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ABSTRACT: In the context of forecasting societally impactful Great Plains low-level jets (GPLLJs), the potential added

value of satellite soil moisture (SM) data assimilation (DA) is high. GPLLJs are both sensitive to regional soil moisture

gradients and frequent drivers of severe weather, including mesoscale convective systems. An untested hypothesis is that

SM DA is more effective in forecasts of weakly synoptically forced, or uncoupled GPLLJs, than in forecasts of cyclone-

induced coupledGPLLJs. Using the NASAUnifiedWeather Research and Forecasting (NU-WRF)Model, 75 GPLLJs are

simulated at 9-km resolution both with and without NASA Soil Moisture Active Passive SM DA. Differences in modeled

SM, surface sensible (SH) and latent heat (LH) fluxes, 2-m temperature (T2), 2-m humidity (Q2), PBL height (PBLH), and

850-hPa wind speed (W850) are quantified for individual jets and jet-type event subsets over the south-central Great Plains,

as well as separately for each GPLLJ sector (entrance, core, and exit). At the GPLLJ core, DA-related changes of up to

5.4 kgm22 in SM can result in T2, Q2, LH, SH, PBLH, andW850 differences of 0.688C, 0.71 g kg22, 59.9Wm22, 52.4Wm22,

240m, and 4m s21, respectively. W850 differences focus along the jet axis and tend to increase from south to north. Jet-type

differences aremost evident at theGPLLJ exit whereDA increases and decreasesW850 in uncoupled and coupledGPLLJs,

respectively. Data assimilation marginally reduces negative wind speed bias for all jets, but the correction is greater for

uncoupled GPLLJs, as hypothesized.

KEYWORDS: Atmosphere-land interaction; Soil moisture; Data assimilation; Model errors; Model initialization;

Numerical weather prediction/forecasting

1. Introduction

Probing the potential of accurate soil moisture initialization

to improve streamflow and subseasonal to seasonal tempera-

ture and precipitation forecasts has been an active area of re-

search within the hydrologic (e.g., Baugh et al. 2020; Day 1985;

Mahanama et al. 2008; Maurer and Lettenmaier 2003) and

atmospheric (e.g., Beljaars et al. 1996; Dirmeyer et al. 2018;

Koster et al. 2004; Namias 1960; Shukla and Mintz 1982; van

den Hurk et al. 2012) research communities for decades.

Modulated by site topography, soils, vegetation and net radiative

flux, soil moisture plays a key role in determining rainfall/runoff

and Bowen ratios at a point (e.g., Koster and Mahanama 2012).

Changes in Bowen ratio affect sensible weather (i.e., 2-m tem-

perature and humidity), atmospheric stability and the diurnal

evolution of the planetary boundary layer (PBL), clouds, and

local convective rainfall (e.g., Findell and Eltahir 2003)—a series

of linked interactions collectively referred to as the local land–

atmosphere coupling process chain (Santanello et al. 2018).

When local land–atmosphere interactions scale-up in time and

space, they can affect regional precipitation recycling, drought,

and heatwave intensity (e.g., Agrawal et al. 2019; Dirmeyer

and Brubaker 1999;Miralles et al. 2019; Seneviratne et al. 2010;

Yang et al. 2019). Consequently, soil moisture is recognized as

an essential climate variable by the Global Climate Observing

System (WMO 2016). While ESA’s Soil Moisture and Ocean

Salinity (SMOS; Kerr et al. 2016) and NASA’s Soil Moisture

Active-Passive (SMAP; Entekhabi et al. 2014) constitute the

only dedicated soil moisture satellite missions, a multisatellite

passive microwave radiometer record dating back to 1978 has

long been the focus of soil moisture remote sensing studies

(e.g., Gruber et al. 2019; Karthikeyan et al. 2017; Njoku and

Entekhabi 1996).

Despite considerable effort from the scientific community,

the struggle to realize appreciable atmospheric and hydrologic

forecast skill gains from soil moisture data assimilation is on-

going (e.g., de Lannoy et al. 2016; Draper and Reichle 2019).

Commonplace uncoupled land model assimilation experi-

ments, when successful, have resulted in only modest skill en-

hancements to column soil moisture and streamflow estimates

(e.g., Draper et al. 2012; Kumar et al. 2015, 2014; Lievens et al.

2015; Yin et al. 2019). Similarly, results from a limited number

of fully coupled model soil moisture data assimilation (DA)

experiments have demonstratedmarginal benefit to short-term

2-m air temperature and humidity forecasts (i.e., Lin and Pu

2019, 2020). Proving added value of soil moisture DA in

regions such as the conterminous United States, where soil
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moisture is already well-constrained via the assimilation of

dense weather radar network products (e.g., Lakshmanan and

Humphrey 2014), can be exceedingly difficult. Presently, sat-

ellite soil moisture is not assimilated operationally into any

coupled U.S. numerical weather prediction model, of any

range (short, medium, or subseasonal–seasonal).

Prior studies have likely underestimated soil moisture

DA’s added benefit to forecasting systems because they

quantified added value in a time- and area-averaged Eulerian

reference frame. The potential for strong land–atmosphere

interactions and consequently the potential impact of soil

moisture DA on weather forecasts vary substantially over time

as a function of weather regime (e.g., Ford et al. 2015; Song

et al. 2016). And perhaps more importantly, the societal

benefit of weather forecast improvements is not time-

constant, but instead maximized during extremes. A more

pragmatic assessment of the added value of soil moisture

DA would give additional weight to events of opportunity

such as Great Plains low-level jets (GPLLJs) when the land’s

potential impact on the atmosphere and the potential for ex-

treme weather are both high. GPLLJs are both sensitive to

regional soil moisture gradients (e.g., Arcand et al. 2019;

Campbell et al. 2019; Fast and McCorcle 1990) and primary

drivers of the Great Plains’s warm-season extreme wind and

rainfall events, including severe mesoscale convective systems

(Houze 2018; Song et al. 2019).

The GPLLJ may be described by the combined mechanisms

of Blackadar (1957) and Holton (1967) (e.g., Du and Rotunno

2014; Parish 2017; Shapiro et al. 2016). The Holton (1967)

mechanism links the GPLLJ’s diurnal oscillation to diurnal

shifts in the wind direction/lower tropospheric temperature

gradient across the region’s east–west sloping terrain. During

the daytime, insolation warms the elevated western Great

Plains faster than the air to the east, which establishes a west–

east temperature gradient. At nighttime, the opposite is true:

the elevated ground to the west cools more quickly than the air

to the east, and an east–west temperature gradient is estab-

lished. The Blackadar (1957) mechanism describes GPLLJ

formation by the resultant inertial oscillation after nocturnal

decoupling of the PBL (i.e., loss of surface friction). An ex-

ample of the Blackadar (1957) causal chain would be as fol-

lows: increased sensible heating over dry soils / increased

lower tropospheric warming, stronger turbulent eddies, and

deeper PBL / delayed collapse of the PBL at a time with

stronger ageostrophic winds/ stronger inertial oscillation/

greater wind maximum at a later time. Idealized studies have

demonstrated that changes in soil moisture variations can

modulate both Blackadar (1957) and Holton (1967) forcing

mechanisms and thereby affect GPLLJ strength and positioning

(e.g., Campbell et al. 2019). Theoretically, forecasts of weakly

synoptically forced, or uncoupled GPLLJs, which occur in the

presence of a large persistent ridge over the central United

States and weak flow aloft in the southern Great Plains, will

benefit most from soil moisture DA. In the absence of strong

upper-level synoptic forcing, land–atmosphere interactions

should dominate uncoupled GPLLJ forcing and predictability.

By contrast, forecasts of more transient cyclone-induced, or

coupled GPLLJs, will benefit less from soil moisture DA.

