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ABSTRACT

We develop an automated technique to measure quasar redshifts in the Baryon Oscillation Spectroscopic Survey of the Sloan
Digital Sky Survey (SDSS). Our technique is an extension of an earlier Gaussian process method for detecting damped Lyman
α absorbers (DLAs) in quasar spectra with known redshifts. We apply this technique to a subsample of SDSS DR12 with BAL
quasars removed and redshift larger than 2.15. We show that we are broadly competitive to existing quasar redshift estimators,
disagreeing with the PCA redshift by more than 0.5 in only 0.38 per cent of spectra. Our method produces a probabilistic density
function for the quasar redshift, allowing quasar redshift uncertainty to be propagated to downstream users. We apply this method
to detecting DLAs, accounting in a Bayesian fashion for redshift uncertainty. Compared to our earlier method with a known
quasar redshift, we have a moderate decrease in our ability to detect DLAs, predominantly in the noisiest spectra. The area under
curve drops from 0.96 to 0.91. Our code is publicly available.

Key words: methods: statistical – quasars: absorption lines – quasars: emission lines – quasars: general.

1 IN T RO D U C T I O N

Estimating redshifts using spectroscopy is a well-explored technique
in astronomy. Spectroscopy uses the presence of lines at known
emission wavelengths to estimate the redshift of an object. While
quasi-stellar objects (QSOs, or quasars) contain multiple strong
emission lines, the presence of quasar outflows mean that these lines
often have an intrinsic Doppler shift from their rest positions, leading
to hard to quantify redshift errors (Gaskell 1982; Shen et al. 2016).
The Sloan Digital Sky Survey (SDSS; Eisenstein et al. 2011; Dawson
et al. 2013; Alam et al. 2015) presents a further challenge due to the
low signal to noise of many of the spectra. Redshift estimation in Data
Release 14 (DR14Q) is done using four different techniques. These
include principal component analysis (PCA) using DR5 as a training
sample (Hewett & Wild 2010; Schneider et al. 2010), automated
fitting to the Mg II emission line, and a partial visual inspection
survey (Pâris et al. 2018). Techniques differ, on average, by around
100 km s−1, with a velocity dispersion of ∼500 km s−1. Furthermore,
they fail to converge for about 0.5 per cent of objects. Estimation of
quasar redshift, zQSO, must be accurate to achieve the scientific goals
of spectroscopic surveys. Systematic and statistical errors in redshift
estimation reduce the strength of the Baryon Acoustic Oscillation
(BAO) signal (Dawson et al. 2016).

Each new generation of spectroscopic survey roughly doubles the
number of quasar spectra, such that DR14Q contains 1.8 × 105

quasars with Lyman α absorption in the Baryon Oscillation Spectro-
scopic Survey (BOSS; Pâris et al. 2017). The next-generation Dark
Energy Spectroscopic Instrument (DESI) will ultimately contain
7 × 105 Lyman α quasars (DESI Collaboration 2016). Algorithmic

⋆ E-mail: sbird@ucr.edu

inspection of quasar spectra, already essential, will become yet more
necessary to keep pace with data collection.

We estimate quasar redshifts using a Gaussian process (GP)
model for quasar spectra. Compared to existing redshift estimation
techniques, our model is conceptually most similar to PCA redshifts,
although we improve on them by explicitly accounting for noise
in the spectrum. All emission lines in the redshift range are fit
simultaneously. Our model uses the existing catalogue as a prior to
constrain the expected offsets of each line from the intrinsic emission
redshift. In principle, we are also able to learn correlations between
emission line width and velocity offset (Mason, Brotherton & Myers
2017).

We build on the work of Garnett et al. (2017), Bird, Garnett & Ho
(2017), and Ho, Bird & Garnett (2020). Garnett et al. (2017) built a
GP model for quasar spectra and combined it with an analytic Voigt
profile to find damped Lyman α absorbers (DLAs), strong neutral
hydrogen absorption lines corresponding to the gas surrounding high-
redshift dwarf galaxies (Wolfe et al. 1986; Prochaska & Wolfe 1997;
Haehnelt, Steinmetz & Rauch 1998; Bird et al. 2014). We extend the
emission model implicit in that work to the whole quasar spectrum
between 3000 and 910 Å. We then try to use all information about the
shape and properties of the quasar to estimate the quasar redshift. In
practice redshift estimation in our model is driven by the fit to well-
known emission peaks, especially Mg II, C III, C IV, and Lyman α.
We train the model using the SDSS pipeline quasar redshift estimate,
and use the trained model to estimate the redshift of quasars outside
the training set. To verify our method, we check our derived quasar
redshifts against the other redshift estimates included in the SDSS
catalogue and show that they are competitive to other techniques.

We also provide a modified DLA catalogue for SDSS DR12
to demonstrate that we can detect DLAs while marginalizing out
redshift uncertainty. To validate the results, we compare them to
catalogues from the template fitting code of Noterdaeme et al. (2012),
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5228 L. Fauber et al.

the SDSS visual inspection survey and the neural network based
model of Parks et al. (2018). We require three separate catalogues in
order to generate and thus compare to a ‘best two of three’ catalogue
to serve as ground truth. We emphasize that we use visual inspection,
a non-automated technique which will not be available for future data
releases, only for validation.

Section 2 defines our overall emission model, Section 3 describes
our redshift estimation, and Section 4 describes DLA finding. We
summarize the main results from Garnett et al. (2017), on which our
model is heavily based and point explicitly to changes. Our model
for DLAs includes most of the updates presented in Ho et al. (2020),
but for computational reasons finds only one DLA per spectrum and
does not include the sub-DLA model. Section 5 summarizes our
training set. Our results are presented in Section 6 and we conclude
in Section 7. Our redshift estimation code is available on GITHUB

at https://github.com/sbird/gp qso redshift. Our DLA model with
redshift estimation may be found at https://github.com/sbird/gp dla
detection/tree/zqsos2.

2 A GAUSSIA N P ROCESS MODEL FOR Q SOS

Quasar emission spectra are complex functions which do not have
a known closed parametric form. Our method builds a model for
the expected shape of a quasar emission spectrum f(λ). We use
a Gaussian process (GP; Williams & Rasmussen 2006), a non-
parametric framework able to model complex continuous functions.
Importantly, a Gaussian process can describe how variations in
the observed spectra are correlated as a function of wavelength.
The learned model will naturally include information describing
the presence of emission lines. The training set for our model is
SDSS DR12 with broad absorption line (BAL) quasars removed
and zVI < 2.15. We use SDSS visual inspection redshift estimates
during training. However, the trained model is applicable to larger,
unlabelled, data sets. After training, the learned model is used to
evaluate the likelihood function of each quasar spectrum as a function
of redshift. Our point redshift estimate is located at the maximum a
posteriori value of the likelihood function and the redshift uncertainty
is given by 95 per cent confidence intervals.

