
DeepSparse: A Task-parallel Framework for Sparse
Solvers on Deep Memory Architectures

Md Afibuzzaman?,†, Fazlay Rabbi?,†, M. Yusuf Özkaya‡, Hasan Metin Aktulga†, Ümit V. Çatalyürek‡
†Computer Science & Engineering, Michigan State University

‡School of Computational Science & Engineering, Georgia Institute of Technology
{afibuzza, rabbimd, hma}@msu.edu, {myozka,umit}@gatech.edu

?Co-first authors

Abstract—Data movement is an important bottle-
neck against efficiency and energy consumption in
large-scale sparse matrix computations that are com-
monly used in linear solvers, eigensolvers and graph
analytics. We introduce a novel task-parallel sparse
solver framework, named DeepSparse, which adopts
a fully integrated task-parallel approach. DeepSparse
framework differs from existing work in that it adopts
a holistic approach that targets all computational steps
in a sparse solver rather than narrowing the problem
into small kernels (e.g., SpMM, SpMV). We present
the implementation details of DeepSparse and demon-
strate its merit in two popular eigensolvers, LOBPCG
and Lanczos algorithms. We observe that DeepSparse
achieves 2× - 16× fewer cache misses across different
cache layers (L1, L2 and L3) over implementations of
the same solvers based on optimized library function
calls. We also achieve 2× - 3.9× improvement in execu-
tion time when using DeepSparse over the same library
versions.

Index Terms—Sparse solvers, task parallelism, data
dependency graphs, performance optimization.

I. Introduction

Sparse matrix computations, in the form of solvers for
systems of equations, eigenvalue problems or matrix fac-
torizations, constitute the main kernel in fields as diverse
as computational fluid dynamics (CFD), quantum many-
body problems, machine learning and graph analytics. The
scale of problems in these scientific applications typically
necessitates execution on massively parallel architectures.
Moreover, sparse matrices come in very different forms and
properties depending on application area. However, due
to the irregular data access patterns and low arithmetic
intensities of sparse matrix computations, achieving high
performance and scalability is very difficult. These chal-
lenges are further exacerbated by the increasingly complex
deep memory hierarchies of the modern architectures as
they typically integrate several layers of memory storage.
While exact specifications and number of layers change as
architectures evolve, the underlying principle of memory
hierarchy stays the same: Going farther away from the
processor, memory capacity increases at the expense of
increased latency and reduced bandwidth. As such, min-
imizing data movement across layers of the memory and
overlapping data movement with computations are keys

to achieving high performance in sparse matrix computa-
tions.
Unlike its dense matrix analogue, the state of the art

for sparse matrix computations is lagging far behind. The
widening gap between the memory system and proces-
sor performance, irregular data access patterns and low
arithmetic intensities of sparse matrix computations have
effectively made them “memory-bound” computations.
Furthermore, the downward trend in memory space and
bandwidth per core in high performance computing (HPC)
systems [1] has paved the way for a deepening memory
hierarchy. Thus, there is a dire need for new approaches
both at the algorithmic and runtime system levels for
sparse matrix computations.
In this paper, we propose a novel sparse linear algebra

framework, named DeepSparse, which aims to accelerate
sparse solver codes on modern architectures with deep
memory hierarchies. Our proposed framework differs from
existing work in two ways. First, we propose a holis-
tic approach that targets all computational steps in a
sparse solver rather than narrowing the problem into
a single kernel, e.g., sparse matrix vector multiplication
(SpMV) or sparse matrix multiple vector multiplication
(SpMM). Second, we adopt a fully integrated task-parallel
approach while utilizing commonly used sparse matrix
storage schemes.
In a nutshell, DeepSparse provides a GraphBLAS plus

BLAS/LAPACK-like frontend for domain scientists to
express their algorithms without having to worry about
the architectural details (e.g., memory hierarchy) and
parallelization considerations (i.e., determining the indi-
vidual tasks and their scheduling) [2]–[4]. DeepSparse
automatically generates and expresses the entire computa-
tion as a task dependency graph (TDG) where each node
corresponds to a specific part of a computational kernel
and edges denote control and data dependencies between
computational tasks. We chose to build DeepSparse on top
of OpenMP [5] because OpenMP is the most commonly
used shared memory programming model, but more im-
portantly it supports task-based data-flow programming
abstraction. As such, DeepSparse relies on OpenMP for
parallel execution of the TDG.
We anticipate two main advantages of DeepSparse over

a conventional bulk synchronous parallel (BSP) approach
where each kernel relies on loop parallelization and is
optimized independently. First, DeepSparse would be able
to expose better parallelism as it creates a global task
graph for the entire sparse solver code. Second, since the
OpenMP runtime system has explicit knowledge about the
TDG, it may be possible to leverage a pipelined execution
of tasks that have data dependencies, thereby leading to
better utilization of the hardware cache.

To summarize, the main contributions of this paper are:
• Introduction of a novel task-parallel sparse solver

framework with complete details in regards to the
front-end API and description of how a solver code ex-
pressed through this API is automatically converted
into a task graph,

• an extensive evaluation of the performance of
DeepSparse on two applications using a variety of
sparse matrices from different domains,

• demonstration that the proposed task-parallel frame-
work can significantly reduce misses across all cache
levels (up to 16×) as well as improve the execution
time (by up to 3.9×) compared to highly optimized
library implementations based on the BSP model.

The rest of this paper is organized as follows: Section II
describes the related work and Section III explains differ-
ent components of the DeepSparse framework. Section IV
presents the applications we used to evaluate DeepSparse.
Section V describes the experimental environment and
evaluates the proposed framework in terms of execution
time and effective last level cache utilization performance.
Finally, Section VI concludes our presentation with a
summary and future work.