In this study, we quantify the added value of NASA SMAP

soil moisture DA (SMAPDA) in the context of short-term (6–

24 h) GPLLJ forecasts. Using a weakly coupled NASAUnified

Weather Research and Forecasting (NU-WRF; Peters-Lidard

et al. 2015) Model–Land Information System (LIS; Kumar

et al. 2006; Peters-Lidard et al. 2007) modeling configuration,

we simulate 75GPLLJs—43 uncoupled and 32 coupled—between

2015 and 2017 both with and without SMAP DA. We quantify

differences between the two simulations for the following

fields: soil moisture, precipitation, surface sensible and latent

heat flux, 2-m temperature and humidity, PBL height (PBLH),

and 850-hPa wind speed (W850). SMAP soil moisture products

have been shown to yield the highest accuracy among available

AMSR-E, AMSR-2, ASCAT, and SMOS satellite-derived

products as measured by conventional statistics (e.g., Kim

et al. 2018), triple collocation (e.g., Chen et al. 2018), and in-

formation theory (i.e., Kumar et al. 2018). The analyses pre-

sented here specifically address 1) how SMAP DA impacts

wind speed forecasts along the jet axis and 2) whether its im-

pact on wind speed forecasts differs significantly between

coupled and uncoupled GPLLJs. This study marks the first

time that the added value of SMAPDA has been quantified in

an object-based (e.g., jet) framework. The GPLLJ jet mapping

algorithm that made this work feasible is described in the on-

line supplemental material (in Figs. S1–S3).

2. Data and methods

a. GPLLJ case selection and dynamical classification

We selected 75 GPLLJ events for analysis from the period

of May–September 2015–17 during SMAP’s first three years

of orbit. GPLLJs were first identified using Modern-Era

Retrospective Analysis for Research and Applications, ver-

sion 2 (MERRA-2; Gelaro et al. 2017), 0.58 3 0.6258 (latitude3
longitude) reanalysis according to the following criteria of

Montini et al. (2019), which must be satisfied simultaneously

at a grid point: 1) 3-hourly W850 exceeds its monthly 75th

percentile, 2) 3-hourly 850–700-hPa wind (W850–W700)

shear exceeds its monthly 75th percentile, and 3) W850

direction is between 1138 and 2478. For a given day to be

added to the GPLLJ sample set, at least 20% of grid points

within the south-central Great Plains (SCP; 29.758–40.258N,

102.81258–93.43758W) must satisfy all three criteria at one

or more 3-hourly time steps between 0000 and 1200 UTC.

The 0000, 0300, 0600, 0900, and 1200 UTC monthly W850

and W850–W700 shear thresholds were computed from the

1980–2019 time series. From the initial GPLLJ sample set,

we filtered out 17 days with tropical cyclone activity in either

the Gulf of Mexico or off the eastern U.S coast and 4 days for

which atmospheric boundary forcing data were not available

[see section 2b(3)].

Each of the 75 GPLLJs selected was classified as either

coupled or uncoupled to the upper-atmospheric jet stream

(e.g., Chen and Kpaeyeh 1993; Uccellini 1980; Wang and

Chen 2009). Uncoupled GPLLJs occur under large-scale zonal

flow patterns with a central ridge, whereas coupled GPLLJs

occur with an upstream trough of varying strength (see
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Burrows et al. 2019, their Fig. 1). To classify the jets, we applied

the dynamically derived objective jet classification method of

Burrows et al. (2019), which augments the conventional

Bonner–Whiteman (Bonner 1968; Whiteman et al. 1997) low-

level jet wind speed and vertical wind shear criteria with a 500-

hPa wave-amplitude criterion. Specifically, May–September

wave-amplitude thresholds of Burrows et al. (2019), defined

from the 110-year (1901–2010) 125-km European Centre for

Medium-Range Weather Forecasts Coupled Earth Reanalysis

of the twentieth century (CERA-20C; Laloyaux et al. 2018),

are spatially downscaled and applied to MERRA-2 500-hPa

geopotential height fields. As a final step, all objective dy-

namical classifications were verified usingmanual weathermap

analysis.

It is important to note that jet classification can vary along

the axis of a given jet. GPLLJs tend to transition from strongly

uncoupled to strongly coupled from south to north. The

northern extent of purely uncoupled events tends to lie be-

tween 408 and 458N, correspondent with the southern edge of

the hemispheric baroclinic zone, which advances northward

from May to August and begins its retreat southward in

September (e.g., Burrows et al. 2020, their Figs. 1 and 2). The

GPLLJs in this study are classified according to their vertical

wind shear profile and synoptic environment in the SCP.

Table 1 provides a listing of all 75 simulated case days

grouped according to their dynamical jet classification. Figure 1

provides a graphical summary of the 75 jet tracks and a

breakdown of the monthly coupled and uncoupled GPLLJ

frequencies. The monthly distribution of sampled uncoupled

and coupled GPLLJs (Fig. 1b) is consistent with the long-term

(1901–2010) seasonal climatology of jet-class frequencies re-

ported by Burrows et al. (2019).

b. Modeling

1) LIS

The NASA LIS is an interagency test bed for land surface

modeling with support for ensemble Kalman filter (EnKF;

Burgers et al. 1998; Evensen 1994) land data assimilation

(Kumar et al. 2019, 2014). In this study, LIS, version 7.2 (v7.2),

was used to run the Noah v3.6 land model (Ek et al. 2003) over

the region spanning 278–498N and 1268–718W at 0.088 3 0.088
(latitude3 longitude) resolution. This was done both with and

without SMAP Enhanced Level 3 (L3) 9-km soil moisture

(O’Neill et al. 2018) DA for the period from 1 April 2015

to 30 September 2017. Noah v3.6 was run using a 30-min time

step and standard four-soil-layer configuration with layer

thicknesses of 0.1, 0.3, 0.6, and 1.0m, from surface to bottom

boundary. LIS v7.2 was customized to support the following

more modern input datasets: Princeton University’s hourly,

0.031 258 meteorological forcing for the conterminous United

States (PUMET; Pan et al. 2016); real-time 4-day, 500-m

Moderate Resolution Imaging Spectroradiometer (MODIS)

leaf area index (MCD15A3H Collection 6; Myneni et al.

2015); real-time 8-day, 250-m MODIS NDVI-based greenness

vegetation fraction (MOD13Q1/MYD13Q1Collection 6;Didan

2015a,b); real-time 8-day, 1-km MODIS gap-filled snow-free

surface shortwave albedo (MCD43GF Collection 5; Sun et al.

2017); and the 2011 National Land Cover Database 40-class

land-cover dataset (Yang et al. 2018). Important is that

PUMET enables us to run LIS at a finer resolution than

LIS-supported 0.1258 3 0.1258 (latitude 3 longitude) North

American Land Data Assimilation System Phase 2 meteoro-

logical forcing (Xia et al. 2012a,b), and the real-time MODIS

datasets capture fine spatiotemporal vegetation dynamics that

TABLE 1. Listing of the 75 jet cases analyzed in this study according to dynamical classification. Superscripts denote cases for which the

jet entrance (E), core (C), or exit (X) are located outside the modeled domain. The number of all-, uncoupled-, and coupled-GPLLJ

jet samples available for each sector is as follows: E: 54/33/21 (all/uncoupled/coupled); C: 74/43/31 (all/uncoupled/coupled); X: 64/37/27

(all/uncoupled/coupled).

Uncoupled LLJ cases (n 5 43) Coupled LLJ cases (n 5 32)

2015 (n 5 19) 2016 (n 5 18) 2017 (n 5 6) 2015 (n 5 5) 2016 (n 5 13) 2017 (n 5 14)

3 MayX 9 Jun 3 May 14 MayE 7 May 7 MayX

4 May 10 Jun 10 JunX 16 MayE 8 MayE 8 MayE,X

12 Jun 16 Jun 28 JunX 5 Jun 9 MayE 9 May

21 JunE 22 Jun 29 Jun 14 Sep 11 MayE 14 May

22 JunE 6 Jul 12 Jul 15 Sep 22 MayE,X 15 May

23 Jun 7 Jul 6 Aug 23 May 16 MayE

24 Jun 8 Jul 25 May 26 May

25 Jun 11 JulE 27 MayE 11 Jun

1 Jul 12 JulE,X 23 Aug 12 Jun

2 JulE 13 JulE 6 Sep 13 Jun

6 JulE 14 JulE 7 Sep 14 JunX

7 JulE 17 Jul 23 SepE,C,X 16 AugE

11 Jul 18 Jul 24 Sep 15 Sep

18 Jul 1 AugX 16 Sep

19 Jul 2 Aug

28 Jul 11 Aug

18 Aug 24 Aug

22 AugE 12 SepX

27 Aug
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would be absent using the LIS-supported monthly mean cli-

matological vegetation fields. Additional data-processing de-

tails are provided in the online supplemental material.

2) SMAP/LIS-DA

SMAP’s L-band (1.4GHz) passive radiometer is sensitive to

signal attenuation due to radio frequency interference (e.g.,

Njoku et al. 2003; Soldo et al. 2016), dense vegetation, large

surface water fractions, active precipitation, and snow-covered

and/or frozen ground. Sensor look angle can also limit re-

trievals in regions of steep terrain (i.e., O’Neill et al. 2020).