A GP is a generalization of the Gaussian distribution which
describes random functions, rather than random vectors. Naively,
we can think of a GP as a Gaussian distribution extended over an
infinite number of dimensions. It is described by a mean function,
μ(λ) and a covariance function, K(λ1, λ2). The mean describes the
average value of a draw (of a function) from the GP. The covariance
describes the correlations between any two points on the function,
f(λ1) and f(λ2). If a fixed set of regressors, for example λ1, λ2, . . . , λm,
is selected, the random function evaluated at these values generates a
set of (dependent) random variables: f(λ1), f(λ2), . . . , f(λm). In a GP,
these random variables are jointly Gaussian. Their means are just
the application of μ to the independent values, and the covariance
matrix is similarly constructed: E[f(λi)] = μ(λi) and covar[f(λi),
f(λj)] = K(λi, λj).

There are no off-the-shelf Gaussian process covariance functions
able to model the complex shape of a quasar. We thus learn a
covariance function from the training data. Our model assumes
that the emission spectrum from a QSO (in its rest frame), y, is
drawn (independently from zQSO) from a Gaussian process with mean
function μ and a covariance function K, which we denote as

p(y) = N (y; μ, K). (1)

We choose to build our GP model at the rest-frame rszQSO (λOBS).
We therefore can capture the covariance between different emission

lines from different quasars by setting them on to the same rest-
wavelength pixels. The relationship between the rest frame and
observed frame is

rszQSO (λOBS) =
1

1 + zQSO
λOBS. (2)

The Gaussian process describing the QSO spectrum can be
transformed into the observed frame, and remains a Gaussian process.
Letting ỹ be the emission spectrum in the observed frame,

p(ỹ) = N
(

ỹ; μ◦rszQSO , K◦rszQSO

)

,

(μ ◦ rszQSO )(λOBS) = μ(rszQSO (λOBS)),

(K ◦ rszQSO )(λ1, λ2) = K
(

rszQSO (λ1), rszQSO (λ2)
)

.

The observed spectrum, x, is equal to ỹ, but after absorption
between the observer and the quasar and additive noise from the
observational instrument. Calculating the scale factor 1

1+zQSO
requires

knowledge of the quasar redshift. Let D = (λOBS, x) be a set of
quasar observations in the observed frame, where λOBS is the set of
wavelengths in the observed frame, and x is the set of observed flux.
We learn our GP model D0 at rszQSO (λOBS) using a training set of ob-
servations with known quasar redshifts, D = (rszQSO (λOBS), x, zQSO),
where zQSO is the redshift estimated by the SDSS pipeline. After we
learn the GP model D0, we use observations outside the training set
D = (λOBS, x) to validate our D0.

We assume that absorption between the observer and the quasar
and additive noise from the observational instrument are independent
of each other and that both are uncorrelated between wavelength bins.
The instrument noise is modelled using a Gaussian process with a
zero mean function and a ‘diagonal’ covariance kernel. K(λ1, λ2) is
zero if λ1 and λ2 are not equal (or almost equal). Instrument noise is
a property of the survey, and is not learned during training. If KN is
the kernel for the instrument noise, the observed spectrum, x, is also
drawn from a Gaussian distribution if we condition on zQSO:

p(x|zQSO) = N
(

x; μ◦rszQSO , (K◦rszQSO )+KN

)

.

Section 4.1 describes neutral hydrogen absorbers in the intergalac-
tic medium, which are treated separately. As they do not strongly
affect the shape of the peaks which dominate the redshift estimation,
we neglect them except when finding DLAs. We have not attempted
to model BAL and have removed BAL quasars from the sample.

3 L E A R N I N G A G P FO R R E D S H I F T

ESTIMATION

In this section, we describe the modelling decisions we made
to extend our Gaussian process model, D0, for quasar redshift
estimation. D0 is a lightweight GP model and may be sampled to
obtain the likelihood of the quasar redshift, zQSO. The shape of this
likelihood in turn produces p(zQSO|x, D0), the posterior distribution
for zQSO.

The null model D0 contains information describing the average
shape of a quasar. A minimal modification of Garnett et al. (2017)
would fit this null model to different quasar redshifts. We found
however, that this minimal modification does not have sufficient
information to fit the quasar. We thus modify it in two important
ways. First, we extend the modelled Gaussian process range to
910−3000 Å, in order to encompass more emission lines, especially
Mg II. Secondly, we augment the model to explicitly model the
likelihood of observations outside the modelled redshift range. There
is thus some likelihood component for all observations and so
probabilities are comparable for the same spectrum across multiple
redshifts.

MNRAS 498, 5227–5239 (2020)
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Automated quasar redshifts 5229

3.1 Redshift prior

In this paper, we treat zQSO as a parameter to estimate, rather than
a known value. We place a bounded uniform prior on the parameter
zQSO, p(zQSO):

p(zQSO) = U[zQSOmin − zǫ, zQSOmax + zǫ], (3)

where zQSOmin and zQSOmax are the minimum and maximum quasar
redshifts. For our SDSS sample they are 2.15 and 6.44, respectively.
We extend the prior range by a small amount (zǫ = 3000 km/s) on
either side to ensure that no samples lie on the prior boundaries. We
use a uniform prior rather than a data-driven prior to demonstrate
that our method is applicable to arbitrary quasar spectra within the
prior range, rather than just the SDSS data set.1

3.2 Extended model range

The original modelling range of D0 ran from the rest-frame Lyman
limit (910 Å) to the rest-frame Lyman α (1216 Å). We extend this
range to cover much of the metal line region. In the rest frame

rszQSO (λOBS) = λrest ∈ [910 Å, 3000 Å]. (4)

An extension to 3000 Å allows us to include the Mg II emission line
(2799 Å). Mg II is a particularly valuable emission line as it is the
least affected by systemic velocity shifts (Hewett & Wild 2010; Shen
et al. 2016). The pixel spacing remains the same as that of Garnett
et al. (2017) with �λ = 0.25 Å, giving us 8 361 pixels in our GP
mean vector.