II. Related Work
The most fundamental operation in sparse linear algebra

is arguably the multiplication of a sparse matrix with a
vector (SpMV), as it forms the main computational kernel
for several applications, such as, the solution of partial
differential equations (PDE) [6] and the Schrödinger Equa-
tion [7] in scientific computing, spectral clustering [8] and
dimensionality reduction [9] in machine learning, the Page
Rank algorithm [10] in graph analytics, and many others.
The Roofline model by Williams et al. [11] suggests that
the performance of SpMV kernel is ultimately bounded
by the memory bandwidth. Consequently, performance
optimizations to increase cache utilization and reduce data
access latencies for SpMV has drawn significant interest,
e.g., [12]–[15].

A closely related kernel is the multiplication of a sparse
matrix with multiple vectors (SpMM) which constitutes
the main operation in block solvers, e.g., the block Krylov
subspace methods [6], [16] and block Jacobi-Davidson
method. SpMM has much higher arithmetic intensity than
SpMV and can efficiently leverage wide vector execution
units. As a result, SpMM-based solvers has recently drawn
significant interest in scientific computing [17]–[24]. SpMM

also finds applications naturally in machine learning where
several features (or eigenvectors) of sparse matrices are
needed [8], [9]. Although SpMM has a significantly higher
arithmetic intensity than SpMV, the extended Roofline
model that we recently proposed suggests that cache band-
width, rather than the memory bandwidth, can still be an
important performance limiting factor for SpMM [17].
LAPACK [3] is a linear algebra library for solving

systems of simultaneous linear equations, least-squares so-
lutions of linear systems of equations, eigenvalue problems,
and singular value problems. LAPACK routines mostly
exploit Basic Linear Algebra Subprograms (BLAS) to
solve these problems. PLASMA aims to overcome the
shortcomings of the LAPACK library in efficiently solving
the problems in dense linear algebra on multicore proces-
sors [25], [26]. PLASMA can solve dense general systems
of linear equations, symmetric positive definite systems of
linear equations and linear least squares problems, using
LU, Cholesky, QR and LQ factorizations and supports
both single precision and double precision arithmetic.
However, PLASMA does not support general sparse ma-
trices and does not solve sparse eigenvalue or singular
value problems. PLASMA supports only shared-memory
machines.
MAGMA is a dense linear algebra library (like LA-

PACK) for heterogeneous systems, i.e., systems with
GPUs [27]–[29], to fully exploit the computational power
that each of the heterogeneous components would offer.
MAGMA provides very similar functionality like LAPACK
and makes it easier for the user to port their code from
LAPACK to MAGMA. MAGMA supports both CPU and
GPU interfaces. The users do not have to know details of
GPU programming to use MAGMA.
Barrera et. al. [30] use computational dependencies and

dynamic graph partitioning method to minimize NUMA
effect on shared memory architectures. StarPU [31] is a
runtime system that facilitates the execution of parallel
tasks on heterogeneous computing platforms, and incor-
porates multiple scheduling policies. However, the appli-
cation developer has to create the computational tasks by
themselves in order to use StarPU.
While the concept of task parallelism based on data

flow dependencies is not new, exploration of the benefits
of this idea in the context of sparse solvers constitutes
a novel aspect of this work. Additionally, to the best of
our knowledge, related work on task parallelism has not
explored its impact on cache utilization compared to the
BSP model as we do in this work.

III. DeepSparse Overview
Figure 1 illustrates the architectural overview of

DeepSparse. As shown, DeepSparse consists of two major
components: i) Primitive Conversion Unit (PCU) which
provides a front-end to domain scientists to express their
application at a high-level; and ii) Task Executor which
creates the actual tasks based on the abstract task graph

Task Identifier (TI)

do {
SpMM(Hpsi, H, psi)
dot(E, psi, psi)
daxpy(Epsi, E, psi)
daxpy(R, Hpsi,Epsi)
dot(W,Tinv, R)
dot(Wmat, W, W)
dsyevd(S, Wmat).
..
} while(!converged)

TDG Generator

Out
Data

Out
Data

In
Data

In
Data

Out
Data

Out
Data

In
Data

In
Data

SpMM dot

Core 0

Partition 0

Out
Data

Out
Data

In
Data

In
Data

Out
Data

Out
Data

In
Data

In
Data

SpMM dot

Core 2

Partition 0

Out
Data

Out
Data

In
Data

In
Data

Out
Data

Out
Data

In
Data

In
Data

SpMM dot

Core 1

Partition 0

Primitive Conversion Unit (PCU) Task Executor

Fig. 1. Schematic overview of DeepSparse.

generated by PCU and hands them over to the OpenMP
runtime for execution.

As sparse matrix related computations represent the
most expensive calculations in many large-scale scientific
computing, we define tasks in our framework based on
the decomposition of the input sparse matrices. For most
sparse matrix operations, both 1D (block row) and 2D
(sparse block) partitioning are suitable options. A 2D par-
titioning is ideal for exposing high degrees of parallelism
and reducing data movement across memory layers [32], as
such 2D partitioning is the default scheme in DeepSparse.
For a 2D decomposition, DeepSparse defines tasks based
on the Compressed Sparse Block (CSB) [13] representation
of the sparse matrix, which is analogous to tiles that
are commonly used in task parallel implementation of
dense linear algebra libraries. However, CSB utilizes much
larger block dimensions (on the order of thousands) due
to sparsity [13], [17], [33]. Consequently, DeepSparse starts
out by decomposing the sparse matrix (or matrices) for a
given code into CSB blocks (which eventually corresponds
to the tasks during execution with each kernel producing
a large number of tasks). Note that the decomposition of a
sparse matrix dictates partitioning of the input and output
vectors (or vector blocks) in the computation as well,
effectively inducing decomposition of all data structures
used in the solver code.

