𝑇𝑔 of polymers. In first work17, authors applied convolutional 

fully connected neural networks to a set of 100 polymers, mainly polystyrenes and polyacrylates. 

To encode polymers they used SMILES strings applied with relatively low error of prediction, 

about 8%. The second work 18 is applying similar connected ANN method to investigate a larger 

set of polymers, more than 200 atactic polyacrylates. The obtained model had a good predictive 

power with relative error of prediction about 3%. The second work18 was focused not only on 

statistical significance of the models as it was in work17, but also on structural fragments 

contribution to 𝑇𝑔 values.  

At the same time, despite the tremendous progress, the predictive capabilities of QSPR 

models are still limited due to a lack of external validation and a relatively smaller and homologous 

dataset. For instance, the prediction quality of a QSPR model often varies greatly depending on 

the size and composition of the test dataset.21 More importantly, it is challenging for the QSPR 

modeling to provide a mechanistic interpretation and systematic dependence of the structural 

descriptors or features involved in the models. This is of critical importance for 𝑇𝑔 prediction, as 

recent experimental and computational studies have suggested correlations between various 

molecular descriptors and 𝑇𝑔 of polymers. For this purpose, molecular dynamics (MD) simulations 

can provide valuable insights into the roles of molecular descriptors from QSPR study in 𝑇𝑔 index 

values. In particular, coarse-grained (CG) MD simulations that simplify all-atomistic configuration 

by grouping a cluster of atoms into CG beads are often utilized to bridge the spatiotemporal 

limitations and study the complex behaviors of polymers.22 It worth to note, since isobaric or 

isochoric cooling of a polymer model largely influences the glass formation,23–25 𝑇𝑔 calculations 



in MD simulations in this study are performed under constant pressure condition where the isobaric 

process is more relevant to the experimental conditions. The integration of machine learning-based 

QSPR method with CG-MD simulations offers a unique way towards a fundamental understanding 

of the parameter-structure-property relationships in the 𝑇𝑔  of diverse polymers (as depicted in 

Figure 1).  

 

Figure 1. Flow chart of the integrated framework of cheminformatics and coarse-grained 

molecular dynamics (CG-MD) for prediction of the glass-transition temperature 𝑇𝑔 of polymers. 

In this workflow, the molecular descriptors (x1, x2, x3 …) and property of interest (y) are collected 

and analyzed for the development of QSPR models based on machine learning. CG-MD 

simulations are then carried out to validate the QSPR model and provide physical insights into 

essential molecular features. 

In the present study, we employed the QSPR modeling in combination with CG-MD 

simulations, to understand the interrelation of key molecular features that influence 𝑇𝑔 in a diverse 



set of polymers, for further prediction of polymer properties (Figure 1). Specifically, a machine-

learning based QSPR model is developed by examining the experimental dataset of 𝑇𝑔 values for 

a series of polymers having diverse chemical functionalities, including carboxylates, ethers, 

halides, cyanides, amides, acetates, alcohols, hydrocarbon chains, and aromatic and nonaromatic 

rings. In particular, the applied dataset covers a wide range of 𝑇𝑔 values (i.e., from 145 K to 482 

K) of amorphous polymers, representing a large variety of structural and chemical features. CG-

MD simulations are carried out to systematically explore the roles of essential molecular 

parameters on  𝑇𝑔  of polymers informed by the QSPR model. The established predictive 

framework allows to gain a fundamental understanding of the structural and functional features 

that influence  𝑇𝑔 , paving the way to materials-by-design strategy for polymeric materials’ 

development with tailored performance. 

 

2. MATERIALS AND METHODS  
 

Polymer Dataset. In this work a large set of polymers with a wide range of experimental 

𝑇𝑔 values was collected. The experimental 𝑇𝑔 values of 100 different polymers are collected from 

diverse sources.26 For predictive model validating purposes the dataset is divided into training and 

test sets (80% of dataset as the training set and 20% of dataset as test or external set). The splitting 

of the dataset to training and test set is carried out by ranking the 𝑇𝑔  values of structures in 

ascending order and taking every 5th chemical from the dataset as a test set. 

Physico-Chemical and Structural Descriptors. To encode a polymeric structure a series 

of structural/molecular descriptors are generated based on the chemical structure of the monomer. 

Each chemical structure is built using a ChemSketch27 software, followed by structure encoding 



process within a Dragon 628 software. The initial set of generated descriptors contained more than 

4,500 various descriptors, corresponding to 0D-, 1D-, 2D-, and 3D-structure based descriptor 

classes. The generated descriptors are represented 20 different classes - constitutional, topological, 

walk and path counts, connectivity indices, information indices, 2D autocorrelations, edge 

adjacency indices, Burden eigenvalues, topological charge indices, eigenvalue based indices, 

Randic molecular profiles, geometrical descriptors, RDF descriptors, 3D-MoRSE descriptors, 

WHIM descriptors, GETAWAY descriptors, functional groups, atom-centered fragments, charge 

descriptors, and molecular property descriptors.29 A final set of 2,863 descriptors is selected after 

filtering out constant and near-constant descriptors to describe each polymeric structure. The list 

of the initially generated set of 4,500 descriptors and the final set of 2,863 descriptors is represented 

in the Supplementary Information (SI) file (see Table S1 and Table S2, respectively). 

