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ABSTRACT

Predicting glass-transition temperature (T) of glass-forming polymers is of critical importance as
it governs the thermophysical properties of polymeric materials, such as relaxation dynamics,
modulus, specific heat, dielectric properties. The cheminformatics approaches based on machine
learning algorithms are becoming very useful in predicting the quantitative relationships between
key molecular descriptors and various physical properties of materials. In this work, we developed
a modeling framework by integrating cheminformatics methods and coarse-grained molecular
dynamics (CG-MD) simulations to predict Ty of diverse sets of polymers. The best predictive
machine learning-based QSPR model identified the most prominent molecular descriptors
influencing the T; of a hundred of polymers. Informed by the model, CG-MD simulations are
performed to further delineate mechanistic interpretation and systematic dependence of these
influential molecular features on Tj; by investigating three major CG model parameters, namely
the cohesive interaction, chain stiffness, and grafting density. The CG-MD simulations reveal that
the higher intermolecular interaction and chain stiffness elevates the T, of CG polymers, where
their relative influences are coupled with the existence of side chains grafted on the backbone. This
synergistic modeling approach provides valuable insights into the roles of key molecular features
influencing the T, of polymers, paving the way to establish a materials-by-design framework for

polymeric materials via molecular engineering.
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1. INTRODUCTION

Understanding and predicting the glass-transition temperature (Ty) of amorphous polymers is of
critical importance due to its crucial role in governing their thermal and mechanical behaviors.
Consequently, Ty is often considered as one of the most important descriptors of a polymeric
material in various engineering and technological applications. The dramatic change in dynamics
of polymers during the glass-forming process is found to be closely relevant to various
)1

thermodynamic and kinetic attributes (e.g. rapid loss in entropy and cooling rate dependence
Quantifying Ty is important to classify the polymers to the different categories of elastomer,
plastics, and hard plastics for purposes of practical usages. Experimentally, T, can be measured by
various techniques, such as differential scanning calorimetry (DSC), thermomechanical analysis
(TMA), and dynamical mechanical analysis (DMA).® In parallel with experiments, computational
assessment, and prediction of T, become increasingly demanding to accelerate design and
development of polymer materials. More importantly, it provides valuable insights into the
physical mechanisms of complex glass-forming behaviors of polymers by delineating the
underlying relationships between T,; and essential chemical features at a fundamental molecular
level.

Due to the rapid development of computational capacity, various computational techniques
have been used to assess the physical properties of polymeric materials, including physics-based
and data-driven based modeling. Among these techniques, the machine learning-based
Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) modeling approach has
drawn considerable attention for the development of a predictive mathematical relationship linking
chemical structure and activity/property of a series of chemical compounds. They are based upon

various machine learning techniques, e.g. regression analysis, genetic algorithms, artificial neural



networks, to train the dataset for making predictions of various properties.® QSPR models can
predict the properties of chemical compounds and help in streamlining the subsequent process,
such as synthesizing and testing, thereby saving resources and time. Various physical properties
of polymeric materials have been predicted with a significant level of confidence using
QSAR/QSPR methods, such as refractive index,’ dielectric constant,® intrinsic viscosity,” and

diffusion constant.'®

Moreover, these methods have been successfully applied in the
pharmaceutical industry for the development of new drugs and drug delivery agents.'! Such
success further provokes applications of QSPR to study T, for diverse set polymeric materials for

the design and selection of new materials.

Over the past decade, numerous attempts have been made towards the prediction of T, of
polymers using the QSPR approach. Bicerano developed a QSPR-enabled predictive model for T,
with a high-level fidelity (i.e., R? of 0.95) for a dataset of about 320 different polymers by
evaluating the solubility parameter and topological bond connectivity parameters of the monomer
structures.!? Using the Comprehensive Descriptors for Structural and Statistical Analysis
(CODESSA) program, Katritzky et al. !> have developed a four-parameter QSPR model with a R?
of 0.928 for a set of T, values for a small set of 22 different linear-chain homopolymers and
copolymers with medium molecular weight.!* In a later study,'* they developed a five-descriptor
QSPR model for T,; values of 88 high molecular weight homopolymers, where the descriptors are
independent of the molecular weight. However, it is important to note that the models in studies'*"
14 are not properly validated since no external dataset was used. Several other studies have adopted
similar approaches based on QSPR to develop models using extended descriptors and diverse
dataset for improvement of T, predictions."> " Integrations of QSPR and other computational

techniques, such as quantum chemistry, have been proposed to better the estimate of descriptors