DeepSparse creates and maintains fine-grained depen-
dency information across different kernels of a given solver
code based on the result of the above decomposition
scheme. As such, instead of simply converting each kernel
into its own task graph representation and concatenating
them, DeepSparse generates a global task graph, allowing
for more optimal data access and task scheduling decisions
based on global information. Since the global task graph
depends on the specific algorithm and input sparse matrix,
DeepSparse will explicitly generate the corresponding task
dependency graph. While this incurs some computational
and memory overheads, such overheads are negligible. The

main reason for computational overheads to be negligible
is that sparse solvers are typically iterative, and the same
task dependency graph is used for several iterations. The
reason why memory overheads is negligible is that each
vertex in the task graph corresponds to a large set of
data in the original problem. After this brief overview, we
explain the technical details in DeepSparse.

A. Primitive Conversion Unit (PCU)
PCU is composed of two parts: i) Task Identifier, and

ii) Local Task Dependency Graph (TDG) Generator.
1) Task Identifier (TI): The application programming

interface (API) for DeepSparse is a combination of the
recently proposed GraphBLAS interface [2] (for sparse
matrix related operations) and BLAS/LAPACK [3], [4]
(for vector and occasional dense matrix related computa-
tions). This allows application developer to express their
algorithms at a high-level without having to worry about
architectural details (e.g., memory hierarchy) or paral-
lelization considerations (e.g., determining the individual
tasks and their scheduling). Task identifier parses a code
expressed using the DeepSparse API to identify the spe-
cific BLAS/LAPACK and GraphBLAS calls, as well as the
input/output of each call. It then passes this information
to the local task dependency graph generator.
TI builds two major data structures:
(i) ParserMap: ParserMap is an unordered map that

holds the parsed data information in the form of
(Key, Value) pairs. As TI starts reading and process-
ing the DeepSparse code, it builds a ParserMap from
the function calls. To uniquely identify each call in
the code, Key class is made up of three components:
opCode which is specific to each type of operation
used in the code, id which keeps track of the order
of the same function call in the code (e.g., if there
are two matrix addition operations, then the first call
will have id = 1 and the second one will have id
= 2), and timestamp which stores the line number
of the call in the code and is used to detect the
input dependencies of this call to the ones upstream.
For each key, the corresponding Value object stores
the input and output variable information. It also
stores the dimensions of the matrices involved in the
function call.

(ii) Keyword & idTracker : Keyword is a vector of
strings that holds the unique function names (i.e.,
cblas_dgemm, dsygv, mkl_dcrmm, etc.) that have
been found in the given code, and the idTracker
keeps track of the number of times that function
(Keyword) has been called so far. Keyword and
idTracker vectors are synchronized with each other.
When TI finds a function call, it searches for the
function name in the Keyword vector. If found,
the corresponding idTracker index is incremented.
Otherwise, the Keyword vector is expanded with a
corresponding initial idTracker value of 1.

Listing 1. TaskInfo Structure
struct TaskInfo
{

int opCode ; // type of operation
int numParamsCount ;
int * numParamsList ; // tile id , dimensions etc .
int strParamsCount ;
char ** strParamsList ; //i.e. buffer name
int taskID ; // analogous to id of Key Class

}

2) Task Dependency Graph Generator (TDGG): The
output of Task Identifier (TI) is a dependency graph at a
very coarse-level, i.e., at the function call level. For an effi-
cient parallel execution and tight control over data move-
ment, tasks must be generated at a much finer granularity.
This is accomplished by the Task Dependency Graph
(TDGG), which goes over the input/output data infor-
mation generated by TI for each function call and starts
decomposing these data structures. As noted above, the
decomposition into finer granularity tasks starts with the
first function call involving the sparse matrix (or matrices)
in the solver code which is typically an SpMV, SpMM
or SpGEMM operation. After tasks for this function call
are identified by examining the non-zero pattern of the
sparse matrix, tasks for prior and subsequent function calls
are generated accordingly. As part of task dependency
graph generation procedure, TDGG also generates the
dependencies between individual fine-granularity tasks by
examining the function call dependencies determined by
TI. Note that the dependencies generated by TDGG may
(and often do) span function boundaries and this is an
important property of DeepSparse that separates it from a
bulk synchronous parallel (BSP) program which effectively
imposes barriers at the end of each function call.

The resulting task dependency graph generated by
TDGG is essentially a directed acyclic graph (DAG) rep-
resenting the data flow in the solver code where vertices
denote computational tasks, incoming edges represent the
input data and outgoing edges represent the output data
for each task. TDGG also labels the vertices in the task
dependency graph with the estimated computational cost
of each task, and the directed edges with the name and
size of the corresponding data, respectively. During exe-
cution, such information can be used for load balancing
among threads and/or ensuring that active tasks fit in the
available cache space. In this initial version of DeepSparse
though, such information is not yet used because we
rely on OpenMP’s default task execution algorithms, as
explained next.

