
Reducing Run-Time Adaptation Space via Analysis of Possible
Utility Bounds

Clay Stevens
University of Nebraska-Lincoln

Department of Computer Science and Engineering

clay.stevens@huskers.unl.edu

Hamid Bagheri
University of Nebraska-Lincoln

Department of Computer Science and Engineering

bagheri@unl.edu

ABSTRACT

Self-adaptive systems often employ dynamic programming or sim-

ilar techniques to select optimal adaptations at run-time. These

techniques suffer from the “curse of dimensionality", increasing the

cost of run-time adaptation decisions. We propose a novel approach

that improves upon the state-of-the-art proactive self-adaptation

techniques to reduce the number of possible adaptations that need

be considered for each run-time adaptation decision. The approach,

realized in a tool called Thallium, employs a combination of auto-

mated formal modeling techniques to (i) analyze a structural model

of the system showing which configurations are reachable from

other configurations and (ii) compute the utility that can be gen-

erated by the optimal adaptation over a bounded horizon in both

the best- and worst-case scenarios. It then constructs triangular

possibility values using those optimized bounds to automatically

compare adjacent adaptations for each configuration, keeping only

the alternatives with the best range of potential results. The ex-

perimental results corroborate Thallium’s ability to significantly

reduce the number of states that need to be considered with each

adaptation decision, freeing up vital resources at run-time.

KEYWORDS

formal methods; self-adaptive systems; run-time adaptation; multi-

objective optimization

ACM Reference Format:

Clay Stevens and Hamid Bagheri. 2020. Reducing Run-Time Adaptation

Space via Analysis of Possible Utility Bounds. In 42nd International Confer-

ence on Software Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of

Korea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3377811.

3380365

1 INTRODUCTION

Self-adaptive systems are becoming more pervasive, particularly

in applications such as autonomous vehicles and medical or IoT

devices [19, 24, 36, 57]. These systems need to quickly adapt to

an uncertain, dynamic environment without external intervention,

which is especially challenging given the nearly infinite situations

such environments may present, the short window of time available

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380365

to adapt, and the potentially limited computing resources available

for making adaptation decisions at run-time.

In an ideal scenario where adaptations are instantaneous and

immediately beneficial, a reactive self-adaptive system can respond

effectively after a change in the environment has been detected.

However, in cases such as provisioning a new cloud-based virtual

machine [40], the adaptations enacted by the system may take

some time, requiring a proactive approach which can account for

the latency of adaptation tactics [51]. While such proactive, latency-

aware (PLA) approaches promise to improve the overall fitness of

the adaptations chosen [15, 45], they need to look ahead and predict

future states of the environment. Recent approaches to PLA self-

adaptive systems model the environment as a stochastic process

independent of the state of the system [45]. Adaptation decisions

can then be made via stochastic planning using the predictions of

future states of the environment as input.

Historically, stochastic planning problems have been described

and modeled using Markov decision processes (MDPs) [53], which

can be solved using dynamic programming to optimize some utility

or cost. If the number of distinct properties or settings available to

the system to adapt is large, this solution can suffer from Bellman’s

curse of dimensionality [11], where the number of states that must

be visited and evaluated grows factorially based on the number of

values that can be assumed by the variables representing the system

state. Prior decision theoretic planning research has explored ways

to curtail this state explosion, such as minimization of MDPs [31, 46],

reachability analysis [12], and machine learning [25, 54].

However, despite significant progress, the adaptation space—the

possible state transitions that must be pondered for each run-time

adaptation decision—is still enormous, even considering only allow-

able adaptations. This, in turn, renders dynamic run-time adaptation

for real-world systems expensive in practice. This is especially prob-

lematic in volatile environments like distributed pervasive systems,

where high volumes of routinely volatile software components

often exist and coordinate in tandem. There is, thus, a need for

methods to facilitate efficient analysis of huge adaptation spaces.

In this paper, we present a novel approach, dubbed Thallium1,

that automatically trims the adaptation space to be explored at run-

time by the underlying adaptation decision maker. Unlike all prior

techniques, Thallium retains only the adaptations with (Pareto-

) optimal potential to provide the best utility. Thallium recog-

nizes opportunities for trimming the dynamic adaptation space by

combining the state-of-the-art structural and behavioral modeling

1Thallium (Tl, atomic number 81) is a metallic element with very few strong lines in
its emission spectrum; the light produced by burning it is trimmed to only a few bands
when passed through a prism.

1522

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

techniques [16, 46] for reachability analysis with a possibilistic pro-

cess [27] for bound analysis of the utility achievable from each

system state.

Specifically, using lightweight model checking, Thallium ana-

lyzes the structural system model to produce a Markov decision

process capturing the possible adaptations from each system state.

It then employs probabilistic model checking to derive information

from the behavioral system model about the bounds on the util-

ity achievable from each state. Thallium then utilizes possibilistic

analysis to resolve values representing the potential of each system

state with respect to each optimization objective, accounting for

both the positive and negative consequences of uncertainty in the

environment. Such automatically derived information is used in

concert with the reachability information to spot the Pareto-frontier

in terms of potential for the valid adaptions from each state. Prun-

ing away non-optimal or strictly dominated adaptations results

in a trimmed MDP that only includes the adaptations that lead to

states with the Pareto-optimal potential, which in turn drastically

reduces the analysis time for each dynamic adaptation decision. To

summarize, this paper contributes:

• Effective adaptation space reduction at run-time.We introduce

a novel approach for effective trimming of the adaptation

space to be analyzed for each run-time adaptation decision,

achieving remarkable speed-ups in dynamic adaptation. The

novelty of our approach comes in using a possibilistic analy-

sis to combine prior approaches in reachability analysis with

an analysis of the best- and worst-case bounds on adapata-

tion utility.

• Implementation: We have realized the ideas in Thallium,

a framework which relies on the Alloy lightweight model-

checker [34] to generate an MDP representing the allowable

adaptations of the system and on the PRISM-Games exten-

sion of the PRISM Model Checker [17, 37] to perform the

bound analysis. We make Thallium publicly available to the

research and education community [60].

• Experimental evaluation: We present results from experi-

ments run on diverse subject systems—rigorously replicating

prominent earlier studies—corroborating Thallium’s abil-

ity to significantly reduce the effort required for run-time

adaptation without sacrificing overall system utility.

In the remainder of this paper, we describe the motivation and

intuition behind our approach in Section 2, followed by a detailed

explanation of our approach in Section 3. Sections 4 and 5 cover

our experiments and their results, and Section 6 discusses possible

threats to validity. Sections 7 and 8 conclude with an overview of

related work followed by a summary of our contributions.

2 ILLUSTRATIVE EXAMPLE

In this section, we describe the motivation and underlying insight

of our research by way of an illustrative example. We consider a

publish-subscribe messaging system used to monitor audio data

collected from various sources, where each received chunk of data

must be streamed to (and acknowledged by) an arbitrary number of

subscribers. Audio data is collected from each source by a dedicated

publisher service, which streams the data to a relay service for

Source Source

Publisher

Subscriber

Relay

Source

Publisher Publisher

Subscriber Subscriber

Relay

Figure 1: Pub-sub system example

distribution to the subscribers. An overview of the relationships of

the various parts of the system is shown in Figure 1.

Each publisher can only harvest from one source, and can only

send data to a single relay. Each relay can only sustain a limited

number of total connections (or load) comprising publishers, sub-

scribers, and “downstream” relays, beyond which the latency of

packet delivery through that relay increases sharply. The goal of

the system is to deliver the streamed audio to each subscriber with

as low a latency as possible, with steep penalties associated with

audio latencies above a certain threshold. The system adapts to

changes in its environment in the following ways:

• PUB+: As needed, the system can provision a new publisher

service to harvest the audio from a new or otherwise un-

harvested source, or assign that source to a running but idle

publisher. There is a cost for each online source that is not

being harvested, and a cost associated with each running

publisher. Provisioning a new publisher takes a non-zero

amount of time before the publisher starts harvesting audio

from a source, adding a tactic latency (Lp) to this adaptation.
• RLY+: As needed, the system can provision a new relay

service for use in future connections. Each running relay ser-

vice carries an attended cost for the duration of its operation,

whether it is serving any connections or not. There is also

some tactic latency (Lr) involved in provisioning a new relay.

Each relay also has a threshold number of active connections,

below which the relay is able to immediately handle data

on that connection, and above which all connections to that

relay begin to suffer additional latency (as the relay begins

to buffer and switch between connections).

• PUB-, RLY-: As needed, the system can also deactivate a

publisher or a relay (or both). No tactic latency is assumed

here.

• WAIT: For the sake of completeness and to represent the

passage of time in the case of tactics with latency, the system

can elect to do nothing and simply wait for the next time step.

Figure 2 shows an example MDP that represents this system. In

this Markov decision process, the states are labeled using a four-

valued tuple consisting of the number of publishers, the number of

relays, the number of time steps remaining for a PUB+ tactic, and

the number of time steps remaining for a RLY+ tactic, respectively.

1523

Figure 2: System MDP example (1-2 publishers/relays, la-

tency = 1) considering reachability only. Each adaptation de-

cision must evaluate on the order of 4 adaptations.

