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Abstract—MicroDNAs are a type of extrachromosomal circular
DNAs found both in cell nuclei and as cell-free circulating DNA,
with links to cancer and genetic mosaicism. Research suggests
that microDNAs originate from chromosomal DNA. To better
understand the evolutionary role of microDNAEs, it is of interest
to determine if and how they interact with the chromosomal
DNA. In particular, do microDNAs re-integrate back into the
chromosomal genome? Given their circular form, if they do, this
will lead to a specific form of repeat in the genome, which we term
circular repeat. Due to the presence of mutations, these repeats
are expected to be approximate. Motivated by this question, we
develop an efficient ab initio algorithm for finding approximate
circular repeats in a given genome. The algorithm consists of
two main components. First, it performs a two-stage search to
locate candidate circular repeat patterns by identifying their
substrings. Second, it checks the validity of each candidate by
inspecting the flanking sequences of the substrings. By applying
our method to human genome chromosomes 21, 22, and Y, we
find hundreds of approximate circular repeats. Our simulation
shows that the patterns found are unlikely to be purely the result
of inherent repetitive structure of the genome, thus suggesting
that microDNAs reintegrate back into the genome.

I. INTRODUCTION

Thousands of extrachromosomal circular DNA (eccDNA)
have been found in various eukaryotes ranging from yeasts to
humans [[1]-[6]]. The majority of eccDNA in normal cells are
small in size and are called microDNA [7]-[9]. MicroDNAs
are thought to originate from genomic regions with active
chromatin marks [9]]. To better understand the function of
microDNAs, it is of interest to investigate their interaction
with the chromosomal DNA, given the frequent presence of
microDNAs in the nuclei of human and mouse cell lines [10]].
In particular, do microDNAs reintegrate back into the genome?

The mechanism for the reintegration of microDNAs into
the chromosomal DNA may consist of the following stages:
i) the circular microDNA splits at a random position and
becomes linear, ii) the linear sequence is inserted back into
the chromosomal genome at a random position and may sub-
sequently be altered by point mutations, i.e., substitutions and
indels. Now if the original microDNA is created as a result of
copying a segment of chromosomal DNA rather than excision,
this process results in the creation of a circular repeat pair.
Another possibility is that the microDNA is replicated, which
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is possible for longer sequences, and two or more copies, after
breaking at random positions and becoming linear, reintegrate
into the chromosomal genome. Depending on the form of
the insertion, the reintegration process can be either direct or
inverted. In Figure a copy of the segment ATCGGGAACC
forms a single-stranded circle. The circle is split between G
and C. The linear sequence GGGAACCATC is then inserted
back into the genome at some random position, resulting
in a direct circular repeat pair, namely, ATCGGGAACC
and GGGAACCATC. In Figure a copy of the segment
ATCGGGAACC forms a double-stranded circle. The segment
ATCGGGAACC is represented by the inner circle and its com-
plement is represented by the outer circle. The complement
circle is then split between C and T, becoming the linear
sequence CCCGATGGTT, and inserted back into the chromo-
somal sequence. This results in the inverted circular repeat
pair ATCGGGAACC and CCCGATGGTT, where ATCGGG is
the reverse complement of CCCGAT and AACC of GGTT.
Similar repeat patterns emerge if there are multiple copies of
the microDNA sequence. Given the presence of mutations,
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(a) Direct reintegration leading to an insertion of sequence
GGGAACCATC.

sy | g

CCCGATGGTT

5

——
CCCGATGGTT

ATCGGGAACC

(b) Inverted reintegration leading to an insertion of sequence
CCCGATGGTT.

Fig. 1: Reintegration of microDNA ATCGGGAACC.

circular repeat pairs resulting from microDNA reintegration
will not be exact copies but will rather be approximate. For



simplicity, these mutations are not shown in Figures [Ta]and [Tb]

Motivated by fact that microDNA reintegration may lead
to occurrences of approximate circular repeats in genomes,
we develop an efficient and parallelizable search algorithm
for such repeats and apply it to several chromosomes of the
human genome. In our analysis, we found thousands of non-
overlapping circular repeats with less than 10% mismatch in
chromosomes 21, 22 and Y. Our algorithm finds repeats in
an ab initio manner, i.e., without any prior knowledge of the
sequence. Agreement between properties of sequences that
we find and known properties of microDNAs support the
reintegration hypothesis.

