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1-Aminocyclopropane 1-carboxylic acid (ACC) is the direct precursor of the plant
hormone ethylene. ACC is synthesized from S-adenosyl-L-methionine (SAM) by ACC
synthases (ACSs) and subsequently oxidized to ethylene by ACC oxidases (ACOs).
Exogenous ACC application has been used as a proxy for ethylene in numerous
studies as it is readily converted by nearly all plant tissues to ethylene. However, in
recent years, a growing body of evidence suggests that ACC plays a signaling role
independent of the biosynthesis. In this review, we briefly summarize our current
knowledge of ACC as an ethylene precursor, and present new findings with regards to
the post-translational modifications of ACS proteins and to ACC transport. We also
summarize the role of ACC in regulating plant development, and its involvement in cell wall
signaling, guard mother cell division, and pathogen virulence.
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1-AMINOCYCLOPROPANE 1-CARBOXYLIC ACID AS A
PRECURSOR OF ETHYLENE

Four decades ago, 1-aminocyclopropane 1-carboxylic acid (ACC), a non-proteinogenic amino acid,
was discovered to be an intermediate in the biosynthesis of the plant hormone ethylene (Adams and
Yang, 1979). Ethylene regulates a wide range of developmental processes and responses to biotic and
abiotic stresses, in part by complex interactions with other phytohormones (Muday et al., 2012;
Vandenbussche et al., 2012; Merchante et al., 2013; Dubois et al., 2018). Its biosynthesis starts with
the conversion of the amino acid methionine to S-adenosyl L-methionine (SAM) by SAM
synthetase and the subsequent conversion of SAM to ACC, which is catalyzed by ACC synthase
(ACS) (Figure 1) (Adams and Yang, 1977; Adams and Yang, 1979). The by-product of this reaction,
5’-methylthioadenosine (MTA), is recycled back into the Yang cycle while ACC is oxidized to
ethylene by ACC oxidase (ACO) (Murr and Yang, 1975). In Arabidopsis, ACO proteins are encoded
by five genes (ACOI-5), which belong to a superfamily of oxygenases/oxidases (Dong et al., 1992;
Zhang et al., 2004). In general, ACS is the rate-limiting step in ethylene biosynthesis, though in some
instances, ACO activity is limiting (Vriezen et al., 1999; Van de Poel et al.,, 2012). This topic, along
with current knowledge on ACO phylogeny and their regulation and importance in agriculture, has
been comprehensively discussed in a recent review (Houben and Van de Poel, 2019).
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methionine to SAM, which is subsequently converted to ACC and 5’-methyithioadenosine (MTA) by ACC synthase (ACS). MTA is recycled back to the Yang cycle to
recover methionine, and ACC is oxidized to ethylene by ACC oxidase (ACO). The hormonal inputs that regulate ACS and ACO expression as well as ACS stability
are depicted in blue. ACC has been shown to be converted to three derivates: 1-malonyl-ACC (MACC) by the ACC-N-malonyl transferase, y-glutamyl-ACC by a

glutamyl-transferase, and jasmonyl-ACC (JA-ACC) by jasmonic acid resistance1 (JAR1). The asterisks mark carbons that give rise to ethylene.

Conjugation of ACC has long been hypothesized to play a role
in regulating the level of ethylene biosynthesis but may also
generate novel signaling molecules. ACC can be conjugated to 1-
malonyl-ACC (MACC), y-glutamyl-ACC (GACC), jasmonyl-
ACC (JA-ACC) (Amrhein et al., 1981; Martin et al., 1995;
Staswick and Tiryaki, 2004) (Figure 1), and perhaps other yet-
to-be discovered conjugates. ACC conjugation regulates the
availability of ACC to be converted to ethylene and, therefore,
can be utilized by plants to control the level of ethylene