The number of publishers and of relays are both constrained to be

either one or two, and Lp = Lr = 1.

The adaptation goal in the system is tominimize the total cost of

the system over time, which can be computed for each time step as a

function of the state of the system and the state of the environment

at that time. The system state s at time t can be modeled as a tuple:

• P(st): the number of active/ready publishers,

• P ′(st): the number of provisioned publishers (including those

still starting up but not yet active/ready),

• R(st): the number of active relays, and

• R′(st): the number of provisioned relays.

The environment state e at time t can be modeled as a pair:

• Q(et): the number of active sources, and

• S(et): the number of active subscribers.

At each time step, the overall cost for that step comprises four

objectives that each map the system and environment states at that

time to a real value, where S is the set of all system states and E is

the set of all environment states:

• The audio latency cost, CL : Q × N → R, a function of the

current average load on each active relay (λ : S × E → Q)

and the connection threshold of the relays (T ∈ N), where

λ(st , et) =
S(et) + P(st)

R(st)
+ (R(st) − 1),

• The publisher cost, Cp : N→ R, which is a function of the

number of provisioned publishers, P ′(st),
• The relay cost, Cr : N → R, which is a function of the

number of provisioned relays, R′(st), and
• The unharvested source cost, Cs : N × N → R, which is a

function of the number of active publishers, P(st), and the

number of active sources, Q(et).

To make the adaptation decision, a dynamic programming so-

lution would need to recursively evaluate the total cost that could

be produced by starting from each relevant system configuration

up to some finite look-ahead horizon, H , and select the adaptations

leading to the state with the optimal result. H becomes yet another

multiplier on the amount of work needed. The (potentially nearly

infinite) values from the environment are additional multipliers,

Figure 3: Trimmed MDP produced using Thallium

(T = 1000, S(et) ∈ {0..50},Q(et) ∈ {0..10}). Adding a new relay

is not Pareto-optimal given the bounds of the environment

states, and can be disregarded.

drastically increasing the number of possible adaptations. To extend

our pubsub example, consider such a system where P(st) ∈ 1, 2,

R(st) ∈ 1, 2, and Lp = Lr = 1. The configuration space allows for

16 unique configurations. If there will be at most 50 subscribers

(S(st) ∈ 0..50) and at most 10 active audio sources (Q(st) ∈ 0..10)

the space for the system and the environment would have 8,976

members. If H = 5—quite small—a dynamic programming solution

must still find optimal adaptations among 44,880 states.

State-of-the-art systems, such as PLA-SDP [45, 46], exploit the

insight that only a subset of states are reachable via adaptation from

any given state at a given time. Some adaptations–such as adding

and removing a publisher–may be mutually exclusive. Others–such

as adding a relay or publisher–may take a non-trivial amount of

time to complete. To utilize the additional reachability information,

PLA-SDP uses lightweight model checking to exhaustively explore

the structural relationships between states and construct a Markov

decision process (MDP) representing the allowable adaptations

within the system. In our example, it would produce an MDP like

the one shown in Figure 2. This reduces the number of adaptations

that need to be considered at each step within the horizon down to

4 or fewer, depending on the current state.

However, PLA-SDP may still recursively consider adaptations

that would not improve the overall outcome. If each relay in the

system can simultaneously manage 1000 connections (i.e., the relay

connection threshold T = 1000), a single relay could easily handle

all 50 subscribers and all 10 audio sources. Adding a second relay

would only increase the cost for the number of active relays, Cr ,
without reducing the latency costCL . Given that the tactic of adding
a new relay would still be reachable, it would still be considered by

PLA-SDP for each step within the horizon, even though there would

be no benefit to selecting such a strategy under any circumstances.

Thallium aims to reduce the number of sub-optimal adaptations

considered by employing information about the bounds of the

possible values for each objective. In the example provided above,

we would consider the best-case to be when there are no active

subscribers or sources and the worst-case to be when there are 50

active subscribers and 10 active sources. In either case, adding a new

relay would only increase Cr without improving the cost for any

other objective (i.e., it would not be Pareto optimal), so Thallium

would remove those adaptations from the consideration set. With

our assumed values, the MDP produced by Thallium would trim

all states with more than one relay, greatly reducing the adaptation

space. The final MDP for our example is shown in Figure 3.

1524

Figure 4: Thallium Overview

3 APPROACH

This section presents our approach to effectively trim the adaptation

space at run-time. As depicted in Figure 4, Thallium comprises four

automated components. (1) The Reachability Analysis component

performs lightweight model checking of a provided system struc-

tural model to construct an intermediate Markov decision process

(MDP) representing the states reachable via adaptation from each

system configuration. (2) The Utility Bounds Analysis component

leverages probabilistic model checking to analyze the behavioral

system specification formalized as a stochastic multiplayer game

(SMG). This step automatically determines new, previously unused,

information about guaranteed bounds of achievable utility in the

best- and worst-case scenarios, which is, in turn, used to define a

fuzzy set [68] of possible utility values for each optimization objec-

tive at each state. (3) The Potential Synthesis component leverages

possibilistic analysis [27, 67] to transform the derived fuzzy sets into

a single value representing the potential of each state to provide the

highest utility for each objective. Finally, (4) the MDP Optimization

component compares the available adaptations at each node in the

derived MDP apropos their potential for each objective and prunes

strictly dominated adaptations from the final MDP.

Thallium requires the user to specify two formal models of

the system: a structural model defining the states the system can

assume and the transitions between them; and a behavioral model

specifying the behavior of the system as an SMG, including the

probabilities of each transition for players representing the system

and its operating environment. In this paper, we present examples of

the structural models using Alloy [34], which allows users to model

systems using a lightweight, approachable syntax familiar to many

developers. We present the behavioral models as SMGs defined

using the PRISM [37] model checker, as it has been widely used

in research [1, 13, 22, 23] and has extensive documentation [52].

These widely-used, familiar modeling techniques ease the burden

placed on users to develop the models required for input.

3.1 Reachability Analysis

To construct an intermediate MDP representation of the system,

Thallium generates the graph of all “reachable” states in the system

using the method described by Moreno, et al. [46]. Reachability is

defined using the following predicates for system states c, c ′ ∈ C:

• Immediate Transitions RI (c0, c1) — c1 can be reached from c0
using an immediate transition (i.e., applying no tactic or one

with no latency);

• Delayed Transitions RD (c0, c1) — c1 can be reached from c0
in one time interval using a delayed transition by applying

a tactic with latency; and

• Transitive Transitions RT (c0, cn) — cn can be reached in one

time interval using a delayed transition followed by one or

more immediate transitions, or more formally:

∃ c1, ..., cn−1 : R
D (c0, c1) ∧ RI (c1, c2) ∧ ... ∧ RI (cn−1, cn)

These predicates can be used to fully define the feasible transition

matrix of the system configuration MDP, which requires evaluating

a large number of possible combinations of tactics/transitions. To

generate such a transition matrix, we use Alloy [34] to formally

specify both the system configuration and the reachability predi-

cates. Alloy is a formal modeling language based on relational logic,

amenable to fully automated yet bounded analysis. It facilitates rep-

resenting abstract system structures and the relationships between

them as a set of constraints. Once a system has been described as a

collection of structural type signatures and constraints, the Alloy

Analyzer can be used to automatically find model instances that

satisfy all the constraints.

Three Alloy specifications are conjoined to define the structural

system configuration model: (1) the system state specification, (2)

the tactics specification that can execute transitions between states,

and (3) a trace specification that maps a configuration state to a

set of other configuration states that can be reached by sequential

applications of allowed tactics. Figure 5 partially represents the

system state specification for our running example (cf. Section 2).

According to lines 19–23, the SystemCfg signature contains two

fields, activeRlys and activePubs, that represent the number of

active relays and publishers, respectively; the prog field represents

the latency of any delayed tactics as a unique progress value for

each tactic with latency.

The next step is to formalize the progress on each particular tac-

tic, which captures whether the tactic will reach a state succeeding

the current state in the model’s ordering. Such formal specification

of each tactic’s progress enables us to automatically compute RD .
Each tactic will need a predicate definition to check whether the

successor thereof can be reached in a single time interval and to

model the effect of the tactic completion. As a concrete example,

Figure 6 represents the AddRly_Prog tactic progress specification.

This predicate holds between two states for transitions involving

the AddRly tactic with latency.

Given a concrete analysis scope that bounds the search for each

top-level signature in the system specification, e.g., SystemCfg and

Prog, Thallium uses the Alloy analysis engine to exhaustively

generate all model instances that satisfy the RD predicate. Those

instances are then encoded in a lookup table for use at run-time.

