
Data Deduplication with Random Substitutions
Hao Lou, Farzad Farnoud

Electrical and Computer Engineering, University of Virginia, VA, USA. Email: {hl2nu,farzad}@virginia.edu

Abstract—Data deduplication saves storage space by identify-
ing and removing repeats in the data stream. In this paper, we
provide an information-theoretic analysis of the performance of
deduplication algorithms with data streams where repeats are
not exact. We introduce a source model in which probabilistic
substitutions are considered. Two modified versions of fixed-
length deduplication are studied and proven to have performance
within a constant factor of optimal with the knowledge of repeat
length. We also study the variable-length scheme and show that
as entropy becomes smaller, the size of the compressed string
vanishes relative to the length of the uncompressed string.

I. INTRODUCTION

The task of reducing data storage costs is gaining increasing
attention due to the explosive growth of digital data, espe-
cially redundant data [1]–[3]. Compared with traditional data
compression approaches, data deduplication is more efficient
in dealing with large scale data. It has been widely used
in mass data storage systems, e.g., LBFS (low-bandwidth
network file system) [4] and Venti [5]. In this paper, we
study the performance of data deduplication algorithms when
repeated data segments are not necessarily exact copies from
an information-theoretic point of view.

In general, a typical data deduplication system uses a
chunking scheme to cut the data stream into multiple data
“chunks” [6]. The chunks can be of equal length (fixed-length
chunking) or of lengths that are content-defined (variable-
length chunking) [7]. The fixed-length scheme has low com-
plexity but suffers from the boundary-shift problem since the
boundaries of the chunks do not necessarily align with the
boundaries of repeated substrings, thus making the copies
different from each other. In the variable-length scheme, chunk
breakpoints are determined by some pre-defined patterns and
therefore repeated data segments can be identified regardless
of their positions. The chunks are processed sequentially. Each
chunk is put into the dictionary at the first occurrence, and the
duplicates are replaced by pointers to the dictionary.

An information-theoretic analysis of deduplication algo-
rithms was first performed by Niesen [8]. Niesen’s work
introduced a source model, formalized deduplication algo-
rithms in both fixed-length and variable-length schemes, and
analyzed their performance. We adopt a similar strategy in
this paper. The source model introduced by Niesen produces
data strings that are composed of blocks with each block
being an exact copy of one of the source symbols, where the
source symbols are pre-selected strings. In practice it is often
the case, however, that the copies of a block of data that is
repeated many times are approximate, rather than exact. This
may occur, for example, due to edits to the data, or in the case

of genomic data1, due to mutations. Thus, in our source model,
we add probabilistic substitutions to each block, resulting in
data strings composed of approximate copies of the source
symbols.

We analyze data deduplication in both the fixed-length
scheme and the variable-length scheme. For the fixed-length
scheme, two simple modifications of the formalized algorithm
in [8], the double fixed-length deduplication and the fixed-
length edit-distance deduplication, are presented and analyzed.
We show that when all source symbols have the same length,
these modified versions of the fixed-length algorithm perform
well with proper choices of parameters while the conventional
algorithm fails. For sources with random symbol lengths,
we show that the variable-length scheme can achieve large
compression ratios relative to the uncompressed length.

A large amount of work has been done in the area of
data deduplication and [6] serves as a comprehensive sur-
vey. Besides [8], [10] also analyzed deduplication from an
information-theoretic point of view but with a different source
model and algorithm. The problem of deduplication under edit
errors was also considered in [11]. While [11] focuses on
performing deduplication of two files, one being an edited
version of another by insertions and deletions, we consider a
single data stream with substitution errors.

The rest of the paper is organized as follows. Notation
and preliminaries are given in the next section. In section III,
we present the information source model. In Section IV, we
formally describe the deduplication algorithms and give our
metric of performance. Bounds on the performance of algo-
rithms in fixed-length schemes and variable-length schemes
are derived in Sections V and VI, respectively. Due to space
limitation, some of the proofs are omitted or sketched.