biosynthesis. The ACC-to-MACC conversion is catalyzed by
the enzyme ACC N-malonyl transferase (Martin et al., 1995;
Peiser and Yang, 1998). MACC is the most abundant ACC
conjugate in ripening Lycopersicon esculentum (tomato) fruit,
and its formation can be induced by ethylene (Liu et al., 1985;
Martin et al., 1995; Peiser and Yang, 1998). ACC was shown to be
hydrolyzed back to ACC in Nasturtium officinale (watercress)
stems, Nicotiana tabacum (tobacco) leaf discs, and senescing
Dianthus caryophyllus (carnation) petals (Jiao et al., 1986;
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Hanley et al., 1989; ). The formation of GACC is catalyzed by the
enzyme 7Y-glutamyl-transferase (GGT) (Martin et al., 1995;
Martin and Slovin, 2000) which, in Arabidopsis, is encoded by
four widely expressed GGT (1-4) genes, two of which (GGT3 and
GGT4) encode catalytically inactive or minimally active enzymes.
Interestingly, GGT1 and GGT2 appear to be localized
extracellularly (Martin et al., 2007).

JA-ACC is the second most abundant JA conjugate detected
in Arabidopsis leaves and is formed by JARI, a JA-amino
synthetase. Similar to MACC and GACC, JA-ACC might
regulate levels of ACC available for the biosynthesis of
ethylene, and may also regulate JA levels in the plant
(Staswick and Tiryaki, 2004). The availability of ACC can also
be controlled by plant and bacterial encoded ACC deaminases
that irreversibly convert ACC to ammonia and o-ketobutyric
acid (Glick et al., 1998). Multiple species of plant growth-
promoting bacteria from various phyla, including
Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes,
contain ACC deaminases that can decrease host plant ACC
levels. A decrease of ACC often facilitates stress-coping
mechanisms under various unfavorable conditions (reviewed
in Glick, 2014; Nascimento et al., 2014; Van de Poel and Van
Der Straeten, 2014). For example, tomato plants grown in the
presence of ACC deaminase-producing Enterobacter or
Pseudomonas strains exhibit an increased tolerance to
flooding stress, likely as a result of decreased ethylene
(Grichko and Glick, 2001a). Moreover, Arabidopsis, Populus
(aspen), and tomato plants have been shown to contain ACC
deaminases, but their role in plant growth and development has
not as yet been elucidated (McDonnell et al., 2009; Plett
et al., 2009).

ACS is generally encoded by a multigene family in most plant
species. For example, in Arabidopsis, ACS proteins are encoded
by a family of 12 genes, though only ACS2-ACS9 and ACS!1
encode functional ACS enzymes; ACS10 and ACSI2 encode
aminotransferases (Liang et al., 1995; Yamagami et al., 2003),
ACS3 is a pseudogene, and ACSI is catalytically inactive due to
deletion of a highly conserved tripeptide Thr-Asn-Pro (TNP)
(Liang et al., 1995). The remaining Arabidopsis ACS proteins can
potentially form up to 45 different functional homo- and
heterodimers, comprising a family of ACS enzymes with
diverse biochemical properties (Tsuchisaka and Theologis,
2004; Tsuchisaka et al., 2009). ACS enzymes share an N-
terminal catalytic domain and can be divided into three classes
based on the presence of regulatory residues within their C-
termini (Harpaz-Saad et al.,, 2012). The C-terminal domain of
type-1 ACSs (ACS2 and ACS6 in Arabidopsis) have target
residues for both calcium-dependent and mitogen-activated
protein kinases (CDPKs and MAPKs, respectively) (Liu and
Zhang, 2004; Sebastia et al., 2004). Joo et al. (2008) showed
that phosphorylation of the Ser residues within the C-terminus
of ACS6 by MPKG6 increases its stability and is associated with
increased rates of ethylene production. Type-2 ACS proteins
have a target site for CDPKs and an overlapping Target of ETO1
(TOE) motif. Type-2 ACSs are targeted for degradation by the
26S proteasome pathway upon binding of ETHYLENE

OVERPRODUCERI (ETO1) or one of its paralogs, ETO-likel
or 2 (EOL1/2) (Chae et al., 2003; Wang et al., 2004; Christians
et al., 2009; ). Phosphorylation of the C-terminus of type-2 ACS
proteins reduces their targeting for degradation. Type-3 ACS
proteins (ACS7 in Arabidopsis) have a short C-terminus that
lacks an apparent regulatory domain, though ACS7 levels can be
mediated through the activity of the E3 ligase XBAT32 (Prasad
et al., 2010; Lyzenga et al., 2012). The 14-3-3 phospho-specific
binding proteins bind various ACS isoforms in planta to regulate
their stability. 14-3-3s also bind to ETO1 and EOL2, but in these
cases, it results in their destabilization. Therefore, 14-3-3s control
the level of ACS proteins through a bipartite mechanism—on
one hand stabilizing them through direct binding, but also
destabilizing the ubiquitin ligases involved in their degradation
(Yoon and Kieber, 2013).

