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ABSTRACT

Self-adaptive systems often employ dynamic programming or sim-
ilar techniques to select optimal adaptations at run-time. These
techniques suffer from the “curse of dimensionality", increasing the
cost of run-time adaptation decisions. We propose a novel approach
that improves upon the state-of-the-art proactive self-adaptation
techniques to reduce the number of possible adaptations that need
be considered for each run-time adaptation decision. The approach,
realized in a tool called THALLIUM, employs a combination of auto-
mated formal modeling techniques to (i) analyze a structural model
of the system showing which configurations are reachable from
other configurations and (ii) compute the utility that can be gen-
erated by the optimal adaptation over a bounded horizon in both
the best- and worst-case scenarios. It then constructs triangular
possibility values using those optimized bounds to automatically
compare adjacent adaptations for each configuration, keeping only
the alternatives with the best range of potential results. The ex-
perimental results corroborate THALLIUM's ability to significantly
reduce the number of states that need to be considered with each
adaptation decision, freeing up vital resources at run-time.
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1 INTRODUCTION

Self-adaptive systems are becoming more pervasive, particularly
in applications such as autonomous vehicles and medical or IoT
devices [19, 24, 36, 57]. These systems need to quickly adapt to
an uncertain, dynamic environment without external intervention,
which is especially challenging given the nearly infinite situations
such environments may present, the short window of time available
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to adapt, and the potentially limited computing resources available
for making adaptation decisions at run-time.

In an ideal scenario where adaptations are instantaneous and
immediately beneficial, a reactive self-adaptive system can respond
effectively after a change in the environment has been detected.
However, in cases such as provisioning a new cloud-based virtual
machine [40], the adaptations enacted by the system may take
some time, requiring a proactive approach which can account for
the latency of adaptation tactics [51]. While such proactive, latency-
aware (PLA) approaches promise to improve the overall fitness of
the adaptations chosen [15, 45], they need to look ahead and predict
future states of the environment. Recent approaches to PLA self-
adaptive systems model the environment as a stochastic process
independent of the state of the system [45]. Adaptation decisions
can then be made via stochastic planning using the predictions of
future states of the environment as input.

Historically, stochastic planning problems have been described
and modeled using Markov decision processes (MDPs) [53], which
can be solved using dynamic programming to optimize some utility
or cost. If the number of distinct properties or settings available to
the system to adapt is large, this solution can suffer from Bellman’s
curse of dimensionality [11], where the number of states that must
be visited and evaluated grows factorially based on the number of
values that can be assumed by the variables representing the system
state. Prior decision theoretic planning research has explored ways
to curtail this state explosion, such as minimization of MDPs [31, 46],
reachability analysis [12], and machine learning [25, 54].

However, despite significant progress, the adaptation space—the
possible state transitions that must be pondered for each run-time
adaptation decision—is still enormous, even considering only allow-
able adaptations. This, in turn, renders dynamic run-time adaptation
for real-world systems expensive in practice. This is especially prob-
lematic in volatile environments like distributed pervasive systems,
where high volumes of routinely volatile software components
often exist and coordinate in tandem. There is, thus, a need for
methods to facilitate efficient analysis of huge adaptation spaces.

In this paper, we present a novel approach, dubbed TaALLIUM!,
that automatically trims the adaptation space to be explored at run-
time by the underlying adaptation decision maker. Unlike all prior
techniques, THALLIUM retains only the adaptations with (Pareto-
) optimal potential to provide the best utility. THALLIUM recog-
nizes opportunities for trimming the dynamic adaptation space by
combining the state-of-the-art structural and behavioral modeling

!Thallium (TI, atomic number 81) is a metallic element with very few strong lines in
its emission spectrum; the light produced by burning it is trimmed to only a few bands
when passed through a prism.



techniques [16, 46] for reachability analysis with a possibilistic pro-
cess [27] for bound analysis of the utility achievable from each
system state.

Specifically, using lightweight model checking, THALLIUM ana-
lyzes the structural system model to produce a Markov decision
process capturing the possible adaptations from each system state.
It then employs probabilistic model checking to derive information
from the behavioral system model about the bounds on the util-
ity achievable from each state. THALLIUM then utilizes possibilistic
analysis to resolve values representing the potential of each system
state with respect to each optimization objective, accounting for
both the positive and negative consequences of uncertainty in the
environment. Such automatically derived information is used in
concert with the reachability information to spot the Pareto-frontier
in terms of potential for the valid adaptions from each state. Prun-
ing away non-optimal or strictly dominated adaptations results
in a trimmed MDP that only includes the adaptations that lead to
states with the Pareto-optimal potential, which in turn drastically
reduces the analysis time for each dynamic adaptation decision. To
summarize, this paper contributes:

o Effective adaptation space reduction at run-time. We introduce
a novel approach for effective trimming of the adaptation
space to be analyzed for each run-time adaptation decision,
achieving remarkable speed-ups in dynamic adaptation. The
novelty of our approach comes in using a possibilistic analy-
sis to combine prior approaches in reachability analysis with
an analysis of the best- and worst-case bounds on adapata-
tion utility.

Implementation: We have realized the ideas in THALLIUM,
a framework which relies on the Alloy lightweight model-
checker [34] to generate an MDP representing the allowable
adaptations of the system and on the PRISM-Games exten-
sion of the PRISM Model Checker [17, 37] to perform the
bound analysis. We make THALLIUM publicly available to the
research and education community [60].

Experimental evaluation: We present results from experi-
ments run on diverse subject systems—rigorously replicating
prominent earlier studies—corroborating THALLIUM’s abil-
ity to significantly reduce the effort required for run-time
adaptation without sacrificing overall system utility.

In the remainder of this paper, we describe the motivation and
intuition behind our approach in Section 2, followed by a detailed
explanation of our approach in Section 3. Sections 4 and 5 cover
our experiments and their results, and Section 6 discusses possible
threats to validity. Sections 7 and 8 conclude with an overview of
related work followed by a summary of our contributions.

2 ILLUSTRATIVE EXAMPLE

In this section, we describe the motivation and underlying insight
of our research by way of an illustrative example. We consider a
publish-subscribe messaging system used to monitor audio data
collected from various sources, where each received chunk of data
must be streamed to (and acknowledged by) an arbitrary number of
subscribers. Audio data is collected from each source by a dedicated
publisher service, which streams the data to a relay service for
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Figure 1: Pub-sub system example

distribution to the subscribers. An overview of the relationships of
the various parts of the system is shown in Figure 1.

Each publisher can only harvest from one source, and can only
send data to a single relay. Each relay can only sustain a limited
number of total connections (or load) comprising publishers, sub-
scribers, and “downstream” relays, beyond which the latency of
packet delivery through that relay increases sharply. The goal of
the system is to deliver the streamed audio to each subscriber with
as low a latency as possible, with steep penalties associated with
audio latencies above a certain threshold. The system adapts to
changes in its environment in the following ways:

e PUB+: As needed, the system can provision a new publisher
service to harvest the audio from a new or otherwise un-
harvested source, or assign that source to a running but idle
publisher. There is a cost for each online source that is not
being harvested, and a cost associated with each running
publisher. Provisioning a new publisher takes a non-zero
amount of time before the publisher starts harvesting audio
from a source, adding a tactic latency (Lp) to this adaptation.
RLY+: As needed, the system can provision a new relay
service for use in future connections. Each running relay ser-
vice carries an attended cost for the duration of its operation,
whether it is serving any connections or not. There is also
some tactic latency (L) involved in provisioning a new relay.
Each relay also has a threshold number of active connections,
below which the relay is able to immediately handle data
on that connection, and above which all connections to that
relay begin to suffer additional latency (as the relay begins
to buffer and switch between connections).

PUB-, RLY-: As needed, the system can also deactivate a
publisher or a relay (or both). No tactic latency is assumed

here.

WAIT: For the sake of completeness and to represent the
passage of time in the case of tactics with latency, the system
can elect to do nothing and simply wait for the next time step.

Figure 2 shows an example MDP that represents this system. In
this Markov decision process, the states are labeled using a four-
valued tuple consisting of the number of publishers, the number of
relays, the number of time steps remaining for a PUB+ tactic, and
the number of time steps remaining for a RLY+ tactic, respectively.
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Figure 2: System MDP example (1-2 publishers/relays, la-
tency = 1) considering reachability only. Each adaptation de-
cision must evaluate on the order of 4 adaptations.

The number of publishers and of relays are both constrained to be
either one or two, and Lp=Lr=1.

The adaptation goal in the system is to minimize the total cost of
the system over time, which can be computed for each time step as a
function of the state of the system and the state of the environment
at that time. The system state s at time ¢ can be modeled as a tuple:

e P(s;): the number of active/ready publishers,

e P’(s4): the number of provisioned publishers (including those
still starting up but not yet active/ready),

® R(s;): the number of active relays, and

e R’(s¢): the number of provisioned relays.

The environment state e at time ¢ can be modeled as a pair:

e Q(e;): the number of active sources, and

o S(e;): the number of active subscribers.