and predict the T, of diverse set of polymers with improved accuracy.**® A very interesting

recently published two works by Missio and Schwartz !7!8

are reporting the application of artificial
neural networks (ANN) to predict Ty of polymers. In first work!”, authors applied convolutional
fully connected neural networks to a set of 100 polymers, mainly polystyrenes and polyacrylates.
To encode polymers they used SMILES strings applied with relatively low error of prediction,
about 8%. The second work 18 is applying similar connected ANN method to investigate a larger
set of polymers, more than 200 atactic polyacrylates. The obtained model had a good predictive
power with relative error of prediction about 3%. The second work'® was focused not only on
statistical significance of the models as it was in work!”, but also on structural fragments
contribution to Ty values.

At the same time, despite the tremendous progress, the predictive capabilities of QSPR
models are still limited due to a lack of external validation and a relatively smaller and homologous
dataset. For instance, the prediction quality of a QSPR model often varies greatly depending on

the size and composition of the test dataset.?!

More importantly, it is challenging for the QSPR
modeling to provide a mechanistic interpretation and systematic dependence of the structural
descriptors or features involved in the models. This is of critical importance for Ty prediction, as
recent experimental and computational studies have suggested correlations between various
molecular descriptors and Ty of polymers. For this purpose, molecular dynamics (MD) simulations
can provide valuable insights into the roles of molecular descriptors from QSPR study in T,; index
values. In particular, coarse-grained (CG) MD simulations that simplify all-atomistic configuration
by grouping a cluster of atoms into CG beads are often utilized to bridge the spatiotemporal

limitations and study the complex behaviors of polymers.?? It worth to note, since isobaric or

isochoric cooling of a polymer model largely influences the glass formation,2*2° T, calculations



in MD simulations in this study are performed under constant pressure condition where the isobaric
process is more relevant to the experimental conditions. The integration of machine learning-based
QSPR method with CG-MD simulations offers a unique way towards a fundamental understanding
of the parameter-structure-property relationships in the T, of diverse polymers (as depicted in

Figure 1).
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Figure 1. Flow chart of the integrated framework of cheminformatics and coarse-grained
molecular dynamics (CG-MD) for prediction of the glass-transition temperature T, of polymers.
In this workflow, the molecular descriptors (x1, x2, x3 ...) and property of interest (y) are collected
and analyzed for the development of QSPR models based on machine learning. CG-MD
simulations are then carried out to validate the QSPR model and provide physical insights into

essential molecular features.

In the present study, we employed the QSPR modeling in combination with CG-MD

simulations, to understand the interrelation of key molecular features that influence T in a diverse



set of polymers, for further prediction of polymer properties (Figure 1). Specifically, a machine-
learning based QSPR model is developed by examining the experimental dataset of T values for
a series of polymers having diverse chemical functionalities, including carboxylates, ethers,
halides, cyanides, amides, acetates, alcohols, hydrocarbon chains, and aromatic and nonaromatic
rings. In particular, the applied dataset covers a wide range of T, values (i.e., from 145 K to 482
K) of amorphous polymers, representing a large variety of structural and chemical features. CG-
MD simulations are carried out to systematically explore the roles of essential molecular
parameters on T, of polymers informed by the QSPR model. The established predictive
framework allows to gain a fundamental understanding of the structural and functional features
that influence Ty, paving the way to materials-by-design strategy for polymeric materials’

development with tailored performance.

2. MATERIALS AND METHODS

Polymer Dataset. In this work a large set of polymers with a wide range of experimental
T, values was collected. The experimental T, values of 100 different polymers are collected from
diverse sources.?® For predictive model validating purposes the dataset is divided into training and
test sets (80% of dataset as the training set and 20% of dataset as test or external set). The splitting
of the dataset to training and test set is carried out by ranking the T, values of structures in

ascending order and taking every 5" chemical from the dataset as a test set.

Physico-Chemical and Structural Descriptors. To encode a polymeric structure a series
of structural/molecular descriptors are generated based on the chemical structure of the monomer.

Each chemical structure is built using a ChemSketch?’ software, followed by structure encoding



process within a Dragon 6% software. The initial set of generated descriptors contained more than
4,500 various descriptors, corresponding to 0D-, 1D-, 2D-, and 3D-structure based descriptor
classes. The generated descriptors are represented 20 different classes - constitutional, topological,
walk and path counts, connectivity indices, information indices, 2D autocorrelations, edge
adjacency indices, Burden eigenvalues, topological charge indices, eigenvalue based indices,
Randic molecular profiles, geometrical descriptors, RDF descriptors, 3D-MoRSE descriptors,
WHIM descriptors, GETAWAY descriptors, functional groups, atom-centered fragments, charge
descriptors, and molecular property descriptors.?’ A final set of 2,863 descriptors is selected after
filtering out constant and near-constant descriptors to describe each polymeric structure. The list
ofthe initially generated set of 4,500 descriptors and the final set of 2,863 descriptors is represented
in the Supplementary Information (SI) file (see Table S1 and Table S2, respectively).