There is a complex crosstalk between ethylene and other
plant hormones at the level of signaling and/or biosynthesis, the
latter of which includes both transcriptional and post-
transcriptional regulation of ACS (reviewed in Kazan and
Manners, 2012; Muday et al., 2012; Van de Poel et al., 2015;
Shigenaga and Argueso, 2016; Hu et al., 2017; Liu et al., 2017;
Zemlyanskaya et al., 2018; Biirger and Chory, 2019; Qin et al,,
2019). For example, cytokinin and brassinosteroid additively
increase the stability of type-2 ACS proteins independently of
their TOE domains (Hansen et al., 2009). The effect of various
phytohormones on the rates of degradation of type-1, -2, and -3
ACS proteins was comprehensively investigated using etiolated
Arabidopsis seedlings as a model (Lee et al., 2017). Consistent
with previous results, auxin was found to increase ACS2 and
ACS5 transcript levels (type-1 and type-2, respectively) as well
as to stabilize their encoded proteins. Gibberellin,
brassinosteroid, and cytokinin were also found to decrease the
turnover of ACS2 and ACS5 proteins. Salicylic acid (SA)
stabilized ACS5 but decreased the stability of ACS2 protein,
the latter of which is different from the effect in light-grown
seedlings in which SA stabilizes ACS2 (Liu and Zhang, 2004;
Lee et al., 2017). Abscisic acid (ABA) and methyl-jasmonate
(MeJA) did not affect ACS2 protein levels but increased the
stability of ACS5, which is distinct from the negative effect of
these hormones on levels of ethylene production (Lee et al.,
2017). The reduced ethylene biosynthesis in response to ABA
and MeJA is likely explained by the downregulation of ACO
genes in response to these hormones (Lee et al., 2017).
Interestingly, the turnover of ACS7 (a type-3 ACS) was not
regulated by any of the hormones examined in the study, and
the analysis of its half-life showed that ACS7 is the most stable
protein, confirming previous suggestions (Chae and Kieber,
2005). Moreover, the heterodimerization with ACS7 increased
the stability of both ACS2 and ACS5 as compared to the
respective homodimers, which suggests that dimerization
among various ACS isoforms may regulate their turnover rate
and, as a result, ethylene biosynthesis (Lee et al., 2017). ACS5
proteins are also stabilized when etiolated Arabidopsis seedlings
are moved to the light, promoting ethylene biosynthesis and
hypocotyl elongation during this transition (Seo and
Yoon, 2019).
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ACC TRANSPORT AND LYSINE HISTIDINE
TRANSPORTERS