II. PRELIMINARY

Let the alphabet Σ be {0, 1}. The set of all finite strings
over Σ is denoted Σ∗. For some positive integer m, let Σm be
the set of all strings of length m over Σ. Strings are denoted
by boldface letters such as x, while symbols by normal letters
such as x. For any strings u,v ∈ Σ∗, the concatenation of u
and v is denoted uv and the concatenation of i copies of u is
denoted ui. The length of u is denoted by |u|. The cardinality
of some set S is also denoted by |S|.

In this paper, all logarithms are to base 2. For any 0 ≤ x ≤
1, we use H(x) to denote the binary entropy function, i.e.,
H(x) = x log(1/x) + (1 − x) log(1/(1− x)). For any event
E , we use Ec to denote the complement of E .

1Repeats are common in genomic data. For example, a majority of the
human genome consists of interspersed and tandem repeated sequences [9].

The k-runlength-limited (k-RLL) strings [12] are binary
strings in which the runs of 0’s have length at most k − 1.
For any nonnegative integer n, we denote the set of all k-
RLL strings of length n by Rn

k .
Next, we give two lemmas that will be used in the rest of

the paper. Both Lemmas 1 and 2 below can be proven by
induction, but the proofs are omitted.

Lemma 1. The number of k-RLL sequences of length n, |Rn
k |,

is less than 2(2− 1/2k)n.

Lemma 2. For any x ∈ (0, 1) and positive integer n,

max(0, 1− nx) ≤ (1− x)n ≤ max(1/2, 1− nx/2).

III. SOURCE MODEL

The source model studied in this paper extends the one
described in [8] by allowing probabilistic substitutions. We
also adopt the notation of [8] to the extent possible for the sake
of consistency. Let the source alphabet be X , with |X | = A.
Specifically, the source alphabet X contains A strings over
Σ, denoted X1, . . . ,XA. Fix a probability distribution Ps over
N>0 with mean L. The A source symbols X1, . . . ,XA are
generated iid as follows. For each 1 ≤ a ≤ A, Xa is chosen
from ΣLa uniformly at random, where La is a positive integer
drawn independently of other quantities from the distribution
Ps. To simplify some of the derivations, we adopt the same
assumption as in [8] that Ps is concentrated around its mean,
specifically, Ps(L/2 ≤ La ≤ 2L) = 1 for all a.

After generating the source alphabet X , we generate the
source string s in the following way. Choose B strings
Y ′
1 , . . . , Y

′
B independently uniformly at random from X with

replacement. For every Y ′
b , we flip each of its bits with

probability δ as a way to simulate edits and other changes to
the data in a simple manner. We will refer to δ as the error rate.
The modified version of Y ′

b will be denoted Yb and referred to
as a source block. The source string s is then constructed to
be the concatenation of Y1, . . . , YB , i.e., s = Y1 · · ·YB . The
entropy of this source is denoted H(s).

Note that each Yb is an altered version of some source
symbol in X . We say that Yb is a descendant of Xa if Y ′

b = Xa.
For a fixed source alphabet X = {X1, . . . ,XA} and source
string s, we denote the set of all descendants of Xa in s by
Y (Xa).

In this paper, we study the asymptotic regime in which
B → ∞. The error rate δ is a constant. We assume that
L = B1/k for some constant k > 1, reflecting the larger size
of the data set relative to the length of individual elements.
We also assume A = o(B1−ϵ) for some 0 < ϵ < 1 to ensure
that, on average, each symbol is repeated many times and thus
deduplication can be effective. Under these assumptions, we
compute the entropy of our source model in the following
lemma with the proof omitted.

Lemma 3. As B → ∞, the entropy of the above source model
H(s) satisfies

H(δ)BL ≤ H(s) ≤ H(δ)BL+ o(BL).