At each time step, the overall cost for that step comprises four
objectives that each map the system and environment states at that
time to a real value, where S is the set of all system states and E is
the set of all environment states:

e The audio latency cost, Cr : Q Xx N — R, a function of the
current average load on each active relay (A : S X E — Q)
and the connection threshold of the relays (T € N), where

S(er) + P(st)

R(st)

o The publisher cost, Cp:N >R, which is a function of the
number of provisioned publishers, P’(s;),

e The relay cost, C, : N — R, which is a function of the
number of provisioned relays, R(s;), and

e The unharvested source cost, Cs : N x N — R, which is a
function of the number of active publishers, P(s;), and the
number of active sources, Q(ey).

AMster) = + (R(sz) - 1),

To make the adaptation decision, a dynamic programming so-
lution would need to recursively evaluate the total cost that could
be produced by starting from each relevant system configuration
up to some finite look-ahead horizon, H, and select the adaptations
leading to the state with the optimal result. H becomes yet another
multiplier on the amount of work needed. The (potentially nearly
infinite) values from the environment are additional multipliers,

Figure 3: Trimmed MDP produced using THALLIUM
(T = 1000, S(e;) € {0..50}, Q(e;) € {0..10}). Adding a new relay
is not Pareto-optimal given the bounds of the environment
states, and can be disregarded.

drastically increasing the number of possible adaptations. To extend
our pubsub example, consider such a system where P(s;) € 1,2,
R(s¢) € 1,2,and Ly = Ly = 1. The configuration space allows for
16 unique configurations. If there will be at most 50 subscribers
(S(s¢) € 0..50) and at most 10 active audio sources (Q(s;) € 0..10)
the space for the system and the environment would have 8,976
members. If H = 5—quite small—a dynamic programming solution
must still find optimal adaptations among 44,880 states.

State-of-the-art systems, such as PLA-SDP [45, 46], exploit the
insight that only a subset of states are reachable via adaptation from
any given state at a given time. Some adaptations—such as adding
and removing a publisher-may be mutually exclusive. Others—such
as adding a relay or publisher-may take a non-trivial amount of
time to complete. To utilize the additional reachability information,
PLA-SDP uses lightweight model checking to exhaustively explore
the structural relationships between states and construct a Markov
decision process (MDP) representing the allowable adaptations
within the system. In our example, it would produce an MDP like
the one shown in Figure 2. This reduces the number of adaptations
that need to be considered at each step within the horizon down to
4 or fewer, depending on the current state.

However, PLA-SDP may still recursively consider adaptations
that would not improve the overall outcome. If each relay in the
system can simultaneously manage 1000 connections (i.e., the relay
connection threshold T = 1000), a single relay could easily handle
all 50 subscribers and all 10 audio sources. Adding a second relay
would only increase the cost for the number of active relays, C,,
without reducing the latency cost Cr . Given that the tactic of adding
a new relay would still be reachable, it would still be considered by
PLA-SDP for each step within the horizon, even though there would
be no benefit to selecting such a strategy under any circumstances.

THALLIUM aims to reduce the number of sub-optimal adaptations
considered by employing information about the bounds of the
possible values for each objective. In the example provided above,
we would consider the best-case to be when there are no active
subscribers or sources and the worst-case to be when there are 50
active subscribers and 10 active sources. In either case, adding a new
relay would only increase C, without improving the cost for any
other objective (i.e., it would not be Pareto optimal), so THALLIUM
would remove those adaptations from the consideration set. With
our assumed values, the MDP produced by THALLIUM wWould trim
all states with more than one relay, greatly reducing the adaptation
space. The final MDP for our example is shown in Figure 3.
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Figure 4: THALLIUM Overview

3 APPROACH

This section presents our approach to effectively trim the adaptation
space at run-time. As depicted in Figure 4, THALLIUM comprises four
automated components. (1) The Reachability Analysis component
performs lightweight model checking of a provided system struc-
tural model to construct an intermediate Markov decision process
(MDP) representing the states reachable via adaptation from each
system configuration. (2) The Utility Bounds Analysis component
leverages probabilistic model checking to analyze the behavioral
system specification formalized as a stochastic multiplayer game
(SMG). This step automatically determines new, previously unused,
information about guaranteed bounds of achievable utility in the
best- and worst-case scenarios, which is, in turn, used to define a
fuzzy set [68] of possible utility values for each optimization objec-
tive at each state. (3) The Potential Synthesis component leverages
possibilistic analysis [27, 67] to transform the derived fuzzy sets into
a single value representing the potential of each state to provide the
highest utility for each objective. Finally, (4) the MDP Optimization
component compares the available adaptations at each node in the
derived MDP apropos their potential for each objective and prunes
strictly dominated adaptations from the final MDP.

THALLIUM requires the user to specify two formal models of
the system: a structural model defining the states the system can
assume and the transitions between them; and a behavioral model
specifying the behavior of the system as an SMG, including the
probabilities of each transition for players representing the system
and its operating environment. In this paper, we present examples of
the structural models using Alloy [34], which allows users to model
systems using a lightweight, approachable syntax familiar to many
developers. We present the behavioral models as SMGs defined
using the PRISM [37] model checker, as it has been widely used
in research [1, 13, 22, 23] and has extensive documentation [52].
These widely-used, familiar modeling techniques ease the burden
placed on users to develop the models required for input.

3.1 Reachability Analysis

To construct an intermediate MDP representation of the system,
THALLIUM generates the graph of all “reachable” states in the system
using the method described by Moreno, et al. [46]. Reachability is
defined using the following predicates for system states ¢, ¢’ € C:

o Immediate Transitions R (cy, ¢1) — ¢1 can be reached from cg
using an immediate transition (i.e., applying no tactic or one
with no latency);
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o Delayed Transitions RP(cy, ¢1) — ¢1 can be reached from cg
in one time interval using a delayed transition by applying
a tactic with latency; and

e Transitive Transitions RT (co, cn) — cp can be reached in one
time interval using a delayed transition followed by one or
more immediate transitions, or more formally:

= S PR RD(co, c1) A RI(cl, ) A ... A RI(cn_l, cn)

These predicates can be used to fully define the feasible transition
matrix of the system configuration MDP, which requires evaluating
a large number of possible combinations of tactics/transitions. To
generate such a transition matrix, we use Alloy [34] to formally
specify both the system configuration and the reachability predi-
cates. Alloy is a formal modeling language based on relational logic,
amenable to fully automated yet bounded analysis. It facilitates rep-
resenting abstract system structures and the relationships between
them as a set of constraints. Once a system has been described as a
collection of structural type signatures and constraints, the Alloy
Analyzer can be used to automatically find model instances that
satisfy all the constraints.

Three Alloy specifications are conjoined to define the structural
system configuration model: (1) the system state specification, (2)
the tactics specification that can execute transitions between states,
and (3) a trace specification that maps a configuration state to a
set of other configuration states that can be reached by sequential
applications of allowed tactics. Figure 5 partially represents the
system state specification for our running example (cf. Section 2).
According to lines 19-23, the SystemCfg signature contains two
fields, activeRlys and activePubs, that represent the number of
active relays and publishers, respectively; the prog field represents
the latency of any delayed tactics as a unique progress value for
each tactic with latency.

The next step is to formalize the progress on each particular tac-
tic, which captures whether the tactic will reach a state succeeding
the current state in the model’s ordering. Such formal specification
of each tactic’s progress enables us to automatically compute RP.
Each tactic will need a predicate definition to check whether the
successor thereof can be reached in a single time interval and to
model the effect of the tactic completion. As a concrete example,
Figure 6 represents the AddR1ly_Prog tactic progress specification.
This predicate holds between two states for transitions involving
the AddR1y tactic with latency.

Given a concrete analysis scope that bounds the search for each
top-level signature in the system specification, e.g., SystemCfg and
Prog, THALLIUM uses the Alloy analysis engine to exhaustively
generate all model instances that satisfy the RP predicate. Those
instances are then encoded in a lookup table for use at run-time.

Computing R! is conducted by automatically generating traces
representing the sequential applications of each no-latency tactic
that can be applied to transitions from one state to another. Figure 7
represents the trace signature definition along with its predicates for
the AddR1y no-latency tactic. According to lines 4-6, the TE trace
signature contains two fields—config and start_tactics-that
represent a particular system configuration and the set of tactics
needed to be started to reach that state from the preceding state
in the trace, respectively. Tactic-specific predicates formalize both



1 sig RlyCount {3} // each value in the system state needs a
2 sig PubCount {} // signature to represent its domain

3

4 abstract sig Tactic {} // tactics

5 abstract sig LTactic // tactics w/ latency

6 extends Tactic {}

8 // define all tactics with latency
9 one sig AddRly, AddPub extends LTactic {}
10 // define all instantaneous tactics
11 one sig DropRly, DropPub extends Tactic {}

13 // each tactic with latency requires a progress value
14 abstract sig Prog {}

15 sig AddRly_P extends Prog {3}

16 sig AddPub_P extends Prog {3}

18 // the system configuration itself
19 sig SystemCfg {
20 activeRlys :
21 activePubs

22 prog

23} {

24 // every tactic in LTactic has a progress...
25 prog.univ = LTactic

26 // ...at most one...