Machine Learning-based QSPR Modeling. In the next step, a machine learning-based
QSPR approach is applied to find a quantitative relationship between T, values and
structural/molecular descriptors. The descriptors selection and QSPR model development are
made by using a combination of a variable selection Genetic Algorithm (GA)*® and Multiple
Linear Regression Analysis (MLRA) methods. The QSPR models are generated by combined GA-
MLRA?®! technique as implemented in QSARINS 2.2 software.’® It is worth noting that a
combination of GA and MLRA for variable selection is a powerful tool to address many tasks in
QSPR studies where needed a mechanistic interpretation of results.*> The MLRA method was
specifically applied to make the model transparent and mechanistically explainable. In this work,
the GA variable selection started with a population of 100 random models and 5,000 iterations to
evolution with the mutation probability specified at 85%. The systematic study delineated here

consists of several developed QSAR models with 1 to 10 variables in the models, followed by



statistical analysis for models’ performance evaluation by a squared correlation coefficient R?,
root means square error (RMSE) and F-test (measure of dispersion, larger values represent greater
dispersion). The following equations are utilized to calculate the correlation coefficient R? for
training set (Eq. 1) and the root mean square error of calibration (Training) RMSEc, as the measures

of goodness-of-fit for each developed model (Eq. 2):
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To ensure the reliability of the models and their robustness, the proper validation of QSPR
models is imperative. The internal and external validations of the developed models are performed
in this study. In the internal validation process, The best model generated in each variable model
using GA-MLR approach is then tested by applying the cross-validation “leave-one-out”
technique, Qszining (or Q% 0). In this statistical technique, each variable is iteratively held-out
from the training set used for model development and “predicted” as a new model to verify internal
“predictivity”. We calculate the cross-validated coefficient Q% ,inin g and root-mean-square error
of cross-validation (CV) RMSEcy (Eq. 3 and 4), which is utilized to measure the predictive ability

of the model by avoiding over-fitting scenarios:
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In the process of model validation, it is important to perform an external validation. The

external validation of the model is checked for its ability to predict new structures that are not



included in the training set. This is done by applying the developed model obtained based on the
training set, to set of chemicals not included in the training set. The external predictivity of each

model is represented as R%.,, (Eq. 5) and root mean square error of test (RMSE7.s) (Eq. 6).
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where y°% is the experimental (observed) value of the property for the i/ j compound; y;7*¢ and

y; P are the predicted value for i/ j* compound in the training and cross-validation set,
respectively; ¥ and § are the mean experimental value of the property in the training and Test set,

respectively; n and k are the numbers of compounds in the training and test set, respectively.

Additionally, an applicability domain (AD) for the models is calculated using the leverage
approach to verify the predictive reliability of each model for the current class of investigated
structures.>* The Williams plot is utilized to visualize the AD for each QSPR model. The Williams
plot of standardized cross-validated residuals (RES) vs. leverage (Hat diagonal) values (HAT)
helps to depict both the response outliers (Y outliers) and structurally influential compounds (X

outliers) in each developed model.

CG-MD Simulations. The CG-MD simulations are performed to evaluate the role of key
structural and functional features informed by the QSPR models on the Ty of polymers. We
employ CG models of polymers having three representative chain structures i.e., linear chain
without any grafted side chain, linear chains with two different side-chain grafting densities f. The

backbones of all three polymer models consist of 20 CG beads. Each side chain attached to the



backbone consists of three CG beads. The bulk simulation boxes of all three models consist of 500
polymer chains. All CG-MD simulations are carried out using the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS)?® software.