B. Task Executor
To represent a vertex in the task graph, TDGG uses

an instance of the TaskInfo structure [listing 1] which pro-
vides all the necessary information for the Task executor to
properly spawn the corresponding OpenMP task. The task
executor receives an array of TaskInfo structures [listing 1]

Algorithm 1: SpMM Kernel
Input: X[i,j] (β × β, Sparse CSB block), Y[j] (β × b)
Output: Z[i] (Dense vector block, β × b)

1 #pragma omp task depend(in: X[i, j], Y [j], Z[i])
depend(out: Z[i])

2 {
3 foreach val ∈ X[i, j].nnz do
4 r = X[i,j].row_loc[val]
5 c = X[i,j].col_loc[val]
6 for k = 0 to b do
7 Z[r× b+ k] = Z[r× b+ k] + val × Y[c× b+ k]
8 end
9 end

10 }

from the PCU that represents the full computational
dependency graph, picks each node from this array one
by one and extracts the corresponding task information.
DeepSparse implements OpenMP task based functions
for all computational kernels (represented by opCode) it
supports. Based on the opCode, partition id of the in-
put/output data structures and other required parameters
(given by numParamsList and strParamsList) found in
the TaskInfo structure at hand, Task Executor calls the
necessary computational function found in the DeepSparse
library, effectively spawning an OpenMP task.
In DeepSparse, the master thread spawns all OpenMP

tasks one after the other, and relies on OpenMP’s default
task scheduling algorithms for execution of these tasks.
OpenMP’s Runtine Environment then determines which
tasks are ready to be executed based on the provided
task dependency information. When ready, those tasks are
executed by any available member of the current thread
pool (including the master thread). Note that OpenMP
supports task parallel exeuction with named dependencies,
and better yet these dependencies can be specified as
variables. This feature is fundamental for DeepSparse to
be able to generate TDGs based on different problem
sizes and matrix sparsity patterns. This is exemplified in
Algorithm 1, where SpMM tasks for the compressed sparse
block at row i and j is simply invoked by providing the
X[i, j] sparse matrix block along with Y [j] input vector
block and Z[i] output vector block in the depend clause.
An important issue in a task parallel program is the

data race conditions involving the output data that is
being generated. Fortunately, the task-parallel execution
specifications of OpenMP requires only one thread to
be active among threads writing into the same output
data location. While this ensures a race-condition free
exeuction, it might hinder performance due to a lack of
parallelism. Therefore, for data flowing into tasks with
a high incoming degree, DeepSparse allocates temporary
output data buffers based on the number of threads and
the available memory space. Note that this also requires

task0

task1

task2

taskn-1

task0

task1

task2

taskn-1

0

1

2

…
…
…

n-1

X Y Z

b

b

b

Fig. 2. Overview of input output matrices partitioning of task-based
matrix multiplication kernel.

0

1

2

…
…
…

n-1

Y Z

task0,0 task0,1 task0,2 task0,n-1

task1,0 task1,1 task1,2

task2,0 task2,1 task2,2

taskn-1,n-1

X

b b

Fig. 3. Overview of matrices partitioning of task-based SpMM kernel.

the creation of an additional task to reduce the data in
temporary buffer space before it is fed into the originally
intended target task.

C. Illustrative Example
We provide an example to demonstrate the operation

of DeepSparse using the simple code snippet provided in
Listing 2. As TI parses the sample solver code, it discovers
that the first cblas_dgemm in the solver corresponds to a
linear combination operation (see Fig. 2), the second line
is a sparse matrix vector block multiplication (SpMM,
see Fig. 3) and the second cblas_dgemm at the end is
an inner product of two vector blocks (see Fig. 4). These
function calls, their parameters as well as dependencies are
captured in the ParserMap, Keyword, and idTracker data
structures as shown in Table I.

Listing 2. An example pseudocode
cblas_dgemm (CblasRowMajor , CblasNoTrans ,

CblasNoTrans , m, n, k, 1.0 , A, k, B, n, 0,
C, n);

SpMM(X, C, D, m, n);
cblas_dgemm (CblasRowMajor , CblasTrans ,

CblasNoTrans , n, n, m, 1.0 , D, n, C, n, 0,
E, n);

Task Dependency Graph (TDG) generator receives the
necessary information from TI and determines the tasks
corresponding to partitionings of operand data structures
of each operation, as well as their origins (whether the
necessary data are coming from another task or from a
variable). TDGG then builds the DAG of each compu-
tational kernel and appends it to the global DAG with

task0

task1

task2

taskn-1

Y Z

ta
sk

0

ta
sk

1

ta
sk

2

ta
sk

n-
1

XT
t0

t1

t2

tp

cblas_dgemm call	on	block	vector Partial	result	buffer	reduction

b

b

0 1 2 …
.

…
.

…
.

n-
1

Fig. 4. Overview of matrices partitioning of task-based inner product
kernel.

5,1,0,0,1

2,2,0,0,0,1

3,2,0,0,0,1

2,2,1,0,0,1

5,1,1,0,1

2,2,0,1,0,1

3,2,1,1,0,1

2,2,1,1,0,1

4,1,0,1,EBUF,-1

Fig. 5. Task graph for the psudocode in listing 2.

proper edge connectivity (i.e., dependencies). While gen-
erating the DAG, the TDGG also encodes the value of
the TaskInfo structure instance that represent each of the
vertices into the vertex name. The vertex naming con-
vention is <opCode, numParamsCount, numParamsList,
strParamsCount, strParamsList, taskID>. Figure 5 shows
the task dependency graph of the solver code in Listing 2
(assuming m = 100, k = 8, n = 8, CSBtile/blocksize =
50, so each input matrix is partitioned into 2 chunks).
The task executor receives an array of TaskInfo struc-

tures that contains the node information as shown in
Figure 5. The task executor goes over each of the tasks in
the array of TaskInfo structure. At first, it reads the nodes
(<5,1,0,0,1>, <5,1,1,0,1>) of the first operation and
spawns two matrix multiplication (xY) tasks with proper
input output matrices. The task executor then reads all
the task information for all SpMM tasks {<2,2,0,0,0,1>,
<2,2,0,1,0,1>, <2,2,1,0,0,1>, <2,2,1,1,0,1>} and spawns
four SpMM tasks with proper input/output matrix
blocks. Finally, the task executor reads <3,2,0,0,0,1>,
<3,2,1,1,0,1> and <4,1,0,1,EBUF,-1> and spawns two
inner product (XTY) tasks and one partial output buffer
reduction task for the inner product operation.