Ethylene is involved in various stress-related responses such as
wounding, pathogen infection, neighbor proximity, elevated
temperatures, drought, soil waterlogging, and submergence
(Vandenbussche et al., 2005; Sasidharan and Voesenek, 2015;
Huang et al., 2016; Loreti et al., 2016; Valluru et al., 2016; Dubois
et al., 2018). Following the demonstration that ethylene leads to
epinasty of petioles in waterlogged tomato plants (Jackson and
Campbell, 1975), Bradford and Yang showed that waterlogging
and root anoxia correlated with the shootward transport of ACC,
its subsequent conversion to ethylene, and leaf epinasty
(Bradford and Yang, 1980). This spatial separation between the
biosynthesis of ACC and the its conversion to ethylene is the
result of the oxygen dependence of the ACO enzyme (Murr and
Yang, 1975). Multiple studies confirmed the phenomenon of
ACC transport between roots and shoots in several plant species
(e.g. Else and Jackson, 1998). During the de-submergence of
flood-tolerant Rumex palustris (marsh dock) plants, ACC
delivered from the root contributes to the pool of ACC that
accumulated in the shoot during submergence to stimulate
petiole elongation (Voesenek et al., 2003). In contrast, flood-
intolerant Rumex acetosa (common sorrel) does not accumulate
ACC in roots or shoots and consequently fails to recover from
the detrimental effects of flooding. The root-to-shoot transport of
ACC is thought to occur primarily in the xylem, though there is
evidence for phloem-translocated ACC as well (Amrhein et al.,
1981; Hume and Lovell, 1983). Radio-labeled ACC application to
the abaxial side of Gossypium hirsutum (cotton) leaves resulted
in both basipetal and acropetal transport of ACC throughout the
plant as well as rapid conversion to ['*C]MACC, which was not
translocated from the source leaf. ACC is compartmentalized
within the tonoplast of Zea mays (maize) leaf mesophyll cells via
a mechanism dependent on an electrochemical gradient (Saftner
and Martin, 1993). Translocation of ACC conjugates into the
vacuole likely plays a role in regulating ACC availability and/or
ethylene levels. In Acer pseudoplatanus (sycamore maple)
protoplasts treated with ['*CJACC, there was a steady
transport of the ['*CIMACC conjugate into the vacuole
(Bouzayen et al., 1988). Furthermore, Tophof et al. (1989)
showed that MACC accumulated to higher levels than ACC in
vacuoles in both wheat (Triticum aestivum) and barley
(Hordeum vulgare) plants.

The ability of plants to transport ACC both within the cell
and throughout the plant suggests the existence of ACC
transporters. ACC and its structural analog o-aminoisobutyric
acid (AIB) are taken up by tomato pericarp cells; this uptake is
inhibited by neutral but not by acidic or basic amino acids
(Saftner and Baker, 1987). Tophof et al. (1989) speculated that
ACC might be translocated to the tonoplast by a neutral amino
acid transporter and as MACC competitively inhibited the
transport of malate to the vacuole, they suggested that these
molecules likely shared a common translocator. Recently, the
identification of an ACC-resistant (are2) Arabidopsis mutant
that displayed a reduced uptake of exogenous ACC led to the

identification of the LYSINE HISTIDINE TRANSPORTERI1
(LHT1) as a potential ACC transporter (Shin et al, 2014).
LHT1 localized to the plasma membrane of leaf mesophyll and
epidermal root cell and is not detected in the vasculature (Chen
and Bush, 1997; Hirner et al., 2006). The [ht] mutant displays
severe growth defects on media with aspartate and glutamate as
the sole nitrogen source and is impaired in the uptake of [**C]-
labeled amino acids. The are2 mutant, allelic to [htl-5, was
resistant to ACC but displayed a normal triple response when
exposed to ethylene. Isolated are2/Ihtl-5 protoplasts display
reduced accumulation of ["*CJACC. Additionally, competition
experiments showed that the presence of alanine and glycine can
reduce the triple response morphology elicited in response to
ACC, consistent with Tophof’s (1989) speculation that ACC is
translocated through the tonoplast by a neutral amino acid
transporter. However, Hirner et al. (2006) showed that lysine
and histidine are the best substrates for LHT1, suggesting that
multiple distinct transporters may act in the movement of ACC.
It is possible that the ACC uptake and transport are
mechanistically different and require distinct transport
proteins. The subject of alternative ACC transporters and
strategies to identify them has been recently discussed in a
comprehensive review (Vanderstraeten and Van Der Straeten,
2017). Further studies are needed to identify and distinguish
transporters involved in the short- and long-distance
ACC translocation, its uptake into cells, as well as its
intracellular trafficking.