Bluewards of the Lyman limit, the occasional presence of strong
absorption from a Lyman limit system introduces substantial variance
into the model, so that it has little redshift constraining power.
Furthermore, this region is hard to train. Only relatively rare zQSO >

3.7 quasars contain rest-frame data at z < 910 Å. We thus exclude
the region bluewards of the Lyman limit from the modelling range
of the Gaussian process.

To model the relationship between quasar flux measurements and
the true QSO emission function, we have to include the correlation
between emission lines K and the instrumental noise KN. When we
are only interested in estimating redshift, we do not include the model
for neutral hydrogen absorption (‘Lyman α absorption noise’ in our
earlier papers). This model affects only the continuum bluewards
of the Lyman α peak, which has relatively large instrumental noise
compared to the metal-line region and is thus sub-dominant when
estimating redshift. We have confirmed that this approximation does
not significantly affect our results, yet it reduced the training time
for the model by a factor of ∼20.

3.3 Observed data outside GP range

As we do not model the entirety of the quasar spectrum, our
likelihood is incomplete. We would like to evaluate the marginal
likelihood of the GP to estimate zQSO. However, to ensure that we
can compare posterior probabilities at different redshifts, we need
to provide a likelihood function for the data not modelled by the
main GP. Otherwise, as different observations fall into the model,
likelihoods are evaluated on different subsets of the data. To avoid
this problem, we implemented an explicit model for observed data
outside the Gaussian process model boundaries. All observed data is
thus accounted for in the extended model.

1Note that for the DLA finding problem we use a different, data-driven, prior
as we integrate out zQSO to find log10NH I and zDLA.

To illustrate the need for this model, consider when emission peaks
are redshifted out of the GP model range. A z ∼ 2.5 quasar assumed
to be at z = 5 will have the emission corresponding to the Lyman
α emission peak at 1216 Å incorrectly appear at 700 Å, outside the
modelled rest frame. As the peak is now outside the rest frame, D0

applies no penalty for not predicting the emission peak and may
incorrectly prefer a high redshift.

Our explicit extra model assumes that the emission spectrum in
the rest-frame bluewards of 910 Å are drawn independently and
identically from a Gaussian distribution with a constant variance.
We make the same assumption for those emission spectrum values
redwards of the GP model’s range. These ‘out-of-GP’ emission
fluxes are subject to the same instrument noise and absorption as
the rest of the spectrum, after being transformed to the observer
frame. However, they have no correlations with each other or with
the flux modelled by the GP in 910–3000 Å.

The mean and standard deviations of these two Gaussian distribu-
tions are optimized for during training. We define μred and σ red to be
the mean and standard deviations of the ‘out-of-GP’ model for the
redward end. If σ red is known, the maximum likelihood estimate for
μred can be computed in closed form:

μred =

∑

i ρixi
∑

i ρi

, (5)

where

ρi =
1

σ 2
i + σ 2

red

. (6)

Here, i ranges over observations in the training set that fall redwards
of the Gaussian process model and xi is the observed flux (recall that
the training data have known zQSO values). σ i denotes the standard
deviation of the instrumental noise for observation i. Thus, each
observation, xi, is drawn independently from a normal distribution
with mean μred and variance σ 2

red + σ 2
i .

To find σ red, we conduct a line search to find the maximum
likelihood, using the above substitution for μred in terms of σ red

in the likelihood. The resulting function (ignoring constants) to be
optimized is

logL =
∑

i

ρi (xi − μred)2 − log ρi, (7)

where ρ i and μred both depend on σ red, the quantity to be tuned.
Empirically, this likelihood is concave and easy to maximize. The
fitting procedure for the blueward end model is identical, but on a
different set of fluxes.

3.4 Quasar normalization

The observed magnitude of a quasar depends on its luminosity dis-
tance and the properties of the black hole. To allow a single GP model
to describe the observed flux x, we normalize the flux measurements.
Garnett et al. (2017) chose to normalize at an absorption free region
between 1310 and 1325 Å in the rest frame. Here, we change the
normalization range to 1176−1256 Å for building D0, normalizing
all spectra at the same Lyman α peak amplitude.

We choose to normalize the amplitude of the quasar spectrum to
the Lyman α peak region, 1216 ± 40 Å;. We found empirically that
this produced the most accurate quasar redshift estimation during
our validation experiments. The position of the Lyman α peak is
highly variable, which may at first make it seem a poor choice for
normalization. We emphasize however that we only use the peak
height, and not the peak position, to normalize the overall quasar

MNRAS 498, 5227–5239 (2020)
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5230 L. Fauber et al.

Figure 1. An example spectrum for our redshift estimation model. Red curve: the GP model mean for redshift estimation. Blue curve: the raw observed flux,
after normalization at the range of 1216 ± 40 Å. (Top) At the maximum likelihood redshift of this quasar. (Bottom) At an incorrect quasar redshift. Note that
the normalization of the quasar is incorrect. Normalizing in the 1216 ± 40 Å; region can introduce an additional penalty for incorrect redshifts.

continuum flux.2 The variability of the line is encoded in the GP
covariance function, see Fig. 3. We speculate that normalizing to
Lyman α performs well because the strength of the Lyman α line
minimizes the impact of instrumental noise in the normalizing region
on the continuum normalization. As the Lyman α line is broad the
normalization is also reasonably stable to small changes in zQSO.

We tried normalizing the quasar to the median continuum and
to the CIV peak. Normalizing to the continuum led to complex
unphysical structure in the learned covariance matrix and poor
results. Normalizing to the CIV peak gave a tolerable covariance,
but produced about a factor of 2 more redshift estimation failures
than normalizing to the Lyman α peak.

During the testing phase, the observed flux x has to be normalized
for each redshift possibility, as the region of observed spectrum
which corresponds to the normalization region in the rest frame
changes with assumed quasar redshift. We transform the spectrum
as follows:

x ← x/x̄(zQSO)

x̄(zQSO) = median
[

x(rszQSO (λOBS) ∈ [1176 Å, 1256 Å])
]

. (8)

This transformation is done separately for every redshift sample,
zQSO. Thus, the normalization is redshift dependent and the likelihood
depends only on the normalized flux. D0 is again defined on the rest-
frame wavelengths rszQSO (λ) and the normalized flux ỹ, which is the
emission spectrum without any intervening DLAs.