Therefore, SMAP data are only used when data quality is as-

sured (i.e., retrieval_qual_flag, bit 0 5 0). At grids for which

morning/descending overpass retrievals are either not avail-

able or of insufficient quality, quality-cleared retrievals from

the evening/ascending overpass are infilled.

SMAPmorning/descendingoverpass SingleChannelAlgorithm

V-pol (SCA-V) soil moisture retrievals are assimilated into

LIS after first being spatially interpolated from Equal-Area

Scalable Earth grid to the modeled regular latitude/longitude

grid and subsequently undergoing bias correction by cumula-

tive distribution function (CDF)matching to the no-DAApril–

September 2015–17 lumped soil moisture CDF (Reichle and

Koster 2004). A pair of SMAP and Noah soil moisture CDFs is

constructed for each grid using a two-grid sampling radius. Of

SMAP’s five operational surface soil moisture retrieval algo-

rithms, the SCA-V algorithm is found to result in the best

overall performance, with a morning/descending overpass un-

biased RMSE of 0.037m3m23, bias of 20.001m3m23, and

correlation of 0.821 based on intercomparisons conducted over

three years (April 2015–March 2018) at SMAP’s 15 core vali-

dation sites (Jackson et al. 2018; their Table 8.2).

Using LIS, a classic perturbed observation EnKF of 20

members is generated at each grid by adding noise to selected

meteorological forcing fields, Noah modeled soil moisture,

and SMAP L3 soil moisture. Additive perturbations with a

mean of 0 and standard deviation of 0.02m3m23 are applied to

the SMAP L3 soil moisture prior to CDF-based rescaling.

Important is that SMAP data are only assimilated when it is

both quality assured and consistent with the modeled land

state. LIS-issued flags must indicate that there is no precipi-

tation at the time of overpass, no snow cover, and no frozen soil

or pore ice at any soil layer for SMAP data to be assimilated.

This model situational check is necessary because, for example,

even if SMAP soil moisture is deemed of sufficient quality, it

would be unrealistic to use this data to update soil moisture

under a modeled snowpack. Separately, precipitation and

downward shortwave radiation (SW) are perturbed with mul-

tiplicative perturbations of mean5 1 and standard deviation5

0.3 and 0.5, respectively. Additive perturbations with a mean

of 0 and standard deviation of 50Wm22 are applied to the

longwave radiation (LW). Last, additive perturbations with a

mean of 0 and standard deviation of 5.0 3 1023, 1.1 3 1024,

0.6 3 1025, and 0.43 1025m3m23 are applied to the modeled

soil moisture prognostic variables at each of Noah’s four soil

layers SM1–SM4, respectively.

The meteorological forcing, Noah state soil moisture, and

SMAPCDF-matched soilmoisture fields are perturbed according

to the so-called GMAO scheme described in Reichle et al.

(2007) at 1-, 3-, and 6-h frequencies, respectively. Correlation

time scales of 24 and 12 h, respectively, are imposed on the

FIG. 1. (a) Tracks of this study’s Great Plains low-level jet

(GPLLJ) sample colored according to dynamical classification

(coupled: blue; uncoupled: red) and (b) a summary of jet count

by month and class. Uncoupled (UC) and coupled (C) jet exit

sectors are marked by open red circles and filled gray circles,

respectively. Jets are dynamically classified using MERRA-2

500-hPa geopotential height (Z500) data, following the approach

of Burrows et al. (2019).
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forcing and state soil moisture fields. Cross correlations r are

also prescribed between related variables: r(SM1, SM2) 5 0.6,

r(SM1, SM3) 5 0.4, r(SM1, SM4) 5 0.2, r(SW, P) 5 20.8,

r(SW, LW) 5 20.5, and r(LW, P) 5 0.5, where P is precipi-

tation. To avoid the introduction of biases through perturba-

tions, the perturbation bias-correction algorithm of Ryu et al.

(2009) is implemented. The EnKF approach described is fully

supported in out-of-the-box LIS v7.2, and the specific im-

plementation details (see above) are largely consistent with

those of Kumar et al. (2014; their Table 1).

Both LIS DA and no-DA simulations are initialized from

the 1April 2015 restart file from the same cycled 18.5-yr spinup

simulation. For the spinup, the model was run from a cold-start

on 1 October 2007 until 1 October 2017 and the restart files

from this run were used to initialize a second spinup simulation

spanning 1 October 2007–31 March 2015. Daily 1300 UTC

restart files from the LIS DA and no-DA simulations were

saved for use in the initialization of NU-WRF simulations

(see next section). LIS DA restart files specify the 20-

member ensemble mean states, including SM1–SM4. SMAP

DA is conducted hourly, contingent upon coverage, and

only during the warm-season (April–September). Although

SMAP overpass time is nominally 0600 and 1800 LT, the

UTC time of overpass across CONUS varies. For reference,

the LIS model configuration file is provided in the online

supplemental material.

3) NU-WRF

NU-WRF is built upon the community Advanced Research

WRF core (Skamarock et al. 2005) and fully integrates LIS,

along with Goddard Space Flight Center atmospheric chem-

istry, radiation, and microphysics schemes into a single mod-

eling framework. In this study, we use NU-WRF, version 9.1

(v9.1), which includes the WRF v3.9.1 atmospheric model

coupled to LIS v7.2. The key physical schemes of the coupled

model configuration are listed in Table 2, and the complete

namelist model configuration file is provided in the online

supplemental material. WRF is run on the same domain

and horizontal grid as the LIS land-only simulations (i.e.,

0.088 3 0.088 latitude 3 longitude) and with 60 vertical levels

from the surface to 100 hPa, including 10 levels below

500 m and 15 levels below 1000 m. The WRF land initiali-

zation works seamlessly because LIS and WRF are running

the same Noah v3.6 model configuration on the same

horizontal grid and with the same ancillary soil and vege-

tation parameters.

Separate WRF SMAP DA and no-DA simulations are pro-

duced for each GPLLJ case. WRF is initialized at 1300 UTC

(0800 LT in Oklahoma) on the day prior to each GPLLJ case

(hereinafter Day 0). Initial surface soil and vegetative states

and soil temperature and moisture profiles are taken from the

LIS-Noah v3.6 offline uncoupled DA and no-DA simulations

described in the previous section. Initial atmospheric temper-

ature, humidity, and wind profiles are taken from the 13-km

Rapid Refresh (RAP; Benjamin et al. 2016) analysis. For 24-h

after initialization, or until 1300 UTC on the following day

(hereinafter Day 1), the WRF simulation runs independently

of the offline uncoupled LIS simulations, constrained only by

3-hourly lateral atmospheric boundary conditions prescribed

from RAP analysis. Because no additional soil moisture DA is

performed during the 24-hWRF simulation after initialization,

this setup is widely referred to as weakly coupled DA (e.g., Lin

and Pu 2018). NCEPRAP v2 (implemented 25 February 2014)

and v3 (implemented 23 August 2016) operational analysis data

are used, except for the 12 June 2015 case for which only

NOAA/ESRL experimental RAP v3 analysis is available. RAP

assimilates a wide range of observational data, including and of

particular relevance here: 2-m temperature, 2-m humidity, and

10-m wind measurements from the West Texas, Oklahoma,

Kansas, and Nebraska ‘‘mesonets’’ (S. Benjamin 2019, per-

sonal communication; https://madis.ncep.noaa.gov/mesonet_

providers.shtml). An important point to remember is that the

LIS offline DA simulation does assimilate all available SMAP

soil moisture data on an hourly basis during April–September,

beginning from 1April 2015. Thus, the LISDA simulation carries

forward cumulative memory of all historical SMAP soil moisture

updates (Figs. S4–S6 in the online supplemental material).

c. Evaluation method

The impact of SMAP DA on simulated surface sensible

weather, turbulent heat flux partitioning, and PBL winds is

quantified both in Eulerian fixed-domain and Lagrangian jet-

relative frames of reference. The SCP constitutes the Eulerian

domain of analysis, whereas GPLLJ entrance, core, and exit

sector locations unique to each jet event constitute the com-

parison regions in the Lagrangian analysis. Results are pre-

sented for the individual jet, 32 coupled jet, 43 uncoupled jet,

and 75-jet total event samples to document the range of po-

tential SMAP DA-induced forecast differences as well as to

test the hypothesis that SMAP DA effectiveness varies sig-

nificantly according to jet dynamical class (i.e., coupled or

uncoupled).