The force field components of the CG models have the contributions of bonded interactions
including the bonds and angles, and the non-bonded interaction of the CG beads. The potential

energy of the bond stretching is estimated with a harmonic function as follows:

Upona(r) = K(r —1p)? (7

where 75 = 0.99 ¢ is the equilibrium bond length and K = 2500 £/0? is the spring force
constant, which is consistent with previously explored branched polymers.*® The potential of the

angels is captured via a cosine angle style as follows:

Uangle(r) = Ky[1 + cos(0)] )

where Ky is the chain stiffness constant that governs the flexibility of the backbone and side chain.
Here, we use a fixed Kg = 0.5 ¢ for the side chains and Kg = 1.5 ¢ for the backbone in f = 0.5
and f = 1 models. However, for the linear chain polymer model (f = 0), we systematically vary
Ky of the chains (i.e., Ky = {0.5,1.0, 2.5 }¢) to explore the effect of the chain stiffness on T,;. The

non-bonded interactions are captured by a standard 12-6 Lennard-Jones (LJ) potential function

(Eq. 9):

Unp(r) = 4e [(5)12 - (2)6] r<r, )

r

where € and ¢ denote the energy well depth and distance where U, is zero, respectively; the
cutoff distance is 1, = 2.5 0. The energy well depth ¢ is considered as a key parameter that is

related to the cohesive interaction strength of the polymer, which has a significant influence on the



thermomechanical properties. Here, we consider &, for backbone beads and & for the side-chain

beads separately to explore the effects of cohesive interactions on the Tj.

In the CG modeling, Ty is calculated based on the isothermal-isobaric (NPT) ensemble

under constant zero pressure. The density of the simulation box after equilibration is determined

systematically over a wide range of temperatures. Two linear lines are fitted to the density data in

the low-T and high-T regimes, and intersection marks the magnitude of Tj,.

3. RESULTS AND DISCUSSION

Table 1. The list of QSPR models (i.e., 1-10 variable models), statistical performance

parameters and associated descriptors for each model.

Model No. Descriptors R%,0in RMSE, Q% ain R%,., RMSErqg F
1 Ui 0.34 0.10 0.31 0.47 0.08 40.50
2 AVS_B(e), SsssSiH 0.45 0.09 0.42 0.62 0.07 31.00
3 AVS_B(e), SsssSiH, Plu 0.55 0.08 0.51 0.72 0.06 31.09
4 AVS_B(e), Ke, nOxiranes, FO1[C-Si] 0.65 0.08 0.61 0.71 0.06 34.54
AVS_B(e), Mor04v, RARS, nOxiranes,
5 SssSiH 0.68 0.07 0.65 0.70 0.06 32.10
AVS_B(e), nCt, RARS, nOxiranes,
6 SsssSiH, FO2[N-O] 0.73 0.07 0.70 0.72 0.06 33.20
AVS_B(e), Mor06v, nCt, RARS,
7 nOxiranes, SsssSiH, BO2[N-0] 0.75 0.06 0.72 0.74 0.06 30.80
AVS_B(e), SM14_EA(bo), Mor20v,
8 nCt, RARS, L2s, nOxiranes, SsssSiH. 0.79 0.06 0.74 0.57 0.09 32.70
AVS_B(c), SM10_EA(bo) , Mor28v,
9 JGI3, RARS, nOxiranes, SsssSiH, H- 0.83 0.05 0.79 0.53 0.10 36.80
050, BO3[C-N]
AVS_B(e), SM08_EA(bo),
10 SpDiam_B(e) Mor28v, JGI3, RARS, 0.84 0.05 0.80 0.51 0.11 37.15

nOxiranes, SsssSiH, CATS2D 04 DL,
BO3[C-N]




First, different QSPR models for T, prediction were developed and evaluated using the
experimental dataset of over 100 polymers. The model building was carried out systematically by
selecting the best set of descriptors, followed by assessing the regression coefficients of the
training and test sets. The essential molecular descriptors and statistical parameters for each of the
tested QSPR models (i.e., 1-10 variable models) are summarized in Table 1. From Figure 2, it is
observed that the R%mining values show an increasing trend with an increasing number of
descriptors in the QSPR models. Similarly, the correlation coefficient of the test set R%,, exhibits
an analogous trend of training set but only up to the 7-variable model and then shows a plummeting
behavior, which indicates the reduced predictive capability of QSPR models (8-10 variable
models) due to overfitting issues. The correlation coefficients (RZTminmg and Qszining) of the
training set for higher variable models (8 to 10) still show an increasing trend, but its predictive
capability for the test set RZ,., decreases (Figure 2). Based on that, the 7-variable model that

yields higher values of both Rszim-ng and R%,,, has been selected as the most robust model
among all ten tested models. The best 7-variable model for prediction of T, can be analytically

described as follows:

Log T, = 0.42(£0.03)AVS_B(e) + 0.05(+0.02)Mor06v + 0.60 (+0.08) RARS
+0.05 (£0.01) nCt — 0.32(%0.05)nOxiranes + 0.20 (+0.03)SsssSiH (10)
+0.11 (£0.03)BOZ[N — O] + 0.650(%0.17)

It is worth noting that the 7-variable model (Eq. 10) is a transparent, validated and reproducible
model that can be applied to predict Ty values for other polymers (additional information is given

in SI file).
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Figure 2. Statistical analyses on R? and Q2 as a function of number of descriptors for QSPR
models with 1-10 descriptors for training and external test sets: the regression coefficients of the

training set R%mml-ng (blue circles), the cross validation by “leave-one-out” method Q%mim-ng

(green triangle), and external test set R2,, (red squares).

Table 2. A list of descriptors included in the 7-variable QSPR model in Eq. 10, and their

description.
Descriptor Description Type
Average vertex sum from Burden matrix weighted by Sanderson 2D matrix-based
AVS B(e) . .
— electronegativity descriptors
Mor06v 3D-MoRSE signal 06 / weighted by van der Waals volume 3D-MoRSE descriptors
RARS R matrix average row sum gateway descriptors
nCt Number of total tertiary C(sp3) functional group count
nOxiranes Number of ethylene oxide groups functional group count
B02[N-O] Presence/absence of N-O at topological distance 2 2D Atom pairs
SsssSiH Sum of sssSiH E-states atom type Estate indices




It is imperative to explicitly interpret the molecular descriptors in the best QSPR model for
T, predictions. As listed in Table 2, the best QSPR model (Eq. 10) can be quantitively described
by seven selected descriptors as a 2D-matrix, 3DMoRSE, gateway, functional, atom pair, and
electro-topological index descriptors. AVS B(e) is a burden matrix weighted by Sanderson
electronegativity, which reveals that electronegativity plays a crucial role in T, of polymers. This
descriptor is strongly related to the polar nature of bonds and the positive influence of
electronegativity indicates that the presence of electronegative atoms (e.g. fluorine, oxygen, and
nitrogen) in the monomer increases T, of polymer.’” The presence of atom pairs N-O as described
by B02 increases the T, index value, which relates its ability to form intramolecular and
intermolecular hydrogen. Another similar contributing descriptor (SsssSiH) for increasing the
cohesive energy of polymer is electro topological (E-state) index, a measure of two unified
attributes (electronic and topological); SsssSiH or E-state index value increases with a number of
electron-rich atoms in a molecule, facilitating enhancement in intermolecular interactions. Several
examples of correlations between E-state index value and physical and biological phenomena have
been reported before for similarity search of anti-inflammatory drugs and it’s utility in the toxicity

modeling for a set of amide-based herbicides.**-

The presence of RARS* (gateway descriptors) and nCt*' (total number of sp* carbon)
molecular descriptors in the best QSPR model indicates that T, is sensitive to molecular branching
(e.g., existence of side-chain groups). Several attempts were made to understand the effect of

1'42

molecular branching on T of polymers. Zhu et al.” showed that T first increases with the degree

of branching (DB), passes through a maximum, and then decreases sharply for hyper branched

polyethers; however, the T; of polyethylene is observed to decrease with increase of degree of

branching.*® These contrast observations suggest that molecular branching shares a complex



relationship with T; of amorphous polymers. Interestingly, a negative effect on Ty is exhibited by
the presence of the ethylene oxide group (nOxiranes) on the backbone of polymer chain. Previous
studies have shown that Ty can be suppressed by increasing the number of oxygen atoms in the
backbone of polymer chain with reduced stiffness.*** The next descriptor Mor06v, which
represents a weighted van der Waals volume, describes a space occupied by a molecule that is
impenetrable to other molecules. Mor0O6v indicates that the size and volume of the molecule have

a positive contribution to Ty. The relative influences of these descriptors on T, will be further

discussed.
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Figure 3. (A) A correlation plot between the observed and predicted values of T, of polymers in

the 7-variable QSPR model. (B) Williams plot of standardized residual versus leverage for



evaluation of the applicability domain for the 7-variable model, where the chemical compounds of
training and test sets are shown. The blue dashed and solid black lines correspond to + 3

standardized residual (o) and warning leverage value (2* = 0.3), respectively.