2Interestingly, the automated quasar continuum estimator of Reiman et al.
(2020) also normalizes continua using the height of the Lyman α peak

An incorrect normalization factor, x̄, substantially changes the
likelihood of the quasar. Thus, in most cases, the normalization factor
is close to the true x̄(zQSOtrue) if and only if the zQSO = zQSOtrue,
inducing an additional penalty in a zQSO sample which is not close
to the true quasar redshift. However, the roughly flat shape of the
average quasar continuum means that fitting different emission peaks
to Lyman α still produces a plausible normalization. Fig. 1 illustrates
such an incorrect normalization from choosing a wrong zQSO.

3.5 Redshift estimation model summary

Combining all modelling decisions, the model prior for an observed
QSO emission is

p(ỹ = x | D0, zQSO)

= N

(

x

x̄(zQSO)
; μ ◦ rszQSO , K ◦ rszQSO +

KN

x̄(zQSO)2

)

×
∏

λ∈Xred(zQSO)

N

(

x(λOBS)

x̄(zQSO)
; μred, σ

2
red +

σ 2
λ

x̄(zQSO)2

)

×
∏

λ∈Xblue(zQSO)

N

(

x(λOBS)

x̄(zQSO)
; μblue, σ

2
blue +

σ 2
λ

x̄(zQSO)2

)

, (9)

where Xred(zQSO) are the set of observed wavelengths which fall
outside of the Gaussian process model when transformed into a rest
frame of zQSO. By sampling from the parameter prior p(zQSO), this
model prior serves as a likelihood function for a QSO observation
being at a given zQSO.

MNRAS 498, 5227–5239 (2020)
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Automated quasar redshifts 5231

Figure 2. The estimated mean vector for our rest-frame quasar model, found by taking the mean value for each interpolated value across all rest-frame spectra
in the training set. The rest-frame locations of common emission lines are shown in the upper axis.

The first N is the density of a Gaussian process, evaluated on
the observations that fall within the Gaussian process model. The
last two N are standard normal densities on the scalar values
of the observations that fall outside the Gaussian process model.
The observed instrumental noise is normalized by x̄(zQSO)2, so
that equation (8) shows the noise kernel KN after normalization.
(μ ◦ rszQSO , K ◦ rszQSO ) denotes the mean function and covariance
kernel in the quasar rest frame. The mean function and covariance
function are only modelled within the range based on equation (4).
At the testing phase, we thus only evaluate the GP likelihood of
x(λ) inside the modelling window. We use the quasi-random Halton
sequence to generate 104 samples of zQSO from our prior for p(zQSO).

3.6 Learning the flux mean vector and covariance

In this section, we describe how we learn μ and K of our GP model
D0. Both are discretized. That is, we model μ as a piecewise constant
function whose ‘pieces’ are of fixed widths. Thus, its parametrization
is as a vector of the mean values over each piece. K is similarly
discretized as a matrix.

Each observed spectrum is transformed to the rest frame and
the values interpolated to the mid-points of the piecewise constant
representation. Each element of the μ vector is estimated as the mean
of all available3 rest-frame flux values at the same wavelength. The
learned mean from the data is shown in Fig. 2, and clearly shows the
expected series of metal emission lines.

To acquire the kernel matrix K, we assume the same likelihood
as Garnett et al. (2017) except (for now) excluding the absorption
noise:

p(Y | D0, zQSO) =

Nspec
∏

i=1

N (ỹi ; μ ◦ rszQSO , K ◦ rszQSO + KN ), (10)

where Y represents the matrix of all observed flux measurements
in the training set, each transformed into the rest frame on a
standard grid. The covariance matrix K is learned via the low-rank
decomposition

K = M M
⊤. (11)

K is the kernel (K ◦ rszQSO ), conditioned on the rest-frame wave-
length pixels we defined before, and M is an (Npixels × k) matrix,
with Npixels = 8 361 and k = 20.

3Some observations are missing or have instrumental noise variance larger
than 42 and are omitted.

Figure 3. The trained correlation matrix K , with the λ range from 910 to
3 000 Å. We have normalized the diagonal elements to be unity. The values
in the matrix range from −1 to 1, representing the correlation between λ and
λ′ in the QSO emission function.

Our kernel is trained by optimizing the values of M to maximize
the likelihood given in equation (9). We use the first k principal
components of (Y − μ) as initial conditions. With the much larger
model range (and thus matrices) trained in this paper, the MATLAB
PCA function often failed to find principal components. This was
due to substantial missing or noisy data at the red side of the
training set. To allow the PCA to converge, we replaced all such
data, represented in our data set by NaN, with the median value
of the whole spectrum before taking the PCA. Although this kind
of missing data imputation generally biases a PCA, in this case
we are only using it as a starting point for our algorithm, and
subsequently optimizing it away. Optimization is still done using
the unmodified Y and uses the same unconstrained optimization as
in our earlier papers, except without gradients of the absorption noise
model.

Fig. 3 shows the learned kernel. The bottom left resembles the
similar figure of Garnett et al. (2017), which was evaluated only in
that range. The dark vertical lines in Fig. 3 show pixel areas which
have strong correlations only in a narrow wavelength range. These
areas drive the final redshift estimate and correspond to the locations
of well-known major emission lines. Particularly strong are C IV

(1549 Å), Lyman α (1216 Å), and O VI (1034 Å). Weaker signals are
shown for Mg II (2799 Å), C III (1909 Å), Si IV (1397 Å), and C II

MNRAS 498, 5227–5239 (2020)
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5232 L. Fauber et al.

(1335 Å). Although Mg II is a famously reliable line (Hewett & Wild
2010), its presence in the correlation matrix is reduced because the
emission line is low amplitude compared to the instrumental noise
at long wavelengths. On the other hand, C IV, Lyman α and O VI are
extremely strong emission lines and thus more visible. The width
and variability in the Lyman α line position shows up as the width
of the correlation band around 1216 Å. The similar width of the C IV

line may be due to the code learning the correlation between C IV

equivalent width and line blueshift (Gaskell 1982; Sulentic et al.
2007; Richards et al. 2011; Mason et al. 2017).

4 D LA F INDIN G MODEL

In this section, we describe how our quasar redshift estimator can
be extended to find DLAs, while marginalizing out quasar redshift
uncertainty. We take the model presented in Section 3 and combine
it with the DLA model from Ho et al. (2020). The most important
changes to the model are the inclusion of a model for Lyman-series
absorbers along the line of sight to the quasar (Section 4.1) and an
explicit model for DLAs (Section 4.2).