ACC IN PLANT DEVELOPMENT
AND BEYOND

A growing body of evidence indicates a role for ACC as a
signaling molecule distinct from its role in ethylene
biosynthesis. One of the first findings consistent with this was
the discovery of the involvement of ACC in the regulation of cell
wall function in the FEI pathway (Xu et al., 2008). FEI1 and FEI2
are leucine-rich repeat receptor-like kinases (LRR-RLKs) that
have been linked to cellulose biosynthesis. feil fei2 loss-of-
function mutants display root swelling under high
concentrations of salt and sucrose, decreased biosynthesis of
cellulose, hypersensitivity to the cellulose inhibitor isoxaben,
thickening of etiolated hypocotyls, and a decrease in the
formation of cellulose rays in seed coat mucilage (Xu et al,
2008; Harpaz-Saad et al., 2011), which together indicate a role of
the FEI proteins in regulating cellulose biosynthesis. Intriguingly,
inhibition of ethylene biosynthesis [via aminooxy-acetic acid
(AOA) or AIB; Figure 1] reverted the swollen root phenotype of
feil fei2 mutants, but blocking ethylene perception, using either
the inhibitors 1-methylcyclopropane (1-MCP) or silver
thiosulfate, or by introducing ethylene-insensitive ein2 and etrl
mutations into the feil fei2 background, had no effect.
Furthermore, the FEI kinase domain was shown to directly
interact with type-2 ACS proteins, suggesting a direct link to
ACC synthesis (Xu et al., 2008).
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An analysis of cell elongation in roots treated with the
cellulose biosynthesis inhibitor isoxaben provided further
support that ACC acts as a signal. Tsang et al. (2011) analyzed
root trichoblast length upon treatment with isoxaben in presence
or absence of various ethylene inhibitors. Interestingly, inhibitors
of ethylene biosynthesis [amino-ethoxyvinylglycine (AVG),
AOA, or 2-anilino-7-(4-methoxy-phenyl)-7,8-dihydro-5(6 H)-
quinazolinone] reversed the isoxaben-induced elongation
defects, but inhibitors of ethylene perception did not.
Moreover, short-term ACC treatment induced shortening of
trichoblasts in ethylene-insensitive ein3 eill mutants, further
supporting the hypothesis that ACC acts independently of
ethylene signaling. Additionally, the authors found that both
cell wall damage-induced and ACC-mediated growth inhibition
is dependent on auxin signaling since the growth inhibition was
absent when combined with a-(phenylethyl-2-one)- indole-3-
acetic acid (PEO-IAA), a transport inhibitor response 1 (TIR1)
receptor antagonist This is consistent with the suppression of the
feil fei2 root swelling phenotype by auxin biosynthesis mutants
(Steinwand et al, 2014). Together, these studies suggest that ACC
plays a role in the response to cell wall perturbations, triggered by
either chemical or genetic disruption of cellulose synthesis, and
that auxin is involved in this pathway (Xu et al., 2008; Tsang
et al., 2011).

Genetic analysis of disruption of ACS genes in Arabidopsis
also supports a function for ACC in addition to its role as an
ethylene biosynthetic precursor. A comprehensive genetic study
of all members of the ACS gene family in Arabidopsis, including
the generation and analysis of single, double, triple, and high-
order acs mutants, suggested novel roles for ACS beyond
ethylene biosynthesis (Tsuchisaka et al., 2009). Analysis of the
mutants revealed both synergistic and antagonistic relationships
among various ACS genes in ethylene biosynthesis and in
regulation of hypocotyl and rosette growth, and flowering time.
Disruption of multiple ACS genes led to a progressive increase in
plant size, concomitant with a decreased level of ethylene
biosynthesis. Remarkably, an octuple acs 2, 4, 5, 6, 7, 9, amiR
acs8 acs11 mutant, which had a ~90% decrease in the level of
ethylene production, displayed embryonic/gametophytic
lethality and/or unfertilized ovules. The octuple acs mutant
inflorescences are significantly taller than wild-type or lower-
order acs mutants, despite their initial reduced growth rate. An
independent octuple mutant line analyzed in the study could
only be propagated when the amiR transgene was heterozygous,
consistent with embryo/gametophytic lethality or infertility. The
striking phenotypes of the octuple acs mutant is distinct from the
full reproductive viability of even very strong ethylene signaling
mutants, suggesting that ACS genes play a role beyond acting as