27 ~prog.prog in iden

28 // ...and each from its own domain.

29 prog[AddRly] in AddRly_P

30 prog[AddPub] in AddPub_P

one RlyCount,
one PubCount,
LTactic -> Prog

Figure 5: System state specification for the pub-sub exam-
ple (cf. Section 2), including instantaneous tactics (DropRly,
DropPub) and tactics with latency (AddRly, AddPub). Latency is
modeled by adding a progress field to the configuration for
each tactic with latency.

1 open util/ordering[RlyCount] as RlyCount_O
2 open util/ordering[AddRly_P] as AddRly_PO
4 pred AddRly_Progl[c,c' SystemConfigl {

5 (c.prog[AddRly] # AddRly_PO/last) implies {

6 // if the tactic is running, the predicate holds for
7 // successor states that have the next progress value
8 c'.prog[AddRly] = AddRly_PO/next[c.prog[AddRly]]

9 c'.prog[AddRly] = AddRly_PO/last implies {

10 // if that is the last progress value, then

1 // it holds if the relevant state value has been
12 // updated to reflect the tactic's execution
13 c'.activeRlys = RlyCount_0/next[c.activeRlys]
14 } else {

15 // otherwise, the state value stays the same
16 c'.activeRlys = c.activeRlys }

17 } else {

18 // if the tactic is not running, assert that it
19 // stays the same in the successor

20 c'.prog[AddRly] = AddRly_PO/last

21 c'.activeRlys = c.activeRlys }}

22 // the progress predicates can be composed sequentially
23 // to compute the actual delayed reachability predicate
24 pred RD[c,c’ SystemConfigl {

25 some tc : SystemConfig |

26 AddRly_Proglc, tc]l and AddPub_Progltc, c'] }

Figure 6: Tactic progress predicate for the pubsub example.
This predicate holds between two states for transitions in-
volving a tactic (AddR1y) with latency.

whether a particular tactic can be applied to the current system con-
figuration (lines 9-13) and the results of applying an instantaneous
configuration if applicable (lines 15-24). The traces fact (lines
25-32) specifies which transitions from one system configuration
to another are valid by composing the applications of the various

open util/ordering[TE] as trace

1
2

3 // Trace of sequential applications of no-latency tactics
4 sig TE {

5 config : one SystemCfg

6 start_tactics : set T }

7 // Checking whether the tactic can be applied to the

8 // current system configuration

9 pred AddRly_ok[e : TE] {

10 // tactic not running

11 e.config.prog[AddRly]] = AddRly_P0/last

12 I'(AddRly in e.start_tactics)

13 !'(DropRly in e.start_tactics) }

14 // Initiate the progress for the AddRly tactic

15 pred AddRly_start[e, e' TE] {

16 AddRly_ok[e]

17 e.config.activeRlys # RlyCount_0/last

18 e'.start_tactics = e.start_tactics + AddRly

19 let ¢ = e.config, ¢' = e'.config | {

20 // start the progress for this tactic,

21 // and change nothing else

22 c'.prog[AddRly] = AddRly_PO/first

23 equals[c, c']

24 (LTactic - AddRly) <: c.prog in c'.prog }}
25 fact traces {

26 let fst = trace/first | fst.starts = none
27 all e : TE - trace/last | let e' = nextle] | {
28 equals[e, e'] and equals[e', trace/last]
29 } or DropRly_enactle, e']

30 or DropPub_enactle, e']

31 or AddRly_startl[e, e']

32 or AddPub_startl[e, e'] }

Figure 7: Example trace predicates to track pubsub system
evolution. The traces fact defines which transitions from
one configuration to another are valid by composing the ap-
plication of the tactic-specific predicates.

tactic-specific predicates, e.g., DropRly_enact and AddRly_start.
THALLIUM again uses the Alloy analysis engine to obtain all valid
traces (i.e., those satisfying the traces fact) and capture them in a
lookup table for R! to be used at run-time.

3.2 Utility Bounds Analysis

To compute the upper- and lower-bounds on the overall system
utility achievable from a given state, THALLIUM analyzes the input
behavioral model as a stochastic multiplayer game (SMG), in which
players alternate selecting transitions based on the transitions’
assigned probabilities. The SMG is analyzed using a probabilistic
model checker [17] as described by Cémara, et al. [16].

The system configuration and its transitions modeled in the
SMG, are controlled by one player, and the environment’s state
is controlled by another player. The players take turns selecting
from the available transitions in the underlying model until the
time horizon, measured in discrete time steps, has been reached.
Depending on the properties set on the execution of the game, the
players can either cooperate to achieve a shared goal or compete
by pursuing their own individual goals. In the context of PRISM-
Games, these properties can be expressed using the rPATL logic [17],
a branching time temporal logic based ultimately on ATL[2]. It has
been widely used for game-theoretic reasoning systems involving
multiple agents, such as the system and environment in adaptation
decisions.

Our research uses both the coalition operator ((C)) adopted
from ATL and the reward operator ({(C))R” [F*¢], which is an

max="
extension of the generalized reward operator, R [28]. This operator

1526



quantifies the maximum accumulated reward r that can be guaran-
teed by the players in coalition C along any paths leading to a state
satisfying ¢, regardless of the actions taken by any players outside
the coalition. We use PRISM-Games to verify two properties of
the upper-bound for the cumulative reward and the lower-bound for
the cumulative reward for each reachable system configuration. In
the following formulas, sys is the player representing the adaptive
system, env is the player representing the stochastic environment,
and w is a predicate defining a termination state.

(sys))RY o [Few] (1)
((sys, env))R,[r]lax:? [FCw] (2)

Property 1 (the lower-bound for the cumulative reward) represents
the maximum utility U for the overall system, that can be guaranteed
by sys alone along any path leading to a terminal state; this is the
worst-case that can be achieved by an optimal player. Property 2
(the upper-bound for the cumulative reward) represents the best-case
for the overall system utility, wherein sys and env are working
together to maximize the reward over time.

The PRISM-Games commences with a definition of both the
players and the rewards, based on the relevant utility functions,
followed by a series of modules for each set of independent, i.e.,
not mutually-exclusive, tactics and the environment evolution. The
turns are controlled by a specific module for each turn, which
is synchronized with the tactic modules for that turn. The time
intervals and horizon are modeled using a special clock module that
keeps track of the discrete time progression. Rewards are assigned
during a distinct reward turn by a corresponding module.

As a concrete example, Figure 8 shows a tactic module from the
pubsub behavioral model of the pubsub system. Each tactic module
includes all possible outcomes for the MDP. For example, five possi-
ble outcomes for the relay module tactic have been modeled in the
figure, where each one is labeled using the same transition label.
This allows PRISM-Games to resolve each step in the simulation
using whichever of the concurrent tactics would provide the best
strategy for the coalition.

Similarly, each possible evolution of the environment’s state
must be provided as a possible choice of action for PRISM-Games,
which we define in a module dedicated to that evolution. Figure 9
shows an example environment evolution module. It represents the
number of active subscribers in the pubsub system. A similar mod-
ule would be synchronized using do_env to simulate the number
of audio sources in the pubsub environment.

We can then resolve the lower- and upper-bounds for the cu-
mulative reward, as shown in Equation 1 and Equation 2, respec-
tively. We vary the initial system state values (e.g., INIT_RELAYS
and INIT_RPROG) for each tactic in order to determine the worst-
and best-case utility that can be attained over the time horizon,
starting from each admissible system configuration. The admissible
system configurations include configurations where the progress
on a latency-bearing tactic is non-zero, indicating that the system
had started, but not yet finished, executing a tactic.

Running the PRISM-Games models described above for each
example computes a value for the properties defined in Equations 1
and 2. We vary the constants used in the model to simulate starting
from each possible system configuration. This produces a best-

1 module relay
relays
relay_prog :
// skip; do nothing

2 : [MIN_RELAYS..MAX_RELAYS] init INIT_RELAYS;
3
4
5 [do_sys] (turn=SYS_TURN) ->
6
7
8

[MIN_RELAY_PROG..MAX_RELAY_PROG] init INIT_RPROG;

true;
// initiate the latency-bearing tactic to inc. the value
[do_sys] (turn=SYS_TURN) & (relays<MAX_RELAYS)
9 & (relay_prog=MIN_RELAY_PROG) ->
10 (relay_prog '=MAX_RELAY_PROG);
11 // advance the progress for the latency-bearing tactic
12 [do_sys] (turn=SYS_TURN)
13 & (relay_prog>(MIN_RELAY_PROG+1)) ->
14 (relay_prog'=(relay_prog-1));
15 // finish the latency-bearing tactic
16 [do_sys] (turn=SYS_TURN)
17 & (relay_prog=(MIN_RELAY_PROG+1)) ->
18 (relay_prog '=MIN_RELAY_PROG) & (relays'=(relays+1));
19 // enact the no-latency tactic to decrement the value
20 [do_sys] (turn=SYS_TURN) & (relays>MIN_RELAY_VAL)
21 & (relay_prog=MIN_RELAY_PROG ->
22 (relays '=(relays-1));
23 endmodule

Figure 8: Example tactic module from the pubsub behavioral
model. The relay module has both an instantaneous tactic
(to drop a relay) and a tactic with latency (add a relay) and
must keep track of tactic progress.