Computing RI is conducted by automatically generating traces

representing the sequential applications of each no-latency tactic

that can be applied to transitions from one state to another. Figure 7

represents the trace signature definition alongwith its predicates for

the AddRly no-latency tactic. According to lines 4–6, the TE trace

signature contains two fields–config and start_tactics–that

represent a particular system configuration and the set of tactics

needed to be started to reach that state from the preceding state

in the trace, respectively. Tactic-specific predicates formalize both

1525

1 sig RlyCount {} // each value in the system state needs a
2 sig PubCount {} // signature to represent its domain
3

4 abstract sig Tactic {} // tactics
5 abstract sig LTactic // tactics w/ latency
6 extends Tactic {}
7

8 // define all tactics with latency
9 one sig AddRly , AddPub extends LTactic {}
10 // define all instantaneous tactics
11 one sig DropRly , DropPub extends Tactic {}
12

13 // each tactic with latency requires a progress value
14 abstract sig Prog {}
15 sig AddRly_P extends Prog {}
16 sig AddPub_P extends Prog {}
17

18 // the system configuration itself
19 sig SystemCfg {
20 activeRlys : one RlyCount ,
21 activePubs : one PubCount ,
22 prog : LTactic -> Prog
23 } {
24 // every tactic in LTactic has a progress ...
25 prog.univ = LTactic
26 // ...at most one...
27 ~prog.prog in iden
28 // ...and each from its own domain.
29 prog[AddRly] in AddRly_P
30 prog[AddPub] in AddPub_P
31 }

Figure 5: System state specification for the pub-sub exam-

ple (cf. Section 2), including instantaneous tactics (DropRly,
DropPub) and tactics with latency (AddRly, AddPub). Latency is

modeled by adding a progress field to the configuration for

each tactic with latency.

1 open util/ordering[RlyCount] as RlyCount_O
2 open util/ordering[AddRly_P] as AddRly_PO
3

4 pred AddRly_Prog[c,c' : SystemConfig] {
5 (c.prog[AddRly] � AddRly_PO/last) implies {
6 // if the tactic is running , the predicate holds for
7 // successor states that have the next progress value
8 c'.prog[AddRly] = AddRly_PO/next[c.prog[AddRly]]
9 c'.prog[AddRly] = AddRly_PO/last implies {
10 // if that is the last progress value , then
11 // it holds if the relevant state value has been
12 // updated to reflect the tactic 's execution
13 c'. activeRlys = RlyCount_O/next[c.activeRlys]
14 } else {
15 // otherwise , the state value stays the same
16 c'. activeRlys = c.activeRlys }
17 } else {
18 // if the tactic is not running , assert that it
19 // stays the same in the successor
20 c'.prog[AddRly] = AddRly_PO/last
21 c'. activeRlys = c.activeRlys }}
22 // the progress predicates can be composed sequentially
23 // to compute the actual delayed reachability predicate
24 pred RD[c,c' : SystemConfig] {
25 some tc : SystemConfig |
26 AddRly_Prog[c, tc] and AddPub_Prog[tc, c'] }

Figure 6: Tactic progress predicate for the pubsub example.

This predicate holds between two states for transitions in-

volving a tactic (AddRly) with latency.

whether a particular tactic can be applied to the current system con-

figuration (lines 9–13) and the results of applying an instantaneous

configuration if applicable (lines 15–24). The traces fact (lines

25–32) specifies which transitions from one system configuration

to another are valid by composing the applications of the various

1 open util/ordering[TE] as trace
2

3 // Trace of sequential applications of no -latency tactics
4 sig TE {
5 config : one SystemCfg
6 start_tactics : set T }
7 // Checking whether the tactic can be applied to the
8 // current system configuration
9 pred AddRly_ok[e : TE] {
10 // tactic not running
11 e.config.prog[AddRly]] = AddRly_PO/last
12 !(AddRly in e.start_tactics)
13 !(DropRly in e.start_tactics) }
14 // Initiate the progress for the AddRly tactic
15 pred AddRly_start[e, e' : TE] {
16 AddRly_ok[e]
17 e.config.activeRlys � RlyCount_O/last
18 e'. start_tactics = e.start_tactics + AddRly
19 let c = e.config , c' = e'. config | {
20 // start the progress for this tactic ,
21 // and change nothing else
22 c'.prog[AddRly] = AddRly_PO/first
23 equals[c, c']
24 (LTactic - AddRly) < : c.prog in c'.prog }}
25 fact traces {
26 let fst = trace/first | fst.starts = none
27 all e : TE - trace/last | let e' = next[e] | {
28 equals[e, e'] and equals[e', trace/last]
29 } or DropRly_enact[e, e']
30 or DropPub_enact[e, e']
31 or AddRly_start[e, e']
32 or AddPub_start[e, e'] }

Figure 7: Example trace predicates to track pubsub system

evolution. The traces fact defines which transitions from

one configuration to another are valid by composing the ap-

plication of the tactic-specific predicates.

tactic-specific predicates, e.g., DropRly_enact and AddRly_start.

Thallium again uses the Alloy analysis engine to obtain all valid

traces (i.e., those satisfying the traces fact) and capture them in a

lookup table for RI to be used at run-time.

3.2 Utility Bounds Analysis

To compute the upper- and lower-bounds on the overall system

utility achievable from a given state, Thallium analyzes the input

behavioral model as a stochastic multiplayer game (SMG), in which

players alternate selecting transitions based on the transitions’

assigned probabilities. The SMG is analyzed using a probabilistic

model checker [17] as described by Cámara, et al. [16].

The system configuration and its transitions modeled in the

SMG, are controlled by one player, and the environment’s state

is controlled by another player. The players take turns selecting

from the available transitions in the underlying model until the

time horizon, measured in discrete time steps, has been reached.

Depending on the properties set on the execution of the game, the

players can either cooperate to achieve a shared goal or compete

by pursuing their own individual goals. In the context of PRISM-

Games, these properties can be expressed using the rPATL logic [17],

a branching time temporal logic based ultimately on ATL[2]. It has

been widely used for game-theoretic reasoning systems involving

multiple agents, such as the system and environment in adaptation

decisions.

Our research uses both the coalition operator 〈〈C〉〉 adopted
from ATL and the reward operator 〈〈C〉〉Rr

max=?
[F∗ϕ], which is an

extension of the generalized reward operator, R [28]. This operator

1526

quantifies the maximum accumulated reward r that can be guaran-

teed by the players in coalitionC along any paths leading to a state

satisfying ϕ, regardless of the actions taken by any players outside

the coalition. We use PRISM-Games to verify two properties of

the upper-bound for the cumulative reward and the lower-bound for

the cumulative reward for each reachable system configuration. In

the following formulas, sys is the player representing the adaptive

system, env is the player representing the stochastic environment,

and ω is a predicate defining a termination state.

〈〈sys〉〉RUmax=?[F
cω] (1)

〈〈sys, env〉〉RUmax=?[F
cω] (2)

Property 1 (the lower-bound for the cumulative reward) represents

themaximumutilityU for the overall system, that can be guaranteed

by sys alone along any path leading to a terminal state; this is the

worst-case that can be achieved by an optimal player. Property 2

(the upper-bound for the cumulative reward) represents the best-case

for the overall system utility, wherein sys and env are working

together to maximize the reward over time.

The PRISM-Games commences with a definition of both the

players and the rewards, based on the relevant utility functions,

followed by a series of modules for each set of independent, i.e.,

not mutually-exclusive, tactics and the environment evolution. The

turns are controlled by a specific module for each turn, which

is synchronized with the tactic modules for that turn. The time

intervals and horizon are modeled using a special clock module that

keeps track of the discrete time progression. Rewards are assigned

during a distinct reward turn by a corresponding module.

As a concrete example, Figure 8 shows a tactic module from the

pubsub behavioral model of the pubsub system. Each tactic module

includes all possible outcomes for the MDP. For example, five possi-

ble outcomes for the relay module tactic have been modeled in the

figure, where each one is labeled using the same transition label.

This allows PRISM-Games to resolve each step in the simulation

using whichever of the concurrent tactics would provide the best

strategy for the coalition.

Similarly, each possible evolution of the environment’s state

must be provided as a possible choice of action for PRISM-Games,

which we define in a module dedicated to that evolution. Figure 9

shows an example environment evolution module. It represents the

number of active subscribers in the pubsub system. A similar mod-

ule would be synchronized using do_env to simulate the number

of audio sources in the pubsub environment.

We can then resolve the lower- and upper-bounds for the cu-

mulative reward, as shown in Equation 1 and Equation 2, respec-

tively. We vary the initial system state values (e.g., INIT_RELAYS

and INIT_RPROG) for each tactic in order to determine the worst-

and best-case utility that can be attained over the time horizon,

starting from each admissible system configuration. The admissible

system configurations include configurations where the progress

on a latency-bearing tactic is non-zero, indicating that the system

had started, but not yet finished, executing a tactic.