Let El be the event that |Y (Xa)| ≥ B
2A for all a and Eu be

the event that |Y (Xa)| ≤ 3B
2A for all a. We have

Pr(El) ≥ 1−Ae−
B
8A , Pr(Eu) ≥ 1−Ae−

B
10A , (1)

as a direct consequence of the Chernoff bound and the union
bound. Since B/10A−logA goes to infinity, the probability of
El goes to 1 (also true for Eu). Therefore, in the performance
analysis of deduplication algorithms in Sections V and VI,
we will focus on the case when El or Eu is true and show
that the effect on the performances when Ec

l or Ec
u holds is

asymptotically negligible.

IV. DEDUPLICATION SCHEMES AND
PERFORMANCE METRIC

A. Deduplication schemes

We next describe the deduplication algorithms that are
studied in this paper.

The double fixed-length deduplication algorithm has two
parameters, segment length D and chunk length ℓ, ℓ ≤ D.
The source string s is first parsed into segments of length
D, denoted by S1, . . . , SK with K = ⌈|s|/D⌉ (SK may be of
length less than D). Next, each segment Sj will be parsed into
substrings of length ℓ, denoted Zj

1 , . . . , Z
j
C with C = ⌈D/ℓ⌉

(the last substring may be of length less than ℓ). Note that
substring number of the last segment may be less than C. The
substrings {Zj

c}c,j are then taken as chunks. The algorithm
starts by initializing an empty dictionary for storing chunks.
Next, the length of the source string |s| is encoded by a prefix-
free code to make sure the whole scheme is prefix-free. Then
the chunks {Zj

c}c,j will be encoded sequentially. If any chunk
Zj
c is not in the dictionary, this chunk will be encoded with

a 1 followed by itself, and Zj
c is added into the dictionary. If

chunk Zj
c is already in the dictionary, then it will be encoded

with a 0 followed by a pointer to the dictionary. The number
of bits fixed-length deduplication takes to encode s is denoted
LF (s).

In the fixed-length edit-distance deduplication algorithm,
two parameters, chunk length ℓ and edit distance t, t ≤ 1

2ℓ,
are fixed. The source string s is parsed into substrings of
length ℓ, denoted by Z1, . . . , ZC with C = ⌈|s|/ℓ⌉. The
algorithm again initializes an empty dictionary and encodes
the length of the source string |s|. Next, for each chunk Zc,
it is encoded with a 1 followed by itself if there exist no
string within Hamming distance t of Zc in the dictionary. If
there exists a string in the dictionary that is within Hamming
distance t of Zc as a reference, then Zc will be encoded with
a 0 followed by a pointer to the dictionary and the positions
that the reference string and Zc differ. Since we only encode
the difference within Hamming distance t, we need at most
log

∑︁t
i=0

(︁
ℓ
t

)︁
+ 1 ≤ ℓH(t/ℓ) + 1 bits. The number of bits

needed by fixed-length edit-distance deduplication for source
string s is denoted by LED(s).

The variable-length deduplication algorithm is formalized
in [8] and restated here. We fix the all-zero string of length
M , 0M , to be the marker. The source string s is then split

into chunks by this marker. Specifically, the source string s is
parsed as s = Z1 · · ·ZC , where each Zc (except perhaps the
last one) contains a single appearance of 0M , which appear
at its end. After splitting s into the chunks {Zc}c, the same
encoding process as in double fixed-length deduplication will
be conducted. The expected number of bits for variable-length
deduplication to encode s is denoted LV L(s).

In all three algorithms, the pointer for some chunk z that
is already in the dictionary can be encoded in log|Tz| + 1
bits, where |Tz| is the size of the dictionary at the time z
is processed for the first time. In the following, when the
chunking scheme is clear from the context, we use T to denote
the final dictionary after the chunking phase is complete. For
any string w, we use w ∈ T to denote the event that w appears
as a chunk.