D. Limitations of the Task Executor
Despite the advantages of an asynchronous task-parallel

execution, the Task Executor has the following limitations:
• Synchronization at the end of an iteration: Most

computations involving sparse matrices are based on
iterative techniques. As such, the TDG generated for
a single iteration can be reused over several steps
(until the algorithm reaches convergence). However,

Data Structure Content

ParserMap <{XY, 1, 1},{<A, B>, <C>, <m, n, k>}>
<{SpMM, 1, 2},{<X, C>, <D>, <m, m, n>}>
<{XTY, 1, 3},{<D, C>, <E>, <m, n, n>}>

keyword <XY, SpMM, XTY>
idTracker <1, 1, 1>

TABLE I
Major data structures after parsing third line.

it is necessary to introduce a #pragma omp taskwait
at the end of each solver iteration and force all tasks of
the current iteration to be completed to ensure com-
putational consistency among different iterations of
the solver. For relatively simple solvers, the taskwait
clause adds some overhead to the total execution time
due to threads idling at taskwaits.

• Limited number of temporary buffers: While
OpenMP allows the use of program variables in the
dependency clauses, it does not allow dynamically
changing the variable lists of the depend clauses.
As such, the number of buffer lists in the partial
output reduction tasks need to be fixed to overcome
this issue. Depending on the available memory, there
are at most nbuf number of partial output buffers
for a reduction operation. If nbuf is less than the
total number of threads, then there might be frequent
read after write (RAW) contentions on partial output
buffers. This could be have been potentially avoided,
if the list of variables in the depend clause could have
been dynamically changed.

IV. Benchmark Applications
We demonstrate the performance of the DeepSparse

framework on two important eigensolvers widely used
in large-scale scientific computing applications: Lanczos
eigensolver [34] and Locally Optimal Block Preconditioned
Conjugate Gradient algorithm (LOBPCG) [35].

a) Lanczos: Lanczos algorithm finds eigenvalues of a
symmetric matrix by building a matrix Qk = [q1, . . . , qk]
of orthogonal Lanczos vectors [36]. The eigenvalues of
the sparse matrix A is then approximated by the Ritz
values. As shown in Algorithm 2, it is a relatively simple
algorithm consisting of an Sparse Matrix Vector Multipli-
cation (SpMV) along with some vector inner products for
orthonormalization.

b) LOBPCG: LOBPCG is a commonly used block
eigensolver based on the SpMM kernel [35], see Figure 3 for
a pseudocode. Compared to Lanczos, LOBPCG comprises
high arithmetic intensity operations (SpMM and Level-3
BLAS). In terms of memory, while the Ĥ matrix takes
up considerable space, when a large number of eigen-
pairs are needed (e.g. dimensionality reduction, spectral
clustering or quantum many-body problems), memory
needed for block vector Ψ can be comparable to or even
greater than that of Ĥ. In addition, other block vectors
(residual R, preconditioned residual W, previous direction

Algorithm 2: Lanczos Algorithm in Exact Arithmetic
1 q1 = b/||b||2, β0 = 0, q0 = 0
2 for j = 1 to k do
3 z = Aqj
4 αj = qj

T z
5 z = z − αjqj − βj−1qj−1
6 βj = ||z||z
7 if βj = 0, quit
8 qj+1 = z/βj
9 Compute eigenvalues, eigenvectors, and error

bounds of Tk
10 end

Fig. 6. A sample task graph for the LOBPCG algorithm using a
small sparse matrix.

P), block vectors from the previous iteration and the
preconditioning matrix T must be stored, and accessed
at each iteration. Figure 6 shows a sample task graph
for LOBPCG generated by TDGG using a very small
matrix. Clearly, orchestrating the data movement in a
deep memory hierarchy to obtain an efficient LOBPCG
implementation is non-trivial.

V. Performance Evaluation
A. Experimental Setup
We conducted all our experiments on Cori Phase I, a

Cray XC40 supercomputer at NERSC, mainly using the
GNU compiler. Each Cori Phase I node has two sockets
with a 16-core Intel Xeon Processor E5-2698 v3 Haswell
CPUs. Each core has a 64KB private L1 cache (32KB
instruction and 32KB data cache) and a 256KB private
L2 cache. Each CPU has a 40MB shared L3 cache (LLC).

Algorithm 3: LOBPCG Algorithm (for simplicity,
without a preconditioner) used to solve ĤΨ = EΨ

Input: Ĥ , matrix of dimensions N ×N
Input: Ψ0, a block of vectors of dimensions of N ×m
Output: Ψ and E such that ‖ĤΨ − ΨE‖F is small,

and ΨTΨ = Im
1 Orthonormalize the columns of Ψ0
2 P0 ← 0
3 for i = 0, 1, . . . , until convergence do
4 Ei = ΨTi ĤΨi
5 Ri ← ĤΨi − ΨiEi
6 Apply the Rayleigh–Ritz procedure on

span{Ψi, Ri, Pi}
7 Ψi+1 ← argmin

S∈span{Ψi.Ri,Pi}, STS=Im

trace(ST ĤS)

8 Pi+1 ← Ψi+1 − Ψi
9 Check convergence

10 end

We use thread affinity to bind threads to cores and use a
maximum of 16 threads to avoid NUMA issues. We test
DeepSparse using five matrices with different size, sparsity
patterns and domains (see Table II). The first 4 matrices
are from The SuitSparse Matrix Collection and the Nm7
matrix is from nuclear no-core shell model code MFDn.