It is important to estimate the robustness of the model and its predictive ability. In this
regard, several statistical parameters were analyzed to estimate the performance of the models.
Figure 3A shows a correlation between the experimental T, and the predicted T, based on the 7-
variable model. Given the complexity of T, and diversity of applied dataset, the level of correlation
between the predicted and observed T, values in a 7-variable model (Eq. 10) indicates a reasonably
good predictive capability of the 7-variable model, with R? = 0.75 (Training) and R? = 0.73 (Test)
for a diverse set of 100 different polymers. Figure 3B shows the Williams plot that represents the
applicability domain (AD) of the QSPR model, allowing for a graphical detection of both the
outliers for the response and structurally different chemicals in the model. The graph represents
standardized residuals (o), the measure of the strength of the difference between observed and
predicted values on the Y-axis and the leverage value on X-axis. Here, the observations with
standardized residuals beyond the -30 to +30 range are considered as outlier responses. A leverage
value (HAT) represents the degree of influence of the chemical on the model. A higher leverage
value (HAT > /*) means the compound exerts a greater influence on the QSPR model. Thus, the
Williams plot shown in Figure 3B indicates that nearly all points are located within 3o of error
limit with only one outlier, demonstrating the validity of the 7-variable model. There are several
polymeric units that show higher error estimation deviations than others (5, 11, 44, 45, 56, 92 98).
Analysis of the impact of descriptors in the model to these polymeric units T, value shows the
following. In most of the cases, there is a combined influence of the descriptors’ values on the

estimation error of the T, value of these polymeric units. Thus, in the case of 5, 11, 44, 45, 56 and



92 the larger deviation of AVS B(e), MorO6v and RARS descriptors resulted in a larger deviation
of overall residual value for T; (Figures S1-S3 in SI). In the case of polymer unit 45, there is a
large contribution of nCt descriptor’s error deviation to the T value that also led to the larger
deviation in the property estimation (Figure S3). In the case of polymeric unit 98, a large error
estimation in descriptor Mor0O6v led to the larger error of estimation in Ty value. A detailed
information on the contribution of each descriptor’s error of estimation value to Ty value’s error

of estimation is shown in Table S4 and Figure S3.

0.9} oR? ysclr /
5 | ea?yea g
2 0.6} mModel R? et
NO o Model Q2
- 0.3
c
5 of ° °°
S
“or -0.3
-0.6
0.05 0.1 0.3

Figure 4. Representation of the y-scrambling plot: blue and yellow dots (highlighted by dashed
circle) represent R? and Q2 values of the 7-variable QSPR model, respectively; cyan and purple

dots represent R? yscr and Q? yscr of models based on randomized data.

In Figure 4 represented a y-scrambling plot, an important validation technique, which
underlines the robustness and uniqueness of the best QSPR model. The y-scrambling plot is

obtained by scrambling the y values (i.e., experimental Ty values) in a random fashion. In this



randomization process, 2,000 simulations per model are performed, where none of the models has
any acceptable correlation in comparison with the best 7-variable model (Eq. 10). The best model
has much higher R? and Q2 values (data points marked by the square symbols in the plot) than
those of all other simulated (unrealistic, scrambled) models. This analysis again confirms that the

developed QSPR model is a clear case of robustness and not mere coincidence.
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Figure 5. (A) The coefficients of different descriptors in the 7-variable model. The greater absolute
magnitude of the coefficient indicates higher relative importance for T,,. All descriptors, except
nOxiranes, show a positive influence on Ty index. (B) Categorizing best molecular descriptors
from the 7-variable model into three physical parameters of CG models. The dominant influential

descriptor in the QSPR model in each category is highlighted as bold.

As above mentioned, the molecular descriptors identified by QSPR models suggest that
physico-chemical and electro-topological parameters, such as polarity of bonds and hydrogen
bonding, branching intensity, presence of bulky atoms or groups, and chain stiffness play pivotal

roles in determining T, of diverse polymers. As quantified by the magnitudes of coefficients,

Figure SA shows the relative influence of these descriptors in the QSPR model on Tj; index value.



The positive or negative influence of each descriptor on Ty index value is represented by the

positive or negative sign of the coefficient’s value of each descriptor. All the descriptors in Figure
5A, except nOxiranes (i.e., presence of ethylene oxide in repeating unit), show a positive

contribution to T, index value. Among these descriptors, RARS, AVS_B(e), and nOxiranes yield
higher degrees of relative importance associated with T,; due to their greater absolute magnitudes

of coefficients compared to the others.

To better understand the roles of these key molecular descriptors in governing the T, of

polymers, the descriptors identified by the QSPR model (Eq. 10 and Figure 5A) are grouped into

three major categories as illustrated in Figure 5B:

e Intermolecular cohesive interactions (i.e., AVS_B(e), B02 [N-O], SsssSiH);

e Backbone chain stiffness (i.e., nOxiranes, MorO6V);

e QGrafting or branching density of side chain (RARS and nCt).