TABLE 2. Abbreviated physics configuration of the NU-WRF simulations. For the complete model configuration (i.e., namelist), see

the online supplemental material.

Parameterization scheme Selection Reference(s)

Microphysics Thompson aerosol-aware Thompson and Eidhammer (2014)

Cumulus None —

Shortwave radiation RRTMG Iacono et al. (2008)

Longwave radiation RRTMG Iacono et al. (2008)

Surface layer Revised MM5 Monin–Obukhov Jiménez et al. (2012)
Planetary boundary layer YSU Hong et al. (2006)

Land LIS-Noah v3.6 Ek et al. (2003) and Peters-Lidard et al. (2007)

NOVEMBER 2020 FERGUSON ET AL . 4611

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/11/4607/5016439/m
w

rd200185.pdf by SU
N

Y ALBAN
Y LIBR

 SB23 user on 12 N
ovem

ber 2020

https://madis.ncep.noaa.gov/mesonet_providers.shtml
https://madis.ncep.noaa.gov/mesonet_providers.shtml


Analyses span the period from 1900 UTC Day 0 to

1300UTCDay 1, following an atmospheric model spinup of 6 h

(i.e., 1300–1900 UTC Day 0). Particular focus is placed on the

initial 0–10-cm soilmoisture (SM0–10cm) differences at 1300UTC

on Day 0, subsequent differences in the 2100 UTC (i.e., 1600

LT) Day 0 surface and PBL environment, and 0900 UTC (i.e.,

0400 LT) Day 1W850, near the time of maximum GPLLJ

speed (e.g., Campbell et al. 2019). Statistics are computed

at the 0.088 3 0.088 grid scale, and the distribution mean

and/or full boxplot summary is presented. Three primary sta-

tistics are reported: mean difference, mean absolute difference

(MAD), and root-mean-square difference (RMSD). MAD is

more intuitive than RMSD and less sensitive to outliers

given differences are weighted linearly in the estimation of

MAD and quadratically in the estimation of RMSD. However,

RMSD has a long history of use in forecast verification.

Bootstrapping with 1000 or 10 000 realizations is used to test

for significance at the a5 0.1 level in the multijet composite

and individual jet analyses, respectively. RAP analysis is

applied in a limited capacity to evaluate WRF W850 biases.

Last, select results from a similar set of WRF simulations

with the Mellor–Yamada–Nakanishi–Niino PBL scheme

substituted for the Yonsei University PBL scheme are

provided in the online supplemental material. In the interest

FIG. 2. MERRA-2 0600 UTC 850-hPa wind speed (W850; color map and vectors) during the (a) 24 Jun 2015

uncoupled GPLLJ and (b) 15 Sep 2015 coupled GPLLJ. (c),(d) The corresponding LLJ activity: Z500 contours

(dam) overlain on the jet track (dotted blue), corridor (shaded grids), and sector centers (E: entrance; C: core; X:

exit). Dark-gray grids satisfy GPLLJ W850 and W850–W700 shear thresholds, whereas light-gray grids mark the

extent of the corridor after spatial smoothing.
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of succinctness, they are not discussed because they support

the same conclusions.

GPLLJ sectors are defined by a 345-km radius equal to the

decorrelation length s of jet entrance and exit sector W850

computed by fitting an exponential function to the scatterplot

of correlation coefficients between W850 at two grids and the

distance between those grids:

S(d)5 e2d/s , (1)

where S is Pearson correlation and d is distance between grids

(e.g., Rasmussen et al. 2012). Specifically, s is computed using

MERRA-2 0600UTCW850 for all jets greater than 1000 km in

length between April and September 2010–19, which amounts

to a sample size of 750. A much longer decorrelation length

(s 5 974 km) is found for W850 at the jet core, partly because

grids west of the core with surface pressure less than 850 hPa

are omitted from the correlation estimate without penalty

(Fig. S7 in the online supplemental material).

The jet sector locations for each jet are defined by their

MERRA-2 0600 UTC locations. Fixing the sector locations in

time and identically for WRF SMAP DA and no-DA simula-

tions simplifies physical interpretation of their differences.

Specifically, fixing sector locations controls for the effects of

spatial heterogeneities in vegetation and terrain. All jet sec-

tors tend to be well defined at 0600UTCwhereas the entrance

sector is not always well-defined at 0900 UTC. Figure 2

presents the results of the automated jet mapping algorithm

for representative uncoupled GPLLJ (24 June 2015) and

coupled GPLLJ (15 September 2015) events. Additional de-

tails about the jet mapping, as well as the climatological mean

positioning of jet sectors may be found in the online supple-

mental material.

3. Results

a. Event-averaged results over the modeled domain

Figure 3a shows that grids within the WRF simulated do-

main are overpassed by SMAP on 35%–55% of the 75-jet-case

Day 0s (i.e., the morning prior to the targeted jet). Of the

corresponding SMAP L3 soil moisture retrievals over the

Great Plains, 80%–90% pass observational and model quality

screening [section 2b(2)] and are successfully assimilated at

1300 UTC (Fig. 3b). Retrievals west of 112.58W are not as-

similated at 1300 UTC, but they are assimilated at other time

steps during April–September in the continuous LIS DA run.

Overpass times were truncated to either 0600 or 1800 LT in L3

preprocessing such that retrievals in the Pacific time zone tend

to be timestamped 1400 UTC.

Over the full domain the 75-jet mean SM0–10cm update

is21.1kgm22 and the 5%–95%range is from25.0 to11.7kgm22

(Fig. 3c). Besides a few grids in Mexico, New Mexico, and

Arizona, SMAP DA has the effect of reducing SM0–10cm. The

mean updates are nominal in Kansas and southern Nebraska,

more substantial in parts of Texas and western Oklahoma, and

largest in the northern Great Plains.

Decreases in SM0–10cm due to SMAP DA tend to enhance

0900 UTC W850 on the subsequent day by 0.25–0.5m s21,

which serves to mitigate an overall negative WRF W850

bias of 1–4 m s21 relative to RAP analysis (Fig. 4). Thus,

SMAP DA is improving W850 forecast skill, even if only

marginally. The high degree of spatial variability in the sign

and magnitude of mean SMAP DA-induced W850 shifts

suggests large interevent differences and/or strong corre-

lation with shifts in jet track (e.g., Campbell et al. 2019)

and/or convective precipitation patterns (e.g., Frye and

Mote 2010). Accordingly, the focus hereinafter is shifted to

FIG. 3. (a) Fraction of 75-jet sample with morning (;1228–1305 UTC) SMAP overpass on Day 0 of the event (i.e., the day prior to the

targeted jet event). (b) Fraction of SMAP data in (a) that passes observational and model quality screening [see section 2b(2)]. (c) The

75-jet mean WRF SMAP-DA update (kgm22) to 0–10-cm soil moisture (SM0–10cm) upon model initialization at 1300 UTC on Day 0.

SMAP L3 data west of 112.58W are not available until 1400 UTC because of truncation of overpass time to either 0600 or 1800 local time

early in the L3 production sequence.
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analyzing WRF SMAP DA and no-DA differences in a jet

sector-relative framework.

b. Jet-relative results

1) JET ENSEMBLE-AVERAGED 1000–500-HPA WIND

SPEED DIFFERENCE COMPOSITES

Figure 5 illustrates that SMAP DA begins to have a signif-

icant impact onwind forecasts soon after sunset (0200UTC) on

Day 1 (i.e., 13 h into the simulation) and the magnitude of the

impact enhances through the nighttime hours peaking between

0500 and 0900 UTC—earlier for the jet entrance and later for

the jet exit in uncoupled GPLLJs. At the jet core, significant

differences betweenWRF SMAPDA and no-DAmean winds

extend up to 550 hPa, particularly in the uncoupled GPLLJ

sample. Winds at the jet exit are strengthened in the case of

uncoupled GPLLJs and weakened in the case of coupled

GPLLJs. At the jet entrance, despite substantial SMAP DA

soil moisture updates (Fig. 3c), significant wind differences

are limited to the lowest levels (1000–850 hPa) between 0600

and 0800 UTC for the uncoupled GPLLJ sample; the impact

of SMAP DA on coupled GPLLJ entrance winds is insig-

nificant. One likely explanation is that GPLLJs are strongly

influenced by Gulf of Mexico/ocean SST gradients and/or

local orographic effects at the entrance region and that soil

moisture effects accumulate over time as the jet progresses

inland.