To the best of our knowledge, the problem of finding
circular repeats has not been studied in the literature. The
closest related problem is the well-studied problem of finding
(linear) repeats. (see surveys [11]-[13]). In particular, maximal
repeats can be found using suffix-arrays [14] and suffix-
trees [15, Chapter 7].

The rest of the paper is organized as follows. We introduce
the necessary notation in Section Il In Section [I} we give
a detailed description of our search algorithm. Section
contains analysis results of circular repeats found in human
chromosomes. We present a simulation study, which suggests
that these repeats are not the result of chance, in Section [[V]
thus supporting the possibility of reintegration of microDNAsS.

II. PRELIMINARIES AND NOTATION

In this paper, all sequences are over the alphabet
{A,C,G, T}. Vectors and sequences are denoted by boldface
letters such as a, while scalars and alphabet symbols by
plain letters, such as x. For any two sequences w and v, the
concatenation of w and v is denoted wwv. The length of w is
denoted |w|. We shall write w = wy - - - W}y, With w; denoting
the i-th symbol in w. For 1 < i < j < |w|, wli : j] denotes
WiW;i41 - -~ w;. We write w € v if w is a substring of v. We
use the terms sequence and string interchangeably.

The reverse of a sequence w = wijws-- Wiy | is the
sequence w ! = W)y| * - wowi. For any symbol z, we use z¢
to denote its complement, with A and T being complements of
each other and similarly for C and G. The reverse complement
of w, denoted w, is obtained by reversing w and complement-
ing each symbol. As an example, the reverse complement of
w = ATCCG is w = G°C°CT°A¢ = CGGAT.

Since we consider approximate repeats, we adopt the Lev-
enshtein distance [16|, also known as the edit distance, to
measure the similarity between two strings. The Levenshtein
distance between w and v, denoted lev(w, v), is the smallest
number of point mutations required to transform w to v. We
define the mismatch ratio between w and v as

m(w,v) = lev(w, v)/min(Jwl|, |v|).

Two identical substrings that can not be further extended
form a maximal repeat pair. For example, in the sequence
ACTTGTCTTA, the overlined substrings form a maximal
repeat pair of length 3. Similarly, if two substrings are reverse

complements of each other and can not be further extended,
then they form an inverted maximal repeats pair.

III. METHODS
A. Structure of circular repeats

We start by presenting in further detail the sequence struc-
ture of circular repeats. Figure [[a] shows two possible linear
versions, ATCGGGAACC and GGGAACCATC, of one circular
microDNA. The two linear versions can be obtained from
each other by reversing the order of substrings ATC and
GGGAACC. It can be seen from this example that any exact
direct circular repeat pair must be of the form * = s185,y =
s951. Furthermore, any approximate direct circular repeat pair
has the form (s132, 858)), where s} and s} are approximate
copies of s and so, respectively.

Similarly, as shown in Figure ATCGGGAACC and
CCCGATGGTT are linear versions of two circular sequences
that are complements of each other respectively, where
ATCGGG is the reverse complement of CCCGAT and AACC
is the reverse complement of GGTT. It follows that any
inverted circular repeat pair has the form (s1s2,8182) and
any inverted approximate circular repeat pair therefore has the
form (s;s2,38)8,), where 5] and ), are approximate copies
of 51 and ss, respectively.

In the following, we use the notation (182, shs}) to refer
to a generic direct circular repeat pair and (s182,3]35) to an
inverted circular repeat pair.

B. Edit distance criterion

We now describe more precisely what is meant by an
approximate circular repeat pair. A straightforward way to
define this term would be to say x,y are «p-approximate
direct circular repeats if there exist si, 82,8}, s, such that
T = 8182, Y = 848!, and m(s182, s)s,) < . For the sake
of computational efficiency, we use a variant of this definition.
We assume that all bases are nearly equally likely to mutate,
and thus the mismatch ratio of s; and s{ is close to the
mismatch ratio of sy and s,. We thus impose the «-repeat
criterion, i.e., we search for circular repeats satisfying:

m(si,s1) <a, m(sy,sy) <a.