1 module subscriber

2 subscribers : [MIN_SUBS..MAX_SUBS] init INIT_SUBS;

3 [do_env] (turn=ENV_TURN) -> (subscribers'=MIN_SUBS);

4 [do_env] (turn=ENV_TURN) -> (subscribers'=(MIN_SUBS+1));
5 /7.

6 [do_env] (turn=ENV_TURN) -> (subscribers'=MAX_SUBS);

7 endmodule

Figure 9: Example environment evolution module represent-
ing the number of active subscribers in the pubsub system.

and worst-case value for the cumulative utility achievable from
that configuration. We can also compute the expected value using
PRISM by simulating the expected, probabilistic reward (using the
R operator) with no coalition of players.

Those three values are interpreted to define a triangular distribu-
tion of a fuzzy value, representing the membership of a utility value
in the set of possible utility values for the given reward. The worst-
case value (U?) represents the most-pessimistic result possible; no
worse outcome is achievable so the degree of membership in the
set of possible values is taken to be zero. Similarly, the best-case
value (U?) is assigned a degree of membership of zero, since it is
the most-optimistic value possible. The expected value (E(D)) is
assigned a degree of membership of one; it is the most-likely value,
and therefore should be a member of the set.

3.3 Potential Synthesis

The fuzzy values generated by computing the utility bounds are
then normalized and optimized to produce one value per reward
per state representing the “potential” of that state with respect to
that reward. The key insight in computing the potential state value
per reward, inspired by POISED [27], is to simultaneously optimize
three values from the possibility distribution by selecting a system
configuration. We define the optimization objectives as follows:

(1) Maximize the expected reward (or minimize the expected
cost), ze = E(U),
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Figure 10: Triangular possibility distribution with optimiza-
tion values (zp,ze,zg) indicated. z. is the expected or most-
likely value, z;, the “down-side”, and z, the “up-side”.

(2) Maximize the positive consequences of uncertainty or “up-
side” potential, z, = |[U° — E(U)|, and

(3) Minimize the negative consequences of uncertainty or “down-
side” potential, z, = |UP — E(U)|.

Figure 10 depicts a schematic representation of the quantities
involved in the calculation of the potential state value along with
a triangular possibility distribution. In order to compare two of
these fuzzy sets we must be able to resolve any trade-offs between
the values. For example, for one configuration, the value of U, or
“upside” may be greater than that of an alternate configuration
(which is desirable), but the value of Uy or “downside” may also
be greater (which is not desirable). Also, the ranges for each of the
three objective values may differ, making direct comparison more
difficult. Therefore, we first normalize the values, and then reframe
the overall problem as a single-objective optimization problem.

The values can be normalized by applying a linear normaliza-
tion function, yiz;, to map the domain of each of the three objec-
tives z; (where j € p, e, 0) to a value between 0 and 1. A mapped
value of 0 corresponds to the minimum value of z; and 1 corre-
sponds to the maximum value, with a linear mapping of all inter-
vening values [38]. With the values normalized, we reframe the
multi-objective optimization problem as a single-objective opti-
mization function via optimizing an auxiliary function i, returning
the weighted minimum of the normalized values, as shown in Equa-
tion 3 with w; representing the weight :

argmax i where § < wjy; and E wj = 1forj € {p,e,0} (3)
ceC -
J

By maximizing the auxiliary function we also optimize the original
objectives. THALLIUM stores the maximized value of ¢ for each
system configuration as the potential metric for each configuration
and uses it in the next step for trimming the MDP transitions.

3.4 MDP Optimization

With the potential values determined for each configuration and
each reward, THALLTUM can then compare adjacent transitions to
determine which transitions, if any, can be eliminated from the
generated reachability graph (cf. Section 3.1).

THALLIUM compares each configuration by finding which of the
neighboring transitions will move the system into a state whose po-
tential is Pareto optimal with respect to all of the reward objectives,
rather than using a single weighted composite value representing

1 1

q (1,1,0,0), (1,1,1,0)

s 11100 (1100 (1100 O (1.1,1.0)
g P {
8 X b &
S & 9 p A p 4 .-
o (1,101, (1,1,1,1) A anon O 10100 (11,1,1)
3
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Figure 11: Example potential values for pubsub system,
starting from (1,1,0,0). (1,1,0,1) and (1,1,1,1) are dominated
by the others for every objective, so the transitions to those
states (i.e.,, adding a relay) can be trimmed. (1,1,0,0) and
(1,1,1,0) form the Pareto frontier, as the former is better for
Cp and the latter for Cs while they are equal for Cy and C;.

all of the objectives. More formally, a transition ¢ to a system con-
figuration ¢ will only be retained if there is no other transition ¢’
to a different configuration ¢’ such that the potential of any of the
rewards at ¢’ is greater than the same reward potential at ¢ and the
potential of all other rewards at ¢’ is at least equal to the correspond-
ing potential at c. All other transitions will be trimmed, leaving
only the Pareto-optimal siblings to be considered when selecting
adaptations. An example using the pubsub system from Section 2
is shown in Figure 11, which shows potential values from starting
state (1,1,0,0). The (1,1,0,1) and (1,1,1,1) states are dominated by
the others for every objective, so adaptations to those states (i.e.,
adding a relay) can be trimmed. The (1,1,0,0) and (1,1,1,0) states
form the Pareto frontier, since the former is better for C;, and the
latter for Cs while they are equal for Cp and C,.

The resulting trimmed MDP produced by THALLIUM is then
used at run-time to facilitate efficient adaptation decision making,
without sacrificing the overall system utility.

4 EVALUATION
Our evaluation of THALLIUM addresses these questions:

e RQ1: How well does THALLIUM perform in reducing the
adaptation space both offline and at run-time?

¢ RQ2: Does THALLIUM provide comparable utility for the
system compared to the state-of-the-art approaches?

To answer these questions, we have designed and conducted
experiments using the apparatus we developed based on the pre-
sented approach. THALLIUM uses the Alloy Analyzer [34] version
4.2 to model the system configuration and generate the system
MDP, and the PRISM-Games [17] extension of the PRISM Model
Checker [37] version 4.3 to determine the utilities of the best, worst,
and most-possible cases. We developed THALLIUM as a custom Java
program which generates possibility values and trims sub-optimal
adaptations from the system configuration MDP.

4.1 Experimental Subjects

We used two exemplar systems—each from a separate domain—for
our experiments: (1) SWIM [48], a simulator of self-adaptive web
infrastructure; and (2) DART [33, 43], a system that simulates a
team of unmanned aerial vehicles (UAVs) detecting targets while
avoiding threats during a reconnaissance mission. These systems
are described in more detail below.
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SWIM: Our first experimental subject is SWIM (Simulator of
Web Infrastructure and Management) [43], a self-adaptive system
designed to simulate a load-balanced web application. The system
supports adding or removing servers as well as controlling a dimmer
setting that regulates the level of content returned for each request.
SWIM is implemented on top of OMNeT++, a discrete event simula-
tion environment [63], and simulates only the high-level processing
of web requests as computational work. The system is highly ex-
tensible, providing monitoring information about the current state
of the simulation and effectors to simulate the execution of tactics.

We define SWIM’s system configuration, ¢; € C, during an arbi-
trary discrete time step, i, as the tuple (s;, d;, A;), where s; repre-
sents the number of active servers, d; represents the setting of the
dimmer—which increases or decreases the percentage of optional
content, with a corresponding decrease or increase to the service
rate, respectively—and A; represents the number of time steps re-
maining for an active tactic execution. The environment state, e;,
for the same time step represents the number of web requests that
arrived at the server during that time step. The adaptation goals of
the SWIM system are to (1) minimize the average response time,
(2) minimize the server provisioning costs, and (3) maximize the
percentage of optional content delivered.

DART: As the second experimental subject, we use the DART
self-adaptive system developed by the Carnegie Mellon Software En-
gineering Institute [33, 47]. DART simulates a team of UAVs flying
a reconnaissance mission in formation over a bounded, hostile envi-
ronment containing both reconnaissance targets and enemy threats.
One of the drones is designated as the leader, and autonomously
decides the actions the team should undertake in order to fulfill
the mission goals, such as changing altitude or formation. In our
experimental scenario, the team flies along a planned route of D
equal segments at a constant rate, using a downward-facing sensor
to detect as many targets as possible while avoiding destruction
from any threats. Both the number and location of the targets and
threats are static, but unknown at the beginning of the run. Due to
that uncertainty, the team must self-adapt by changing altitude or
formation to maximize the number of targets safely detected. Flying
at a lower altitude increases the probability of detecting a target, but
also increases the chance of being destroyed by a threat. Similarly,
flying in a loose formation provides better target detection while a
tight formation decreases the probability of destruction.