B. Performance metric

We measure performance of the deduplication algorithms
as source model parameters increase along with B. Since the
entropy of the source model is asymptotically H(δ)E[|s|] by
Lemma 3, we are particularly interested in the performance
for different values (but fixed as B → ∞) of δ, especially
when δ is close to 0. For an algorithm with expected number
of bits normalized by the expected length of the source string
being R, e.g., R = E[LF (s)]/E[|s|], we consider it to behave
poorly if there exists constant c such that R ≥ c for all δ.
We say the algorithm is within a constant factor of optimal if
there exists a constant c such that R ≤ cH(δ) for all δ.

V. FIXED-LENGTH DEDUPLICATION

In this section, we derive bounds on the performance of
the fixed-length chunking schemes over the source model
described in Section III. It is pointed out by [8] that when the
source symbols all have the same length (Ps is degenerate),
fixed-length deduplication preforms well, while when symbols
have different lengths, the loss of synchronization leads to poor
performance. The question of interest is then whether fixed-
length deduplication can still perform well when symbols
have the same length but their copies in s are not exact.
Therefore, in the rest of this section, we assume the data string
is produced by the source where source symbols are all of
length L.

A. Double fixed-length deduplication

Consider the case when double fixed-length deduplication
with parameters D and ℓ is performed on data string s. If
we pick D = L with some foresight, then s is first parsed
into segments being exactly the source blocks Y1, . . . , YB . We
assume that ℓ divides L for simplification of the derivations,
it will be clear from the proofs that this assumption leads to
no loss of generality. Let C = L/ℓ. Each Yb, 1 ≤ b ≤ B,
is then parsed into chunks Zb

1, . . . , Z
b
C with

⃓⃓
Zb
c

⃓⃓
= ℓ for all

1 ≤ c ≤ C. Therefore, for double fixed-length chunking, T is
the set {Zb

c}b,c and for any w ∈ Σℓ, w ∈ T is equivalent to
w = Zb

c for some b, c.

Lemma 4. Let s be parsed into chunks {Zb
c}b,c by the double

fixed-length chunking scheme with parameters D = L and ℓ.
We have

Pr(w ∈ T |El) ≥
1

2
Ed

[︁
min

(︁
1, BLδd(1− δ)ℓ−d/(2ℓ)

)︁]︁
, (2)

Pr(w ∈ T |Eu) ≤
AL

ℓ
Ed

[︁
min

(︁
1, 3Bδd(1− δ)ℓ−d/(2A)

)︁]︁
,

(3)

where d is a random variable with distribution Pr(d = x) =(︁
ℓ
x

)︁
/2ℓ, x = 0, 1, . . . , ℓ.

The proof of Lemma 4 is omitted due to space limitation.
Note that as a direct consequence of Lemma 4, we have that
the probability of w appearing as a chunk in the first half of
s given El is at least

1

2
Ed

[︁
min

(︁
1, BLδd(1− δ)ℓ−d/(4ℓ)

)︁]︁
. (4)

Theorem 5. Consider the source model in which source
symbols have the same length L. For the double fixed-length
deduplication with D = L, we have

E[LF (s)]/E[|s|] ≥
1

32
(1 + o(1)), as B → ∞,

if logBL
H(δ) ≤ ℓ ≤ L or ω(1) ≤ ℓ ≤ logBL

1
2 log 1/(δ(1−δ))

.

Proof: For all ℓ ≥ logBL
H(δ) , we have BL

2ℓ δ
δℓ(1−δ)ℓ−δℓ ≤ 1.