Machine Learning-based QSPR Modeling. In the next step, a machine learning-based 

QSPR approach is applied to find a quantitative relationship between 𝑇𝑔  values and 

structural/molecular descriptors. The descriptors selection and QSPR model development are 

made by using a  combination of a variable selection Genetic Algorithm (GA)30 and Multiple 

Linear Regression Analysis (MLRA) methods. The QSPR models are generated by combined GA-

MLRA31 technique as implemented in QSARINS 2.2 software.32 It is worth noting that a 

combination of GA and MLRA for variable selection is a powerful tool to address many tasks in 

QSPR studies where needed a mechanistic interpretation of results.33 The MLRA method was 

specifically applied to make the model transparent and mechanistically explainable. In this work, 

the GA variable selection started with a population of 100 random models and 5,000 iterations to 

evolution with the mutation probability specified at 85%. The systematic study delineated here 

consists of several developed QSAR models with 1 to 10 variables in the models, followed by 



statistical analysis for models’ performance evaluation by a squared correlation coefficient 𝑅2, 

root means square error (RMSE) and F-test (measure of dispersion, larger values represent greater 

dispersion). The following equations are utilized to calculate the correlation coefficient 𝑅2 for 

training set (Eq. 1) and the root mean square error of calibration (Training) RMSEC, as the measures 

of goodness-of-fit for each developed model (Eq. 2): 

𝑅 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2 = 1 −

∑ (𝑦𝑖
𝑜𝑏𝑠 − 𝑦𝑖

𝑝𝑟𝑒𝑑)2𝑛
𝑖=1

∑ (𝑦𝑖
𝑜𝑏𝑠 − 𝑦̃𝑜𝑏𝑠)2𝑛

𝑖=1

 (1) 

𝑅𝑀𝑆𝐸𝐶 = √
∑ (𝑦𝑖

𝑜𝑏𝑠𝑛
𝑖=1 −𝑦𝑖

𝑝𝑟𝑒𝑑)2

𝑛
 

(2) 

To ensure the reliability of the models and their robustness, the proper validation of QSPR 

models is imperative. The internal and external validations of the developed models are performed 

in this study. In the internal validation process, The best model generated in each variable model 

using GA-MLR approach is then tested by applying the cross-validation “leave-one-out” 

technique, 𝑄 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔2  (or 𝑄 𝐿𝑂𝑂2 ). In this statistical technique, each variable is iteratively held-out 

from the training set used for model development and “predicted” as a new model to verify internal 

“predictivity”. We calculate the cross-validated coefficient 𝑄 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔2  and root-mean-square error 

of cross-validation (CV) RMSECV (Eq. 3 and 4), which is utilized to measure the predictive ability 

of the model by avoiding over-fitting scenarios: 

𝑄 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2  = 1 − 

∑ (𝑦𝑖
𝑜𝑏𝑠𝑛

𝑖=1 −𝑦𝑖
𝑝𝑟𝑒𝑑𝑐𝑣

)2

∑ (𝑦𝑗
𝑜𝑏𝑠𝑛

𝑗=1 −𝑦̃𝑜𝑏𝑠)2
 (3) 

𝑅𝑀𝑆𝐸𝐶𝑉 = √
∑ (𝑦𝑖

𝑜𝑏𝑠𝑛
𝑖=1 −𝑦𝑖

𝑝𝑟𝑒𝑑𝑐𝑣)2

𝑛
 

(4) 

In the process of model validation, it is important to perform an external validation. The 

external validation of the model is checked for its ability to predict new structures that are not 



included in the training set. This is done by applying the developed model obtained based on the 

training set, to set of chemicals not included in the training set. The external predictivity of each 

model is represented as 𝑅 𝑇𝑒𝑠𝑡2
 (Eq. 5) and root mean square error of test (RMSETest) (Eq. 6). 