4.2 Experimental Design

To address our research questions, we compared THALLIUM with
the state-of-the-art technique in proactive, latency-aware self adap-
tation, namely PLA-SDP [46]. We conducted three experiments on
our exemplar systems. For each, we applied both PLA-SDP and
THALLIUM to construct MDPs for the system. The MDP generated
by PLA-SDP for each system was considered a baseline for each
of the three experiments, against which we compared the relevant
outcomes using the trimmed MDPs produced by THALLIUM. All
three experiments were run on a MacBook Pro with a 2.3 GHz Intel
Core i5 processor and 16 GB of RAM.

Experiment 1. For the first experiment, we sought to evaluate THAL-
L1uM’s effectiveness at reducing the size of the static adaptation

Percentage Reduction of
Adaptations

TS E SIEFEFFSS
o N o o o O O o o o o o
Weights
w_,w_,w)
p’ e’ o

Figure 12: Percentage of adaptations trimmed by THALLIUM
from baseline (PLA-SDP) MDP for each evaluated system us-
ing different values for (wp, we, w,) (see Section 3.3)

space represented by the system MDP. Both PLA-SDP and THAL-
L1UM rely heavily upon the modeling choices and utility functions
specified with the structural and behavioral models provided as
input, but THALLIUM also introduces additional configuration-the
weights assigned to the optimization objectives during potential
synthesis (see Section 3.3). As such, we used THALLIUM to generate
multiple MDPs for each system, with different weights for each. We
compared the number of transitions in each of the those resulting
MDPs to the number of transitions in the baseline MDP, reporting
the outcome as a percentage reduction compared to the baseline.

Experiments 2 and 3. For the second and third experiments, we
executed simulators included with the SWIM and DART exemplars,
respectively. We tested (1) the number of adaptations dynamically
evaluated at run-time and (2) the overall system utility achieved
when adapting based on the baseline MDP vs. a trimmed MDP gen-
erated by THALLTUM. We varied the adaptation manager provided
to guide adaptation-either the MDP from PLA-SDP or THALLIUM—
and measured the number of adaptations evaluated during each
run-time adaptation decision and the overall utility measurement
relevant to each exemplar. In addition, we introduced a purely
reactive adaptation manager to serve as a third comparison for
Experiment 2, detailed in Section 4.4.

4.3 Experiment 1: Static MDP Trimming

For our first experiment, we evaluated THALLIUM’s effectiveness in
reducing the size of the static adaptation space compared to PLA-
SDP for each of our exemplar systems. As discussed in Section 3.3,
the potential value generated for each system state and used for
the Pareto optimization is synthesized by normalizing and opti-
mizing the three values from a triangular possibility distribution—
Zp, Ze, Zo—each with a corresponding weight. Since the weighting
needs to be specified by the user, we also sought to quantify the
impact of the weighting on the reduction of the adaptation space.
Therefore, we ran THALLIUM on each exemplar system using each
of sixteen valid weight assignments, ranging from equal weighting
to exclusively considering a single value. Figure 12 summarizes the
results for each system and each weighting, reporting the percent-
age of allowable adaptations trimmed by THALLIUM compared to
the number in the MDP generated by PLA-SDP.
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Figure 13: Comparing THALLIUM and the state-of-the-art
PLA-SDP technique for the SWIM self-adaptive system [48].
THALLIUM (a) reduces the number of adaptations considered
by 51.9%, and (b) achieves higher cumulative utility.

For the SWIM exemplar, PLA-SDP generated a total of 340 possi-
ble system configurations, connected by 1,172 admissible adapta-
tions. The model provided to the Utility Bounds Analysis component
was drawn from a real-world trace of TCP activity published by
ClarkNet [3] which fluctuated between 0 and 130 requests per pe-
riod. THALLIUM trimmed between 640 and 756 adaptations from
consideration, reducing the adaptation space by between 54.6% and
64.5% (as shown in Figure 12). Averaged across all weight settings,
THALLIUM reduced the number of adaptations for SWIM by 63.2%.
For DART, PLA-SDP devised 80 system configuration states with
112 admissible adaptations; THALLIUM reduced that number by an
average of 21.9%, trimming between 16 and 28 adaptations.

Overall, the differing weights in all cases produced only a small
variation in the number of adaptations trimmed from the baseline
MDP, consistently hewing close to the mean. For SWIM, the relative
standard error in the percentage of adaptations trimmed across all
16 weightings was only 1%; for DART, it was 4%. For each weighting
evaluated, THALLIUM consistently trimmed adaptations when com-
pared to PLA-SDP, and all of the tests across all the subject systems
resulted in a reduction of the adaptation space.

4.4 Experiment 2: SWIM Simulation

Our second experiment evaluated THALLIUM’s impact at run-time
through the use of the SWIM network simulator. The experiment
measures two values: (1) the number of adaptations evaluated as
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Figure 14: Comparing THALLIUM and the state-of-the-art
PLA-SDP technique over the DART self-adaptive system.
Thallium (a) reduces the number of adaptations considered
by 34.1%, and (b) produces more successful simulation runs.

part of each adaptation decision and (2) the overall cumulative
utility reported by the simulator. The results for both measurements
are summarized in Figure 13.

For the first number of adaptations evaluated, we found large dif-
ferences in the number of run -time comparisons performed using
each approach during adaptation decisions. Figure 13(a) shows the
number of joint system/environment states to which adaptation
was evaluated. The adaptation manager based on PLA-SDP aver-
aged 99,989 comparisons per adaptation decision. This number is
much higher than the 1,172 adaptations present in the system MDP
generated by PLA-SDP, as the look-ahead done by the proactive
manager and the uncertainty in intertwined environmental states
balloons that number in order to fully evaluate each possible adap-
tation at run-time. THALLIUM cuts that number in half, to 48,108
run-time comparisons (a reduction of 51.9%) for each adaptation
decision.

Figure 13(b) summarizes the overall system utility determined
by the SWIM simulator for PLA-SDP and THALLIUM. PLA-SDP
generated a cumulative utility value of 4,067 over the course of
the trace, while THALLIUM achieved a higher cumulative utility
total, with a final tally of 4,692. The difference in the observed
cumulative utility between PLA-SDP and THALLIUM becomes more
and more pronounced as the execution time increases. Alongside
PLA-SDP and THALLIUM, we also assessed a third, purely reactive
adaptation mechanism [43] that responded to the observed response
time (not shown). The reactive manager frequently violated the 750
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millisecond response time threshold imposed by the simulator’s
utility function, resulting in a negative cumulative utility due to the
accrued penalties.

4.5 Experiment 3: DART Simulation

Our third experiment evaluated THALLIUM's impact at run-time
through the use of the DARTSim simulator [47] of the DART system.
The simulator plotted the course of a drone team over a randomly-
generated, 40-step course containing four targets and six threats,
allowing the drones to adopt two formations and one of five alti-
tudes.

Figure 14 depicts the results of experiments conducted over 985
such courses. According to the experimental results, a remarkable
reduction in the number of adaptations evaluated at run-time is
observed when using THALLIUM. DART with PLA-SDP performed
51,385 comparisons per evaluation (on average) across the 39,400
simulated evaluation periods, whereas THALLIUM compared an
average of only 33,886 joint states (34.1% fewer).

For overall utility, DART determines whether or not each mis-
sion was an overall success, i.e., the team was not destroyed and it
detected at least half of the targets. Figure 14(b) summarizes the suc-
cessful missions by both PLA-SDP and THALLIUM. The success rate
achieved by THALLIUM is noticeably higher than that of PLA-SDP.
Specifically, out of the 985 runs, PLA-SDP resulted in 84 successful
missions total, whereas THALLIUM was successful in 105.

5 DISCUSSION

This section details our interpretation of the results obtained with
respect to each research question and presents some limitations.

5.1 RQ1: Adaptation space reduction

All three experiments contributed some data to address RQ1, which
questioned THALLIUM’s efficacy at reducing the adaptation space
compared to state-of-the-art techniques. Experiment 1 evaluated
the reduction in the number of adaptations represented in the static
model of each exemplar. In all cases (cf. Figure 12), THALLIUM suc-
cessfully reduced the number of adaptations compared to PLA-SDP,
with an average reduction of 63.2% for SWIM and 21.9% for DART.
Furthermore, these results show that THALLIUM consistently re-
duces the adaptation space even as the weightings for the potential
synthesis vary. The relative standard error for each exemplar was
quite low (1% for SWIM and 4% for DART) indicating that THALLIUM
provides a robust improvement, no matter the specific tuning of its
additional input parameters. Also, as shown in Experiments 2 and
3 (cf. Figures 13(a) and 14(a), respectively), THALLIUM significantly
cuts the number of run-time comparisons done during the adap-
tation decision. For SWIM, the number is cut in half (51.9%), from
99,989 to 48,108 comparisons. We observed the same trend with
DART, where THALLIUM compared only 33,886 joint states rather
than 51,385 (34.1% fewer). We interpret these data as supporting
our insight that information about the bounds of possible utility
can be employed to reduce the explosion of the adaptation space.
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5.2 RQ2: Overall utility of adaptation strategy

Our next criterion was the overall utility achieved by each tech-
nique. Experiments 2 and 3 collected data on the utility by simu-
lating the SWIM and DART exemplars, respectively. As shown in
Figures 13(b) and 14(b), THALLIUM produced higher cumulative sys-
tem utility (4,692) for the SWIM simulation compared to PLA-SDP
(4,067), as well as more total successes among the 985 simulated
missions run with the DART simulator (105 for THALLIUM vs. 84
for PLA-SDP). We interpret this data as suggesting that THALLIUM,
despite significantly trimming the search space, provides better
overall utility compared to the state-of-the-art techniques in self-
adaptation.