We compare the performance of DeepSparse with two
other library implementations: i) libcsr is implementation
of the benchmark solvers using thread-parallel Intel MKL
Library calls (including SpMV/SpMM) with CSR storage
of the sparse matrix, ii) libcsb is an implementation again
using Intel MKL calls, but with the matrix being stored
in the CSB format. Performance data for LOBPCG is
averaged over 10 iterations, while the number of iterations
is set to 50 for Lanczos runs. Our performance comparison
criteria are L1, L2, LLC misses and execution times for
both solvers. All cache miss data was obtained using the
Intel VTune software.

Performance of the DeepSparse and libcsb implemen-
tations depends on the CSB block sizes used. Choosing
a small block size creates a large number of small tasks.
While this is preferable on a highly parallel architecture,
the large number of tasks may lead to significant task
execution overheads, in terms of both cache misses and
execution times. Increasing the block size reduces such
overheads, but this may then lead to increased thread
idle times and load imbalances. Therefore, the CSB block
size is a parameter to be optimized based on the specific
problem. Different block sizes we experimented with have
been 1K, 2K , 4K, 8K and 16K.

B. LOBPCG Evaluation
In Fig. 7, we show the number of cache misses at all three

levels (L1, L2 and L3) and execution time comparison
between all three versions of the LOBPCG algorithm

TABLE II
Matrices used in our evaluation.

Matrix Rows Columns Nonzeros
inline1 503,712 503,712 36,816,170

dielFilterV3real 1,102,824 1,102,824 89,306,020
HV15R 2,017,169 2,017,169 283,073,458

Queen4147 4,147,110 4,147,110 316,548,962
Nm7 4,985,422 4,985,422 647,663,919

compiled using the GNU compiler. LOBPCG is a complex
algorithm with a number of different kernel types; its task
graph results in millions of tasks for a single iteration. As
shown in Fig. 7, except for the Nm7 matrix, libcsb and
libcsr versions achieve similar number of cache misses; for
Nm7, libcsb has important cache miss reductions over the
libcsr version. On the other hand, DeepSparse achieves
2.5× - 10.7× fewer L1 misses, 6.5× - 16.2× fewer L2 misses
and 2× - 7× fewer L3 cache misses compared to the libcsr
version. As the last row of Fig. 7 shows, even with the
implicit task graph creation and execution overheads of
DeepSparse, the significant reduction in cache misses leads
to 1.2× - 3.9× speedup over the execution times of libcsr.
Given the highly complex DAG of LOBPCG and abundant
data re-use opportunities available, we attribute these
improvements to the pipelined execution of tasks which
belong to different computational kernels (see Fig. 8) but
use the same data structures. We note that the Task Ex-
ecutor in DeepSparse solely relies on the default scheduling
algorithm used in the OpenMP runtime environment. By
making use of the availability of the entire global task
graph and labeling information on vertices/edges, it might
be possible to improve the performance of DeepSparse
even further.
C. Lanczos Evaluation
In Fig. 9, cache misses and execution time comparisons

for different Lanczos versions are shown. Lanczos algo-
rithm is much simpler than LOBPCG, it has much fewer
types and numbers of tasks than LOBPCG (basically, one
SpMV and one inner product kernel at each iteration). As
such, there are not many opportunities for data re-use.
In fact, we observe that DeepSparse sometimes leads to
increases in cache misses for smaller matrices. However, for
the Nm7 and HV15R matrices, which are the largest ma-
trices among our benchmark set, we observe an improve-
ment in cache misses, achieving up to 2.4× fewer L1 cache
misses, 3.1× fewer L2 misses and 4.5× fewer L3 misses
than libcsr. But most importantly, DeepSparse achieves
up to 1.8× improvement in terms of execution time. We
attribute the execution time improvement observed across
the board to the increased degrees of parallelism exposed
by the global task graph of DeepSparse, which is in fact
highly critical for smaller matrices.
D. Compiler Comparison
For all of our experiments, we use OpenMP as our

backend. To explore the impact of different task schedul-

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Bi
lli
on

s

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0
1
2
3
4
5
6
7

0
2
4
6
8
10
12
14

0.00
0.06
0.12
0.18
0.24
0.30
0.36
0.42

Bi
lli
on

s

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1

0.0
0.7
1.4
2.1
2.8
3.5
4.2
4.9

0
2
4
6
8
10
12
14

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

Bi
lli
on
s

0.00
0.04
0.08
0.12
0.16
0.20
0.24
0.28

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.00
0.06
0.12
0.18
0.24
0.30
0.36
0.42

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Tim
e(s

)

0.00
0.09
0.18
0.27
0.36
0.45
0.54
0.63

0.00
0.11
0.22
0.33
0.44
0.55
0.66
0.77

0
0.2
0.4
0.6
0.8
1

1.2
1.4

0
0.4
0.8
1.2
1.6
2

2.4
2.8

L1 Misses

L2 Misses

LLC Misses

Execution Time
inline1 dielFilter HV15R Queen_4147 Nm7

Fig. 7. Comparison of L1, L2, LLC misses and execution times between Deepsparse, libcsb and libcsr for the LOBPCG solver.