𝑅 𝑇𝑒𝑠𝑡
2 = 1 − ∑(𝑦𝑗

𝑜𝑏𝑠

𝑘

𝑗=1

−𝑦𝑗
𝑝𝑟𝑒𝑑)2/∑(𝑦𝑗

𝑜𝑏𝑠

𝑘

𝑗=1

−𝑦̂𝑜𝑏𝑠)2 (5) 

𝑅𝑀𝑆𝐸𝑇𝑒𝑠𝑡 =
√
∑ (𝑦𝑗

𝑜𝑏𝑠𝑘
𝑖=1 −𝑦𝑗

𝑝𝑟𝑒𝑑)2

𝑘
 

(6) 

where yj
obs is the experimental (observed) value of the property for the ith/ jth compound; yj 

pred and 

yj 
predcv are the predicted value for ith/ jth compound in the training and cross-validation set, 

respectively; 𝑦̃ and 𝑦̂ are the mean experimental value of the property in the training and Test set, 

respectively; n and k are the numbers of compounds in the training and test set, respectively.  

Additionally, an applicability domain (AD) for the models is calculated using the leverage 

approach to verify the predictive reliability of each model for the current class of investigated 

structures.34 The Williams plot is utilized to visualize the AD for each QSPR model. The Williams 

plot of standardized cross-validated residuals (RES) vs. leverage (Hat diagonal) values (HAT) 

helps to depict both the response outliers (Y outliers) and structurally influential compounds (X 

outliers) in each developed model. 

CG-MD Simulations. The CG-MD simulations are performed to evaluate the role of key 

structural and functional features informed by the QSPR models on the 𝑇𝑔  of polymers. We 

employ CG models of polymers having three representative chain structures i.e., linear chain 

without any grafted side chain, linear chains with two different side-chain grafting densities f. The 

backbones of all three polymer models consist of 20 CG beads. Each side chain attached to the 



backbone consists of three CG beads. The bulk simulation boxes of all three models consist of 500 

polymer chains. All CG-MD simulations are carried out using the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS)35 software. 

The force field components of the CG models have the contributions of bonded interactions 

including the bonds and angles, and the non-bonded interaction of the CG beads. The potential 

energy of the bond stretching is estimated with a harmonic function as follows: 

𝑈𝑏𝑜𝑛𝑑(𝑟) = 𝐾(𝑟 − 𝑟0)
2 (7) 

where 𝑟0 = 0.99 𝜎  is the equilibrium bond length and 𝐾 = 2500 𝜀 𝜎2⁄  is the spring force 

constant, which is consistent with previously explored branched polymers.36 The potential of the 

angels is captured via a cosine angle style as follows: 

where 𝐾θ is the chain stiffness constant that governs the flexibility of the backbone and side chain. 

Here, we use a fixed 𝐾θ = 0.5 𝜀 for the side chains and 𝐾θ = 1.5 𝜀 for the backbone in 𝑓 = 0.5 

and 𝑓 = 1 models. However, for the linear chain polymer model (𝑓 = 0), we systematically vary 

𝐾θ of the chains (i.e., 𝐾θ = {0.5, 1.0, 2.5 }𝜀) to explore the effect of the chain stiffness on 𝑇𝑔. The 

non-bonded interactions are captured by a standard 12-6 Lennard-Jones (LJ) potential function 

(Eq. 9): 

𝑈𝑛𝑏(𝑟) = 4𝜀 [(
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

]           𝑟 < 𝑟𝑐 
(9) 

where 𝜀 and 𝜎 denote the energy well depth and distance where 𝑈𝑛𝑏  is zero, respectively; the 

cutoff distance is 𝑟c = 2.5 𝜎. The energy well depth 𝜀 is considered as a key parameter that is 

related to the cohesive interaction strength of the polymer, which has a significant influence on the 

𝑈𝑎𝑛𝑔𝑙𝑒(𝑟) = 𝐾𝜃[1 + 𝑐𝑜𝑠(𝜃)] (8) 



thermomechanical properties. Here, we consider 𝜀𝑏 for backbone beads and 𝜀𝑠 for the side-chain 

beads separately to explore the effects of cohesive interactions on the 𝑇𝑔. 

In the CG modeling, 𝑇𝑔 is calculated based on the isothermal-isobaric (NPT) ensemble 

under constant zero pressure. The density of the simulation box after equilibration is determined 

systematically over a wide range of temperatures. Two linear lines are fitted to the density data in 

the low-𝑇 and high-𝑇 regimes, and intersection marks the magnitude of 𝑇𝑔. 

 

3. RESULTS AND DISCUSSION  

Table 1.  The list of QSPR models (i.e., 1-10 variable models), statistical performance 

parameters and associated descriptors for each model. 