5.3 Limitations

Extending our work to apply to other systems and situations is
subject to a few limitations. First, THALLIUM is specifically targeted
to reducing the state space in solutions that operate on a Markov de-
cision process constructed to represent the structure of the system
itself, independent of the stochastic environment. Systems where
the two are not independent would require a modification to this
approach, but the underlying insight of trimming a graph-based
problem space should still apply. Second, THALLIUM is most suit-
able in situations where there is a trade-off in the choice between
objectives. If one objective tends to dominate the others, there are
fewer opportunities to trim the search space. Third, as described
in Section 4.3, THALLIUM and similar formal analysis techniques—
such as PLA-SDP—are heavily dependent on models of the system
(both structural and behavioral) and the utility functions provided
as part of the world specified by the user. The models obviously
must represent the system with a high fidelity in order to provide
correct results, but checking the models for correctness is beyond
the scope of this paper. As an example of the impact of the util-
ity function, the SWIM simulation used in our evaluation solved
the underlying decision problem using a weighted sum of three
optimization objectives: a cost based on the number of provisioned
servers, a reward for having a higher dimmer value (delivering more
optional content), and a reward for a low response time. Following
Moreno, et al. [43, 46], those objectives were weighted as 0.4, 0.0,
and 0.6 respectively. In our evaluation, this led to both PLA-SDP
and THALLIUM immediately reducing the dimmer to the lowest
level in order to gain the benefit to the service rate. While that may
seem like a surprising strategy, it makes perfect sense given the
lack of a penalty. While our evaluation shows THALLIUM’s general
applicability in reducing adaptation space, specific outcomes are
very sensitive to manual parameter tuning of this sort, as are other
similar approaches such as PLA-SDP [43].

6 THREATS TO VALIDITY

The internal validity of these results relies on the correctness of
our custom implementation of part of the approach, particularly
the components used to optimize and generate the metric for each
node’s potential (Section 3.3) and that used to compare and trim the
output MDP using Pareto analysis (Section 3.4). Conceptually, our
possibilistic analysis was based directly on prior research [27, 67]
and comparing multiple objectives to determine Pareto optimality
is a well-known problem. Therefore, our correctness would only



be threatened due to the skill of the implementer. To address this
concern, we thoroughly validated all of our tool components to
ensure their correctness. Moreover, by using the same objects as our
baseline systems we can compare the results produced by THALLIUM
with those previously reported to help ensure correctness, at the
potential cost of external validity. While these systems are small
and exhibit only a limited number of available adaptations for each
decision point, we believe that they are representative of real-world
self adaptive systems (e.g., autonomous load balancers). We also
believe that systems with more choices at each step would see even
more benefit from our approach as they have more potential states
to trim. We intend to explore larger systems in future work on this
topic.

7 RELATED WORK

Many studies have utilized structural or architectural models to
drive self-adaptation [20, 21, 30, 36, 61, 65, 66], including proactive
self-adaptation [14, 32, 41, 42, 51, 64]. In particular, THALLIUM is
largely founded on the research done by Moreno, et al. [43-46, 49]
and Camara, et al. [15, 16] on proactive, latency-aware self-adaptive
systems. The PLA-SDP system used as a baseline for our evaluation
was drawn from this body of work [46]. That approach pioneered
the modeling of the reachable states in a self-adaptive system, which
our approach improves upon. Rather than relying only on reacha-
bility, THALLIUM also leverages information about the bounds of
possible utility to evaluate the potential of each state. This bound
information is extracted from the behavioral model by simulating a
stochastic multiplayer game, as described by Camara, et al. [15, 16].
While they use the bound information simply as a verification
technique, THALLIUM includes that additional information about
the possible behavior of the system as a way to improve overall
adaptation decision making.

Esfahani, et al. [27] use the mathematics of fuzzy sets [68] and
possibility theory [67] to evaluate the likelihood each system state
presents to satisfy the requirements of the system. In their work,
they establish the bounds of the fuzzy sets using confidence in-
tervals on the probability distribution for each uncertain element
gathered from observation or stakeholder interviews. Our approach
is novel in determining the bounds instead based on the guarantees
from the behavioral model.

TuALLIUM addresses the adaptation state explosion by analyzing
the bounds, but there are other approaches to reducing the space.
Quin, et al. [54] recently propose an approach that adds a learning
module to the MAPE-K loop to select subsets of adaptations for con-
sideration at run-time. FUSION [26] also uses learning to reduce the
adaptation space, as well as Integer Programming solvers to solve
the underlying optimization problem. Learning-based approaches
could be employed on the reduced adaptation space from THALLIUM,
suggesting future research in combining the approaches.

PLATO [55] and VALKYRIE [29] employ evolutionary algorithms
to solve single objective optimization problems. Pascual, et al. [50]
present an approach to using multi-objective evolutionary algo-
rithms (MOEAs) to optimize configurations for dynamic software
product lines. FEMOSAA [18] also utilizes MOEAs to select config-
urations, but improves upon previous work by giving preference to
knee solutions along the Pareto frontier. Knee solutions may pro-
vide a better balance of objectives for the final solution. Identifying

knee solutions while trimming transitions is a possible avenue for
future research with THALLIUM.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented THALLIUM, a novel technique to reduce
the number of possible system configurations that need be con-
sidered for a self-adaptive system to make adaptation decisions
at run-time. THALLIUM improves upon prior research in proactive,
latency-aware self adaptation by using probabilistic model check-
ing to glean information about the bounds of system behavior. We
find a value representing each state’s potential through possibilistic
analysis, and trim all transitions to states that are strictly dominated
by neighboring states across all objectives.

In the experiments conducted over the self-adaptive systems
drawn from recent studies, THALLIUM was shown to significantly
trim the transitions under consideration. The experimental results
further corroborate that THALLIUM, despite considerably shrinking
the search space, features higher overall utilities for all the systems
under analysis compared to the state-of-the-art techniques.

In future research, we hope to evaluate the approach we have
taken with THALLIUM in different domains and extend the approach
to leverage new and different analysis techniques. We also hope to
explore additional, related techniques to further reduce the decision
space for self-adaptive systems.

Trade-off analysis [5-10, 35, 62] provides a potentially fruitful
avenue for further research related to THALLIUM. These analysis
techniques often utilize formal models to synthesize a set of pos-
sible system architectures or design choices and optimize among
competing objectives to select a set of candidates to present to a
user. While static analysis of the tradeoffs can often be done cheaply,
a full dynamic analysis can be more expensive. The behavioral and
possibilistic analysis done by THALLIUM could possibly be employed
to eliminate some candidate systems a priori before performing the
expensive, dynamic analysis.

Similarly, self-adaptive systems may benefit from techniques
developed for evolutionary trade-off analysis. These may include
static or dynamic analysis of the system that can provide additional
information to the bound analysis done by THALLIUM [4]. Any new
information generated by such techniques will also help to reduce
the run-time burden on the system.

Lastly, our presentation of THALLIUM demonstrated using a
Pareto analysis to trim dominated adaptations from the search
space. Other techniques also exist to perform such a multi-objective
optimization, including game theoretic [56, 59] or stochastic [58]
approaches. Depending on the level of trimming desired from the
system, different heuristic could be applied to further reduce the
number of adaptations considered at runtime. We would like to
further explore these types of analysis which we believe would
complement THALLIUM's use of the bound information.

We have made THALLIUM, as well as the specifications used in
conducting our experiments, publicly available for use by other
researchers [60].

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their valu-
able comments. This work was supported in part by awards CCF-
1755890 and CCF-1618132 from the National Science Foundation.