We do not use the uniform prior quasar redshift distribution
from Section 3. Instead, we use as a prior a 150 bin histogram
of zQSO from the training data. We have checked explicitly that
pure redshift estimation with this prior leads to similar results
as the uniform prior, with some minor sampling artefacts at high
redshift.

4.1 Lyman-series absorption

Following Ho et al. (2020), we supplement our instrumental noise
model with an additional variance term to account for absorption
from Lyman series lines, especially the Lyman α forest. We model
Lyman series absorption as Gaussian noise with a redshift-dependent
mean and variance, but no inter-pixel correlations. Our Gaussian
process model for redshift estimation from Section 3 is thus modified
by adding the diagonal absorption noise kernel KA:

p(x|zQSO) = N
(

x; μ◦rszQSO , (K◦rszQSO )+KA + KN

)

.

As Lyman α forest absorption is only possible in the region of the
spectrum bluewards of the Lyman α line in the quasar rest frame,
we include an indicator function in KA, so that absorption is zero for
λREST > 1216 Å.

Evolution of the Lyman α forest flux with redshift is included by
assuming the absorption noise has a power-law redshift dependence,
so that KA is given by

KA(λREST, λ′
REST) = δ(λREST − λ′

REST)

× I (λREST < 1216)
(

1 − exp
(

−τ0(1 + zLya)β
)

+ c0

)2
,

where

zLya =
λREST

1216

(

1 + zQSO

)

− 1.

c0, τ 0, and β are constants, and zLya is the redshift of Lyman α at
the observed wavelength. Hence, our model depends on the redshift
of the quasar as well as the redshift of Lyman α along the line of
sight.

One unphysical feature of our absorption noise model is that,
because Gaussian noise is symmetric, it assumes emission is as likely
as absorption. This is particularly dangerous at high redshift, where
the average absorption in a quasar spectrum is substantial. As we
showed (Ho et al. 2020), we can account for this by modifying
the quasar mean vector to match the observed mean flux of the

Lyman α forest. We assume an effective optical depth τ 0(1 + zLya)γ

following Kim et al. (2007):

a(zLya) = exp (−τ0(1 + zLya)γ ) (12)

= 0.0023 × exp (1 + zLya)3.65, (13)

We include absorption for the first six Lyman series lines, accounting
for the different absorption coefficients. We account for the mean
suppression from Lyman series absorption in our redshift-dependent
noise model KA. The complete GP model mean, written as a function
of observed-frame wavelength λobs, for each spectrum is thus

a(λobs/λLyα − 1) × (μ ◦ rszQSO )(λobs). (14)

The parameters for the redshift-dependent component of the
absorption noise vector were

c0 = 0.3050; τ0 = 1.6400 × 10−4; β = 5.2714. (15)

Once the absorption model is included, there are degeneracies
between different hyperparameters of the GP kernel. This increases
training time and means that the training does not technically con-
verge. Instead it moves along a trough with the maximum likelihood
changing by less than 0.1 per cent. Our trained model stopped
training after 1500 minimization steps, although early iterations were
trained to 3000 iterations with little difference in the kernel function.

4.2 DLA model

We introduce an alternate model for DLA spectra following Garnett
et al. (2017). Either the DLA or no-DLA model is chosen by Bayesian
model selection. The presence of a DLA is indicated by its Voigt
profile, which includes absorption due to higher order Lyman lines:

y̌(λOBS) = ỹ(λOBS) exp
(

−τ (rszDLA (λOBS); NH I)
)

.

Here, y̌ is the emission spectrum after DLA absorption and τ (λ; NH I)
is the Voigt profile for column density NH I at wavelength λ. The DLA
model (D1) has two parameters: the DLA redshift zDLA and the DLA
column density NH I. We take the prior redshift distribution of the
DLA, p(zDLA|D1, zQSO), to be uniform between a region 3000 km s−1

redwards of the Lyman limit at 910 Å and 3000 km s−1 bluewards of
zQSO.

The prior distribution over the column density, p(NH I|D1), is
modelled as a lognormal distribution. We use a kernel density
estimate from the DR 9 sample, mixed with a uniform distribution
(equation 51 of Garnett et al. 2017). We do not include the sub-DLA
model of Ho et al. (2020).

4.3 Model inference

Our full model is

p(x, zQSO, D0) = p(zQSO) × Pr(D0 | zQSO)

×, p(x | D0, zQSO)

p(x, zQSO, D1, zDLA, NH I) = p(zQSO) × Pr(D1 | zQSO)

×p(zDLA | zQSO, D1) × p(NH I | D1)

× p(x | D1, zQSO, zDLA, NH I).

zDLA and NH I can be marginalized out to obtain

p(x, zQSO, D1) =

∫ ∫

p(x, zQSO, D1, zDLA, NH I) dzDLA dNH I.

We are particularly interested in Pr(D1 | x), the probability of a
DLA given the observed spectrum, and p(zQSO|x), the distribution
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Automated quasar redshifts 5233

of the quasar redshift given the observed spectrum. We calculate
these conditional marginal distributions as follows.

p(D1, x) =

∫

p(x, zQSO, D1) dzQSO, (16)

p(D0, x) =

∫

p(x, zQSO, D0) dzQSO, (17)

Pr(D1 | x) =
p(D1, x)

p(D1, x) + p(D0, x)
, (18)

and

p(zQSO | x) ∝ p(x, zQSO, D1) + p(x, zQSO, D0), (19)

where the constant of proportionality in the last line makes p(zQSO|x)
integrate to 1 over zQSO.

Estimating the probability of a DLA requires a three-dimensional
integral over {zQSO, zDLA, NH I} for p(D1, x) and a one-dimensional
integral over {zQSO} for p(D0, x). As in Section 3, we use the
quasi-random Halton sequence to generate one- or three-dimensional
points as samples over the unit cube. However, reflecting the higher
dimensionality of our parameter space we draw 105 samples per
quasar instead of 104. We then transform them by the relevant inverse
cumulatives to generate samples from p(zQSO) or p(zQSO, zDLA, NH I)
from which the integrals can be numerically approximated (as the
integrals can be transformed into expectations with respect to these
sampling distributions). In this way, the likelihood of a DLA can be
estimated without knowledge of zQSO.

4.4 Model parametrization and priors

The full model requires the specifications of the following compo-
nents. In the quasar rest frame:

(i) μ: the mean quasar emission spectrum and
(ii) K: the kernel of the Gaussian process for the emission.

In the redshifted observer frame:

(i) KA: the diagonal non-DLA absorption variance and
(ii) KN: the diagonal instrument noise variance.