Running the PRISM-Games models described above for each

example computes a value for the properties defined in Equations 1

and 2. We vary the constants used in the model to simulate starting

from each possible system configuration. This produces a best-

1 module relay
2 relays : [MIN_RELAYS .. MAX_RELAYS] init INIT_RELAYS;
3 relay_prog : [MIN_RELAY_PROG .. MAX_RELAY_PROG] init INIT_RPROG;
4 // skip; do nothing
5 [do_sys] (turn=SYS_TURN) ->
6 true;
7 // initiate the latency -bearing tactic to inc. the value
8 [do_sys] (turn=SYS_TURN) & (relays <MAX_RELAYS)
9 & (relay_prog=MIN_RELAY_PROG) ->
10 (relay_prog '= MAX_RELAY_PROG);
11 // advance the progress for the latency -bearing tactic
12 [do_sys] (turn=SYS_TURN)
13 & (relay_prog >(MIN_RELAY_PROG +1)) ->
14 (relay_prog '=(relay_prog -1));
15 // finish the latency -bearing tactic
16 [do_sys] (turn=SYS_TURN)
17 & (relay_prog =(MIN_RELAY_PROG +1)) ->
18 (relay_prog '= MIN_RELAY_PROG) & (relays '=(relays +1));
19 // enact the no -latency tactic to decrement the value
20 [do_sys] (turn=SYS_TURN) & (relays >MIN_RELAY_VAL)
21 & (relay_prog=MIN_RELAY_PROG ->
22 (relays '=(relays -1));
23 endmodule

Figure 8: Example tacticmodule from the pubsub behavioral

model. The relay module has both an instantaneous tactic

(to drop a relay) and a tactic with latency (add a relay) and

must keep track of tactic progress.

1 module subscriber
2 subscribers : [MIN_SUBS .. MAX_SUBS] init INIT_SUBS;
3 [do_env] (turn=ENV_TURN) -> (subscribers '= MIN_SUBS);
4 [do_env] (turn=ENV_TURN) -> (subscribers '=(MIN_SUBS +1));
5 // ...
6 [do_env] (turn=ENV_TURN) -> (subscribers '= MAX_SUBS);
7 endmodule

Figure 9: Example environment evolutionmodule represent-

ing the number of active subscribers in the pubsub system.

and worst-case value for the cumulative utility achievable from

that configuration. We can also compute the expected value using

PRISM by simulating the expected, probabilistic reward (using the

R operator) with no coalition of players.

Those three values are interpreted to define a triangular distribu-

tion of a fuzzy value, representing the membership of a utility value

in the set of possible utility values for the given reward. The worst-

case value (U p) represents the most-pessimistic result possible; no

worse outcome is achievable so the degree of membership in the

set of possible values is taken to be zero. Similarly, the best-case

value (U o) is assigned a degree of membership of zero, since it is

the most-optimistic value possible. The expected value (E(U)) is

assigned a degree of membership of one; it is the most-likely value,

and therefore should be a member of the set.

3.3 Potential Synthesis

The fuzzy values generated by computing the utility bounds are

then normalized and optimized to produce one value per reward

per state representing the “potential” of that state with respect to

that reward. The key insight in computing the potential state value

per reward, inspired by POISED [27], is to simultaneously optimize

three values from the possibility distribution by selecting a system

configuration. We define the optimization objectives as follows:

(1) Maximize the expected reward (or minimize the expected

cost), ze ≡ E(U),

1527

Figure 10: Triangular possibility distribution with optimiza-

tion values (zp ,ze ,zo) indicated. ze is the expected or most-

likely value, zp the “down-side”, and zo the “up-side”.

(2) Maximize the positive consequences of uncertainty or “up-

side” potential, zo ≡ |U o − E(U)|, and

(3) Minimize the negative consequences of uncertainty or “down-

side” potential, zp ≡ |U p − E(U)|.

Figure 10 depicts a schematic representation of the quantities

involved in the calculation of the potential state value along with

a triangular possibility distribution. In order to compare two of

these fuzzy sets we must be able to resolve any trade-offs between

the values. For example, for one configuration, the value ofUo or

“upside” may be greater than that of an alternate configuration

(which is desirable), but the value of Up or “downside” may also

be greater (which is not desirable). Also, the ranges for each of the

three objective values may differ, making direct comparison more

difficult. Therefore, we first normalize the values, and then reframe

the overall problem as a single-objective optimization problem.

The values can be normalized by applying a linear normaliza-

tion function, μzj , to map the domain of each of the three objec-

tives zj (where j ∈ p, e,o) to a value between 0 and 1. A mapped

value of 0 corresponds to the minimum value of zj and 1 corre-

sponds to the maximum value, with a linear mapping of all inter-

vening values [38]. With the values normalized, we reframe the

multi-objective optimization problem as a single-objective opti-

mization function via optimizing an auxiliary functionψ , returning
the weighted minimum of the normalized values, as shown in Equa-

tion 3 withw j representing the weight :

argmax
c ∈C

ψ whereψ ≤ w j μzj and
∑

j

w j = 1 for j ∈ {p, e,o} (3)

By maximizing the auxiliary function we also optimize the original

objectives. Thallium stores the maximized value of ψ for each

system configuration as the potential metric for each configuration

and uses it in the next step for trimming the MDP transitions.

3.4 MDP Optimization

With the potential values determined for each configuration and

each reward, Thallium can then compare adjacent transitions to

determine which transitions, if any, can be eliminated from the

generated reachability graph (cf. Section 3.1).

Thallium compares each configuration by finding which of the

neighboring transitions will move the system into a state whose po-

tential is Pareto optimal with respect to all of the reward objectives,

rather than using a single weighted composite value representing

Figure 11: Example potential values for pubsub system,

starting from (1,1,0,0). (1,1,0,1) and (1,1,1,1) are dominated

by the others for every objective, so the transitions to those

states (i.e., adding a relay) can be trimmed. (1,1,0,0) and

(1,1,1,0) form the Pareto frontier, as the former is better for

Cp and the latter for Cs while they are equal for CL and Cr .

all of the objectives. More formally, a transition t to a system con-

figuration c will only be retained if there is no other transition t ′

to a different configuration c ′ such that the potential of any of the

rewards at c ′ is greater than the same reward potential at c and the

potential of all other rewards at c ′ is at least equal to the correspond-
ing potential at c . All other transitions will be trimmed, leaving

only the Pareto-optimal siblings to be considered when selecting

adaptations. An example using the pubsub system from Section 2

is shown in Figure 11, which shows potential values from starting

state (1,1,0,0). The (1,1,0,1) and (1,1,1,1) states are dominated by

the others for every objective, so adaptations to those states (i.e.,

adding a relay) can be trimmed. The (1,1,0,0) and (1,1,1,0) states

form the Pareto frontier, since the former is better for Cp and the

latter for Cs while they are equal for CL and Cr .
The resulting trimmed MDP produced by Thallium is then

used at run-time to facilitate efficient adaptation decision making,

without sacrificing the overall system utility.

4 EVALUATION

Our evaluation of Thallium addresses these questions:

• RQ1: How well does Thallium perform in reducing the

adaptation space both offline and at run-time?

• RQ2: Does Thallium provide comparable utility for the

system compared to the state-of-the-art approaches?

To answer these questions, we have designed and conducted

experiments using the apparatus we developed based on the pre-

sented approach. Thallium uses the Alloy Analyzer [34] version

4.2 to model the system configuration and generate the system

MDP, and the PRISM-Games [17] extension of the PRISM Model

Checker [37] version 4.3 to determine the utilities of the best, worst,

and most-possible cases. We developed Thallium as a custom Java

program which generates possibility values and trims sub-optimal

adaptations from the system configuration MDP.

4.1 Experimental Subjects

We used two exemplar systems—each from a separate domain—for

our experiments: (1) SWIM [48], a simulator of self-adaptive web

infrastructure; and (2) DART [33, 43], a system that simulates a

team of unmanned aerial vehicles (UAVs) detecting targets while

avoiding threats during a reconnaissance mission. These systems

are described in more detail below.

1528

SWIM: Our first experimental subject is SWIM (Simulator of

Web Infrastructure and Management) [43], a self-adaptive system

designed to simulate a load-balanced web application. The system

supports adding or removing servers as well as controlling a dimmer

setting that regulates the level of content returned for each request.

SWIM is implemented on top of OMNeT++, a discrete event simula-

tion environment [63], and simulates only the high-level processing

of web requests as computational work. The system is highly ex-

tensible, providing monitoring information about the current state

of the simulation and effectors to simulate the execution of tactics.

We define SWIM’s system configuration, ci ∈ C , during an arbi-

trary discrete time step, i , as the tuple (si ,di ,Δi), where si repre-
sents the number of active servers, di represents the setting of the

dimmer—which increases or decreases the percentage of optional

content, with a corresponding decrease or increase to the service

rate, respectively—and Δi represents the number of time steps re-

maining for an active tactic execution. The environment state, ei ,
for the same time step represents the number of web requests that

arrived at the server during that time step. The adaptation goals of

the SWIM system are to (1) minimize the average response time,

(2) minimize the server provisioning costs, and (3) maximize the

percentage of optional content delivered.

DART: As the second experimental subject, we use the DART

self-adaptive system developed by the CarnegieMellon Software En-

gineering Institute [33, 47]. DART simulates a team of UAVs flying

a reconnaissance mission in formation over a bounded, hostile envi-

ronment containing both reconnaissance targets and enemy threats.

One of the drones is designated as the leader, and autonomously

decides the actions the team should undertake in order to fulfill

the mission goals, such as changing altitude or formation. In our

experimental scenario, the team flies along a planned route of D
equal segments at a constant rate, using a downward-facing sensor

to detect as many targets as possible while avoiding destruction

from any threats. Both the number and location of the targets and

threats are static, but unknown at the beginning of the run. Due to

that uncertainty, the team must self-adapt by changing altitude or

formation to maximize the number of targets safely detected. Flying

at a lower altitude increases the probability of detecting a target, but

also increases the chance of being destroyed by a threat. Similarly,

flying in a loose formation provides better target detection while a

tight formation decreases the probability of destruction.