 

Model No. Descriptors 𝑹𝑻𝒓𝒂𝒊𝒏
𝟐  𝑹𝑴𝑺𝑬𝑪 𝑸𝑻𝒓𝒂𝒊𝒏

𝟐  𝑹𝑻𝒆𝒔𝒕
𝟐  𝑹𝑴𝑺𝑬𝑻𝒆𝒔𝒕 F 

1 Ui 0.34 0.10 0.31 0.47 0.08 40.50 

2 AVS_B(e), SsssSiH 0.45 0.09 0.42 0.62 0.07 31.00 

3 AVS_B(e), SsssSiH, P1u 0.55 0.08 0.51 0.72 0.06 31.09 

4 AVS_B(e), Ke, nOxiranes, F01[C-Si] 0.65 0.08 0.61 0.71 0.06 34.54 

5 AVS_B(e), Mor04v, RARS, nOxiranes, 
SsssSiH 0.68 0.07 0.65 0.70 0.06 32.10 

6 AVS_B(e), nCt, RARS, nOxiranes, 
SsssSiH, F02[N-O] 0.73 0.07 0.70 0.72 0.06 33.20 

7 AVS_B(e), Mor06v, nCt, RARS, 
nOxiranes, SsssSiH, B02[N-O] 0.75 0.06 0.72 0.74 0.06 30.80 

8 AVS_B(e), SM14_EA(bo), Mor20v, 
nCt, RARS, L2s, nOxiranes, SsssSiH, 0.79 0.06 0.74 0.57 0.09 32.70 

9 
AVS_B(e), SM10_EA(bo) , Mor28v, 
JGI3, RARS, nOxiranes, SsssSiH, H-

050, B03[C-N] 
0.83 0.05 0.79 0.53 0.10 36.80 

10 
AVS_B(e), SM08_EA(bo), 

SpDiam_B(e) Mor28v, JGI3, RARS, 
nOxiranes, SsssSiH, CATS2D_04_DL, 

B03[C-N] 
0.84 0.05 0.80 0.51 0.11 37.15 



First, different QSPR models for 𝑇𝑔 prediction were developed and evaluated using the 

experimental dataset of over 100 polymers. The model building was carried out systematically by 

selecting the best set of descriptors, followed by assessing the regression coefficients of the 

training and test sets. The essential molecular descriptors and statistical parameters for each of the 

tested QSPR models (i.e., 1-10 variable models) are summarized in Table 1. From Figure 2, it is 

observed that the 𝑅𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔2  values show an increasing trend with an increasing number of 

descriptors in the QSPR models. Similarly, the correlation coefficient of the test set  𝑅𝑇𝑒𝑠𝑡2  exhibits 

an analogous trend of training set but only up to the 7-variable model and then shows a plummeting 

behavior, which indicates the reduced predictive capability of QSPR models (8-10 variable 

models) due to overfitting issues. The correlation coefficients (𝑅 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔2  and 𝑄 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔2 ) of the 

training set for higher variable models (8 to 10) still show an increasing trend, but its predictive 

capability for the test set  𝑅𝑇𝑒𝑠𝑡2  decreases (Figure 2). Based on that, the 7-variable model that 

yields higher values of both  𝑅 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔
2

 and 𝑅𝑇𝑒𝑠𝑡2  has been selected as the most robust model 

among all ten tested models. The best 7-variable model for prediction of 𝑇𝑔 can be analytically 

described as follows: 

Log 𝑇𝑔  =  0.42(±0.03)AVS_B(e) + 0.05(±0.02)Mor06v + 0.60 (±0.08) RARS  

                               +0.05 (±0.01) nCt − 0.32(±0.05)nOxiranes + 0.20 (±0.03)SsssSiH                             (10) 

+ 0.11 (±0.03)B02[N − O]  +  0.650(±0.17)  

It is worth noting that the 7-variable model (Eq. 10) is a transparent, validated and reproducible 

model that can be applied to predict 𝑇𝑔 values for other polymers (additional information is given 

in SI file). 



 

Figure 2. Statistical analyses on 𝑅2  and 𝑄2  as a function of number of descriptors for QSPR 

models with 1-10 descriptors for training and external test sets: the regression coefficients of the 

training set 𝑅𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔2
 (blue circles), the cross validation by “leave-one-out” method 𝑄𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔2

  

(green triangle), and external test set 𝑅𝑇𝑒𝑠𝑡2
  (red squares). 

 

Table 2. A list of descriptors included in the 7-variable QSPR model in Eq. 10, and their 

description.  

Descriptor Description Type 

AVS_B(e) Average vertex sum from Burden matrix weighted by Sanderson 
electronegativity 

2D matrix-based 
descriptors 

Mor06v 3D-MoRSE signal 06 / weighted by van der Waals volume 3D-MoRSE descriptors 

RARS R matrix average row sum gateway descriptors 

nCt Number of total tertiary C(sp3) functional group count 

nOxiranes Number of ethylene oxide groups functional group count 

B02[N-O] Presence/absence of N-O at topological distance 2 2D Atom pairs 

SsssSiH Sum of sssSiH E-states atom type Estate indices 

 



It is imperative to explicitly interpret the molecular descriptors in the best QSPR model for 