For inverted circular repeats, the definition is similar:
m(s1,8]) < a & m(sz,85) < . A circular repeat pair
satisfying the a-repeat criterion is called a circular a-repeat.

C. Subroutines

We use the following existing algorithms as subroutines.

Maximal repeat search: To find circular repeats, we adopt
the maximal repeat search algorithm from [15, Chapter 7],
which is capable of outputting all maximal repeat pairs of
length at least ¢ in a sequence S. The time complexity of
this algorithm is O(|S| + k), where k is the number of
maximal repeat pairs in S. We use MAX-REP() to denote this
procedure. The output of MAX-REP(S,?) is a list of tuples ,
where each tuple (u,v) represents a maximal repeat pair (or
their positions) in S with |u| = |v| > ¢. This search algorithm



mutations:

|

Fig. 2: A visualiztion of s; and s} containing common sub-
strings s1 4 and sy 5, S2 and s/, containing common substrings
824 and Sg 5.

can be slightly modified to find maximal repeats between two
sequences. In this case, we will write MAX-REP(S;#8S5,(),
the output of which is a list of tuples and each tuple (u,v)
represents a maximal repeat of length > ¢ with w € S; and
v € Sy. Note that the search of inverted maximal repeat pairs
can be achieved by applying MAX-REP() on S and S.
Wagner-Fischer algorithm: We adopt the Wagner-Fischer
algorithm for computing edit distances [17].When computing
the edit distance between two sequences w,w’, Wagner-
Fischer generates a matrix M., o+ Of size |w| x |w’| whose
(i,7)-th entry equals lev(w(l : i],w’[l : j]). After building
the matrix, lev(w,w’) is stored in the (Jw|,|w’|)-th entry.
The time complexity is O(Jw| |w’|). We write WF() for this
procedure; the output of WF(w, w’) is the matrix My, 4.

D. Algorithm outline

For simplicity of presentation, we mainly describe the
algorithm for finding direct approximate circular repeats. The
search for inverted circular repeats is performed in an analo-
gous way.

Consider the direct approximate circular repeat pair
(s182,84s}) given by Figure |2, where we have used arrows
to point out positions where s; and s} (respectively, s, and
s4,) differ due to mutations in either sequence (but for clarity
let us assume they occurred in s). It is clear that although
some positions in s} are altered, we can still find substrings
of s; and s} that form a maximal repeat pair, as the green
substrings s;, and sq; in Figure Similarly, sy and s}
contain a maximal repeat pair sy, and sa;, marked in red
in Figure [2] Taking advantage of this property, our strategy is
to first find substrings s1 4, S2.4, $1,5, S2,5 and check for ways
of extending them to form circular repeats.

The algorithm has two steps, scanning and checking. In the
scanning step, the suffix-tree maximal repeat search algorithm
finds in the genome sequence candidates of being substrings
of some circular repeat pairs. The checking step then inspects
each candidate to determine if it is in fact part of a repeat pair.
We present the pseudocode for direct circular repeats search
in a given sequence S in Algorithm [I] and discuss it in detail
below.

1) Scanning: Given S, we first search for maximal repeats,
as potential substrings of circular repeats, i.e., the strings s1 4,
S1.b, 82,4, S2,5. The search is composed of two levels. In

Algorithm 1] the first-level search is conducted in line[2] where
all maximal repeats of length at least ¢; in S are found. Next,
for each maximal repeat pair (u,v), we do the second-level
search in the neighborhoods of v and v for another pair of
maximal repeat which could potentially form a circular repeat
with u, v, and the surrounding elements. The second pair is
of length at least /5, where /5 < ¢1. The input L determines
the size of these neighborhoods, i.e., the range searched to
find the second pair of maximal repeats. Without loss of
generality, suppose u is to the left of v. We use r,, and [,, to
denote the L-substrings immediately to the right and left of
u, respectively. Similarly, we use r,, and [, to denote the L-
substrings immediately to the right and left of v, respectively.
Guided by the relative position of 81,4, S14, S2,, and so
shown in Figure 2] we next search for maximal repeat pairs
of length at least ¢5 in I, #r, and r,#l,. The second-level
search is conducted in lines [7] and [9} Each (u,v) and (w,t)
found in this way form a candidate for a circular repeat. In
line 8| and the candidates are inspected for presence of
circular repeats, via the checking module EXT-CHECKJ().