4.2 Experimental Design

To address our research questions, we compared Thallium with

the state-of-the-art technique in proactive, latency-aware self adap-

tation, namely PLA-SDP [46]. We conducted three experiments on

our exemplar systems. For each, we applied both PLA-SDP and

Thallium to construct MDPs for the system. The MDP generated

by PLA-SDP for each system was considered a baseline for each

of the three experiments, against which we compared the relevant

outcomes using the trimmed MDPs produced by Thallium. All

three experiments were run on a MacBook Pro with a 2.3 GHz Intel

Core i5 processor and 16 GB of RAM.

Experiment 1. For the first experiment, we sought to evaluate Thal-

lium’s effectiveness at reducing the size of the static adaptation

Figure 12: Percentage of adaptations trimmed by Thallium

from baseline (PLA-SDP) MDP for each evaluated system us-

ing different values for (wp ,we ,wo) (see Section 3.3)

space represented by the system MDP. Both PLA-SDP and Thal-

lium rely heavily upon the modeling choices and utility functions

specified with the structural and behavioral models provided as

input, but Thallium also introduces additional configuration–the

weights assigned to the optimization objectives during potential

synthesis (see Section 3.3). As such, we used Thallium to generate

multiple MDPs for each system, with different weights for each. We

compared the number of transitions in each of the those resulting

MDPs to the number of transitions in the baseline MDP, reporting

the outcome as a percentage reduction compared to the baseline.

Experiments 2 and 3. For the second and third experiments, we

executed simulators included with the SWIM and DART exemplars,

respectively. We tested (1) the number of adaptations dynamically

evaluated at run-time and (2) the overall system utility achieved

when adapting based on the baseline MDP vs. a trimmed MDP gen-

erated by Thallium. We varied the adaptation manager provided

to guide adaptation–either the MDP from PLA-SDP or Thallium–

and measured the number of adaptations evaluated during each

run-time adaptation decision and the overall utility measurement

relevant to each exemplar. In addition, we introduced a purely

reactive adaptation manager to serve as a third comparison for

Experiment 2, detailed in Section 4.4.

4.3 Experiment 1: Static MDP Trimming

For our first experiment, we evaluated Thallium’s effectiveness in

reducing the size of the static adaptation space compared to PLA-

SDP for each of our exemplar systems. As discussed in Section 3.3,

the potential value generated for each system state and used for

the Pareto optimization is synthesized by normalizing and opti-

mizing the three values from a triangular possibility distribution—

zp , ze , zo—each with a corresponding weight. Since the weighting

needs to be specified by the user, we also sought to quantify the

impact of the weighting on the reduction of the adaptation space.

Therefore, we ran Thallium on each exemplar system using each

of sixteen valid weight assignments, ranging from equal weighting

to exclusively considering a single value. Figure 12 summarizes the

results for each system and each weighting, reporting the percent-

age of allowable adaptations trimmed by Thallium compared to

the number in the MDP generated by PLA-SDP.

1529

(a) Num. adaptations evaluated for each adaptation decision

(b) Cumulative system utility

Figure 13: Comparing Thallium and the state-of-the-art

PLA-SDP technique for the SWIM self-adaptive system [48].

Thallium (a) reduces the number of adaptations considered

by 51.9%, and (b) achieves higher cumulative utility.

For the SWIM exemplar, PLA-SDP generated a total of 340 possi-

ble system configurations, connected by 1,172 admissible adapta-

tions. The model provided to the Utility Bounds Analysis component

was drawn from a real-world trace of TCP activity published by

ClarkNet [3] which fluctuated between 0 and 130 requests per pe-

riod. Thallium trimmed between 640 and 756 adaptations from

consideration, reducing the adaptation space by between 54.6% and

64.5% (as shown in Figure 12). Averaged across all weight settings,

Thallium reduced the number of adaptations for SWIM by 63.2%.

For DART, PLA-SDP devised 80 system configuration states with

112 admissible adaptations; Thallium reduced that number by an

average of 21.9%, trimming between 16 and 28 adaptations.

Overall, the differing weights in all cases produced only a small

variation in the number of adaptations trimmed from the baseline

MDP, consistently hewing close to the mean. For SWIM, the relative

standard error in the percentage of adaptations trimmed across all

16 weightings was only 1%; for DART, it was 4%. For each weighting

evaluated, Thallium consistently trimmed adaptations when com-

pared to PLA-SDP, and all of the tests across all the subject systems

resulted in a reduction of the adaptation space.

4.4 Experiment 2: SWIM Simulation

Our second experiment evaluated Thallium’s impact at run-time

through the use of the SWIM network simulator. The experiment

measures two values: (1) the number of adaptations evaluated as

(a) Mean adaptations evaluated per simulation.

(b) Cum. num. successful simulations.

Figure 14: Comparing Thallium and the state-of-the-art

PLA-SDP technique over the DART self-adaptive system.

Thallium (a) reduces the number of adaptations considered

by 34.1%, and (b) produces more successful simulation runs.

part of each adaptation decision and (2) the overall cumulative

utility reported by the simulator. The results for both measurements

are summarized in Figure 13.

For the first number of adaptations evaluated, we found large dif-

ferences in the number of run -time comparisons performed using

each approach during adaptation decisions. Figure 13(a) shows the

number of joint system/environment states to which adaptation

was evaluated. The adaptation manager based on PLA-SDP aver-

aged 99,989 comparisons per adaptation decision. This number is

much higher than the 1,172 adaptations present in the system MDP

generated by PLA-SDP, as the look-ahead done by the proactive

manager and the uncertainty in intertwined environmental states

balloons that number in order to fully evaluate each possible adap-

tation at run-time. Thallium cuts that number in half, to 48,108

run-time comparisons (a reduction of 51.9%) for each adaptation

decision.

Figure 13(b) summarizes the overall system utility determined

by the SWIM simulator for PLA-SDP and Thallium. PLA-SDP

generated a cumulative utility value of 4,067 over the course of

the trace, while Thallium achieved a higher cumulative utility

total, with a final tally of 4,692. The difference in the observed

cumulative utility between PLA-SDP and Thallium becomes more

and more pronounced as the execution time increases. Alongside

PLA-SDP and Thallium, we also assessed a third, purely reactive

adaptationmechanism [43] that responded to the observed response

time (not shown). The reactive manager frequently violated the 750

1530

millisecond response time threshold imposed by the simulator’s

utility function, resulting in a negative cumulative utility due to the

accrued penalties.

4.5 Experiment 3: DART Simulation

Our third experiment evaluated Thallium’s impact at run-time

through the use of the DARTSim simulator [47] of the DART system.

The simulator plotted the course of a drone team over a randomly-

generated, 40-step course containing four targets and six threats,

allowing the drones to adopt two formations and one of five alti-

tudes.

Figure 14 depicts the results of experiments conducted over 985

such courses. According to the experimental results, a remarkable

reduction in the number of adaptations evaluated at run-time is

observed when using Thallium. DART with PLA-SDP performed

51,385 comparisons per evaluation (on average) across the 39,400

simulated evaluation periods, whereas Thallium compared an

average of only 33,886 joint states (34.1% fewer).

For overall utility, DART determines whether or not each mis-

sion was an overall success, i.e., the team was not destroyed and it

detected at least half of the targets. Figure 14(b) summarizes the suc-

cessful missions by both PLA-SDP and Thallium. The success rate

achieved by Thallium is noticeably higher than that of PLA-SDP.

Specifically, out of the 985 runs, PLA-SDP resulted in 84 successful

missions total, whereas Thallium was successful in 105.

5 DISCUSSION

This section details our interpretation of the results obtained with

respect to each research question and presents some limitations.

5.1 RQ1: Adaptation space reduction

All three experiments contributed some data to address RQ1, which

questioned Thallium’s efficacy at reducing the adaptation space

compared to state-of-the-art techniques. Experiment 1 evaluated

the reduction in the number of adaptations represented in the static

model of each exemplar. In all cases (cf. Figure 12), Thallium suc-

cessfully reduced the number of adaptations compared to PLA-SDP,

with an average reduction of 63.2% for SWIM and 21.9% for DART.

Furthermore, these results show that Thallium consistently re-

duces the adaptation space even as the weightings for the potential

synthesis vary. The relative standard error for each exemplar was

quite low (1% for SWIM and 4% for DART) indicating that Thallium

provides a robust improvement, no matter the specific tuning of its

additional input parameters. Also, as shown in Experiments 2 and

3 (cf. Figures 13(a) and 14(a), respectively), Thallium significantly

cuts the number of run-time comparisons done during the adap-

tation decision. For SWIM, the number is cut in half (51.9%), from

99,989 to 48,108 comparisons. We observed the same trend with

DART, where Thallium compared only 33,886 joint states rather

than 51,385 (34.1% fewer). We interpret these data as supporting

our insight that information about the bounds of possible utility

can be employed to reduce the explosion of the adaptation space.