𝑇𝑔 predictions. As listed in Table 2, the best QSPR model (Eq. 10) can be quantitively described 

by seven selected descriptors as a 2D-matrix, 3DMoRSE, gateway, functional, atom pair, and 

electro-topological index descriptors. AVS_B(e) is a burden matrix weighted by Sanderson 

electronegativity, which reveals that electronegativity plays a crucial role in 𝑇𝑔 of polymers. This 

descriptor is strongly related to the polar nature of bonds and the positive influence of 

electronegativity indicates that the presence of electronegative atoms (e.g. fluorine, oxygen, and 

nitrogen) in the monomer increases 𝑇𝑔 of polymer.37 The presence of atom pairs N-O as described 

by B02 increases the 𝑇𝑔  index value, which relates its ability to form intramolecular and 

intermolecular hydrogen. Another similar contributing descriptor (SsssSiH) for increasing the 

cohesive energy of polymer is electro topological (E-state) index, a measure of two unified 

attributes (electronic and topological); SsssSiH or E-state index value increases with a number of 

electron-rich atoms in a molecule, facilitating enhancement in intermolecular interactions. Several 

examples of correlations between E-state index value and physical and biological phenomena have 

been reported before for similarity search of anti-inflammatory drugs and it’s utility in the toxicity 

modeling for a set of amide-based herbicides.38,39  

The presence of RARS40 (gateway descriptors) and nCt41 (total number of sp3 carbon) 

molecular descriptors in the best QSPR model indicates that 𝑇𝑔 is sensitive to molecular branching 

(e.g., existence of side-chain groups). Several attempts were made to understand the effect of 

molecular branching on 𝑇𝑔 of polymers. Zhu et al.42 showed that 𝑇𝑔 first increases with the degree 

of branching (DB), passes through a maximum, and then decreases sharply for hyper branched 

polyethers; however, the 𝑇𝑔 of polyethylene is observed to decrease with increase of degree of 

branching.43 These contrast observations suggest that molecular branching shares a complex 



relationship with 𝑇𝑔 of amorphous polymers. Interestingly, a negative effect on 𝑇𝑔 is exhibited by 

the presence of the ethylene oxide group (nOxiranes) on the backbone of polymer chain. Previous 

studies have shown that 𝑇𝑔 can be suppressed by increasing the number of oxygen atoms in the 

backbone of polymer chain with reduced stiffness.44,45 The next descriptor Mor06v, which 

represents a weighted van der Waals volume, describes a space occupied by a molecule that is 

impenetrable to other molecules. Mor06v indicates that the size and volume of the molecule have 

a positive contribution to 𝑇𝑔. The relative influences of these descriptors on 𝑇𝑔 will be further 

discussed. 

 

Figure 3. (A) A correlation plot between the observed and predicted values of 𝑇𝑔 of polymers in 

the 7-variable QSPR model. (B) Williams plot of standardized residual versus leverage for 

A

B



evaluation of the applicability domain for the 7-variable model, where the chemical compounds of 

training and test sets are shown. The blue dashed and solid black lines correspond to ± 3 

standardized residual (𝜎) and warning leverage value (h* = 0.3), respectively. 

It is important to estimate the robustness of the model and its predictive ability. In this 

regard, several statistical parameters were analyzed to estimate the performance of the models. 

Figure 3A shows a correlation between the experimental 𝑇𝑔 and the predicted 𝑇𝑔 based on the 7-

variable model. Given the complexity of 𝑇𝑔 and diversity of applied dataset, the level of correlation 

between the predicted and observed 𝑇𝑔 values in a 7-variable model (Eq. 10) indicates a reasonably 

good predictive capability of the 7-variable model, with 𝑅2 = 0.75 (Training) and 𝑅2 = 0.73 (Test) 

for a diverse set of 100 different polymers. Figure 3B shows the Williams plot that represents the 

applicability domain (AD) of the QSPR model, allowing for a graphical detection of both the 

outliers for the response and structurally different chemicals in the model. The graph represents 

standardized residuals (𝜎), the measure of the strength of the difference between observed and 

predicted values on the Y-axis and the leverage value on X-axis. Here, the observations with 

standardized residuals beyond the -3𝜎 to +3𝜎 range are considered as outlier responses. A leverage 

value (HAT) represents the degree of influence of the chemical on the model. A higher leverage 

value (HAT > h*) means the compound exerts a greater influence on the QSPR model. Thus, the 

Williams plot shown in Figure 3B indicates that nearly all points are located within 3𝜎 of error 

limit with only one outlier, demonstrating the validity of the 7-variable model. There are several 

polymeric units that show higher error estimation deviations than others (5, 11, 44, 45, 56, 92 98). 