Figure 6. Illustrations of CG models of polymers: (A) a linear polymer chain with /= 0, (B) an
alternatively branched polymer chain with /= 0.5, and (C) a fully branched polymer chain with 1’

= 1. (D) Snapshot of the bulk simulation box consisting of polymer chains.



Then, to gain fundamental insights into the roles of descriptors informed from the QSPR model,
we employed the CG-MD simulations to explore and validate their influences on Ty of CG

polymer models. Specifically, the three major categories of descriptors can be highly associated
with the following three CG model parameters: cohesive interaction strength ¢ (i.e., &, for
backbone beads and ¢ for the side-chain beads), backbone chain stiffness Ky, and grafting density
f (= number of grafted backbone beads/number of backbone beads). Here, we consider three
representative architectural structures of the polymer chains in the CG-MD simulations. As shown
in Figure 6A, the CG model with /= 0 is a linear polymer chain without any side chain. The CG
models with /= 0.5 and /= 1, as illustrated in Figure 6B and C, are partially and fully branched
polymers, respectively, where each side chain comprised of three CG beads is grafted to the
backbone. Each backbone chain of the polymer consists of 20 CG beads and bulk simulation boxes

of all three models consist of 500 chains.
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Figure 7. (A) Density versus temperature for calculation of Ty of the CG polymer model with /=
0,Ke =0.5, and g, = 1. (B) T, as a function of the cohesive interaction strength &5, of the CG

model (f= 0) for different backbone chain stiffness Kg of the chain.

We begin with investigating the influence of cohesive interaction strength and chain
stiffness on T of the CG model with f = 0. Figure 7A shows the typical T, determination from
the CG modeling by linearly fitting the density vs. temperature data in the low and high
temperature regimes, respectively, where the interaction marks the T;. Figure 7B shows the T}
variations with different cohesive interaction strengths &5, as well as different backbone chain
stiffness Kg. It is observed that both the cohesive interaction strength parameter €, and chain

stiffness Ky have considerable influence on the T, of CG polymer, as it was found by the QSPR



model (Eq. 10). When ¢, becomes larger, Ty of the polymer increases significantly because of a
suppression of segmental mobility. Similarly, for a given ¢, increasing the Kg causes the Tj; to
increase. Although increasing both Kg and ¢, parameters will increase Ty for /=0 model, &, plays
a more dominant role in controlling T, compared to Kg. This observation is consistent with a recent
CG-MD study by Xu and co-workers,*® who showed that the T, of polymer melts with an ideal
chain (i.e., no angles, dihedrals or side chains) tends to increase as cohesive energy becomes larger.

In another MD study of glassy polycarbonate (PC),*’ it has been shown that increasing the cohesive

energy significantly enhances mechanical properties (i.e., shear modulus and yielding stress) and

dynamical heterogeneity associated with the glass-forming process.*3*
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Figure 8. Temperature dependent density for calculations of T, of CG polymer models with
cohesive interaction strength €, = 1.0 of backbone and varying cohesive interaction strength &g of
(A), 0.5 (B), 0.7 and (C) 1.0 of side chains for different grafting density /. A fixed Ky = 0.5 € for

the side chains and Ky = 1.5 ¢ for the backbone are used in the CG models.

We proceed to explore the influence of grafting density fon the T; of CG polymers having
grafted side chains, which is relevant to the descriptors associated with molecular branching

identified through the QSPR modeling. From the simulations (Figure 8), it appears that grafting



the side-chain groups to the chain backbone considerably affect T; of polymer. In particular, as
shown in Figure 8A, when the cohesive interaction strength &g of the side-chain beads is much
smaller than €, of the backbone, increasing f'will decrease the T;. This reducing effect of the side
groups on the Ty of the current CG bulk models resembled the influence of alkyl side group length
on the Ty and mechanical properties of conjugated polymers, where increasing side chain length
was found to decrease the T, and elastic modulus.”*' However, Figure 8B and C show that when

& parameter of the side-chain beads becomes larger and gets close to the g, the reducing effect

of fon Ty will diminish.

Figure 9. (A) Contour plot of T, in the plane of chain rigidity Ky vs. cohesive interaction
strength &, of CG model with /= 0. (B) Contour plot of 7, in the plane of grafting density f vs.

cohesive interaction strength of the side chains &s.