5.2 RQ2: Overall utility of adaptation strategy

Our next criterion was the overall utility achieved by each tech-

nique. Experiments 2 and 3 collected data on the utility by simu-

lating the SWIM and DART exemplars, respectively. As shown in

Figures 13(b) and 14(b), Thallium produced higher cumulative sys-

tem utility (4,692) for the SWIM simulation compared to PLA-SDP

(4,067), as well as more total successes among the 985 simulated

missions run with the DART simulator (105 for Thallium vs. 84

for PLA-SDP). We interpret this data as suggesting that Thallium,

despite significantly trimming the search space, provides better

overall utility compared to the state-of-the-art techniques in self-

adaptation.

5.3 Limitations

Extending our work to apply to other systems and situations is

subject to a few limitations. First, Thallium is specifically targeted

to reducing the state space in solutions that operate on a Markov de-

cision process constructed to represent the structure of the system

itself, independent of the stochastic environment. Systems where

the two are not independent would require a modification to this

approach, but the underlying insight of trimming a graph-based

problem space should still apply. Second, Thallium is most suit-

able in situations where there is a trade-off in the choice between

objectives. If one objective tends to dominate the others, there are

fewer opportunities to trim the search space. Third, as described

in Section 4.3, Thallium and similar formal analysis techniques—

such as PLA-SDP—are heavily dependent on models of the system

(both structural and behavioral) and the utility functions provided

as part of the world specified by the user. The models obviously

must represent the system with a high fidelity in order to provide

correct results, but checking the models for correctness is beyond

the scope of this paper. As an example of the impact of the util-

ity function, the SWIM simulation used in our evaluation solved

the underlying decision problem using a weighted sum of three

optimization objectives: a cost based on the number of provisioned

servers, a reward for having a higher dimmer value (deliveringmore

optional content), and a reward for a low response time. Following

Moreno, et al. [43, 46], those objectives were weighted as 0.4, 0.0,

and 0.6 respectively. In our evaluation, this led to both PLA-SDP

and Thallium immediately reducing the dimmer to the lowest

level in order to gain the benefit to the service rate. While that may

seem like a surprising strategy, it makes perfect sense given the

lack of a penalty. While our evaluation shows Thallium’s general

applicability in reducing adaptation space, specific outcomes are

very sensitive to manual parameter tuning of this sort, as are other

similar approaches such as PLA-SDP [43].

6 THREATS TO VALIDITY

The internal validity of these results relies on the correctness of

our custom implementation of part of the approach, particularly

the components used to optimize and generate the metric for each

node’s potential (Section 3.3) and that used to compare and trim the

output MDP using Pareto analysis (Section 3.4). Conceptually, our

possibilistic analysis was based directly on prior research [27, 67]

and comparing multiple objectives to determine Pareto optimality

is a well-known problem. Therefore, our correctness would only

1531

be threatened due to the skill of the implementer. To address this

concern, we thoroughly validated all of our tool components to

ensure their correctness. Moreover, by using the same objects as our

baseline systemswe can compare the results produced by Thallium

with those previously reported to help ensure correctness, at the

potential cost of external validity. While these systems are small

and exhibit only a limited number of available adaptations for each

decision point, we believe that they are representative of real-world

self adaptive systems (e.g., autonomous load balancers). We also

believe that systems with more choices at each step would see even

more benefit from our approach as they have more potential states

to trim. We intend to explore larger systems in future work on this

topic.

7 RELATEDWORK

Many studies have utilized structural or architectural models to

drive self-adaptation [20, 21, 30, 36, 61, 65, 66], including proactive

self-adaptation [14, 32, 41, 42, 51, 64]. In particular, Thallium is

largely founded on the research done by Moreno, et al. [43–46, 49]

and Cámara, et al. [15, 16] on proactive, latency-aware self-adaptive

systems. The PLA-SDP system used as a baseline for our evaluation

was drawn from this body of work [46]. That approach pioneered

themodeling of the reachable states in a self-adaptive system, which

our approach improves upon. Rather than relying only on reacha-

bility, Thallium also leverages information about the bounds of

possible utility to evaluate the potential of each state. This bound

information is extracted from the behavioral model by simulating a

stochastic multiplayer game, as described by Cámara, et al. [15, 16].

While they use the bound information simply as a verification

technique, Thallium includes that additional information about

the possible behavior of the system as a way to improve overall

adaptation decision making.

Esfahani, et al. [27] use the mathematics of fuzzy sets [68] and

possibility theory [67] to evaluate the likelihood each system state

presents to satisfy the requirements of the system. In their work,

they establish the bounds of the fuzzy sets using confidence in-

tervals on the probability distribution for each uncertain element

gathered from observation or stakeholder interviews. Our approach

is novel in determining the bounds instead based on the guarantees

from the behavioral model.

Thallium addresses the adaptation state explosion by analyzing

the bounds, but there are other approaches to reducing the space.

Quin, et al. [54] recently propose an approach that adds a learning

module to the MAPE-K loop to select subsets of adaptations for con-

sideration at run-time. FUSION [26] also uses learning to reduce the

adaptation space, as well as Integer Programming solvers to solve

the underlying optimization problem. Learning-based approaches

could be employed on the reduced adaptation space from Thallium,

suggesting future research in combining the approaches.

PLATO [55] and VALKYRIE [29] employ evolutionary algorithms

to solve single objective optimization problems. Pascual, et al. [50]

present an approach to using multi-objective evolutionary algo-

rithms (MOEAs) to optimize configurations for dynamic software

product lines. FEMOSAA [18] also utilizes MOEAs to select config-

urations, but improves upon previous work by giving preference to

knee solutions along the Pareto frontier. Knee solutions may pro-

vide a better balance of objectives for the final solution. Identifying

knee solutions while trimming transitions is a possible avenue for

future research with Thallium.

8 CONCLUSION AND FUTUREWORK

In this paper, we presented Thallium, a novel technique to reduce

the number of possible system configurations that need be con-

sidered for a self-adaptive system to make adaptation decisions

at run-time. Thallium improves upon prior research in proactive,

latency-aware self adaptation by using probabilistic model check-

ing to glean information about the bounds of system behavior. We

find a value representing each state’s potential through possibilistic

analysis, and trim all transitions to states that are strictly dominated

by neighboring states across all objectives.

In the experiments conducted over the self-adaptive systems

drawn from recent studies, Thallium was shown to significantly

trim the transitions under consideration. The experimental results

further corroborate that Thallium, despite considerably shrinking

the search space, features higher overall utilities for all the systems

under analysis compared to the state-of-the-art techniques.

In future research, we hope to evaluate the approach we have

taken with Thallium in different domains and extend the approach

to leverage new and different analysis techniques. We also hope to

explore additional, related techniques to further reduce the decision

space for self-adaptive systems.

Trade-off analysis [5–10, 35, 62] provides a potentially fruitful

avenue for further research related to Thallium. These analysis

techniques often utilize formal models to synthesize a set of pos-

sible system architectures or design choices and optimize among

competing objectives to select a set of candidates to present to a

user. While static analysis of the tradeoffs can often be done cheaply,

a full dynamic analysis can be more expensive. The behavioral and

possibilistic analysis done by Thallium could possibly be employed

to eliminate some candidate systems a priori before performing the

expensive, dynamic analysis.

Similarly, self-adaptive systems may benefit from techniques

developed for evolutionary trade-off analysis. These may include

static or dynamic analysis of the system that can provide additional

information to the bound analysis done by Thallium [4]. Any new

information generated by such techniques will also help to reduce

the run-time burden on the system.

Lastly, our presentation of Thallium demonstrated using a

Pareto analysis to trim dominated adaptations from the search

space. Other techniques also exist to perform such a multi-objective

optimization, including game theoretic [56, 59] or stochastic [58]

approaches. Depending on the level of trimming desired from the

system, different heuristic could be applied to further reduce the

number of adaptations considered at runtime. We would like to

further explore these types of analysis which we believe would

complement Thallium’s use of the bound information.

We have made Thallium, as well as the specifications used in

conducting our experiments, publicly available for use by other

researchers [60].

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their valu-

able comments. This work was supported in part by awards CCF-

1755890 and CCF-1618132 from the National Science Foundation.