Algorithm 1 Direct Circular Repeat Pairs Search

1: procedure DI1-CIRREP-SEARCH(string S, int {1, int /o,
int L, double «)

2 for (u,v) in MAX-REP(S, ¢;) do

3 l,, = L-substring of S immediately to left of u

4: 7, = L-substring of S immediately to right of u

5: l, = L-substring of S immediately to left of v

6 1, = L-substring of S immediately to right of v

7 for (w,t) in MAX-REP(l,,#7,,{2) do

8 EXT-CHECK(S, o, u, v, w, t)

9: for (w,t) in MAX-REP(7,#l,,{2) do

10: EXT-CHECK(S, o, u, v, w, t)

The reason for performing maximal repeat search twice
with minimum lengths ¢; and /5, with /o < /¢p, is to
improve the efficiency of the algorithm. For the circular repeat
(8182, 8481), let ¢1 (resp. ¢2) denote the length of the longest
common substring of s; and s} (resp. sp and s}). In our
approach, for this repeat to be identified, it suffices to have
f1 < max(cy,ce) and o < min(ey,ce). As an alternative
to this approach, consider searching for maximal repeats of
length at least ¢ to determine the candidate set. In this case,
we require ¢ < min(cy, c2). However, searching for maximal
repeats with a smaller minimum length often leads to a much
larger number of repeats and thus higher complexity. We
overcome this problem by first searching for maximal repeats
with length > /1, leading to a smaller candidate set, and then
searching for repeats of length > ¢5 only around the repeats
in this set, rather than the whole sequence.

2) Checking: After obtaining two maximal repeat pairs
(u,v), (w,t), where u and v are within the L-neighborhoods
of each other, and so are w and ¢, we check if they can be
extended to form a circular a-repeat pair.

Let A;,B;,1 < i < 3, be as defined in Algorithm [2] and
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Fig. 3: Relative positions of u, v, w, t and their neighbors.

illustrated in Figure [3] Determining if the candidate is a valid
circular repeat is equivalent to finding a;,b;;,1 < ¢ < 4
such that (ajuasasway, bitbobsvb,) form an approximate
circular repeat pair, where asas = Ay, bobs = B, a; and
b, are suffixes of A; and B; respectively, and a, and b, are
prefixes of Az and B3 respectively, as shown in Figure 3] By
the a-repeat criterion, we need to check

m(a1’lL(12, b3’Ub4) S (e 777,((1,3’[1]6147 bltbg) S Q. (1)

Note that the ways of extending two pairs of maximal repeats
with (I)) satisfied may not be unique. So for circular repeats
that overlap significantly, we only output one. On the other
hand, the exact edit distance is an important biological statistic.
Therefore, the circular repeat pair with minimum total edit
distance, i.e.,

lev(ajuag, bsvby) + lev(azway, bitbs), 2)

that satisfies the a-repeat criterion (I)) should be identified.

The extension checking can be performed in a brute-
force way. More specifically, we can exhaustively compute
lev(ajuas, bsvby) and lev(asway, bitbs) for all choices
of ay,...,a4,bq,...,by, and choose the one that minimizes
the total edit distance. However, the time complexity is pro-
hibitive. There are in total O(L) ways of splitting A to obtain
as, a3 and also O(L) ways of splitting By to obtain bs, bs.
Fixing a2, as, by, bs, we have O(L) ways of choosing each
of ay, by, by, ay to compute the edit distances. Thus, the
process of computing edit distance needs to be performed
O(L?(L? + L?)) = O(L") times. Since each edit distance
takes O(L?) to compute by the Wagner-Fischer algorithm,
the complexity of checking for extension on each candidate
(u,v), (w,t) is O(LS), which is unfeasible even for moderate
values of L.