Mean absolute WRF SMAP DA and no-DA wind speed

differences increase approximately linearly over the course of

the simulation with maximum differences vertically at 850 hPa

for the jet entrance and core samples around 0600 and 0900 UTC

(Figs. 5a–c). At the jet exit, absolute wind speed differences

also vary nearly linearly with time, but are more uniform with

height, and peak at the end of the simulation (1300 UTC, Day

1; Figs. 5c,f,i). Coupled and uncoupled jet wind field response

to SMAP DA differs significantly at most times and pressure

levels, and for all jet sectors (Figs. 5d–i). Only from 0400 to

0800 UTC and between 700 and 875 hPa at the jet core do both

jet types respond similarly to SMAP DA (Figs. 6e,h). Overall,

average WRF SMAP DA and no-DA wind differences, abso-

lute differences, and root-mean-square differences are signifi-

cant but relatively modest with 5%–95% ranges of 60.1m s21

(Fig. 5), 0–1.3m s21 (Fig. 6), and 0–2.2m s21 (Fig. S8 in the

online supplemental material), respectively, across all pres-

sure levels. Daytime low-level winds are largely unaffected by

SMAP DA despite significant SMAP DA-induced 2-m tem-

perature and humidity differences (shown next). One likely

explanation for this finding is that surface frictional effects

dominate the low-level wind field up until nocturnal decou-

pling of the PBL. Only then do SMAP DA-induced regional

soil moisture gradient and PBLH differences begin to impact

the GPLLJ via their perturbation of the sloped terrain ther-

mal gradient (Holton 1967) and nocturnal inertial oscillation

(Blackadar 1957) forcing mechanisms, respectively (e.g.,

Campbell et al. 2019).

2) DIFFERENCES AT THE LAND–ATMOSPHERE

INTERFACE BY JET CASE

The impact of SMAPDAon simulated sensible weather and

PBL winds varies significantly between individual jet cases.

Furthermore, WRF SMAP DA and no-DA wind speed dif-

ferences at a point can be substantial. As shown in Fig. 7 for

one representative uncoupled GPLLJ and one representative

coupled GPLLJ, the 0900 UTC W850 differences can reach

FIG. 4. For the 75-jet sample, the (a) mean WRF no-DA 0900 UTC W850 bias relative to RAP analysis and

(b) mean difference in W850 between WRF SMAP DA and no-DA at 0900 UTC. Surface height exceeds the

850-hPa pressure height in masked-out (white) areas. The rectangular box demarcates the SCP: 29.758–40.258N,

102.81258–93.43758W).

4614 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/11/4607/5016439/m
w

rd200185.pdf by SU
N

Y ALBAN
Y LIBR

 SB23 user on 12 N
ovem

ber 2020



FIG. 5. (a)–(c) The jet sample-mean wind speed difference for SMAPDAminus no-DAWRF (m s21) at each 25-hPa pressure level from

1000 to 500 hPa, for each hour from1900UTCDay 0 to 1300UTCDay 1, and for each jet sector. Also shown are similar results for the (d)–(f)

coupled GPLLJ and (g)–(i) uncoupled GPLLJ samples. The underlying sample size varies by jet class and sector (see Table 1). Stippling

denotes significance of the wind speed differences between WRF SMAP-DA and no-DA at the a 5 0.1 level, computed from 1000 boot-

strapped samples. Vertical green lines denote local approximate sunrise (1124UTC) and sunset (0149UTC) on 15 Jul at Lamont, Oklahoma

(36.68N, 97.58W). Jet entrance, core, and exit locations are fixed over the analysis window to their position at 0600 UTC on Day 1.
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FIG. 6. As in Fig. 5, but for the MAD in wind speed betweenWRF SMAPDA and no-DA simulations. The stippling in (d)–(i) denotes a

significant difference at the a 5 0.1 level between coupled and uncoupled GPLLJ MAD.
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upward of 6–10m s21. In the case of the 24 June 2015 un-

coupled GPLLJ, substantial W850 differences are found at the

jet core and exit, whereas for the 15 September 2015 coupled

GPLLJ W850 differences are clustered near the jet core.

Figure 8 illustrates for each jet, the mean and interquartile

range of gridscale WRF SMAP DA and no-DA differences

within the jet core for several variables in the land–atmosphere

coupling process chain at critical times during the 24-h simu-

lation: SM0–10cm upon initialization (i.e., 1300UTCDay 0); 2-m

temperature, 2-m specific humidity, surface latent and sensible

heat fluxes, and PBLH near the time of maximum PBLH (i.e.,

2100 UTC Day 0); and W850 at 0900 UTC Day 1 when the

GPLLJ core and exit winds are greatest. The event-scale

boxplots are broadly consistent with expected coupled land–

atmosphere response to changes in surface soil moisture in a

semiarid climate: when SMAPDA leads to a reduction in SM0–

10cm, afternoon sensible heat flux increases, latent heat flux

decreases, 2-m temperature increases, 2-m specific humidity

decreases, and PBLH increases (Fig. 8). The linear correlation

is significant between the event mean SMAP DA SM0–10cm

update (navy blue line in Fig. 8g) and all variables considered,

except 0900 UTC W850 and 0000–1200 UTC precipitation.

Derived regression slopes between the SMAP DA SM0–10cm

updates and consequent sensible heat flux, latent heat flux, 2-m

specific humidity, and 2-m temperature differences are larger

for the coupled GPLLJs, but the difference between coupled

and uncoupled GPLLJ derived slopes is only significant for

sensible heat flux and 2-m temperature (Table 3). The soil

moisture–PBLH regression slope is greater for uncoupled

GPLLJs, but not significantly. Correlation coefficients and bi-

variate regression slopes were similarly computed for the jet

entrance and exit sectors and one noteworthy finding is that

SMAP DA SM0–10cm updates and 0000–1200 UTC precipita-

tion are significantly correlated at the uncoupled GPLLJ en-

trance and exit (Table S2 in the online supplemental material).

The lack of a significant correlation between the SMAP DA

SM0–10cm update and W850 (for any sector/jet class) and pre-

cipitation (for both jet classes at the core and for coupled

GPLLJs at the entrance and exit) (Table 3; supplemental

Table S2) may be explained by the relatively shorter correla-

tion scale lengths (i.e., higher spatial variability) of W850 and

precipitation relative to the other variables investigated.

Despite a strong mesoscale correlation between surface

soil moisture and PBLH, larger scale synoptic forcing also

plays a role in determining the vertical structure and su-

perpositioning of the GPLLJ upon the regional topogra-

phy (e.g., Burrows et al. 2020, 2019). Topography and, to a

lesser extent, vegetation can modify any potential SM0–10cm–

W850 or SM0–10cm–precipitation correlation. A larger jet

sample is needed to further probe these causal relationships

(e.g., Welty et al. 2020).

3) DIFFERENCES AT THE LAND–ATMOSPHERE

INTERFACE BY JET CLASS

The boxplots in Fig. 9 (and their numerical representation in

Table S3 in the online supplemental material) summarize the

collective total, uncoupled, and coupled GPLLJ distributions

of gridscale WRF SMAP DA and no-DA absolute differences

for the same set of land–atmosphere coupling variables ana-

lyzed in the previous section. The boxplots are organized by

domain: SCP, jet entrance, jet core, and jet exit, and by jet

class: total, uncoupled, and coupled GPLLJ. At the jet core,

the MADs are 1.1m s21 (W850), 60m (PBLH), 0.218C (2-m

temperature), 0.21 g kg22 (2-m specific humidity), 16.4Wm22

FIG. 7. WRF SMAP DAminus no-DA 0900 UTCW850 for the (a) 24 Jun 2015 uncoupled GPLLJ and (d) 15 Sep

2015 coupled GPLLJ (background W850 is shown in Fig. 2).
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(latent heat flux), 14.0Wm22 (sensible heat flux), 1.5 kgm22

(SM0–10cm), 0.8 mm (precipitation), and 1.4 m s21 (W850–

W700 shear; Table S3) (Table 4). The corresponding 95%

absolute differences are 4.0m s21 (W850), 240m (PBLH),

0.688C (2-m temperature), 0.71 g kg22 (2-m specific humidity),

59.9Wm22 (latent heat flux), 52.4Wm22 (sensible heat flux),

5.4 kgm22 (SM0–10cm), 4.3mm (precipitation), and 5.3m s21

(W850–W700 shear) (Table S3). Corresponding RMSD values

are also provided in Table 4.