1532

REFERENCES
[1] Jonathan Aldrich, David Garlan, Christian Kästner, Claire Le Goues, Anahita

Mohseni-Kabir, Ivan Ruchkin, Selva Samuel, Bradley R. Schmerl, Christo-
pher Steven Timperley, Manuela Veloso, Ian Voysey, Joydeep Biswas, Arjun
Guha, Jarrett Holtz, Javier Cámara, and Pooyan Jamshidi. 2019. Model-Based
Adaptation for Robotics Software. IEEE Software 36, 2 (2019), 83–90. https:
//doi.org/10.1109/MS.2018.2885058

[2] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-time
temporal logic. J. ACM 49, 5 (2002), 672–713. https://doi.org/10.1145/585265.
585270

[3] Martin Arlitt and Carey Williamson. 2004. Clark-Net HTTP. http://ita.ee.lbl.
gov/html/contrib/ClarkNet-HTTP.html

[4] Hamid Bagheri and SamMalek. 2016. Titanium: efficient analysis of evolving alloy
specifications. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.).
ACM, 27–38. https://doi.org/10.1145/2950290.2950337

[5] Hamid Bagheri, Yuanyuan Song, and Kevin J. Sullivan. 2010. Architectural style
as an independent variable. In ASE 2010, 25th IEEE/ACM International Conference
on Automated Software Engineering, Antwerp, Belgium, September 20-24, 2010,
Charles Pecheur, Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 159–162.
https://doi.org/10.1145/1858996.1859026

[6] Hamid Bagheri and Kevin J. Sullivan. 2010. Monarch: Model-Based Development
of Software Architectures. In Model Driven Engineering Languages and Systems
- 13th International Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010,
Proceedings, Part II (Lecture Notes in Computer Science), Dorina C. Petriu, Nicolas
Rouquette, and Øystein Haugen (Eds.), Vol. 6395. Springer, 376–390. https:
//doi.org/10.1007/978-3-642-16129-2_27

[7] Hamid Bagheri and Kevin J. Sullivan. 2016. Model-driven synthesis of formally
precise, stylized software architectures. Formal Asp. Comput. 28, 3 (2016), 441–467.
https://doi.org/10.1007/s00165-016-0360-8

[8] Hamid Bagheri, Kevin J. Sullivan, and Sang H. Son. 2012. Spacemaker: Practical
Formal Synthesis of Tradeoff Spaces for Object-Relational Mapping. In Proceed-
ings of the 24th International Conference on Software Engineering & Knowledge
Engineering (SEKE’2012), Hotel Sofitel, Redwood City, San Francisco Bay, USA July
1-3, 2012. Knowledge Systems Institute Graduate School, 688–693.

[9] Hamid Bagheri, Chong Tang, and Kevin J. Sullivan. 2014. TradeMaker: automated
dynamic analysis of synthesized tradespaces. In 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014,
Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 106–116.
https://doi.org/10.1145/2568225.2568291

[10] Hamid Bagheri, Chong Tang, and Kevin J. Sullivan. 2017. Automated Synthesis
and Dynamic Analysis of Tradeoff Spaces for Object-Relational Mapping. IEEE
Trans. Software Eng. 43, 2 (2017), 145–163. https://doi.org/10.1109/TSE.2016.
2587646

[11] Richard Bellman. 2010. Dynamic Programming. Princeton University Press,
Princeton, NJ, USA.

[12] Craig Boutilier, Ronen I. Brafman, and Christopher Geib. 1998. Structured Reach-
ability Analysis for Markov Decision Processes. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence (UAI’98). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 24–32. http://dl.acm.org/citation.cfm?
id=2074094.2074098

[13] Radu Calinescu, Simos Gerasimou, and Alec Banks. 2015. Self-adaptive Software
with Decentralised Control Loops. In Fundamental Approaches to Software Engi-
neering - 18th International Conference, FASE 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings (Lecture Notes in Computer Science), Alexander Egyed and
Ina Schaefer (Eds.), Vol. 9033. Springer, 235–251. https://doi.org/10.1007/978-3-
662-46675-9_16

[14] Radu Calinescu, Lars Grunske, Marta Z. Kwiatkowska, Raffaela Mirandola, and
Giordano Tamburrelli. 2011. Dynamic QoS Management and Optimization in
Service-Based Systems. IEEE Trans. Software Eng. 37, 3 (2011), 387–409. https:
//doi.org/10.1109/TSE.2010.92

[15] Javier Cámara, Gabriel A. Moreno, and David Garlan. 2014. Stochastic Game
Analysis and Latency Awareness for Proactive Self-adaptation. In Proceedings
of the 9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2014). ACM, New York, NY, USA, 155–164. https:
//doi.org/10.1145/2593929.2593933

[16] Javier Cámara, Gabriel A. Moreno, David Garlan, and Bradley Schmerl. 2016.
Analyzing Latency-Aware Self-Adaptation Using Stochastic and Simulations.
ACM Trans. Auton. Adapt. Syst. 10, 4, Article 23 (Jan. 2016), 28 pages. https:
//doi.org/10.1145/2774222

[17] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. 2013. Automatic
Verification of Competitive Stochastic Systems. Formal Methods in System Design
43, 1 (2013), 61–92.

[18] Tao Chen, Ke Li, Rami Bahsoon, and Xin Yao. 2018. FEMOSAA: Feature-Guided
and Knee-Driven Multi-Objective Optimization for Self-Adaptive Software. ACM

Trans. Softw. Eng. Methodol. 27, 2, Article 5 (June 2018), 50 pages. https://doi.
org/10.1145/3204459

[19] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff
Magee (Eds.). 2009. Software Engineering for Self-Adaptive Systems: A Research
Roadmap. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–26. https://doi.org/
10.1007/978-3-642-02161-9_1

[20] Shang-Wen Cheng and David Garlan. 2012. Stitch: A language for architecture-
based self-adaptation. Journal of Systems and Software 85, 12 (2012), 2860–2875.
https://doi.org/10.1016/j.jss.2012.02.060

[21] Shang-Wen Cheng, Vahe Poladian, David Garlan, and Bradley R. Schmerl. 2009.
Improving Architecture-Based Self-Adaptation through Resource Prediction. In
Software Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar].
71–88. https://doi.org/10.1007/978-3-642-02161-9_4

[22] Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier. 2018.
ProFeat: feature-oriented engineering for family-based probabilistic model check-
ing. Formal Asp. Comput. 30, 1 (2018), 45–75. https://doi.org/10.1007/s00165-017-
0432-4

[23] Zack Coker, David Garlan, and Claire Le Goues. 2015. SASS: Self-Adaptation
Using Stochastic Search. In 10th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS 2015, Florence, Italy,
May 18-19, 2015, Paola Inverardi and Bradley R. Schmerl (Eds.). IEEE Computer
Society, 168–174. https://doi.org/10.1109/SEAMS.2015.16

[24] Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary Shaw (Eds.). 2013.
Software Engineering for Self-Adaptive Systems: A Second Research Roadmap.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1–32. https://doi.org/10.1007/978-
3-642-35813-5_1

[25] Ahmed M. Elkhodary, Naeem Esfahani, and Sam Malek. 2010. FUSION: a frame-
work for engineering self-tuning self-adaptive software systems. In Proceedings of
the 18th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2010, Santa Fe, NM, USA, November 7-11, 2010, Gruia-Catalin Roman and
André van der Hoek (Eds.). ACM, 7–16. https://doi.org/10.1145/1882291.1882296

[26] N. Esfahani, A. Elkhodary, and S. Malek. 2013. A Learning-Based Framework for
Engineering Feature-Oriented Self-Adaptive Software Systems. IEEE Transactions
on Software Engineering 39, 11 (Nov 2013), 1467–1493. https://doi.org/10.1109/
TSE.2013.37

[27] Naeem Esfahani, Ehsan Kouroshfar, and SamMalek. 2011. Taming Uncertainty in
Self-adaptive Software. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering (ESEC/FSE
’11). ACM, New York, NY, USA, 234–244. https://doi.org/10.1145/2025113.2025147

[28] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker. 2011. Automated Ver-
ification Techniques for Probabilistic Systems. In Formal Methods for Eternal
Networked Software Systems (SFM’11) (LNCS), M. Bernardo and V. Issarny (Eds.),
Vol. 6659. Springer, 53–113.

[29] ErikM. Fredericks. 2016. Automatically Hardening a Self-adaptive SystemAgainst
Uncertainty. In Proceedings of the 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS ’16). ACM, New
York, NY, USA, 16–27. https://doi.org/10.1145/2897053.2897059

[30] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. 2004. Rainbow: Architecture-Based Self-Adaptation with Reusable
Infrastructure. Computer 37, 10 (Oct. 2004), 46–54. https://doi.org/10.1109/MC.
2004.175

[31] Robert Givan, Thomas Dean, and Matthew Greig. 2003. Equivalence Notions and
Model Minimization in Markov Decision Processes. Artif. Intell. 147, 1-2 (July
2003), 163–223. https://doi.org/10.1016/S0004-3702(02)00376-4

[32] Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. 2008.
A Framework for Proactive Self-adaptation of Service-Based Applications Based
on Online Testing. In Towards a Service-Based Internet, First European Conference,
ServiceWave 2008, Madrid, Spain, December 10-13, 2008. Proceedings. 122–133.
https://doi.org/10.1007/978-3-540-89897-9_11

[33] Scott A. Hissam, Sagar Chaki, and Gabriel A. Moreno. 2015. High Assurance
for Distributed Cyber Physical Systems. In Proceedings of the 2015 European
Conference on Software Architecture Workshops (ECSAW ’15). ACM, New York,
NY, USA, Article 6, 4 pages. https://doi.org/10.1145/2797433.2797439

[34] Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. ACM
Trans. Softw. Eng. Methodol. 11, 2 (April 2002), 256–290. https://doi.org/10.1145/
505145.505149

[35] Jung Soo Kim and David Garlan. 2010. Analyzing architectural styles. Journal of
Systems and Software 83, 7 (2010), 1216–1235. https://doi.org/10.1016/j.jss.2010.
01.049

[36] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor Schiele,
and Christian Becker. 2015. A Survey on Engineering Approaches for Self-
adaptive Systems. Pervasive Mob. Comput. 17, PB (Feb. 2015), 184–206. https:
//doi.org/10.1016/j.pmcj.2014.09.009

[37] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In Proc. 23rd International Conference on Com-
puter Aided Verification (CAV’11) (LNCS), G. Gopalakrishnan and S. Qadeer (Eds.),
Vol. 6806. Springer, 585–591.