Priors are given for

(i) p(zQSO): the redshift of a quasar,
(ii) p(NH I|D1): the column density of the DLA, and
(iii) p(zDLA|D1, zQSO): the DLA redshift distribution.

5 TR A I N I N G A N D VA L I DAT I O N DATA

The training set to learn our GP model D0 for zQSO estimate consists
of the spectra observed by SDSS DR9. For DLA finding we also
removed DLAs labelled in Lee et al. (2013). The validation data
consisted of SDSS DR12, comprising 297 301 quasar spectra. The
following spectra were removed from both the training and validation
set:

(i) zVI < 2.15: quasars with redshifts lower than 2.15.
(ii) BAL: quasars where SDSS found BLAs.
(iii) Spectra with less than 400 detected pixels.
(iv) ZWARNING: spectra whose analysis by the SDSS pipeline

flagged warnings. These spectra are usually not quasars, but represent
some instrumental problem. We kept extremely noisy spectra with
the TOO MANY OUTLIERS flag.

After these cuts, the remaining sightline catalogue is 158 979 quasars.
Given that the purpose of this paper is redshift estimation, it may

Figure 4. The MAP prediction of our catalogue, zQSO, versus the PCA
redshift zPCA from the SDSS catalogue. The grey-scale bar shows the number
of quasars in each bin, using a logarithmic scale. The diagonal line in the
middle of the plot shows a correct redshift estimation. Other diagonal lines
correspond to occasional line fitting mistakes of our code.

Figure 5. A histogram showing differences between the MAP prediction of
zQSO from our catalogue (zMAP) and different zQSO estimation techniques
present in the SDSS catalogue. All methods are compared to the PCA based
redshift, zPCA. We show results for only the 49 776 quasars with redshift
estimates from all SDSS methods.

seem circular to filter quasars with z < 2.15 from testing. However,
these quasars do not contain DLAs, nor are they useful for Lyman
α BAO. We examine these spectra further in Section 6.1.1 and show
that our trained model still works reasonably well as long as the
Lyman α emission peak (which we use for normalization) is inside
the observed band, that is for z ≥ 1.9.

Training the model requires a redshift estimate for the training data.
Here, we use the SDSS visual inspection redshift as it is available
for the highest quasar fraction in the sample (Pâris et al. 2018). Note,
however, that visual inspection redshifts are not required. The model
merely requires some redshift estimate. Future iterations could be
trained using, for example, the DR12 redshift outputs of this paper,
making the model fully self-hosting.

MNRAS 498, 5227–5239 (2020)
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5234 L. Fauber et al.

Figure 6. (Top) The sample posterior p(zQSO|x, D0) for a QSO with thingID = 544031279. The catalogue redshift is labelled as zQSO. Vertical dashed lines
indicate the redshifts associated with samples at particular emission peaks. For example, the redshift resulting from trying to fit the true Lyman α peak on to
the observed C IV peak is shown as zC IV. (Middle) The rest-frame spectrum using zMAP. (Bottom) The rest-frame spectrum using the SDSS visual inspection
redshift zVI. We use zVI as it is the method with the lowest failure rate. The MAP value of our catalogue fits the Lyman α peak with what is really O VI.

6 R ESULTS

In this section, we describe the results of our algorithm run on
the SDSS DR12Q data set. Section 6.1 describes the results when
estimating only quasar redshift. Section 6.2 also describes the results
of our DLA finding.

6.1 Redshift estimation

In this section, we apply our QSO redshift model D0 to SDSS DR12.
We validate our ability to predict quasar redshift, zQSO. Although
our model is fully Bayesian, we need a point estimate to compare
to the SDSS catalogue redshift. We use the maximum a posteriori

(MAP) of the sample posterior p(zQSO|x, D0), which is equivalent to
the maximum likelihood estimate (MLE) because we use a uniform
prior for p(zQSO). We thus report the zQSO sample with the highest

likelihood

zMAP = arg maxzQSO i
p(ỹ(zQSOi) | D0, zQSOi), (20)

where zQSOi is the ith Halton sequence sample. The instrumental
noise variance depends on zQSOi via normalization.

In Fig. 4, we compare the MAP estimate of our catalogue, zMAP, to
the reported PCA redshift zPCA in SDSS DR12. The two are generally
in good agreement, as shown by the large number of quasars on the
plot diagonal. There are a small number of cases where our model
fits Lyman α using another emission peak, visible as the secondary
lines above and below the main diagonal (note that Fig. 4 uses a
logarithmic scale). The above-diagonal line corresponds to Lyman
α peaks being fit by O VI emission. This line is broad because O VI

is in the Lyman α forest and so has large variance in our model.
The below-diagonal line, which is narrower, corresponds to Lyman
α peaks fit with C IV emission. There are also a few objects, of a

MNRAS 498, 5227–5239 (2020)
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Automated quasar redshifts 5235

Figure 7. (Top) The sample posterior p(zQSO|x, D0) for a QSO with thingID = 27885089. The catalogue redshift is labelled as zQSO. Vertical dashed lines
indicate the redshifts associated with samples at particular emission peaks. For example, the redshift resulting from trying to fit the true Lyman α peak on to
the observed C IV peak is shown as zC IV. (Middle) The rest-frame spectrum using zMAP. (Bottom) The rest-frame spectrum using the SDSS visual inspection
redshift zVI. We use zVI as it is the method with the lowest failure rate. zMAP appears to produce a better fit than zVI.

density too low to be visible on the plot, where the code fits the
O VI emission line to C IV. The rate at which our redshift estimation
fails is low. Comparing to the PCA redshift we find that |zPCA −

zMAP| > 0.5 for 0.38 per cent, which is 603 out of 158 560 quasar
spectra. Comparing to the visual inspection redshift zVI gives similar
results: |zVI − zMAP| > 0.5 for 645 of 158 979 spectra. For the
more stringent bound of |zVI − zMAP| > 0.05, the misfit rate rises
to 0.99 per cent. Other redshift measurements performed similarly,
with zC IV having the lowest misfit rate (0.35 per cent) and zPIPE the
highest (0.43 per cent).

Fig. 5 compares to other redshift estimation methods used in
SDSS, following Fig. 7 of Pâris et al. (2017). We show results
only for the 49 776 quasars with redshift estimates from all SDSS
methods. Overall our technique performs similarly to the others. It is
complementary in that it prefers lower redshifts than the PCA model
zPCA, while other methods prefer a generally higher redshift.