To reduce running time, we adopt two heuristic assumptions,
described below. The pseudocode of the checking procedure
utilizing these heuristics, for the case when the order of
appearance of these substrings in S is u, w, t, v, is shown in
Algorithm [2] First, we assume

lev(ajuag, bsvby) = lev(aq, bs) + lev(asg, by), 3

lev(agwa4, bltbg) = 16V(CL3, bl) + 16V((147 bg) ( )
Note that w, v, w,t are candidates for substrings of the cir-
cular repeat not affected by mutations (81,4, S1,5, S2,4, S2,5 i
Figure [J). Furthermore, the substrings on their sides mutate
independently from each other. Thus, the right side of (3) also
provides a reasonable proxy for the number of mutations in
the repeat. Using (@), ) can be replaced by

lev(ay, bs) + lev(asg, by) + lev(as, by) + lev(ag, ba). (4)

Algorithm 2 Checking

1: procedure EXT-CHECK(string S, double «, string wu,
string v, string w, string t)

2: A = substring of S immediately to the left of u
3: A5 = substring of S between u and w

4: A3 = substring of S immediately to the right of w
5: B; = substring of S immediately to the left of £

6: B, = substring of S between ¢ and v

7 B3 = substring of S immediately to the right of v
g  M; =WF(A['[1:|By]], B;")

9: M, = WF(AQ,Bg[l : |A2H)

10 Mz =WF(A;', B1:|As]])

11: M,y = WF(A3[1, |B2|], BQ)

12: m = argmin, Ma(x) + Mjs(|Ag| — x)

13: n = argmin, M;(|Bs| — ) + My(z)

14: dy = M1(|B2| — Tl) —+ Mg(m)

15: dy = M3(|A2‘ — m) —+ M4(n)

16: ry = dl/min(\alsi’laﬂ, |b38i’2b4‘)

17: ro = dg/min(\agsjﬂa;;\, ‘blsj,beD

18: if 1 < a and r9 < « then

19: Olltpllt (a18717aa20,38j_’aa4, blsjvbbgbgsiﬁbbzl),

di + da

Second, we also assume that for every valid circular repeat,

la1| = |bs|, laz| = |ba], las| = |b1], |as| = |bof. (5)
The purpose of making this assumption is to avoid dealing
with all possible ai, a4, by, by of different lengths. This
assumption is rather intuitive: we can extend strings that are
not of the same length with the cost of edit distance. So if there
is some underlying repeat, e.g., with |a;| # |bs|, it can still
be reported by a suitable . With assumption (3), to minimize
(@), it suffices to find the optimal |as| and |bs| (the splitting
point for As and B») since as, as, by, by (resp. be, bz, a1, a4)
are uniquely determined by |as| (resp. |bz|). Moreover, it is
clear that the choice of |as| is independent of |bs|.

In order to find the optimal |as| and |bs|, we first con-
struct the edit distance matrices by Wagner-Fischer algo-
rithm of the following four pairs of strings: (A;'[l :
Buf] B7"), (Az.Ball : [Asf]), (A7",BT'[L : [Asf]) and
(A3]1, |Bz|], B2). Denote the matrices by My, Mo, M3, My,
respectively. For a matrix M, let M(k) denote the k-th diag-
onal entry of M. It is easy to see that for |as| = m, |b2| = n,

M1(|B2|7n) = 1€‘V(CI,17 bg),
M3(|A2‘_m) = lev(a?n bl)a

Mg(m) = lev(ag, b4),
M4(n) = 16V(CL4, bg)



Indices: 23124388-23124557

GAGACGGAGTCTCGCTCTGTCGCCCAGGCTGGAGTGCAGT
GGTGTGATCTCGGCTCATTGCAACCTCCGCCTCCCGGGTT
CACGCCATTCTCCTGCCTCAGCCTCCAGAGTAGCTGGGAC
[TACAGGCGCCCACCACCATGCCCGGTAATTTTTTTITTTT

Indices: 32339577-32339746

CTTTTTTTITTTITTTITTTITTTT/GAGACGGAGTCTCACT
CTGTCGCCCAGGCTGGAGTGCAGTGGTGCGATCTCGGCTC
ACTGCAAGCTCCGCCTCCCGGGTTCACGCCATTCTCCTGC
CTCAGCCTCCCGAATAGCTGGGACTACAGGCGCCCGCCAC

CACGCCCGGCT

Fig. 4: Display of a circular repeat in chr-21.