To better understand the couple influences of cohesive energy and other explored
parameters, we summarized T, results from MD simulations for both linear and grafted polymer
models. Figure 9A shows a contour plot of mutual influence of backbone stiffness Ky and
cohesive interaction strength &, on the T, of linear chain model (= 0), in which for larger values
of €3, altering the values of Kg is found to be insignificant in controlling the T,;. For the grafted
polymer models (Figure 9B), we observe that as the cohesive energy of the side groups &
becomes smaller than that of the backbone €, increasing f tends to decrease the T,. However,
when &g becomes larger than &5, an opposite trend of Ty with increasing f is observed — more
grafted side groups are found to increase the T;. These results not only demonstrate the complexed
influences of these key molecular parameters informed from the QSAR model, but also provide
valuable insight into the vital role of cohesive energy in the glass formation of the polymers. In
previous investigations based on the generalized entropy theory (GET), Dudowicz and co-
workers®? showed that depending on the stiffnesses of side chain and backbone, side-chain groups
can strongly influence the Ty . For polymers with a flexible backbone and stiff side chain,
increasing of the side-chain length cause Ty to increase. However, when flexible side chains are
grafted to relatively stiffer backbones, T, tends to decrease when the side-chain length is increased.
This is in good agreement with the findings of the current study, where the backbone chain of the
investigated CG model has a relatively highe stiffness compared to the grafted side chains. In

another relevant study of star polymers by Fan et al.,>

it is reported that increasing the arm length
leads to a T,; drop as the number of arms exceeding a critical value.
The CG-MD simulations offer valuable insights into the QSPR models by providing a

mechanistic interpretation and systematic dependence of key molecular features that govern the Tj.

Through the QSPR modeling, seven most essential molecular descriptors are identified via



statistical analysis based on machine learning, which can be described by three major CG model
parameters; cohesive energy, chain stiffness, and grafting density. The CG-MD simulations
confirm the significant roles of these molecular descriptions in influencing T,;. The integration of
machine learning-based QSPR modeling and MD simulations outlined here is an inspiring
pathway for predicting and understanding the glass-forming behaviors of polymers having diverse
chemistry. It is worth noting that the presented modeling framework can be further improved in
the future. For instance, a more robust QSPR model can be developed by applying the ‘feedback
loop’ approach, where more physics-based descriptors can be considered and analyzed explicitly.
The predictive capability of the developed QSPR model can be improved by employing extended
and diverse datasets for both training and validation sets. Besides, the QSPR models can also guide
the development of more robust CG models for better mechanistical simulation, which in return
can give a valuable feedback to QSAR modeling for a rapid quantitative validation. For the future
work, it will be useful to associate QSAR descriptors with the molecular parameters of MD models
in a more quantitative way for a better validation of predictive relationships developed by the
QSAR modeling. On the other hand, the essential feature descriptors identified from QSAR
modeling will improve the development of chemistry specific CG models for polymers, whose
physico-chemical properties can be added to the QSPR library to enrich the feature data sets and
further improve the QSPR model predictions. We believe that the results of the current study will
pave a way for future steps to better integration of these two robust approaches for properties’
predictions of complex materials. By harnessing the power of this unparalleled computational
efficiency provided by this framework, it is expected that other relevant properties can be predicted

for not only the polymeric materials but also other classes of organic and inorganic materials.



4. CONCLUSION

In this study, the combination of two techniques, machine learning-based cheminformatics and
CG-MD modeling, is applied to investigate the factors that affect T, and validate the predictions
for a diverse set of 100 polymers. To this end, a set of 1- to 10-variable models is developed by
applying the machine learning-based QSPR modeling. After testing and validating, the 7-variable
QSPR model is identified, yielding the best predictive performance, which is further confirmed by
additional validation techniques, including Qszim-ng and y-scrambling analyses. Among the
physico-chemical and electro-topological descriptors in the QSPR model, AVS B(e), RARS, and
nOxiranes are found as the most influential ones that govern the T; of polymers in the context of
structure-property relationships. Informed by the QSPR model, CG-MD simulations are performed
to further delineate mechanistic interpretation and systematic dependence of these influential
molecular features on T by investigating three major CG model parameters, namely the cohesive
interaction &, chain stiffness Ky, and grafting density /. The CG-MD simulation results
demonstrate the importance of these molecular descriptors in T, of polymers, where their
influences are highly coupled. This synergistic framework of integrating the cheminformatics and
CG-MD simulations provides valuable insights into the roles of key molecular features influencing
the Ty of polymers, which can be further applied for the prediction of different properties of

polymers and glass-forming materials.
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