It can be shown by Lemma 4 and [13, Theorem 1] that for any
w ∈ Σℓ, Pr(w ∈ T |El) ≥ 1

16
BL
ℓ2ℓ

. The expected size of the
dictionary in bits (i.e., those bits in the compressed string that
describe a chunk observed for the first time) equals E[|T |]ℓ.
It follows that as B → ∞,

E[LF (s)] ≥ E[|T |]ℓ ≥ Pr(El)E[|T ||El]ℓ

=Pr(El)
∑︂
w∈Σℓ

Pr(w ∈ T |El)ℓ ≥
1

32
BL(1 + o(1)).

For all ℓ ≤ logBL
1
2 log 1/(δ(1−δ))

, it can be shown by (4) and
Markov’s inequality that given El, with probability at least 1

5 ,
1
16 of the total 2ℓ length-ℓ strings will appear in the first half
of s. Let T1/2 denote the dictionary for the first half of s.
Any chunk in the second half is encoded either in full or via
a pointer to the dictionary. As B → ∞, E[LF (s)] is greater
than

Pr(El)E
[︁
min

(︁
log

⃓⃓
T1/2

⃓⃓
, ℓ
)︁
·BL/(2ℓ)|El

]︁
≥ BL

10
(1 + o(1)).

Note that by letting ℓ = L, the double fixedlength dedupli-
cation becomes the standard fixed-length deduplication with
chunk length L, which is shown in [8] to be close to optimal
on the source model with 0 error rate. From Theorem 5 we
can see that even with the knowledge of L, not choosing ℓ
properly (e.g., setting ℓ = L as in the regular algorithm) can
cause E[LF (s)] to be asymptotically larger than entropy by an
arbitrarily large multiplicative factor as δ goes to 0. This poor
behavior results from the fact that for large ℓ, the noisy copies

are not likely to appear multiple times and so deduplication is
ineffective, while small ℓ leads to an oversized dictionary.

Theorem 6. Consider the source model with A =
o(B1−ϵ), L = B1/k. If source symbols all have the same
length L, the performance of double fixed-length deduplication
with D = L and ℓ = γ logB

H((1+α)δ) satisfies

1 ≤ E[LF (s)]

H(s)
≤ 1

γ

(︃
1 +

1

k

)︃
H((1 + α)δ)

H(δ)
(1 + o(1)),

as B → ∞, for any 0 < γ ≤ ϵ, 0 < α ≤ 1
2δ − 1.

Proof: Since the Elias [14] code allows us to encode the
length of s in 2 logBL+ 3 = o(BL) bits, and since H(s) =
Θ(BL), the contribution of encoding the length of s to LF is
negligible (absorbed into the o(1) term above).

Next, we compute the bits used for the dictionary (the first
time some chunk appears) in two cases, Eu and Ec

u. Since there
are always at most BL/ℓ chunks in dictionary and each costs
ℓ + 1 bits, we have Pr(Ec

u)E[|T ||Ec
u](ℓ + 1) = o(1) by (1).

While given Eu, it can be shown by Lemma 4, Lemma 2 and
the Chernoff bound that for any w ∈ Σℓ, any 0 < α ≤ 1

2δ −1,

Pr(w ∈ T |Eu) ≤
AL2ℓH((1+α)δ)

ℓ2ℓ
+

3BL

2ℓ2ℓ
e−

α2δℓ
2+α

=
o(B)L

ℓ2ℓ
+ o(1). (5)

Thus, E[|T ||Eu] ≤
∑︁

w∈Σℓ Pr(w ∈ T |Eu) = o(B)Lℓ + o(B).
So the chunks in the dictionary, plus the bits indicating that
each one is new, take E[|T ||Eu](ℓ+ 1) = o(BL) bits. This is
again negligible.

For the length contributed by chunks represented by point-
ers, it is obvious that the dictionary size is at most BL/ℓ so
log |T |+1 ≤ logBL. Moreover, there are at most BL

ℓ chunks.
The total length of the pointers and their indicator bits is then
at most

E[(log|T |+ 1) ·BL/ℓ] =
1

γ
(1 +

1

k
)H((1 + α)δ)BL,

completing the proof.
It can be shown that for any δ, there exist α such that H((1+

α)δ)/H(δ) ≤ 2. If we pick γ = ϵ, Theorem 6 shows that for
any δ, there exists ℓ such that E[LF (s)]/H(s) ≤ 2

ϵ (1+ 1/k),
which means that the double fixed-length algorithm is within
a constant factor of optimal.