1532



—

flamt

=

[

REFERENCES

[1] Jonathan Aldrich, David Garlan, Christian Késtner, Claire Le Goues, Anahita

Mohseni-Kabir, Ivan Ruchkin, Selva Samuel, Bradley R. Schmerl, Christo-
pher Steven Timperley, Manuela Veloso, Ian Voysey, Joydeep Biswas, Arjun
Guha, Jarrett Holtz, Javier Camara, and Pooyan Jamshidi. 2019. Model-Based
Adaptation for Robotics Software. IEEE Software 36, 2 (2019), 83-90. https:
//doi.org/10.1109/MS.2018.2885058

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-time
temporal logic. J. ACM 49, 5 (2002), 672-713. https://doi.org/10.1145/585265.
585270

Martin Arlitt and Carey Williamson. 2004. Clark-Net HTTP. http://ita.ee.Ibl.
gov/html/contrib/ClarkNet-HTTP.html

Hamid Bagheri and Sam Malek. 2016. Titanium: efficient analysis of evolving alloy
specifications. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.).
ACM, 27-38. https://doi.org/10.1145/2950290.2950337

Hamid Bagheri, Yuanyuan Song, and Kevin J. Sullivan. 2010. Architectural style
as an independent variable. In ASE 2010, 25th IEEE/ACM International Conference
on Automated Software Engineering, Antwerp, Belgium, September 20-24, 2010,
Charles Pecheur, Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 159-162.
https://doi.org/10.1145/1858996.1859026

Hamid Bagheri and Kevin J. Sullivan. 2010. Monarch: Model-Based Development
of Software Architectures. In Model Driven Engineering Languages and Systems
- 13th International Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010,
Proceedings, Part I (Lecture Notes in Computer Science), Dorina C. Petriu, Nicolas
Rouquette, and @ystein Haugen (Eds.), Vol. 6395. Springer, 376-390. https:
//doi.org/10.1007/978-3-642-16129-2_27

Hamid Bagheri and Kevin J. Sullivan. 2016. Model-driven synthesis of formally
precise, stylized software architectures. Formal Asp. Comput. 28, 3 (2016), 441-467.
https://doi.org/10.1007/s00165-016-0360-8

Hamid Bagheri, Kevin J. Sullivan, and Sang H. Son. 2012. Spacemaker: Practical
Formal Synthesis of Tradeoff Spaces for Object-Relational Mapping. In Proceed-
ings of the 24th International Conference on Software Engineering & Knowledge
Engineering (SEKE’2012), Hotel Sofitel, Redwood City, San Francisco Bay, USA July
1-3, 2012. Knowledge Systems Institute Graduate School, 688-693.

Hamid Bagheri, Chong Tang, and Kevin J. Sullivan. 2014. TradeMaker: automated
dynamic analysis of synthesized tradespaces. In 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014,
Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 106-116.
https://doi.org/10.1145/2568225.2568291

Hamid Bagheri, Chong Tang, and Kevin J. Sullivan. 2017. Automated Synthesis
and Dynamic Analysis of Tradeoff Spaces for Object-Relational Mapping. IEEE
Trans. Software Eng. 43, 2 (2017), 145-163. https://doi.org/10.1109/TSE.2016.
2587646

Richard Bellman. 2010. Dynamic Programming. Princeton University Press,
Princeton, NJ, USA.

Craig Boutilier, Ronen I. Brafman, and Christopher Geib. 1998. Structured Reach-
ability Analysis for Markov Decision Processes. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence (UAI’'98). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 24-32. http://dlacm.org/citation.cfm?
1d=2074094.2074098

Radu Calinescu, Simos Gerasimou, and Alec Banks. 2015. Self-adaptive Software
with Decentralised Control Loops. In Fundamental Approaches to Software Engi-
neering - 18th International Conference, FASE 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings (Lecture Notes in Computer Science), Alexander Egyed and
Ina Schaefer (Eds.), Vol. 9033. Springer, 235-251. https://doi.org/10.1007/978-3-
662-46675-9_16

Radu Calinescu, Lars Grunske, Marta Z. Kwiatkowska, Raffaela Mirandola, and
Giordano Tamburrelli. 2011. Dynamic QoS Management and Optimization in
Service-Based Systems. IEEE Trans. Software Eng. 37, 3 (2011), 387-409. https:
//doi.org/10.1109/TSE.2010.92

[15] Javier Camara, Gabriel A. Moreno, and David Garlan. 2014. Stochastic Game

Analysis and Latency Awareness for Proactive Self-adaptation. In Proceedings
of the 9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2014). ACM, New York, NY, USA, 155-164. https:
//doi.org/10.1145/2593929.2593933

[16] Javier Camara, Gabriel A. Moreno, David Garlan, and Bradley Schmerl. 2016.

Analyzing Latency-Aware Self-Adaptation Using Stochastic and Simulations.
ACM Trans. Auton. Adapt. Syst. 10, 4, Article 23 (Jan. 2016), 28 pages. https:
//doi.org/10.1145/2774222

T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. 2013. Automatic
Verification of Competitive Stochastic Systems. Formal Methods in System Design
43,1 (2013), 61-92.

Tao Chen, Ke Li, Rami Bahsoon, and Xin Yao. 2018. FEMOSAA: Feature-Guided
and Knee-Driven Multi-Objective Optimization for Self-Adaptive Software. ACM

[19

[22

[23

[24

[25

[28

[29

[30

[31

W
D,

[33

[34

[35]

[36

[37]

Trans. Softw. Eng. Methodol. 27, 2, Article 5 (June 2018), 50 pages. https://doi.
org/10.1145/3204459

Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff
Magee (Eds.). 2009. Software Engineering for Self-Adaptive Systems: A Research
Roadmap. Springer Berlin Heidelberg, Berlin, Heidelberg, 1-26. https://doi.org/
10.1007/978-3-642-02161-9_1

Shang-Wen Cheng and David Garlan. 2012. Stitch: A language for architecture-
based self-adaptation. Journal of Systems and Software 85, 12 (2012), 2860-2875.
https://doi.org/10.1016/].jss.2012.02.060

Shang-Wen Cheng, Vahe Poladian, David Garlan, and Bradley R. Schmerl. 2009.
Improving Architecture-Based Self-Adaptation through Resource Prediction. In
Software Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar].
71-88. https://doi.org/10.1007/978-3-642-02161-9_4

Philipp Chrszon, Clemens Dubslaff, Sascha Kliippelholz, and Christel Baier. 2018.
ProFeat: feature-oriented engineering for family-based probabilistic model check-
ing. Formal Asp. Comput. 30, 1 (2018), 45-75. https://doi.org/10.1007/s00165-017-
0432-4

Zack Coker, David Garlan, and Claire Le Goues. 2015. SASS: Self-Adaptation
Using Stochastic Search. In 10th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy,
May 18-19, 2015, Paola Inverardi and Bradley R. Schmerl (Eds.). IEEE Computer
Society, 168-174. https://doi.org/10.1109/SEAMS.2015.16

Rogério de Lemos, Holger Giese, Hausi A. Miiller, and Mary Shaw (Eds.). 2013.
Software Engineering for Self-Adaptive Systems: A Second Research Roadmap.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1-32. https://doi.org/10.1007/978-
3-642-35813-5_1

Ahmed M. Elkhodary, Naecem Esfahani, and Sam Malek. 2010. FUSION: a frame-
work for engineering self-tuning self-adaptive software systems. In Proceedings of
the 18th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2010, Santa Fe, NM, USA, November 7-11, 2010, Gruia-Catalin Roman and
André van der Hoek (Eds.). ACM, 7-16. https://doi.org/10.1145/1882291.1882296
N. Esfahani, A. Elkhodary, and S. Malek. 2013. A Learning-Based Framework for
Engineering Feature-Oriented Self-Adaptive Software Systems. IEEE Transactions
on Software Engineering 39, 11 (Nov 2013), 1467-1493. https://doi.org/10.1109/
TSE.2013.37

Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. 2011. Taming Uncertainty in
Self-adaptive Software. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering (ESEC/FSE
’11). ACM, New York, NY, USA, 234-244. https://doi.org/10.1145/2025113.2025147
V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. 2011. Automated Ver-
ification Techniques for Probabilistic Systems. In Formal Methods for Eternal
Networked Software Systems (SFM’11) (LNCS), M. Bernardo and V. Issarny (Eds.),
Vol. 6659. Springer, 53-113.

Erik M. Fredericks. 2016. Automatically Hardening a Self-adaptive System Against
Uncertainty. In Proceedings of the 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS ’16). ACM, New
York, NY, USA, 16-27. https://doi.org/10.1145/2897053.2897059

David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. 2004. Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure. Computer 37, 10 (Oct. 2004), 46-54. https://doi.org/10.1109/MC.
2004.175

Robert Givan, Thomas Dean, and Matthew Greig. 2003. Equivalence Notions and
Model Minimization in Markov Decision Processes. Artif. Intell. 147, 1-2 (July
2003), 163-223. https://doi.org/10.1016/S0004-3702(02)00376-4

Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. 2008.
A Framework for Proactive Self-adaptation of Service-Based Applications Based
on Online Testing. In Towards a Service-Based Internet, First European Conference,
ServiceWave 2008, Madrid, Spain, December 10-13, 2008. Proceedings. 122-133.
https://doi.org/10.1007/978-3-540-89897-9_11

Scott A. Hissam, Sagar Chaki, and Gabriel A. Moreno. 2015. High Assurance
for Distributed Cyber Physical Systems. In Proceedings of the 2015 European
Conference on Software Architecture Workshops (ECSAW ’15). ACM, New York,
NY, USA, Article 6, 4 pages. https://doi.org/10.1145/2797433.2797439

Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. ACM
Trans. Softw. Eng. Methodol. 11, 2 (April 2002), 256-290. https://doi.org/10.1145/
505145.505149

Jung Soo Kim and David Garlan. 2010. Analyzing architectural styles. Journal of
Systems and Software 83, 7 (2010), 1216-1235. https://doi.org/10.1016/j.jss.2010.
01.049

Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. 2015. A Survey on Engineering Approaches for Self-
adaptive Systems. Pervasive Mob. Comput. 17, PB (Feb. 2015), 184-206. https:
//doi.org/10.1016/j.pmc;j.2014.09.009

M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In Proc. 23rd International Conference on Com-
puter Aided Verification (CAV’11) (LNCS), G. Gopalakrishnan and S. Qadeer (Eds.),
Vol. 6806. Springer, 585-591.