A few key takeaways fromFig. 9 are worth noting. First, SCP

mean absolute WRF SMAP DA and no-DA differences in

SM0–10cm, and all response variables except precipitation, are

largest for the uncoupled GPLLJ sample. For example, un-

coupled GPLLJ mean absolute PBLH differences are 52m,

as compared with 45m for coupled GPLLJs. Considering

that large-scale frontal precipitation associated with coupled

GPLLJs makes these events wetter on average to begin with

(e.g., Burrows et al. 2019), it is not surprising that SMAP

FIG. 8. Event-specific WRF SMAP DA minus no-DA mean differences (colored lines),

interquartile range of differences (25%–75%, bars), and no-DA mean values (black lines)

calculated from the sample of all land grids within the jet core sector for which the 850-hPa

level lies above the surface. Shown are the (a) 0900 UTC Day 1W850; 2100 UTC Day 0

(b) planetary boundary layer height (PBLH), (c) 2-m air temperature (T2), (d) 2-m specific

humidity (Q2), (e) surface latent heat flux (LH), and (f) surface sensible heat flux (SH);

(g) 1300 UTC Day 0 SM0–10cm; and (h) 0000–1200 UTC Day 1 accumulated precipitation P.

The unshaded and shaded bars denote uncoupled GPLLJ and coupled GPLLJ events, re-

spectively. Because of plotting considerations and constraints: the y axes for SM0–10cm, LH,

andQ2 are reversed; some interquartile bars are truncated, and only every other event date is

labeled. Note that the events are listed in chronological order from left to right (see Table 1

for a full listing).
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DA-induced differences in precipitation are larger for coupled

GPLLJs. Second, PBLH MADs are larger at the jet entrance

(all jets: 60m) and core (all jets: 64m) than at the jet exit

(all jets: 27m). Third, W850 MADs are largest at the jet core

and exit and smallest at the jet entrance (all jets: mean 5
0.35m s21; p95 5 1.4m s21). Fourth, mean absolute W850

differences are significantly larger for uncoupled GPLLJs at

the entrance (uncoupled GPLLJ mean 5 0.43m s21; coupled

GPLLJ mean5 0.23m s21) but significantly larger for coupled

GPLLJs at the exit (coupled GPLLJ mean 5 1.12m s21; un-

coupled GPLLJ mean5 1.01m s21). Last, even thoughMADs

tend to be greater for uncoupled GPLLJs, sensitivity to SMAP

DA within the jet corridor is higher for certain variables such

as sensible heat flux and 2-m temperature during coupled

GPLLJs (Table 3). In this instance, the linear sensitivity esti-

mate appears to be skewed by the 12–14 June 2017 coupled

GPLLJs for which there was both a large SM0–10cm reduction

and large correspondent increase in sensible heat flux due to

SMAP DA (Fig. 8).

The 5%–95% ranges of 0900 UTC W850 absolute differ-

ences observed for the uncoupled GPLLJ core and exit (0–

4.1m s21; Table S3 in the online supplemental material) are

consistent with the range of 1–4m s21 previously obtained by

Campbell et al. (2019) through an idealized uncoupled GPLLJ

sensitivity experiment in which CONUS-wide extreme wet

(i.e., 95th percentile) and dry (i.e., 5th percentile) soil moisture

scenarios were compared for a single jet case. The fact that

our W850 differences fall in line with Campbell et al. (2019) is

intriguing because that study reported much larger 2100 UTC

PBLH (700m) and surface sensible and latent heat (125Wm22)

differences. Additional investigation, beyond the scope of this

study, is needed to test the hypothesis that large-scale forcing

specific to the jet case selected by Campbell et al. (2019) lim-

ited the extent of land-forced variability.

c. Emergent relationships between SMAP DA-induced

W850 differences and the background environment

The last set of analyses to be discussed are designed to re-

duce the large and complex set of modeling results—to the

extent possible—into broad, generalizable relationships be-

tween jet classes, the surface and atmospheric environments in

which they tend to act and interact, and the magnitude ofWRF

SMAPDAand no-DA0900UTCW850differences.Uncoupled

and coupled GPLLJs have important differences in terms of

their seasonality, speed, northern extent, and geographic cov-

erage. Coupled GPLLJs are more prevalent in May and

September whereas uncoupled GPLLJs are more prevalent in

June–August. Coupled GPLLJs tend to be faster, especially

over elevated terrain (Fig. 10a), and penetrate farther north-

and eastward by 2.48 and 0.48 (Table 5).

Table 6 summarizes mean differences in elevation, PBLH,

and antecedent soil moisture (1300 UTC Day 0 SM0–10cm)

between regions traversed by the 43 uncoupled and 32 coupled

GPLLJs. Mean surface elevation decreases for both jet classes

from jet entrance (873m) to core (675m) to exit (465m). Only

at the jet exit is there a significant difference (59m) in mean

elevation between jet classes, with coupled GPLLJs termi-

nating over slightly more elevated terrain. PBLH decreases

with elevation along the jet track; total jet sample mean PBLH

is 2021, 1467, and 1219m at jet entrance, core, and exit, re-

spectively. Mean PBLH for uncoupled GPLLJs is 54–56m

higher than for coupled GPLLJs at jet entrance and exit, and

232m higher at jet core. To first order, greater daytime PBLH

correlates with faster jet winds after frictional decoupling at

night (Blackadar 1957), which together with our finding that

SMAP DA decreases jet exit winds for coupled GPLLJs and

increases them for uncoupled GPLLJs, further supports the

conclusion that SMAPDA tends to spatially extend uncoupled

GPLLJs and shorten coupled GPLLJs.

As elevation decreases along the jet track, antecedent SM0–

10cm increases (Fig. 10a). For the full jet sample, mean SM0–10cm

increases from 26.9 kgm22 at the jet entrance to 29.3 kgm22 at

the core to 30.5 kgm22 at the exit (Table 6). A counterintuitive

result, given that uncoupled GPLLJs occur under conditions of

surface drying (e.g., Burrows et al. 2020), is that uncoupled

GPLLJ antecedent SM0–10cm significantly exceeds that of

coupledGPLLJ at the jet entrance by a small margin and at the

exit by a larger margin (uncoupled GPLLJ: 31.0 kgm22;

TABLE 3. GPLLJ event jet core areal mean WRF SMAP DAminus no-DA difference for each variable of interest (y; colored lines in

Fig. 8) regressed against the event jet core areal meanWRF SMAPDAminus no-DA difference in 1300 UTC Day 0 SM0–10cm (x). As in

Fig. 8, only land grids within the jet core sector for which the 850-hPa level lies above the surface are included in the calculation. The

regression slopes [m in E(y)5mx1 b] are based on 74/75 jets (the 23 Sep 2016 jet core is out of bounds). All correlation coefficients are

significant at the a5 0.1 level, except for those between SM0–10cm andW850 andP (italicized). Boldfaced values are significantly different

at the a 5 0.1 level between coupled and uncoupled GPLLJ samples.

Pearson’s r Regression slope

Valid time

Variable

(units)

C GPLLJs

only

UC GPLLJs

only

All

GPLLJs

C GPLLJs

only

UC GPLLJs

only

All

GPLLJs Units

2100 UTC Day 0 SH (Wm22) 20.87 20.83 20.85 27.03 25.68 26.27 W kg21

LH (Wm22) 0.86 0.81 0.84 8.05 7.25 7.66 W kg21

Q2 (g kg21) 0.92 0.84 0.89 0.176 0.168 0.174 gm2 kg22

T2 (K) 20.94 20.86 20.90 20.202 20.154 20.176 Km2 kg21

PBLH (m) 20.84 20.80 20.82 242.0 247.7 244.8 m3 kg21

0900 UTC Day 1 W850 (m s21) 20.08 20.07 20.08 20.019 20.026 20.025 m3 kg21 s21

0000–1200 UTC

Day 1

P (mm) 20.09 20.05 20.06 20.011 20.013 20.011 —
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coupled GPLLJ: 29.6 kgm22). Upon closer inspection, it was

determined that this result may be partly explained by sam-

pling bias. This study’s uncoupled GPLLJ sample is heavily

weighted toward 2015 (n 5 19) and 2016 (n 5 18), which

constitute the SCP’s third and sixth wettest years on record

between 1980 and 2019 (Fig. S12 in the online supplemental

material). Simultaneously, the coupled GPLLJ comprises

very few events in 2015 (n5 5) and many events in 2017 (n5
14) when the typical exit sector/northern Great Plains was

betweenmoderate and severe drought (Blunden 2017). Readers

should take this sampling bias into consideration when inter-

preting the coupled versus uncoupled GPLLJ differences that

are reported here, particularly for the exit sector.