Fig. 8. LOBPCG single iteration execution flow graph of dielFilterV3real.

ing approaches in different OpenMP implementations,
we have experimented with three compilers: Intel, GNU
and Clang/LLVM compilers. In Figure 10, we show the
comparison in execution time among different compilers
for the three implementations. We see that the execution
time for the Clang/LLVM compiler is significantly higher
compared to GNU and Intel compilers for all matrices.
However, cache misses stay pretty much the same when
one moves to a different compiler. We show the cache miss
comparison between the three compilers in Figure 11 for
one matrix, HV15R. All other matrices follow a similar
cache miss pattern like HV15R. Here, we can clearly see
that regardless of the compiler, DeepSparse achieves fewer
cache misses over libcsb and libcsr implementations. We
can see that Clang/LLVM shows fewer cache misses for
DeepSparse as well, but it eventually has a poor running
time. We believe that this is because Clang/LLVM is not
able to schedule tasks as efficiently as GNU and Intel.

Compared to Intel compiler , GNU compiler sometimes
shows more L1 and L2 misses. But the execution time is
higher in Intel. This may be due to the scheduling strategy
and and the implementation of task scheduling points in
the compilers. Overall, GNU does best with running times
among the three compilers, and Intel compilers do not do
well with the library based solver implementations.

VI. Conclusion
This work introduces a novel task-parallel sparse solver

framework which targets all computational steps in sparse
solvers. We show that our approach achieves significantly
fewer cache misses across different cache layers and also
improves the execution time over the library versions. Fu-
ture works will be in the direction of further reducing the
cache misses and execution time over the current versions
by experimenting with more advanced partitioning and
scheduling algorithms compared to the default schemes in
OpenMP.

0.00
0.04
0.08
0.12
0.16
0.20
0.24
0.28

Bi
lli
on

s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1

0
2
4
6
8
10
12
14

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Bi
lli
on

s

0
0.06
0.12
0.18
0.24
0.3
0.36
0.42

0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0
1
2
3
4
5
6
7

0.00
0.01
0.02
0.03
0.04
0.06
0.07
0.08

Bi
lli
on

s

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.0
0.1
0.2
0.3
0.4
0.6
0.7
0.8

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0
0.004
0.008
0.012
0.016
0.02
0.024
0.028

Tim
e(s

)

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

L1 Misses

L2 Misses

LLC Misses

Execution Time
inline1 dielfilter HV15R Queen_4147 Nm7

Fig. 9. Comparison of L1, L2, LLC misses and execution times between Deepsparse, libcsb and libcsr for the Lanczos solver.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ep
Sp
ars
e

lib
csb lib

csr

Ti
m
e(
s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

De
ep
Sp
ars
e

lib
csb lib

csr
0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

De
ep
Sp
ars
e

lib
csb lib

csr
0

0.6

1.2

1.8

2.4

3

3.6

4.2

De
ep
Sp
ars
e

lib
csb lib

csr
0

1.5

3

4.5

6

7.5

9

10.5

De
ep
Sp
ars
e

lib
csb lib

csr

Inline1 DielFilter HV15R Queen_4147 Nm7

Fig. 10. Comparison of execution time for different compilers between Deepsparse , libcsb and libcsr for Lanczos Algorithm. (Blue/Left:
GNU, Red/Middle: Intel, Green/Right: Clang compiler.)

0.0
0.2
0.3
0.5
0.6
0.8
0.9
1.1

L1 L2 L3

Bi
lli
on

s

DeepSparse

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

L1 L2 L3

Libcsb

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

L1 L2 L3

Libcsr

Fig. 11. Cache Miss comparison between compilers for HV15R

Acknowledgments
This work was in part supported by the NSF under

awards CCF-1822932 and OAC-1845208, as well as the US
Department of Energy, Office of Science under the award
DE-SC0018083 (NUCLEI SciDAC-4 Collaboration). Com-
putational resources were provided by the National Energy
Research Scientific Computing Center (NERSC).

References
[1] P. Kogge and J. Shalf, “Exascale computing trends: Adjusting

to the" new normal" for computer architecture,” Computing in
Science & Engineering, vol. 15, no. 6, pp. 16–26, 2013.

[2] J. Kepner, D. Bade, A. Buluç, J. Gilbert, T. Mattson, and
H. Meyerhenke, “Graphs, matrices, and the graphblas: Seven
good reasons,” arXiv preprint arXiv:1504.01039, 2015.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammerling,
A. McKenney et al., “Lapack users’ guide, vol. 9,” Society for
Industrial Mathematics, vol. 39, 1999.

[4] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh,
“Basic linear algebra subprograms for fortran usage,” ACM
Transactions on Mathematical Software (TOMS), vol. 5, no. 3,
pp. 308–323, 1979.

[5] A. OpenMP, “Openmp application program interface version
4.0,” 2013.

[6] Y. Saad, Iterative methods for sparse linear systems. siam,
2003, vol. 82.

[7] M. Feit, J. Fleck Jr, and A. Steiger, “Solution of the schrödinger
equation by a spectral method,” Journal of Computational
Physics, vol. 47, no. 3, pp. 412–433, 1982.

[8] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering:
Analysis and an algorithm,” in Advances in neural information
processing systems, 2002, pp. 849–856.

[9] S. Wold, K. Esbensen, and P. Geladi, “Principal component
analysis,” Chemometrics and intelligent laboratory systems,
vol. 2, no. 1-3, pp. 37–52, 1987.

[10] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the web.” Stanford InfoLab,
Tech. Rep., 1999.

[11] S. Williams, A. Waterman, and D. Patterson, “Roofline: An
insightful visual performance model for floating-point programs
and multicore architectures,” Communications of the Associa-
tion for Computing Machinery, 2009.

[12] N. Bell and M. Garland, “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Proceed-
ings of the conference on high performance computing network-
ing, storage and analysis. ACM, 2009, p. 18.