1533

[38] Young-Jou Lai and Ching-Lai Hwang. 1992. ANewApproach to Some Possibilistic
Linear Programming Problems. Fuzzy Sets Syst. 49, 2 (July 1992), 121–133. https:
//doi.org/10.1016/0165-0114(92)90318-X

[39] Marin Litoiu, Siobhán Clarke, and Kenji Tei (Eds.). 2019. Proceedings of the
14th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS@ICSE 2019, Montreal, QC, Canada, May 25-31, 2019.
ACM. https://dl.acm.org/citation.cfm?id=3341527

[40] Ming Mao and Marty Humphrey. 2012. A Performance Study on the VM Startup
Time in the Cloud. In Proceedings of the 2012 IEEE Fifth International Conference
on Cloud Computing (CLOUD ’12). IEEE Computer Society, Washington, DC, USA,
423–430. https://doi.org/10.1109/CLOUD.2012.103

[41] Andreas Metzger and Philipp Bohn. 2017. Risk-Based Proactive Process Adapta-
tion. In Service-Oriented Computing - 15th International Conference, ICSOC 2017,
Malaga, Spain, November 13-16, 2017, Proceedings. 351–366. https://doi.org/10.
1007/978-3-319-69035-3_25

[42] Andreas Metzger, Osama Sammodi, and Klaus Pohl. 2013. Accurate Proactive
Adaptation of Service-Oriented Systems. In Assurances for Self-Adaptive Systems
- Principles, Models, and Techniques. 240–265. https://doi.org/10.1007/978-3-642-
36249-1_9

[43] Gabriel A. Moreno. 2017. Adaptation Timing in Self-Adaptive Systems. Ph.D.
Dissertation. School of Comp. Sci., Carnegie Mellon Univ., Pittsburgh, PA.

[44] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015.
Proactive Self-adaptation Under Uncertainty: A Probabilistic Model Checking
Approach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 1–12. https://doi.org/
10.1145/2786805.2786853

[45] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2016.
Efficient Decision-Making under Uncertainty for Proactive Self-Adaptation. In
2016 IEEE International Conference on Autonomic Computing (ICAC). 147–156.
https://doi.org/10.1109/ICAC.2016.59

[46] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2018. Flex-
ible and Efficient Decision-Making for Proactive Latency-Aware Self-Adaptation.
ACM Trans. Auton. Adapt. Syst. 13, 1, Article 3 (April 2018), 36 pages. https:
//doi.org/10.1145/3149180

[47] Gabriel A. Moreno, Cody Kinneer, Ashutosh Pandey, and David Garlan. 2019.
DARTSim: an exemplar for evaluation and comparison of self-adaptation ap-
proaches for smart cyber-physical systems, See [39], 181–187. https://dl.acm.
org/citation.cfm?id=3341554

[48] Gabriel A. Moreno, Bradley Schmerl, and David Garlan. 2018. SWIM: An Ex-
emplar for Evaluation and Comparison of Self-adaptation Approaches for Web
Applications. In Proceedings of the 13th International Conference on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS ’18). ACM, New York,
NY, USA, 137–143. https://doi.org/10.1145/3194133.3194163

[49] Gabriel A. Moreno, Ofer Strichman, Sagar Chaki, and Radislav Vaisman. 2017.
Decision-making with Cross-entropy for Self-adaptation. In Proceedings of the
12th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS ’17). IEEE Press, Piscataway, NJ, USA, 90–101. https:
//doi.org/10.1109/SEAMS.2017.7

[50] Gustavo G. Pascual, Roberto E. Lopez-Herrejon, Mónica Pinto, Lidia Fuentes, and
Alexander Egyed. 2015. Applying Multiobjective Evolutionary Algorithms to
Dynamic Software Product Lines for Reconfiguring Mobile Applications. J. Syst.
Softw. 103, C (May 2015), 392–411. https://doi.org/10.1016/j.jss.2014.12.041

[51] V. Poladian, D. Garlan, M. Shaw, M. Satyanarayanan, B. Schmerl, and J. Sousa.
2007. Leveraging Resource Prediction for Anticipatory Dynamic Configuration.
In First International Conference on Self-Adaptive and Self-Organizing Systems
(SASO 2007). 214–223. https://doi.org/10.1109/SASO.2007.35

[52] prism doc 2019. PRISM Documentation. https://www.prismmodelchecker.org/
doc/.

[53] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming (1st ed.). John Wiley & Sons, Inc., New York, NY, USA.

[54] Federico Quin, Danny Weyns, Thomas Bamelis, Sarpreet Singh Buttar, and Sam
Michiels. 2019. Efficient analysis of large adaptation spaces in self-adaptive
systems using machine learning, See [39], 1–12. https://dl.acm.org/citation.cfm?
id=3341529

[55] Andres J. Ramirez, David B. Knoester, Betty H. C. Cheng, and Philip K. McKinley.
2011. Plato: a genetic algorithm approach to run-time reconfiguration in au-
tonomic computing systems. Cluster Computing 14, 3 (01 Sep 2011), 229–244.
https://doi.org/10.1007/s10586-010-0122-y

[56] Rui Meng, Ye Ye, and Neng-gang Xie. 2010. Multi-objective optimization design
methods based on game theory. In 2010 8th World Congress on Intelligent Control
and Automation. 2220–2227. https://doi.org/10.1109/WCICA.2010.5554307

[57] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive Software: Landscape
and Research Challenges. ACM Trans. Auton. Adapt. Syst. 4, 2, Article 14 (May
2009), 42 pages. https://doi.org/10.1145/1516533.1516538

[58] S. B. Selcuklu, D. W. Coit, F. Felder, M. Rodgers, and N. Wattanapongsakorn. 2013.
A new methodology for solving multi-objective stochastic optimization problems
with independent objective functions. In 2013 IEEE International Conference on
Industrial Engineering and Engineering Management. 101–105. https://doi.org/10.
1109/IEEM.2013.6962383

[59] Kwee-Bo Sim, Ji-Yoon Kim, and Dong-Wook Lee. 2004. Game Theory Based
Co-evolutionary Algorithm (GCEA) for Solving Multiobjective Optimization
Problems. IEICE Transactions 87-D, 10 (2004), 2419–2425. http://search.ieice.org/
bin/summary.php?id=e87-d_10_2419

[60] Clay Stevens and Hamid Bagheri. 2019. Thallium Website. https://sites.google.
com/view/thallium/.

[61] Jacob Swanson, Myra B. Cohen, Matthew B. Dwyer, Brady J. Garvin, and Justin
Firestone. 2014. Beyond the Rainbow: Self-adaptive Failure Avoidance in Config-
urable Systems. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
377–388. https://doi.org/10.1145/2635868.2635915

[62] Chong Tang, Hamid Bagheri, Sarun Paisarnsrisomsuk, and Kevin J. Sullivan. 2017.
Towards designing effective data persistence through tradeoff space analysis. In
Proceedings of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume, Sebastián
Uchitel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE Computer Society,
353–355. https://doi.org/10.1109/ICSE-C.2017.106

[63] András Varga and Rudolf Hornig. 2008. AnOverview of the OMNeT++ Simulation
Environment. In Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems & Workshops
(Simutools ’08). ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, Article 60,
10 pages. http://dl.acm.org/citation.cfm?id=1416222.1416290

[64] ChenWang and Jean-Louis Pazat. 2012. A Two-Phase Online PredictionApproach
for Accurate and Timely Adaptation Decision. In 2012 IEEE Ninth International
Conference on Services Computing, Honolulu, HI, USA, June 24-29, 2012. 218–225.
https://doi.org/10.1109/SCC.2012.26

[65] DannyWeyns. 2018. Engineering Self-Adaptive Software Systems - An Organized
Tour. In 2018 IEEE 3rd International Workshops on Foundations and Applications of
Self* Systems (FAS*W), Trento, Italy, September 3-7, 2018. 1–2. https://doi.org/10.
1109/FAS-W.2018.00012

[66] Danny Weyns, Sam Malek, Rogério de Lemos, and Jesper Andersson (Eds.).
2010. Self-Organizing Architectures, First International Workshop, SOAR 2009,
Cambridge, UK, September 14, 2009, Revised Selected and Invited Papers. Lecture
Notes in Computer Science, Vol. 6090. Springer. https://doi.org/10.1007/978-3-
642-14412-7

[67] L. A. Zadeh. 1999. Fuzzy Sets As a Basis for a Theory of Possibility. Fuzzy Sets
Syst. 100 (April 1999), 9–34. http://dl.acm.org/citation.cfm?id=310817.310820

[68] H.-J. Zimmermann. 1996. Fuzzy Set Theory&Mdash;and Its Applications (3rd Ed.).
Kluwer Academic Publishers, Norwell, MA, USA.

1534