gametophyte/embryo development

¢ ACC

increased virulence of Verticillium dahliae
enhanced wilting of tomato plants

Arabidopsis
root elongation zone

FIGURE 2 | Various ACC-dependent processes. (A) The infertility of the octuple acs 2, 4, 5, 6, 7, 9, amiR acs8 acs11 mutants suggests an essential role in
gametophytic and/or embryonic function (Tsuchisaka et al., 2009). (B) Role of ACC in stomatal development. ACC is required for the division of the guard mother cell
(GMC) likely via the regulation of the indicated cell cycle regulators (Shin et al., 2014). (C) Overexpression of the ACC deaminase from the fungal pathogen of tomato,
Verticilium dahliae, enhances its virulence, and pre-treatment of tomato plants with ACC reduced the symptoms of V. dahliae infection even in ethylene-insensitive
mutants (Tsolakidou et al., 2019). (D) ACC is involved in cell wall signaling regulating anisotropic elongation of root cells (Xu et al., 2008; Tsang et al., 2011). See text
for more details. Figure adapted, with permission, from Figshare [A (Bouche, 2018a); B (Bouché, 2018b); € (Davis and Mitra, 2019); D (Bouche, 2017)].
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precursors in ethylene biosynthesis. Alternatively, ACS proteins
may have a moonlighting function, and the reported lethality of
the octuple mutants may result from disruption of an unrelated
process. The precise nature of the embryo/gametophyte lethality
of the octuple acs mutant needs further characterization.

ACC was recently shown to play a role in stomatal
development. The terminal division of the guard mother cell
(GMC) produces the two guard cells (GCs) that comprise the
mature stomata (Yin et al., 2018). Application of the ACS
inhibitor AVG induced the formation of pore-less, single guard
cell (SGCs). Similarly, the octuple acs 2, 4, 5, 6, 7, 9, amiR acs8
acs11 mutant (Tsuchisaka et al, 2009) developed SGCs. This
SGC phenotype was not observed in the presence of ACO
inhibitors (AIB or Co*") or the ethylene binding inhibitor 1-
MCP, nor was it present in various ethylene-signaling mutants
(etrl, ein2, ctrl, ein3 eil2). ACC did not increase cell division in
GMGCs in wild-type plants but did so (as did ethylene) in fama
and four lips (flp)/myb88 mutants, which developed clusters of
thin cells on the epidermis. FAMA and FOUR LIPS (FLP)/
MYB88 are central regulators of the last cell division of GMC,
acting upstream of the core cell cycle genes (CYCA2;3, CDKBI;1,
and CDKA;1) (Xie et al., 2010; Vanneste et al., 2011; Yang et al.,
2014). Because ACC induced extra divisions in these mutant
backgrounds, it was concluded that FAMA and FLP/MYB88
might antagonize the effect of ACC on the GMC division.
Moreover, ACC, but not ethylene, stimulated the expression of
CYCA2;3 and CDKBIL1 in fama and flp/my88 mutants, and
conversely, AVG downregulated the expression of these genes.
ACC partially rescued the SGC formation in the acs 2, 4, 5, 6, 7, 9,
amiR acs8 acs11 line, but not in cyca2;3 and cdkbl;1 mutants,
suggesting that it acts upstream of the cell cycle-dependent
control of the GMC division.

Recent studies suggest that the signaling role of ACC could
extend beyond the plant kingdom. Since many plant growth-
promoting rhizobacteria (PGPR) possess ACC deaminase genes
and utilize ACC as a source of nitrogen, Li et al. (2019) examined
whether ACC could act as a chemoattractant. Indeed,
Pseudomonas putida displayed a chemotactic response to ACC,
but not to ethylene, and the ability to respond to ACC was
correlated to the ability of P. putida to colonize wheat roots.

The fungal pathogen, Verticillium dahliae is a soil-borne
pathogen of many plant species, causing vascular wilt disease.
Tsolakidou et al. (2019) found that genetic modulation of ACC
levels in V. dahliae affected its microsclerotia development and
hyphae growth. Overexpression of ACC deaminase in V. dahliae
led to increased virulence on tomato and eggplant, including
enhanced wilting and greater fungal growth. On the contrary, the
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