Analysis of the impact of descriptors in the model to these polymeric units 𝑇𝑔 value shows the 

following. In most of the cases, there is a combined influence of the descriptors’ values on the 

estimation error of the 𝑇𝑔 value of these polymeric units. Thus, in the case of 5, 11, 44, 45, 56 and 



92 the larger deviation of AVS_B(e), Mor06v and RARS descriptors resulted in a larger deviation 

of overall residual value for 𝑇𝑔 (Figures S1-S3 in SI). In the case of polymer unit 45, there is a 

large contribution of nCt descriptor’s error deviation to the 𝑇𝑔 value that also led to the larger 

deviation in the property estimation (Figure S3). In the case of polymeric unit 98, a large error 

estimation in descriptor Mor06v led to the larger error of estimation in 𝑇𝑔  value. A detailed 

information on the contribution of each descriptor’s error of estimation value to 𝑇𝑔 value’s error 

of estimation is shown in Table S4 and Figure S3. 

 

Figure 4. Representation of the y-scrambling plot: blue and yellow dots (highlighted by dashed 

circle) represent 𝑅2 and 𝑄2 values of the 7-variable QSPR model, respectively; cyan and purple 

dots represent 𝑅2 𝑦𝑠𝑐𝑟 and 𝑄2 𝑦𝑠𝑐𝑟 of models based on randomized data. 

 

In Figure 4 represented a y-scrambling plot, an important validation technique, which 

underlines the robustness and uniqueness of the best QSPR model. The y-scrambling plot is 

obtained by scrambling the y values (i.e., experimental 𝑇𝑔 values) in a random fashion. In this 



randomization process, 2,000 simulations per model are performed, where none of the models has 

any acceptable correlation in comparison with the best 7-variable model (Eq. 10). The best model 

has much higher 𝑅2 and 𝑄2 values (data points marked by the square symbols in the plot) than 

those of all other simulated (unrealistic, scrambled) models. This analysis again confirms that the 

developed QSPR model is a clear case of robustness and not mere coincidence. 

 

Figure 5. (A) The coefficients of different descriptors in the 7-variable model. The greater absolute 

magnitude of the coefficient indicates higher relative importance for 𝑇𝑔. All descriptors, except 

nOxiranes, show a positive influence on 𝑇𝑔 index. (B) Categorizing best molecular descriptors 

from the 7-variable model into three physical parameters of CG models. The dominant influential 

descriptor in the QSPR model in each category is highlighted as bold. 

As above mentioned, the molecular descriptors identified by QSPR models suggest that 

physico-chemical and electro-topological parameters, such as polarity of bonds and hydrogen 

bonding, branching intensity, presence of bulky atoms or groups, and chain stiffness play pivotal 

roles in determining 𝑇𝑔 of diverse polymers. As quantified by the magnitudes of coefficients, 

Figure 5A shows the relative influence of these descriptors in the QSPR model on 𝑇𝑔 index value. 



The positive or negative influence of each descriptor on 𝑇𝑔  index value is represented by the 

positive or negative sign of the coefficient’s value of each descriptor. All the descriptors in Figure 

5A, except nOxiranes (i.e., presence of ethylene oxide in repeating unit), show a positive 

contribution to  𝑇𝑔 index value. Among these descriptors, RARS, AVS_B(e), and nOxiranes yield 

higher degrees of relative importance associated with 𝑇𝑔 due to their greater absolute magnitudes 

of coefficients compared to the others. 

To better understand the roles of these key molecular descriptors in governing the 𝑇𝑔 of 

polymers, the descriptors identified by the QSPR model (Eq. 10 and Figure 5A) are grouped into 

three major categories as illustrated in Figure 5B:  

• Intermolecular cohesive interactions (i.e., AVS_B(e), B02 [N-O], SsssSiH); 

• Backbone chain stiffness (i.e., nOxiranes, Mor06V); 

• Grafting or branching density of side chain (RARS and nCt).  

 

Figure 6. Illustrations of CG models of polymers: (A) a linear polymer chain with f = 0, (B) an 

alternatively branched polymer chain with f = 0.5, and (C) a fully branched polymer chain with f 

= 1. (D) Snapshot of the bulk simulation box consisting of polymer chains. 



 

Then, to gain fundamental insights into the roles of descriptors informed from the QSPR model, 

we employed the CG-MD simulations to explore and validate their influences on 𝑇𝑔  of CG 

polymer models. Specifically, the three major categories of descriptors can be highly associated 

with the following three CG model parameters: cohesive interaction strength  𝜀  (i.e., 𝜀𝑏  for 

backbone beads and 𝜀𝑠 for the side-chain beads), backbone chain stiffness 𝐾𝜃, and grafting density 

f (= number of grafted backbone beads/number of backbone beads). Here, we consider three 

representative architectural structures of the polymer chains in the CG-MD simulations. As shown 

in Figure 6A, the CG model with f = 0 is a linear polymer chain without any side chain. The CG 

models with f = 0.5 and f = 1, as illustrated in Figure 6B and C, are partially and fully branched 

polymers, respectively, where each side chain comprised of three CG beads is grafted to the 

backbone. Each backbone chain of the polymer consists of 20 CG beads and bulk simulation boxes 

of all three models consist of 500 chains.  