B. Fixed-length edit-distance deduplication

Theorem 7. For the source model in which source symbols
have the same length L, the performance of fixed-length edit-
distance deduplication with ℓ = L and t = 2(1+β)δL satisfies

E[LED(s)]

H(s)
≤ H(2(1 + β)δ)

H(δ)
(1 + o(1)),

as B → ∞ for any β > 0.

Proof: For the source string s = Y1 · · ·YB , we know that
each Yb is descendant of one of the source symbols. Let E3 be
the event that every block Yb has Hamming distance at most

(1 + β)δL from its parent. We have, by applying the union

bound and the chernoff bound, 1− Pr(E3) ≤ Be−
β2

2+β δL.
Given E3, it can be shown that there are at most A strings in

the dictionary. So for encoding all strings in the dictionary, we
need at most A(L+1) bits. The pointers plus the description
of the difference between the current chunk and the referenced
chunk need at most B[1+(logA+1)+(H(2(1+β)δ)L+1)]
bits. With the addition of the 2 logBL+3 bits for encoding the
length, we have E[LED(s)|E3] ≤ H(2(1+β)δ)BL+ o(BL).

If the complement of E3 holds, it can be shown in similar
fashion that E[LED(s)|Ec

3] ≤ 2BL+ o(BL). Thus,

E[LED(s)] = Pr(E3)E[LED(s)|E3] + Pr(Ec
3)E[LED(s)|Ec

3]

≤ H(2(1 + β)δ)BL+ o(BL).

Similar to Theorem 6, we can always find β such that the
fixed-length edit-distance dedupliccation achieves a constant
factor of optimal.

VI. VARIABLE-LENGTH DEDUPLICATION

In this section, we study the variable-length algorithm,
which is more widely applicable than fixed-length schemes
and does not need any extra information about the boundaries
of source blocks. We saw in the previous section for the
double fixed-length algorithm, to achieve optimality, the chunk
length should be chosen appropriately. For the variable-length
scheme, we show in the following theorem that similar to the
double fixed-length scheme, if the marker length of variable-
length deduplication is not chosen properly, then the expected
length of the compressed string will be lower bounded by a
constant regardless of how small entropy is.

Theorem 8. Consider the source model with error rate δ and
variable-length deduplication algorithm with marker length
M . Asymptotically, if 2M = o(logB) or 2M = ω(logB),
then there exists a constant c1 such that for all δ > 0,
E[LV L(s)]/BL ≥ c1.

The proof is similar to the proof of Theorem 5 and omitted
due to space limitation. Given the theorem, in the following,
we only consider marker length M such that 2M = Θ(logB)
as B → ∞.

Next, we give a lemma which is an analog of the upper
bound in Lemma 4 with the proof omitted. We will use this
lemma to bound the performance of the variable-length scheme
with properly chosen marker length M .

Lemma 9. Let s = Y1Y2 · · ·YB denote the data string. For
any string w ∈ Σ∗ with |w| ≤ 1

2L, let F (w) denote the event
that w appears as a substring of Yi for some i. As B → ∞,

Pr(F (w)|Eu) ≤ ALEd

[︂
min

(︂
3Bδd(1− δ)|w|−d/(2A), 1

)︂]︂
,

where Pr(d = x) =
(︁|w|

x

)︁
/2|w|, x = 0, 1, . . . , |w|.

Theorem 10. Consider the source model with A = o(B1−ϵ),
L = B1/k and error rate δ. For any 0 < α ≤ 1/(2δ)− 1, the

performance of variable-length deduplication with the optimal
marker length satisfies

E[LV L(s)]

BL
≤

(︁
c2 + 6c+ 6

)︁
e−c(1 + o(1)), as B → ∞,

where c = −W−1

(︁
−(1 + 1

k)
2F
3

)︁
,F = min

(︂
1, H((1+α)δ)

ϵ

)︂
,

and W−1 is the lower branch of the Lambert W function.