After obtaining the matrices, we go over all values of m and
n separately and find the values that minimize the sum of
corresponding entries in M7, My, M3, My.

E. Complexity analysis

Let S, L, ¢, ¢ be as defined in We use k; to denote
the number of maximal repeat pairs found in S with length
at least /; and use ko to denote the maximum (worst-case)
number of maximal repeats found in second-level search for
all (u,v). The overall time complexity of our algorithm is
O(|S| + k1 (L + ko L?)) = O(|S| + k1ko L?).

The space complexity is dominated by the size of the suffix
tree used for the first-level search, which is O(|S]|). The
constant in O(|S|) is important and given the size of some
genomes, space complexity may become the bottleneck. We
thus provide a partitioning method that alleviates this issue and
also allows us to parallelize the algorithm, described in

F. Program output

For each circular repeat (s1s2,s5s)) that it finds, our
program outputs the following information:
o Starting indices of s18; and s)s].
o Lengths of s; and sa, (equal to |s}[, |sh|, respectively).
o Mismatch ratio of the pair (8152, s5s}), the pair (s1, s/),
and the pair (82, s5).
As an example, the following 7-tuple,

(23124388, 32339577, 147, 23,0.071,0.068, 0.087, 170),

represents a direct circular repeat we found in chromosome 21.
Indices in the tuple are indices in the sequence after tandem
repeat removal (See §III-G). We show this repeat in Figure [4]
where counterparts are marked in the same colored patterns.

G. Preprocessing

A tandem repeat is a string of nucleotides consisting of
multiple consecutive occurrences of a substring called the
motif. For example, the sequence ACTACTACT is a tandem
repeat with motif ACT. Substrings of tandem repeats can form
circular repeats. In this example, the underlined part and the
overlined part in ACTACTACT are a direct circular repeat pair.

To avoid reporting tandem repeats as circular repeat pairs, we
provide the option of removing tandem repeats before circular
repeat search by using Tandem Repeat Finder (TRF) [18]. In
all results presented in this paper, tandem repeats are removed
first.

H. Partitioning and parallelization

Depending on the length of the input sequence, the bottle-
neck of our algorithm may be the space required to build the
suffix trees. To overcome this problem, we devise a divide
and conquer approach. A helper program is first used to
equally divide the long input sequence S into n chunks, i.e.,
S=95;S;---8,, with n being large enough so that the lengths
of S;’s are manageable.

The algorithm is first executed on each S; separately, as
described in Section In this way, we are able to find
all circular repeat pairs with both components in the same
chunk. In order to find repeat pairs with components located
in different chunks, we perform a slightly modified search. For
pairs (S;,Sy) where k > j, in the first-level search in Step
of Algorithm [I, we only process maximal repeat pairs (u,v)
with v in S; and v in S;. We note that a small number of
circular repeats at the boundary of chunks may be left out in
this method. This issue can be resolved with a slightly more
complex approach of dividing S into overlapping substrings.

This strategy allows us to search for circular repeats multiple
times on short segments instead of on the entire genome.
Note that the parallelization will increase the time complexity
because maximal repeats completely contained in each S; will
be visited multiple times during the first-level search. However,
this increase is limited, because these repeat pairs will not
be processed in second-level search and checking, which cost
most of the computation.

IV. RESULTS

In this section, we present the results of applying the
proposed algorithm to chromosomes in the human genome.
We will also present a simulation study aimed at investigating
the statistical significance of the findings.

A. Circular repeat search in the human genome

We apply our program to three chromosomes of the human
genome: chromosome-Y (chr-Y), chromosome-21 (chr-21)
and chromosome-22 (chr-22)ﬂ We present below the results
with algorithm parameters ¢; = 40, {5 = 20, L = 800
and mismatch ratio « = 0.1. Note that L is the size of the
neighborhood for the second level search, and is not an upper
bound for the length of circular repeats.