 

Figure 7. (A) Density versus temperature for calculation of 𝑇𝑔 of the CG polymer model with f = 

0, 𝐾𝜃 = 0.5, and 𝜀𝑏 = 1. (B) 𝑇𝑔 as a function of the cohesive interaction strength 𝜀𝑏 of the CG 

model (f = 0) for different backbone chain stiffness 𝐾𝜃 of the chain. 

 

We begin with investigating the influence of cohesive interaction strength and chain 

stiffness on 𝑇𝑔 of the CG model with 𝑓 = 0. Figure 7A shows the typical 𝑇𝑔 determination from 

the CG modeling by linearly fitting the density vs. temperature data in the low and high 

temperature regimes, respectively, where the interaction marks the 𝑇𝑔. Figure 7B shows the 𝑇𝑔 

variations with different cohesive interaction strengths  𝜀𝑏  as well as different backbone chain 

stiffness 𝐾θ . It is observed that both the cohesive interaction strength parameter 𝜀𝑏  and chain 

stiffness 𝐾𝜃 have considerable influence on the 𝑇𝑔 of CG polymer, as it was found by the QSPR 
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model (Eq. 10). When 𝜀𝑏 becomes larger, 𝑇𝑔 of the polymer increases significantly because of a 

suppression of segmental mobility. Similarly, for a given 𝜀𝑏, increasing the 𝐾θ causes the 𝑇𝑔 to 

increase. Although increasing both 𝐾θ and 𝜀𝑏 parameters will increase  𝑇𝑔 for f = 0 model, 𝜀𝑏 plays 

a more dominant role in controlling 𝑇𝑔 compared to 𝐾θ. This observation is consistent with a recent 

CG-MD study by Xu and co-workers,46 who showed that the 𝑇𝑔 of polymer melts with an ideal 

chain (i.e., no angles, dihedrals or side chains) tends to increase as cohesive energy becomes larger. 

In another MD study of glassy polycarbonate (PC),47 it has been shown that increasing the cohesive 

energy significantly enhances mechanical properties (i.e., shear modulus and yielding stress) and 

dynamical heterogeneity associated with the glass-forming process.48,49   

 

 

Figure 8. Temperature dependent density for calculations of 𝑇𝑔  of CG polymer models with 

cohesive interaction strength 𝜀𝑏 = 1.0 of backbone and varying cohesive interaction strength 𝜀𝑠 of 

(A), 0.5 (B), 0.7 and (C) 1.0 of side chains for different grafting density f. A fixed 𝐾𝜃 = 0.5 𝜀 for 

the side chains and 𝐾𝜃 = 1.5 𝜀 for the backbone are used in the CG models. 

We proceed to explore the influence of grafting density f on the 𝑇𝑔 of CG polymers having 

grafted side chains, which is relevant to the descriptors associated with molecular branching 

identified through the QSPR modeling. From the simulations (Figure 8), it appears that grafting 
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the side-chain groups to the chain backbone considerably affect 𝑇𝑔 of polymer. In particular, as 

shown in Figure 8A, when the cohesive interaction strength 𝜀s of the side-chain beads is much 

smaller than 𝜀𝑏 of the backbone, increasing f will decrease the 𝑇𝑔. This reducing effect of the side 

groups on the 𝑇𝑔 of the current CG bulk models resembled the influence of alkyl side group length 

on the 𝑇𝑔 and mechanical properties of conjugated polymers, where increasing side chain length 

was found to decrease the 𝑇𝑔 and elastic modulus.50,51 However, Figure 8B and C show that when 

𝜀s parameter of the side-chain beads becomes larger and gets close to the 𝜀𝑏, the reducing effect 

of f on 𝑇𝑔 will diminish.  

 

Figure 9. (A) Contour plot of 𝑇𝑔  in the plane of chain rigidity 𝐾𝜃  vs. cohesive interaction 

strength 𝜀𝑏 of CG model with f = 0. (B) Contour plot of 𝑇𝑔 in the plane of grafting density f vs. 