[38] Young-Jou Lai and Ching-Lai Hwang. 1992. A New Approach to Some Possibilistic

Linear Programming Problems. Fuzzy Sets Syst. 49, 2 (July 1992), 121-133. https:
//doi.org/10.1016/0165-0114(92)90318-X

Marin Litoiu, Siobhan Clarke, and Kenji Tei (Eds.). 2019. Proceedings of the
14th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS@ICSE 2019, Montreal, QC, Canada, May 25-31, 2019.
ACM. https://dl.acm.org/citation.cfm?id=3341527

Ming Mao and Marty Humphrey. 2012. A Performance Study on the VM Startup
Time in the Cloud. In Proceedings of the 2012 IEEE Fifth International Conference
on Cloud Computing (CLOUD ’12). IEEE Computer Society, Washington, DC, USA,
423-430. https://doi.org/10.1109/CLOUD.2012.103

Andreas Metzger and Philipp Bohn. 2017. Risk-Based Proactive Process Adapta-
tion. In Service-Oriented Computing - 15th International Conference, ICSOC 2017,
Malaga, Spain, November 13-16, 2017, Proceedings. 351-366. https://doi.org/10.
1007/978-3-319-69035-3_25

Andreas Metzger, Osama Sammodi, and Klaus Pohl. 2013. Accurate Proactive
Adaptation of Service-Oriented Systems. In Assurances for Self-Adaptive Systems
- Principles, Models, and Techniques. 240-265. https://doi.org/10.1007/978-3-642-
36249-1 9

Gabriel A. Moreno. 2017. Adaptation Timing in Self-Adaptive Systems. Ph.D.
Dissertation. School of Comp. Sci., Carnegie Mellon Univ., Pittsburgh, PA.
Gabriel A. Moreno, Javier Camara, David Garlan, and Bradley Schmerl. 2015.
Proactive Self-adaptation Under Uncertainty: A Probabilistic Model Checking
Approach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 1-12. https://doi.org/
10.1145/2786805.2786853

Gabriel A. Moreno, Javier Camara, David Garlan, and Bradley Schmerl. 2016.
Efficient Decision-Making under Uncertainty for Proactive Self-Adaptation. In
2016 IEEE International Conference on Autonomic Computing (ICAC). 147-156.
https://doi.org/10.1109/ICAC.2016.59

Gabriel A. Moreno, Javier Camara, David Garlan, and Bradley Schmerl. 2018. Flex-
ible and Efficient Decision-Making for Proactive Latency-Aware Self-Adaptation.
ACM Trans. Auton. Adapt. Syst. 13, 1, Article 3 (April 2018), 36 pages. https:
//doi.org/10.1145/3149180

Gabriel A. Moreno, Cody Kinneer, Ashutosh Pandey, and David Garlan. 2019.
DARTSim: an exemplar for evaluation and comparison of self-adaptation ap-
proaches for smart cyber-physical systems, See [39], 181-187. https://dlL.acm.
org/citation.cfm?id=3341554

Gabriel A. Moreno, Bradley Schmerl, and David Garlan. 2018. SWIM: An Ex-
emplar for Evaluation and Comparison of Self-adaptation Approaches for Web
Applications. In Proceedings of the 13th International Conference on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS ’18). ACM, New York,
NY, USA, 137-143. https://doi.org/10.1145/3194133.3194163

Gabriel A. Moreno, Ofer Strichman, Sagar Chaki, and Radislav Vaisman. 2017.
Decision-making with Cross-entropy for Self-adaptation. In Proceedings of the
12th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’17). IEEE Press, Piscataway, NJ, USA, 90-101. https:
//doi.org/10.1109/SEAMS.2017.7

Gustavo G. Pascual, Roberto E. Lopez-Herrejon, Monica Pinto, Lidia Fuentes, and
Alexander Egyed. 2015. Applying Multiobjective Evolutionary Algorithms to
Dynamic Software Product Lines for Reconfiguring Mobile Applications. . Syst.
Softw. 103, C (May 2015), 392-411. https://doi.org/10.1016/].jss.2014.12.041

V. Poladian, D. Garlan, M. Shaw, M. Satyanarayanan, B. Schmerl, and J. Sousa.
2007. Leveraging Resource Prediction for Anticipatory Dynamic Configuration.
In First International Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2007). 214-223. https://doi.org/10.1109/SAS0.2007.35

prism doc 2019. PRISM Documentation. https://www.prismmodelchecker.org/
doc/.

Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming (1st ed.). John Wiley & Sons, Inc., New York, NY, USA.

[54]

a
&

[56]

[57

[58]

[59

[61]

[62]

[63

[64]

[66]

[67]

[68]

Federico Quin, Danny Weyns, Thomas Bamelis, Sarpreet Singh Buttar, and Sam
Michiels. 2019. Efficient analysis of large adaptation spaces in self-adaptive
systems using machine learning, See [39], 1-12. https://dl.acm.org/citation.cfm?
id=3341529

Andres J. Ramirez, David B. Knoester, Betty H. C. Cheng, and Philip K. McKinley.
2011. Plato: a genetic algorithm approach to run-time reconfiguration in au-
tonomic computing systems. Cluster Computing 14, 3 (01 Sep 2011), 229-244.
https://doi.org/10.1007/s10586-010-0122-y

Rui Meng, Ye Ye, and Neng-gang Xie. 2010. Multi-objective optimization design
methods based on game theory. In 2010 8th World Congress on Intelligent Control
and Automation. 2220-2227. https://doi.org/10.1109/WCICA.2010.5554307
Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive Software: Landscape
and Research Challenges. ACM Trans. Auton. Adapt. Syst. 4, 2, Article 14 (May
2009), 42 pages. https://doi.org/10.1145/1516533.1516538

S. B. Selcuklu, D. W. Coit, F. Felder, M. Rodgers, and N. Wattanapongsakorn. 2013.
A new methodology for solving multi-objective stochastic optimization problems
with independent objective functions. In 2013 IEEE International Conference on

Industrial Engineering and Engineering Management. 101-105. https://doi.org/10.
1109/IEEM.2013.6962383

Kwee-Bo Sim, Ji-Yoon Kim, and Dong-Wook Lee. 2004. Game Theory Based
Co-evolutionary Algorithm (GCEA) for Solving Multiobjective Optimization
Problems. IEICE Transactions 87-D, 10 (2004), 2419-2425. http://search.ieice.org/
bin/summary.php?id=e87-d_10_2419

Clay Stevens and Hamid Bagheri. 2019. Thallium Website. https://sites.google.
com/view/thallium/.

Jacob Swanson, Myra B. Cohen, Matthew B. Dwyer, Brady J. Garvin, and Justin
Firestone. 2014. Beyond the Rainbow: Self-adaptive Failure Avoidance in Config-
urable Systems. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
377-388. https://doi.org/10.1145/2635868.2635915

Chong Tang, Hamid Bagheri, Sarun Paisarnsrisomsuk, and Kevin J. Sullivan. 2017.
Towards designing effective data persistence through tradeoff space analysis. In
Proceedings of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume, Sebastian
Uchitel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE Computer Society,
353-355. https://doi.org/10.1109/ICSE-C.2017.106

Andras Varga and Rudolf Hornig. 2008. An Overview of the OMNeT++ Simulation
Environment. In Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems & Workshops
(Simutools *08). ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, Article 60,
10 pages. http://dl.acm.org/citation.cfm?id=1416222.1416290

Chen Wang and Jean-Louis Pazat. 2012. A Two-Phase Online Prediction Approach
for Accurate and Timely Adaptation Decision. In 2012 IEEE Ninth International
Conference on Services Computing, Honolulu, HI, USA, June 24-29, 2012. 218-225.
https://doi.org/10.1109/SCC.2012.26

Danny Weyns. 2018. Engineering Self-Adaptive Software Systems - An Organized
Tour. In 2018 IEEE 3rd International Workshops on Foundations and Applications of
Self™ Systems (FAS*W), Trento, Italy, September 3-7, 2018. 1-2. https://doi.org/10.
1109/FAS-W.2018.00012

Danny Weyns, Sam Malek, Rogério de Lemos, and Jesper Andersson (Eds.).
2010. Self-Organizing Architectures, First International Workshop, SOAR 2009,
Cambridge, UK, September 14, 2009, Revised Selected and Invited Papers. Lecture
Notes in Computer Science, Vol. 6090. Springer. https://doi.org/10.1007/978-3-
642-14412-7

L. A. Zadeh. 1999. Fuzzy Sets As a Basis for a Theory of Possibility. Fuzzy Sets
Syst. 100 (April 1999), 9-34. http://dl.acm.org/citation.cfm?id=310817.310820
H.-J. Zimmermann. 1996. Fuzzy Set Theory&Mdash;and Its Applications (3rd Ed.).
Kluwer Academic Publishers, Norwell, MA, USA.