Figures 10a and 10b shows that WRFW850 andWRF SMAP

DA and no-DA W850 absolute differences both increase with

elevation up to approximately 890m MSL at a rate of approxi-

mately 1.1 and 0.088m s21 per 100m of elevation gain, respec-

tively. Coupled GPLLJs are significantly faster than uncoupled

GPLLJs (Fig. 10a), consistent with the findings of Burrows et al.

(2020). For the 800–890-m elevation bin specifically, coupled

GPLLJ W850 averages 17.7m s21, which is 2.3m s21 faster than

uncoupled GPLLJ W850. Despite being faster, coupled GPLLJ

winds tends to be less impacted by SMAP DA. While it is true

that coupled GPLLJ W850 is more sensitive to elevation in com-

parison to uncoupled GPLLJ W850 (Fig. 10a), it is less sensi-

tive to SMAPDAupdates as a function of elevation (Fig. 10b).

Figure 10c shows the mean WRF SMAP DA and no-DA

W850 differences partitioned by SM0–10cm. The largest SMAP

DA-induced differences are observed in the driest decile (5–

15 kgm22) and 44th–88th percentile range (30–35 kgm22) of

SM0–10cm. Aided by findings from our preceding lines of in-

quiry, two summary statements may now be made. First, W850

differences due to SMAP DA are larger for uncoupled

GPLLJs (Table 4) while at the same time,W850 differences are

more strongly correlated with SMAPDASM0–10cm updates for

coupled GPLLJs (Table 3). The relatively lower spatial het-

erogeneity of SM0–10cm during coupled GPLLJs as compared

to uncoupled GPLLJs may partly explain this finding (not

shown). Second, SMAP DA generally has the effect of in-

creasing W850 for uncoupled GPLLJs, whereas it can reduce

W850 in some SM0–10cm and elevation bins for coupled

GPLLJs (Figs. 10b,c). For both jet types, SMAP DA leads to

increases in W850 at the low end of the wind speed distri-

bution (i.e., W850 , 9m s21) and decreases at the high end

of the wind speed distribution (i.e., W850 . 18.5 m s21;

Fig. 10d). These observed patterns in W850 changes are

consistent with spatial shifts in the jet’s axis (i.e., track of

FIG. 9. Boxplots of the distribution of absolute differences be-

tween WRF SMAP DA and no-DA simulations of (a) 0900 UTC

Day 1W850; 2100 UTC Day 0 (b) PBLH, (c) T2, (d) Q2, (e) LH,

and (f) SH; (g) 1300 UTCDay 0 SM0–10cm; and (h) 0000–1200 UTC

Day 1 accumulated P. From left to right, the groups of boxplots

 
correspond to the SCP, jet entrance, jet core, and jet exit. Dark-

gray, white, and light-gray boxplots correspond to underlying

samples of all (label a), uncoupled-only (label uc), and coupled-

only (label c) GPLLJs. A horizontal line within the interquartile

range denotes the median, open circles denote the mean, and

boxplot whiskers extend from 5% to 95%. Only land grids for

which the 850-hPa level lies above the surface are included. See

online supplemental Table S3 for the underlying numerical data.
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maximum wind speed), including extension or shortening of

the jet’s northern exit sector.

Amore comprehensive understanding of SMAPDA related

W850 differences as a function ofW850magnitude (Fig. 10d) is

achieved by partitioning their joint distribution by antecedent

SM0–10cm, elevation, and land-cover class. Figure 11a shows

that W850 differences are largest in all wind magnitude bins

over relatively wet soils (Q3: 32–35 kgm22) and smallest over

the driest soils (Q1: SM0–10cm , 27 kgm22). This result is

consistent with our findings of lower SM0–10cm and relatively

weaker corresponding SMAP DA effects at the jet entrance

(Figs. 5, 6, 9; Table 4). Recall that soil residual water content,

which serves as a hard lower bound, may also limit SMAP

DA’s efficacy at low SM0–10cm.

Figure 11b shows that SMAPDA-inducedW850 differences

are directly proportional to elevation where W850 is less than

20m s21, consistent with Fig. 10b. Extreme winds in the WRF

simulation are predominantly modified by SMAP DA in low-

lying areas (i.e.,,256mMSL), which tend to align with the jet

exit sector (Table 6). This finding supports again the conclusion

that SMAP DA plays a significant role in shifting jet exit

placement for both jet classes.

Figure 11c reveals that W850 simulations are most af-

fected over crops and grassland land-cover classes for wind

speeds below 20m s21. At extreme winds, large W850 dif-

ferences tend to occur over pasture/hay, evergreen needle-

leaf forest, and deciduous forest. Geographically, this places

differences in severe winds to the east and north (pasture/hay:

Missouri and eastern Kansas; forests: western Arkansas and

western Louisiana), near the exit sector of a few sampled jets,

and differences in less severe winds over the Texas panhandle

and Oklahoma and Kansas grasslands, coincident with mean

jet core placement (Fig. 1 and Fig. S3 in the online supple-

mental material).

4. Summary and conclusions

Incremental forecast improvements attributable to SMAP

DA are significant at the a5 0.1 level but are only marginal on

time- and area-averaged scales (e.g., Fig. 4b). New insight into

the added value of SMAP DA can be gleaned by investigating

its forecast contribution within the object-based reference frame

of events of opportunity likeGPLLJs, as shown here.Aswe show,

SMAP DA can induce changes of up to 4.0m s21 in simulated

W850, particularly within jet core and exit sectors (Figs. 5, 9;

Table S3 in the online supplementalmaterial). TheW850 changes

are the product of the local daytime soil moisture–Bowen ratio–

PBLH land–atmosphere coupling process chain (e.g., Santanello

et al. 2018) and the cumulative effect of its constituent process

interactions on the regional Blackadar (1957) and Holton (1967)

forcing mechanisms, in a given synoptic environment.

Within the jet core, corrections of up to 5.4 kgm22 in SM0–10cm

can result in 2-m air temperature, 2-m specific humidity, la-

tent heat flux, sensible heat flux, and PBLH differences of

0.688C, 0.71 g kg22, 59.9Wm22, 52.4Wm22, and 240m, re-

spectively (Fig. 9, supplemental Table S3). For example, the jet

core PBLH has a linear correlation of 20.82 and regression

slopeof244.8m3kg21with SM0–10cm (Table 3)—both statistically

significant. Differences in W850 tend to increase with surface

elevation or along the jet axis from south to north (Fig. 10), and

maximize within the SCP where SM0–10cm is in its third quartile

(Fig. 11). Over the same regions, soil moisture tends to have

higher temporal variability, which increases the potential

for strong land–atmosphere coupling and large SMAP DA

TABLE 4. Mean of the absolute differences (Fig. 9; supplemental Table S3) (top half of table) and RMSD of WRF SMAP DA and no-

DAestimates (bottomhalf of table) for land–atmosphere variables of interest, computed from the coupledGPLLJ (C), uncoupledGPLLJ

(UC), and combined (A) jet samples over the SCP (n 5 75) and GPLLJ entrance, core, and exit sectors (see Table 1 for sample sizes).