Proof: It can be shown that the expected number of bits
needed for encoding the chunks intersecting the boundaries
of source blocks (including the first and the last chunk), the
chunks of the form 0M and the chunks of length larger than
1
2L, is o(BL). The effect of these chunks will be absorbed into
the o(1) term and need not be considered further. Encoding
the length of s also takes o(BL) bits.

We first compute the expected number of bits needed for
pointers. Note that the dictionary size |T | is at most |s|/M ,
so a pointer takes at most log |s|

M +1 ≤ log|s| bits. It can also
be shown that given |s|, the expected number of chunks is
at most |s|

2M
. Therefore the expected number of bits used by

pointers is at most

E
[︁
(log|s|+ 1) · |s|/2M

]︁
≤ 2(logBL+ 1)BL/2M . (6)

Next, we compute the expected number of bits needed for
encoding the dictionary. Similar to the proof of Theorem 10,
it can be shown that the number of bits used by encoding the
dictionary given Ec

u is o(1). So in the following, we assume Eu
is true. We will give the proof for the case when H((1+α)δ) <
ϵ. The proof for the case in which H((1+α)δ) ≥ ϵ is similar.
Let ℓ0 = ϵ logB/H((1 + α)δ) and note that ℓ0 > logB. By
assumption every chunk in the dictionary is of the form v10M

for some (M − 1)-RLL string v. Moreover, for every v10M

to be parsed as a chunk, there must be a 0M right before
it. Therefore, the probability of v10M ∈ T is less than the
probability of F (0Mv10M), which is defined in Lemma 9.

Thus, let ℓ =
⃓⃓
0Mv10M

⃓⃓
, Pr(v10M ∈ T |Eu) is upper

bounded by

ALEd

[︁
min(3Bδd(1− δ)ℓ−d/(2A), 1)

]︁
≤

⎧⎪⎨⎪⎩
1, ℓ ≤ logB,
L
2ℓ
o(B), logB ≤ ℓ ≤ ℓ0,

3BL
2ℓ+1 , ℓ > ℓ0.

(7)

Next, we compute the expected number of bits needed to
encode the dictionary T . We have

E

[︄∑︂
w∈T

|w|
⃓⃓⃓⃓
Eu

]︄
=

L/2−M−1∑︂
ℓ=0

∑︂
v∈Rℓ

M−1

Pr(v10M ∈ T |Eu)(ℓ+M + 2).

(8)

We compute (8) by considering two different ranges for ℓ. It
can be shown by (7) and Lemma 1 that as B → ∞,

ℓ0−M−1∑︂
ℓ=0

∑︂
v∈Rℓ

M−1

Pr(v10M ∈ T |Eu)(ℓ+M + 2) = o(BL), (9)

and

10
-5

10
-4

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Figure 1. Upper bound on E[LV L(s)]
BL

and H(δ) vs the error rate δ, with the
optimal marker length, A = L = B1/2, α = 0.1 and δ ranging from 10−5

to 10−1.

L/2−M−1∑︂
ℓ=ℓ0−M

∑︂
v∈Rℓ

M−1

Pr(v10M ∈ T |Eu)(ℓ+M + 2)

≤ 6(1 + cM)e−cMBL+ o(BL), (10)

where cM = ℓ0/2
M+1. So by (6), (9), (10), and by ignoring

the terms of the form o(BL), we find that asymptotically
E[LV L(s)] is upper bounded by(︃

(1 +
1

k
)
H((1 + α)δ)

ϵ
2cM + 6(cM + 1)e−cM

)︃
BL. (11)

For any given c, there exists an integer value for M such that
c ≤ cM ≤ 2c. For this M , (11) is upper bounded by(︃

(1 +
1

k
)
H((1 + α)δ)

ϵ
4c+ 6(c+ 1)e−c

)︃
BL.

The desired result is obtained by choosing the value of c (and
thus M) minimizing the above expression.