cohesive interaction strength of the side chains 𝜀𝑠. 
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To better understand the couple influences of cohesive energy and other explored 

parameters, we summarized  𝑇𝑔 results from MD simulations for both linear and grafted polymer 

models. Figure 9A shows a contour plot of mutual influence of backbone stiffness 𝐾θ  and 

cohesive interaction strength 𝜀𝑏 on the 𝑇𝑔 of linear chain model (f = 0), in which for larger values 

of 𝜀𝑏, altering the values of 𝐾θ is found to be insignificant in controlling the 𝑇𝑔. For the grafted 

polymer models (Figure 9B), we observe that as the cohesive energy of the side groups 𝜀𝑠 

becomes smaller than that of the backbone 𝜀𝑏, increasing f tends to decrease the 𝑇𝑔. However, 

when 𝜀𝑠  becomes larger than 𝜀𝑏 , an opposite trend of 𝑇𝑔  with increasing f is observed – more 

grafted side groups are found to increase the 𝑇𝑔. These results not only demonstrate the complexed 

influences of these key molecular parameters informed from the QSAR model, but also provide 

valuable insight into the vital role of cohesive energy in the glass formation of the polymers. In 

previous investigations based on the generalized entropy theory (GET), Dudowicz and co-

workers52 showed that depending on the stiffnesses of side chain and backbone, side-chain groups 

can strongly influence the 𝑇𝑔 . For polymers with a flexible backbone and stiff side chain, 

increasing of the side-chain length cause 𝑇𝑔  to increase. However, when flexible side chains are 

grafted to relatively stiffer backbones, 𝑇𝑔 tends to decrease when the side-chain length is increased. 

This is in good agreement with the findings of the current study, where the backbone chain of the 

investigated CG model has a relatively highe stiffness compared to the grafted side chains. In 

another relevant study of star polymers by Fan et al.,53 it is reported that increasing the arm length 

leads to a 𝑇𝑔 drop as the number of arms exceeding a critical value.  

The CG-MD simulations offer valuable insights into the QSPR models by providing a 

mechanistic interpretation and systematic dependence of key molecular features that govern the 𝑇𝑔. 

Through the QSPR modeling, seven most essential molecular descriptors are identified via 



statistical analysis based on machine learning, which can be described by three major CG model 

parameters; cohesive energy, chain stiffness, and grafting density. The CG-MD simulations 

confirm the significant roles of these molecular descriptions in influencing 𝑇𝑔. The integration of 

machine learning-based QSPR modeling and MD simulations outlined here is an inspiring 

pathway for predicting and understanding the glass-forming behaviors of polymers having diverse 

chemistry. It is worth noting that the presented modeling framework can be further improved in 

the future. For instance, a more robust QSPR model can be developed by applying the ‘feedback 

loop’ approach, where more physics-based descriptors can be considered and analyzed explicitly. 

The predictive capability of the developed QSPR model can be improved by employing extended 

and diverse datasets for both training and validation sets. Besides, the QSPR models can also guide 

the development of more robust CG models for better mechanistical simulation, which in return 

can give a valuable feedback to QSAR modeling for a rapid quantitative validation. For the future 

work, it will be useful to associate QSAR descriptors with the molecular parameters of MD models 

in a more quantitative way for a better validation of predictive relationships developed by the 

QSAR modeling. On the other hand, the essential feature descriptors identified from QSAR 

modeling will improve the development of chemistry specific CG models for polymers, whose 

physico-chemical properties can be added to the QSPR library to enrich the feature data sets and 

further improve the QSPR model predictions. We believe that the results of the current study will 

pave a way for future steps to better integration of these two robust approaches for properties’ 

predictions of complex materials. By harnessing the power of this unparalleled computational 

efficiency provided by this framework, it is expected that other relevant properties can be predicted 

for not only the polymeric materials but also other classes of organic and inorganic materials. 

 



4. CONCLUSION  

In this study, the combination of two techniques, machine learning-based cheminformatics and 

CG-MD modeling, is applied to investigate the factors that affect 𝑇𝑔 and validate the predictions 

for a diverse set of 100 polymers. To this end, a set of 1- to 10-variable models is developed by 

applying the machine learning-based QSPR modeling. After testing and validating, the 7-variable 

QSPR model is identified, yielding the best predictive performance, which is further confirmed by 

additional validation techniques, including 𝑄 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔2  and y-scrambling analyses. Among the 

physico-chemical and electro-topological descriptors in the QSPR model, AVS_B(e), RARS, and 

nOxiranes are found as the most influential ones that govern the 𝑇𝑔 of polymers in the context of 

structure-property relationships. Informed by the QSPR model, CG-MD simulations are performed 

to further delineate mechanistic interpretation and systematic dependence of these influential 

molecular features on 𝑇𝑔 by investigating three major CG model parameters, namely the cohesive 

interaction 𝜀 , chain stiffness  𝐾𝜃 , and grafting density f. The CG-MD simulation results 

demonstrate the importance of these molecular descriptors in 𝑇𝑔 of polymers, where their 

influences are highly coupled. This synergistic framework of integrating the cheminformatics and 

CG-MD simulations provides valuable insights into the roles of key molecular features influencing 

the 𝑇𝑔  of polymers, which can be further applied for the prediction of different properties of 

polymers and glass-forming materials. 
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