The lengths of the three genome sequences after removing
tandem repeat regions are given in Table [} Table [[] gives the
number of maximal repeats and maximal inverted repeats of
lengths over 40. The total number of direct (resp. inverted)
circular repeats found in the three genome sequences is given

'The DNA sequences are available on https://www.ncbi.nlm.nih.gov/
nuccore, The NCBI reference number for chr-Y, chr-21, chr-22 are NC_-
000024.9, NC_000021.8 and NC_000022.9, respectively.


https://www.ncbi.nlm.nih.gov/nuccore
https://www.ncbi.nlm.nih.gov/nuccore

Genome  Length after removing tandem repeat regions (bp)
chr-Y 23974895
chr-22 35018961
chr-21 36454203

TABLE I: Lengths of chr-Y, chr-22 and chr-21 after tandem
repeat regions removal.

Number of

Number of maximal inverted

Genome  maximal repeat pairs repeat pairs

of length > 40 of length > 40
chr-Y 544030 540270
chr-22 1764437 1762105
chr-21 672453 670857

TABLE II: Number of maximal repeat and inverted repeat
pairs found in chr-Y, chr-22 and chr-21.

in the first column of Table (resp. Table [[V). Note that
our algorithm reports circular repeats that overlap with others.
However, overlapping circular repeats are likely to be parts of
a single reintegration pattern. To achieve more accuracy, for
two circular repeats, e.g., (x1,y,) and (x2,y,) (assuming x;
is to the left of y; and 3 is to the left of y,), if ; overlaps
with x5 and y; overlaps with y,, then we count only one
of them. The second columns of Table [l and [V] show the
number of direct and inverted circular repeats after removing
the overlaps, respectively.

Length Distribution and GC Content: Figures [5] and [6]
show the distributions of length and GC content of the non-
overlapping circular repeats found in chr-21 and chr-22. It
can be observed that in chr-21 and chr-22, for both direct
and inverted circular repeats, the length distribution has peaks
around 150 bp and 300 bp, as well as around 700 bp .
These peaks coincide with those in the length distribution of
microDNAs found experimentally as reported in [8] and also
given in Figure E] This agreement provides evidence that
microDNAs do reintegrate back into the genome. However,
we can also observe that the circular repeat lengths in our

2The data is available at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSM880928

D_1rect Non-overlapping ~ Percentage of NOR
Genome  circular ; )
repeats (NOR) with microhomology
repeats
chr-Y 6137 2126 62.5%
chr-22 3419 1749 53.1%
chr-21 4410 846 58.2%

TABLE III: Number of direct circular repeats found in chr-Y,
chr-22 and chr-21.

Ir.lverted Non-overlapping  Percentage of NOR
Genome  circular . .
repeats (NOR) with microhomology
repeats
chr-Y 6626 1816 17.1%
chr-22 3091 1525 30.9%
chr-21 427 341 17.9%

TABLE IV: Number of inverted circular repeats found in chr-
Y, chr-22 and chr-21.
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Fig. 5: Length distribution of circular repeat (non-overlapping)
found with program parameters ¢; = 40, o = 20, L = 800,
a=0.1.

result also concentrate around some other values, e.g., 1000
and 1400 bp, which are absent from Figure [/| Furthermore,
there are peaks in Figure [/| at 500-600 bp, which are absent
from all but one of our plots. The absence of long microDNAs
from experimental results may be due to the difficulty of their
amplification from random primer. Given that these longer
microDNAs can independently replicate, it seems possible that
a larger number of them would be reintegrated back into the
chromosomal genome.

Our GC content distribution has peaks at around 40% and
around 55%. The results reported in [8] only show a peak
at 55%. The discrepancies in length distribution and GC
content may result from the presence of other mechanisms
for the creation of circular repeats, factors affecting their
re-integration frequency, as well as the effect of the choice
of the program parameters. Overall the agreement between
our computational results and the available data on length
distribution and GC content suggests that microDNAs interact
with the genome.