For all δ such that H(δ) ≤ ϵ, there exists α such that
F = H((1 + α)δ)/ϵ, and hence the upper bound on the
normalized expected compressed length approaches 0 as δ
approaches 0. This means that as the entropy becomes smaller,
the compression ratio grows if the length of the marker is
chosen appropriately. In particular, it can be shown that the op-
timal length of the marker depends on δ, which represents the
degree of variability between the copies. For A = L = B1/2,
i.e., ϵ = 1

2 , k = 2 and α = 0.1, Figure 1 shows the upper
bound on the ratio E[LV L(s)]/BL and H(δ) as δ ranges from
10−5 to 10−1.

A Large compression ratio when entropy is small is desir-
able and variable-length deduplication achieves this. However,
it can be shown and also observed in Figure 1 that the upper
bound of the ratio E[LV L(s)]/H(s)BL given by Theorem 10
increases as δ decreases. Therefore, despite the large compres-
sion ratios, the gap to entropy may become large for small
δ. Determining whether it is indeed the case or the bound
provided here is loose is left to future work.

REFERENCES

[1] J. Gantz and D. Reinsel, “The digital universe in 2020:
Big data, bigger digital shadows, and biggest growth
in the far east”, IDC iView: IDC Analyze the future,
vol. 2007, no. 2012, pp. 1–16, 2012.

[2] D. T. Meyer and W. J. Bolosky, “A study of practical
deduplication”, ACM Transactions on Storage, vol. 7,
no. 4, p. 14, 2012.

[3] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and
S. Sengupta, “Primary data deduplicationâlarge scale
study and system design”, in Presented as part of the
2012 USENIX Annual Technical Conference (USENIX
ATC 12), 2012, pp. 285–296.

[4] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system”, in ACM SIGOPS Op-
erating Systems Review, ACM, vol. 35, 2001, pp. 174–
187.

[5] S. Quinlan and S. Dorward, “Venti: A new approach to
archival storage”, in FAST, vol. 2, 2002, pp. 89–101.

[6] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y.
Hua, M. Fu, Y. Zhang, and Y. Zhou, “A comprehensive
study of the past, present, and future of data dedu-
plication”, Proceedings of the IEEE, vol. 104, no. 9,
pp. 1681–1710, 2016.

[7] U. Manber, “Finding similar files in a large file system”,
in Usenix Winter, vol. 94, 1994, pp. 1–10.

[8] U. Niesen, “An information-theoretic analysis of dedu-
plication”, IEEE Transactions on Information Theory,
vol. 65, no. 9, pp. 5688–5704, Sep. 2019.

[9] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum,
M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle,
W. FitzHugh, et al., “Initial sequencing and analysis
of the human genome”, Nature, vol. 409, no. 6822,
pp. 860–921, 2001.

[10] R. Vestergaard, Q. Zhang, and D. E. Lucani, “General-
ized deduplication: Bounds, convergence, and asymp-
totic properties”, arXiv preprint arXiv:1901.02720,
2019.

[11] L. Conde-Canencia, T. Condie, and L. Dolecek, “Data
deduplication with edit errors”, in 2018 IEEE Global
Communications Conference (GLOBECOM), IEEE,
2018, pp. 1–6.

[12] B. H. Marcus, R. M. Roth, and P. H. Siegel, “An
introduction to coding for constrained systems”, Lecture
notes, 2001.

[13] S. Greenberg and M. Mohri, “Tight lower bound on the
probability of a binomial exceeding its expectation”,
Statistics & Probability Letters, vol. 86, pp. 91–98,
2014.

[14] T. M. Cover and J. A. Thomas, Elements of information
theory. John Wiley & Sons, 2012.

	Introduction
	Preliminary
	Source model
	Deduplication schemes and performance metric
	Deduplication schemes
	Performance metric

	Fixed-length deduplication
	Double fixed-length deduplication
	Fixed-length edit-distance deduplication

	Variable-length deduplication