SCP GPLLJ entrance GPLLJ core GPLLJ exit

Valid time Variable (units) C UC A C UC A C UC A C UC A

Mean of WRF SMAP DA and no-DA absolute differences

1300 UTC Day 0 SM (kgm22) 1.3 1.5 1.4 1.2 1.7 1.5 1.4 1.6 1.5 0.9 1.1 1.0

2100 UTC Day 0 SH (Wm22) 12 13 13 14 15 15 14 14 14 7 6 7

LH (Wm22) 14 16 15 16 18 17 15 17 16 8 8 8

Q2 (g kg21) 0.14 0.19 0.17 0.13 0.21 0.18 0.19 0.22 0.21 0.09 0.10 0.10

T2 (8C) 0.15 0.17 0.16 0.13 0.18 0.16 0.21 0.21 0.21 0.11 0.11 0.11

PBLH (m) 45 52 49 54 69 64 53 65 60 26 27 27

0900 UTC Day 1 W850 (m s21) 0.58 0.60 0.59 0.23 0.43 0.35 1.05 1.08 1.07 1.12 1.01 1.05

0000–1200 UTC Day 1 P (mm) 0.5 0.4 0.4 0.1 0.2 0.2 0.7 0.9 0.8 1.5 1.6 1.5

WRF SMAP DA and no-DA root-mean-square differences

1300 UTC Day 0 SM (kgm22) 2.6 2.8 2.7 2.1 2.8 2.6 2.8 3.0 2.9 2.1 2.1 2.1

2100 UTC Day 0 SH (Wm22) 23 23 23 22 24 23 25 25 25 16 12 14

LH (Wm22) 25 28 27 25 28 27 27 30 29 18 16 17

Q2 (g kg21) 0.24 0.31 0.28 0.22 0.32 0.29 0.30 0.35 0.33 0.17 0.20 0.19

T2 (8C) 0.24 0.26 0.25 0.21 0.26 0.24 0.32 0.31 0.31 0.20 0.18 0.19

PBLH (m) 113 110 111 105 126 118 124 136 131 67 78 74

0900 UTC Day 1 W850 (m s21) 1.26 1.23 1.24 0.46 0.91 0.77 1.88 1.90 1.89 2.06 1.89 1.95

0000–1200 UTC Day 1 P (mm) 3.1 3.0 3.0 1.3 1.6 1.5 3.1 4.0 3.7 4.7 5.2 5.1

Sample size 3104 47.0 65.2 112.2 5.3 8.9 14.2 18.5 25.4 44.0 11.0 20.8 31.8
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impacts (e.g., Dirmeyer and Halder 2017). Overall, SMAPDA

tends to decrease soil moisture and increase winds, which

serves to reduce NU-WRF’s negative wind speed bias relative

to RAP analysis (Figs. 3, 4).

The placement, timing, and range of SMAP DA-related

sensitivities obtained through real case studies herein are

consistent with those estimated by Campbell et al. (2019) in

an idealized low-level jet experiment using prescribed soil

FIG. 10. (a) MeanWRF no-DA 1300 UTC SM0–10cm and 0900 UTCW850 as a function of elevation. Also shown

is mean (m) WRF SMAP DA minus no-DA 0900 UTC W850 and MAD as a function of (b) elevation, (c) no-DA

SM0–10cm, and (d) no-DA 0900 UTC W850. Colored lines chart the bin means of the 75-jet total (black), 32-jet

coupledGPLLJ (blue), and 43-jet uncoupledGPLLJ (red) samples. All land grids within the SCP are included. For

elevation [(a) and (b)] andW850 [(d)] the bins are sized at 5% of the sample size, whereas for SM0–10cm [(c)] the bin

sizes average 10% of the sample size. Vertical gray lines denote the bin edges.

TABLE 5. Summary of true geographic sector midpoints for this study’s coupled (C) and uncoupled (UC) GPLLJ samples. Two

midpoint estimates are provided: the first is based on sector centers only, regardless of whether they fall within the modeled domain, and

the second is based on only those grids/data pairs included in the analysis (i.e., all land grids below the 850-hPa pressure level within both

the 345-km jet sector radius and the modeled domain).

Entrance Core Exit

C GPLLJ UC GPLLJ C GPLLJ UC GPLLJ C GPLLJ UC GPLLJ

Computed from sector centers only

Lat 27.43 27.93 39.32 38.45 45.62 43.25

Lon 2102.81 2102.67 299.33 299.14 294.43 294.87

Computed from contributing grids within sector radius and modeled domain

Lat 29.46 30.33 39.51 38.61 43.10 42.58

Lon 2102.25 2101.92 299.10 298.97 294.63 295.05
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moisture extremes. Jointly, the studies demonstrate the ability

of regional soil moisture differences to significantly modify

sensible and severe weather parameters in a low-level jet en-

vironment. A clear potential benefit of improved wind speed

estimates during jet events and their commonly associated

severe weather outbreaks is higher-accuracy wind damage risk

assessments. Another potential benefit is improved forecasts of

wind energy ramp-up and ramp-down events.

Important is that the magnitude and sign of the SMAP DA

forecast increment can vary significantly according towhether the

jet is coupled or uncoupled to the upper-level atmospheric cir-

culation. For example, of the jets considered, uncoupled jets tend

to be strengthened at their exit sector (i.e., extended in length)

whereas coupled jets tend to beweakened at their exit sector (i.e.,

shortened), which is related to SMAPDA-induced increases and

decreases in daytime PBLH, respectively (Figs. 5, 8, 9). Overall,

SMAP DA-induced differences are largest in the case of un-

coupled jets for all land–atmospheric variable fields investigated

except precipitation. On physical grounds, this result is expected

because uncoupled jets have weaker large-scale forcing.

These initial jet-relative analyses of SMAP DA forecast

contributions provide a solid foundation for additional follow-

on studies. From a process-understanding standpoint, large

ensemble idealized studies (e.g., Judt and Chen 2016) are re-

quired to further probe uncoupled and coupled jet differences.

For example, uncoupled jets tend to be weaker jets to begin

with (Burrows et al. 2020) and tend to occur in June–August

when it is dry and soil moisture variability, and likely, SMAP

DA’s added value is low. Future process-level sensitivity ana-

lyses will target improved understanding and characterization

of the regional source(s) and scales of soil moisture/surface

temperature gradient-induced variability in both uncoupled

and coupled jet events. This study also revealed important

TABLE 6. Summary of the mean elevation, 2100 UTC Day 0

PBLH, and 1300 UTC Day 0 SM0–10cm for each GPLLJ sector and

the SCP, for the coupled (C) GPLLJ, uncoupled (UC)GPLLJ, and

all GPLLJ samples (see Table 1 for sample sizes). Boldfaced sta-

tistics are significantly different between jet classes at the a 5 0.1

level. See Figs. S9–S11 in the online supplemental material for the

full histograms.

Sector C GPLLJs only UC GPLLJs only All GPLLJs

Elevation (m)

SCP 498 498 498

Entrance 887 865 873

Core 673 676 675

Exit 499 444 465

PBLH (m)

SCP 1512 1630 1579

Entrance 1986 2042 2021

Core 1333 1565 1467

Exit 1184 1238 1219

SM0–10cm (kgm22)

SCP 30.5 30.6 30.6

Entrance 26.7 27.0 26.9

Core 29.2 29.3 29.3

Exit 29.6 31.0 30.5

FIG. 11. MAD between WRF SMAP DA and no-DA 0900 UTC W850 over the SCP as a function of no-DA W850 partitioned by

(a) SM0–10cm, (b) elevationh, and (c)NLCD40 land-cover class (lc) for the total 75-jet sample. SM0–10cm and elevation subsamples (e.g., SM0–10cm,
27 kgm22) correspond to quantiles of their total SCP distribution. In (c), the number of grids per lc is 817 for evergreen needleleaf forest

(ENF), 2344 for pasture/hay, 929 for deciduous broadleaf forest (DBF), 2512 for shrubland, 3671 for crops, and 4358 for grassland.
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variations in the timing and magnitude of SMAP DA effects

along the jet axis which will need to be further investigated and

may ultimately necessitate varying the time of analysis for each

jet sector. Moving radially outward from the jet axis, mean

absolute wind speed differences due to SMAP DA decrease

linearly (Fig. S13 in the online supplemental material).

Future modeling experiments will minimally 1) include a

larger number of jet cases (e.g., n. 300), 2) continuously track

and define low-level jet sectors within WRF, 3) include the

more physically representative Noah-MP land scheme (Niu

et al. 2011; Yang et al. 2011), and 4) be conducted over an

expanded modeling domain that captures the full south-north

extent of the GPLLJ corridor (i.e., 208–608N). Optimally, the

next experiment will include multisensor and multivariate land

DA (e.g., Kumar et al. 2019) in a strongly coupled modeling

system. For example, it would be desirable to assimilate veg-

etation optical depth and soil moisture retrievals from both

SMAP and SMOS. Lin and Pu (2019) found that although

weakly coupled SMAPDA, as implemented in this study, has a

beneficial impact on forecast RMSE and bias of 2-m temper-

ature and humidity over the Great Plains, the benefit of

strongly coupled SMAP DA is even greater. Thus, it is im-

portant to conclude by stating that the jet sector-relative

SMAP DA-induced forecast differences presented here using

weakly coupled DA are likely underestimates of the potential

SMAP DA impact on GPLLJ simulations.
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