Our method has a median difference in redshift with zPCA of
−117 km s−1. The equivalent median differences between zPCA

and other methods are zVI: 128 km s−1, zMg II: 73 km s−1, zPIPE:
380 km s−1. Our technique is thus competitive in this metric. The
standard deviation of this dispersion with zPCA is 17 000 km s−1. The
other methods score substantially better: zVI: 1800 km s−1, zMg II:
2500 km s−1, zPIPE: 12 000 km s−1. For both our method and zPIPE,
the large standard deviations are driven by the relatively large fraction
of outliers, i.e., catastrophic failures of redshift determination.
The inter-quartile range for each method shows a measurement
of dispersion which is not affected by these failures. We have
zMAP: 3000 km s−1, zVI: 1200 km s−1, zMg II: 1700 km s−1, zPIPE:
1600 km s−1. Our redshift estimation method thus produces a larger
dispersion than the other methods.

We have visually inspected a subsample of the spectra where
our catalogue has a dramatically incorrect redshift. Fig. 6 shows

MNRAS 498, 5227–5239 (2020)
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5236 L. Fauber et al.

Figure 8. Examples of Halton sequence sampling for zQSO, zDLA, and NH I. Samples across parameter space 
 project out NH I on to the zQSO and zDLA plane.
The best sample (at zQSO = 2.309) is shown by a black star. Colours estimate the posterior log-likelihood of D1 for each point. zDLA is drawn uniformly while
zQSO is taken from an empirical distribution. This particular quasar has a bimodal likelihood for zQSO, where the second, lower, peak corresponds to the code
fitting the Lyman α peak at O VI. Though estimates of zDLA are drawn uniformly, the DLA cannot appear redwards of the quasar or bluewards of the Lyman α

peak, and so are not sampled from these regions. Shown for reference in green are illustrations of the given quasar and rest-frame mean prediction in the rest
frame for zQSO sampled at 2.3, 2.7, 3.22, 3.6, 4.0, 4.75. Normalizations for the spectra are 1.93, 1.43, 1.80, 1.06, 0.78, 0.51, respectively.

one such example. Here, the likelihood peaks at very low redshift,
because the code believes that a noise peak near the O VI emission
line is the Lyman α peak, and this overwhelms the otherwise poor
fit to the spectrum. Note that there is a peak in the likelihood at
the correct redshift, with almost the same probability, so a full
Bayesian analysis would be closer to the true value. This spectrum,
like most of those where the code confuses O VI for Lyman α, shows
unusually noisy data with an oscillatory feature which exceeds the
expected pipeline noise at the far blue end of the observed data,
possibly related to the data reduction systematic identified by Lan
et al. (2018). Spectra where the code confuses C IV for Lyman
α often have unusually weak Lyman α peaks relative to their C IV

emission.
There are also spectra in our catalogue where our method produces

what looks visually like a better fit to the observed spectrum than zVI.
Fig. 7 shows an example, where the catalogue zVI redshift does not
quite match the location of the C IV peak, possibly as an attempt to fit
to noise near the Mg II emission line. Our method estimates redshift
as zQSO = 2.501. Redshift estimates from the SDSS catalogue are
zVI = 2.538, zPIPE = 2.507, zPCA = 2.511. zMg II was not available. In
this case, zVI is an outlier, and our model is in reasonable agreement

with zPIPE. We note that the position of the C IV emission peak shown
in the figure is from the mean model, and thus automatically includes
the average C IV blueshift from the rest-frame emission (Hewett &
Wild 2010; Richards et al. 2011).

6.1.1 Validating the model at lower redshifts

In this section, we validate the behaviour of our GP model D0 on
quasars with redshift outside the redshift range containing DLAs. We
place a uniform prior on zQSO as in equation (3), but we modify the
lower bound to be zQSOmin = 1.9. We select the test set as described
in Section 5 except that we modify the range of zQSO to be 1.9 < zQSO

< 2.15. The new sample size is 16 013 quasars. We do not retrain the
model.

The catastrophic misfit rate for |zVI − zMAP| > 0.5 is 3.3 per cent.
The error, as expected, is much larger than the results for spectra
with 2.15 ≤ zQSO, as the Lyman α peak is now located at a lower
observed-frame wavelength, where instrumental noise is larger. Since
we normalize by the height of the Lyman α peak, noise in this
region can easily lead us to produce an inaccurate continuum.

MNRAS 498, 5227–5239 (2020)
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Automated quasar redshifts 5237

Figure 9. ROC curve for DLA estimation from our catalogue estimating
zQSO (blue), and from the catalogue of Ho et al. (2020) with zQSO given (red).
The AUC with full integration is 0.9192. The AUC from Ho et al. (2020) is
0.9624. The ROC is taken over all 158 821 applicable quasars in the DR12
data set. Ground truth is the best 2/3 catalogue for DR12, described in the
text.

Figure 10. Error rate plotted as a function of signal-to-noise ratio. Curve and
right y-axis shows the total number of quasars in each signal-to-noise bin,
while the left y-axis shows the error rate. We consider that a spectrum has a
DLA in our catalogue if p(DLA) > 0.9. Low SNR spectra have a higher level
of false negatives. Ground truth is the best 2/3 catalogue for DR12, described
in the text.

This normalization also leads to a natural minimum quasar redshift
possible with our method at zQSOmin = 1.9, below which the Lyman
α peak has not yet redshifted into the observation window of BOSS
optical spectra (3650−10 400 Å). We can achieve slightly improved
results for lower zQSO samples by using a GP model trained by
normalizing on C IV peak, 1549 ± 40 Å;. Here, the misfit rate was
2.8 per cent for |zVI − zMAP| > 0.5. However, normalizing to C IV

performs substantially less well for quasars with zQSO > 2.15.

6.2 DLA finding

We now show our DLA catalogue computed with a marginalized
zQSO. We have checked explicitly that redshift estimation is similar

in this catalogue to the pure redshift estimation model discussed in
Section 6.1. A two-dimensional projection showing zQSO and zDLA,
for an example quasar with a DLA, can be seen in Fig. 8. The mean
over the product of each Bayes factor with each model prior for
different zQSO yields our posterior odds, which can be normalized to
give our desired model posteriors Pr(D1|D) and Pr(D0|D).