[13] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E.
Leiserson, “Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks,” in Pro-
ceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures. ACM, 2009, pp. 233–244.

[14] E.-J. Im and K. A. Yelick, Optimizing the performance of sparse
matrix-vector multiplication. University of California, Berkeley,
2000.

[15] B. C. Lee, R. W. Vuduc, J. W. Demmel, and K. A. Yelick,
“Performance models for evaluation and automatic tuning of
symmetric sparse matrix-vector multiply,” in Parallel Process-
ing, 2004. ICPP 2004. International Conference on. IEEE,
2004, pp. 169–176.

[16] A. El Guennouni, K. Jbilou, and A. Riquet, “Block krylov sub-
space methods for solving large sylvester equations,” Numerical
Algorithms, vol. 29, no. 1-3, pp. 75–96, 2002.

[17] H. M. Aktulga, A. Buluç, S. Williams, and C. Yang, “Optimizing
sparse matrix-multiple vectors multiplication for nuclear con-
figuration interaction calculations,” in Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International. IEEE,
2014, pp. 1213–1222.

[18] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith,
“Toward realistic performance bounds for implicit cfd codes,”
in Proceedings of parallel CFD, vol. 99. Citeseer, 1999, pp.
233–240.

[19] X. Liu, E. Chow, K. Vaidyanathan, and M. Smelyanskiy, “Im-
proving the performance of dynamical simulations via multiple
right-hand sides,” in Parallel & Distributed Processing Sympo-
sium (IPDPS), 2012 IEEE 26th International. IEEE, 2012,
pp. 36–47.

[20] A. E. Sarıyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Regu-
larizing graph centrality computations,” Journal of Parallel and
Distributed Computing, vol. 76, pp. 106–119, 2015.

[21] M. Röhrig-Zöllner, J. Thies, M. Kreutzer, A. Alvermann,
A. Pieper, A. Basermann, G. Hager, G. Wellein, and H. Fehske,
“Increasing the performance of the jacobi–davidson method by
blocking,” SIAM Journal on Scientific Computing, vol. 37, no. 6,
pp. C697–C722, 2015.

[22] Z. Zhou, E. Saule, H. M. Aktulga, C. Yang, E. G. Ng, P. Maris,
J. P. Vary, and U. V. Catalyürek, “An out-of-core eigensolver on
ssd-equipped clusters,” in 2012 IEEE International Conference
on Cluster Computing. IEEE, 2012, pp. 248–256.

[23] H. M. Aktulga, M. Afibuzzaman, S. Williams, A. Buluç,
M. Shao, C. Yang, E. G. Ng, P. Maris, and J. P. Vary, “A
high performance block eigensolver for nuclear configuration
interaction calculations,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 6, pp. 1550–1563, 2016.

[24] M. Shao, H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and
J. P. Vary, “Accelerating nuclear configuration interaction cal-
culations through a preconditioned block iterative eigensolver,”
Computer Physics Communications, vol. 222, pp. 1–13, 2018.

[25] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Lan-
gou, H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear
algebra on emerging architectures: The plasma and magma
projects,” in Journal of Physics: Conference Series, vol. 180,
no. 1. IOP Publishing, 2009, p. 012037.

[26] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of
parallel tiled linear algebra algorithms for multicore architec-
tures,” Parallel Computing, vol. 35, no. 1, pp. 38–53, 2009.

[27] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear
algebra for hybrid GPU accelerated manycore systems,” Parallel
Computing, vol. 36, no. 5-6, pp. 232–240, Jun. 2010.

[28] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense
linear algebra solvers for multicore with GPU acceler-
ators,” in Proc. of the IEEE IPDPS’10. Atlanta,
GA: IEEE Computer Society, April 19-23 2010, pp. 1–8,
DOI: 10.1109/IPDPSW.2010.5470941.

[29] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek,
S. Tomov, and I. Yamazaki, “Accelerating numerical dense
linear algebra calculations with gpus,” Numerical Computations
with GPUs, pp. 1–26, 2014.

[30] I. S. Barrera, M. Moretó, E. Ayguadé, J. Labarta, M. Valero, and
M. Casas, “Reducing data movement on large shared memory
systems by exploiting computation dependencies,” in Proceed-
ings of the 2018 International Conference on Supercomputing.
ACM, 2018, pp. 207–217.

[31] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures,” in Euro-Par -
15th International Conference on Parallel Processing, ser.
Lecture Notes in Computer Science, vol. 5704. Delft, The
Netherlands: Springer, Aug. 2009, pp. 863–874. [Online].
Available: http://hal.inria.fr/inria-00384363

[32] E. Saule, H. M. Aktulga, C. Yang, E. G. Ng, and Ü. V.
Çatalyürek, “An out-of-core task-based middleware for data-
intensive scientific computing,” in Handbook on Data Centers.
Springer, 2015, pp. 647–667.

[33] A. Buluç and J. R. Gilbert, “Parallel sparse matrix-matrix
multiplication and indexing: Implementation and experiments,”
SIAM Journal on Scientific Computing, vol. 34, no. 4, pp. C170–
C191, 2012.

[34] C. Lanczos, An iteration method for the solution of the eigen-
value problem of linear differential and integral operators.
United States Governm. Press Office Los Angeles, CA, 1950.

[35] A. V. Knyazev, “Toward the optimal preconditioned eigen-
solver: Locally optimal block preconditioned conjugate gradient
method,” SIAM journal on scientific computing, vol. 23, no. 2,
pp. 517–541, 2001.

[36] J. W. Demmel, Applied Numerical Linear Algebra. SIAM, 1997.