Microhomology: 1t is reported in [[19]—-[21]] that some
microDNA sequences are flanked on both sides by a repeat
of an average length of 9-11 bp. Moreover, 2 to 15 bp repeats
of microhomology at both ends of microDNAs are found to be
enriched in all mouse tissues and human cell lines [8} Fig. 2D].
The presence of microhomology suggests production mecha-
nisms for microDNAs [8]], which is of significant biological
importance.

Therefore, we also study the presence of microhomology in
circular repeats found by our program. We adopt the setting


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM880928
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM880928
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Fig. 6: GC content distribution of circular repeated pairs (non-
overlapping) found with program parameters ¢; = 40, {5 =
20, L =800, o = 0.1.
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Fig. 7: Length distribution of microDNAs reported in [8§]].

from [8] that a (direct or inverted) circular repeat pair (x,vy)
contains microhomology if any one of &, y has the form shown
in Figure @ That is, repeats of 2 to 15 bp (red letters) exist
at the junction of the repeat string (uppercase) with flanking
string (lowercase). The percentage of non-overlapping circular
repeats found by our algorithm that contain microhomology is
given in the third columns of Table [[I] and [[V]

—
... ctccccggCAGGCACTGG. .. CAGTCCTcaggttctct . . .

|

Fig. 8: An example of a circular repeat string containing a
repeat of microhomology CAGG at the beginning and the end.

B. Simulation

In this section, we investigate whether the reported circular
repeat pairs are in fact results of microDNA reintegration.
An alternative hypothesis is circular repeats occur due to a
prevalence of repeated sequences. As an extreme example,

consider a sequence that is the concatenation of copies of s;
and s, for some s1, s2. In such a sequence, any occurrence
of s1s82 and any occurrence of s;s; form a circular repeat
pair. Similarly, for a repeat-rich genome, any two maximal
repeat pairs which happen to be located close enough may also
form approximate circular repeat pairs. Therefore, we study
whether it is likely to observe as many repeats as we reported
by chance.

We run simulations on chr-21 to test the validity of cir-
cular repeats being results of reintegration. Our strategy is
perturbing the sequence of chr-21 in a way that eliminates
existing circular repeat structures while keeping the number
of maximal repeats unchanged. We will then perform our
algorithm again on the modified sequence with the same
parameters, i.e., {1 = 40,¢2 = 20,L = 800, = 0.1, and
record the number of circular repeats found. We perform this
several times. If the number of circular repeats found after
perturbation is significantly smaller than that of the original
sequence, this provides evidence that the circular repeats found
in the original genome are not the result of the prevalence of
repeats and random chance.

In the simulation, we decompose chr-21 sequence into seg-
ments of repeat regions and non-repeat regions. Specifically,
we locate all maximal repeats and decompose chr-21 into
segments that are either covered by some maximal repeat or
contain no repeats. We choose maximal repeats of minimum
length 40 to be consistent with our choice of ¢; = 40.
After decomposition, we generate new sequences by randomly
permuting the segments. We obtained 10 perturbed sequences
by this procedure. On average, 265 non-overlapping direct
circular repeats are found with a standard deviation of 17.

Due to the high computational cost of the simulation, the
number of perturbed sequences is small, so we do not report
the p-values, but the magnitude of the difference provides
evidence against the null hypotheses. In particular, in the
original chr-21 sequence, 846 non-overlapping direct circular
repeats were found, nearly 3 times the average number in
the simulation. In summary, the number of circular repeats
found in perturbed sequences is much less than that in the
original genome sequence, indicating that circular repeat pairs
are unlikely to be solely products of the inherent repetitive
structure in genomic sequences.

V. CONCLUSION

In this paper, we described a model for microDNA rein-
tegration and the resulting insertions of circular repeats, and
presented an algorithm that efficiently searches for such cir-
cular repeats in genomic sequences. We performed a search in
human genome chr-Y, chr-22 and chr-21 and found thousands
of circular repeats. We also performed simulations that indicate
that it is unlikely that circular repeats are the result of high
repeat content and random chance.
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