6.2.1 Best 2/3 DLA catalogue

To compare our results to a single ‘ground truth’ DLA catalogue,
we follow a procedure similar to that used to generate the DR9
concordance DLA catalogue (Lee et al. 2013). Aside from our work,
there are three extant DR12 catalogues. These are Parks et al. (2018)4

(based on a neural network), a DR12 catalogue generated using the
template matching method of Noterdaeme et al. (2012) and the DR12
visual survey (Pâris et al. 2017).5 Each method produces a slightly
different DLA catalogue, differing by up to ∼10 per cent. However,
by taking only DLAs which occur in 2/3 catalogues, we hope to
produce a relatively pure sample.

To demonstrate our model effectiveness, we order each spectrum
by its log posterior odds of D1, with associated DLA information.
Spectra which are assigned a DLA by our best 2/3 catalogue should
appear at the top of this ordering as most probable. Fig. 9 shows
the receiver-operating characteristic (ROC) plot of each method,
comparing our current method integrating over zQSO to a model
with zQSO assumed known (Ho et al. 2020). The AUC between our
zQSO marginalizing catalogue with full zQSO integration and the best
2/3 is 0.9192. The AUC with known redshifts is 0.9624. The AUC
between our current catalogue and that with known redshifts was
0.914, similar to the AUC between the zQSO catalogue and the best
2/3.

Our method performs moderately less well than a similar integra-
tion task where zQSO is given. This is not surprising, as the integration
task without zQSO is more difficult. While both models ultimately
recover similar information, the full integration method estimates
DLAs with less certainty, leading to a true positive rate which is
worse by a few per cent. When a DLA is correctly identified the
MAP DLA redshift and column density is similar to our previous
papers, exhibiting no noticeable preference for higher or lower
column densities. In particular, there are several instances where
the DLA redshift is correctly determined despite the quasar redshift
being incorrect.6

If our lower true positive rate is due simply to the increased
difficulty of the problem, the presence of spectral noise should reduce
the ability of our model to determine zQSO. Fig. 10 shows the error
rate as a function of our catalogue’s signal-to-noise ratio. Signal to
noise was taken over as much of each quasar as could possibly sit in
the rest frame, as a per-pixel mean of the flux over the square root
of the noise variance. Also shown is the overall frequency of quasars
per bin. Our false negative rate is indeed higher by a factor of 2 at
low SNR. This may indicate that false negatives occur because there
is not enough information for the model to make a solid detection. It
is also possible that that these are not, in fact, real DLAs, and the low

4We include sub-DLAs from this catalogue so that the minimum column
density from all catalogues is 1020 cm−2, as the other catalogues.
5All DLAs of which we assign an arbitrary column density of 2 × 1020 cm−2.
6This is possible because the transformation between observed frame and
DLA frame does not depend on the quasar rest frame, as long as the measured
zQSO allows for a DLA in the observed region.
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5238 L. Fauber et al.

Figure 11. Error rate plotted as a function of quasar redshift. Curve and right
y-axis shows the total number of quasars in each redshift bin, while the left
y-axis shows the error rate. We consider that a spectrum has a DLA in our
catalogue if p(DLA) > 0.9. Ground truth is the best 2/3 catalogue for DR12,
described in the text.

signal-to-noise ratio was causing a slightly incorrect pipeline zQSO

which was misleading our previous DLA algorithm.
We have visually inspected a sample of low signal-to-noise spectra

with false positive DLAs and poor redshift estimation. There are
several examples where only 0–1 emission peaks emerge from the
noise. Our false positives commonly occur in spectra where, if one
takes the SDSS pipeline redshift as ground truth, one observes a
Lyman break with noise at 700−800 Å. Our pipeline instead fits the
O VI emission peak with Lyman α and interprets the break as a DLA.
We suspect that most of these cases are indeed false positives, but
obtaining reliable results from SNR < 1 will always be challenging.

Fig. 11 shows the error rate as a function of quasar redshift. The
false positive rate is roughly independent of redshift, while the false
negative rate is constant until z = 3.6. At z > 4.2 the false negative
rate approaches zero. However, there are very few DLAs detected
at this redshift in the best 2/3 catalogue. For z = 3.7–4.0 the false
negative rate increases noticeably. In this redshift range, the Lyman
break at 910 Å redshifts into the observed SDSS band, and it may
be that our redshift estimation was confused by the presence of this
feature in the spectrum.

7 C O N C L U S I O N

We have extended our Gaussian process based code for finding
DLAs in SDSS quasars to situations where the quasar redshift is
not known. This required extending the Gaussian process range to
encompass more emission lines and thus get a more reliable zQSO

estimate. It was also necessary to augment the model to include
a likelihood component for all observations, even those which are
outside the range of the Gaussian process, so that the probabilities
are comparable for the same spectrum across multiple redshifts.

We first estimated the redshift of the SDSS DR12 sample,
showing that our redshift labelling is competitive to existing redshift
estimation. Large redshift misestimation was reasonably rare. Our
redshift estimate differs from the PCA redshift by >0.5 for 603
quasars out of ∼1.6 × 105. The median redshift error of our method

compared to other SDSS redshift estimates was ∼100 km s−1. We
used our improved model to find DLAs while marginalizing over
uncertainties in the quasar redshift. We detected a few per cent fewer
DLAs at high confidence than our earlier methods (AUC drops from
0.96 to 0.91) , especially in noisy spectra where estimation is more
difficult.

The computation time for the pure redshift estimation model is
∼1.5 s per spectrum on a 48-core AWS EC2 machine, while finding
DLAs takes ∼60 s per quasar.

There are a few ways in which the redshift estimation present
here may be improved. Our choice of normalization (the Lyman
α peak) makes low-redshift quasars hard to classify correctly. In
future work it might be better to incorporate normalization directly
into the Bayesian model as an extra parameter. We may also have
reached the limits of the Halton sequence based quasi Monte Carlo
integrator we have used since Garnett et al. (2017). Future work may
find it necessary to switch to a more targeted integrator based on
variational or Markov chain Monte Carlo methods.
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Pâris I. et al., 2018, A&A, 613, A51
Parks D., Prochaska J. X., Dong S., Cai Z., 2018, MNRAS, 476, 1151
Prochaska J. X., Wolfe A. M., 1997, ApJ, 487, 73

MNRAS 498, 5227–5239 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
8
/4

/5
2
2
7
/5

9
0
8
3
9
7
 b

y
 g

u
e
s
t o

n
 1

0
 M

a
rc

h
 2

0
2
1



Automated quasar redshifts 5239

Reiman D. M., Tamanas J., Prochaska J. X., Ďurovčı́ková D., 2020, preprint
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