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ABSTRACT

We present a revised version of our automated technique using Gaussian processes (GPs) to detect damped Lyman α absorbers
(DLAs) along quasar (QSO) sightlines. The main improvement is to allow our GP pipeline to detect multiple DLAs along a
single sightline. Our DLA detections are regularized by an improved model for the absorption from the Lyman α forest that
improves performance at high redshift. We also introduce a model for unresolved sub-DLAs that reduces misclassifications of
absorbers without detectable damping wings. We compare our results to those of two different large-scale DLA catalogues and
provide a catalogue of the processed results of our GP pipeline using 158 825 Lyman α spectra from SDSS data release 12. We
present updated estimates for the statistical properties of DLAs, including the column density distribution function, line density
(dN/dX), and neutral hydrogen density (�DLA).
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1 IN T RO D U C T I O N

Damped Ly α absorbers (DLAs) are absorption line systems with
high neutral hydrogen column densities (NH I > 1020.3 cm−2) discov-
ered in sightlines of quasar (QSO) spectroscopic observations (Wolfe
et al. 1986). The gas that gives rise to DLAs is dense enough to be
self-shielded from the ultraviolet background (UVB; Cen 2012) yet
diffuse enough to have a low star formation rate (Fumagalli et al.
2014). DLAs dominate the neutral-gas content of the Universe after
reionization (Gardner et al. 1997; Noterdaeme et al. 2012; Zafar et al.
2013; Crighton et al. 2015). Simulations tell us DLAs are connected
with galaxies over a wide range of halo masses (Prochaska & Wolfe
1997; Haehnelt, Steinmetz & Rauch 1998; Pontzen et al. 2008), and
at z ≥ 2 are formed from the accretion of neutral hydrogen gas on
to dark matter haloes (Bird et al. 2014, 2015). The abundance of
DLAs at different epochs of the Universe (2 < z < 5) thus becomes
a powerful probe to understand the formation history of galaxies
(Gardner et al. 1997; Wolfe, Gawiser & Prochaska 2005).

Finding DLAs historically involves a combination of template
fitting and visual inspection of spectra by the eyes of trained
astronomers (Prochaska, Herbert-Fort & Wolfe 2005; Slosar et al.
2011). Recent spectroscopic surveys such as the Sloan Digital Sky
Survey (SDSS) (York et al. 2000) have taken large amount of QSO
spectra (Pâris et al. 2012, 2014) ( ∼500 000 in SDSS-IV, Pâris
et al. 2018). Future surveys such as the Dark Energy Spectroscopic
Instrument (DESI)1 will acquire more than 1 million QSOs, making
visual inspection of the spectra impractical. Moreover, the low signal-
to-noise ratios of SDSS data make the task of detecting DLAs even
harder, and induces noise related detection systematics. Since the

⋆ E-mail: mho026@ucr.edu
1http://desi.lbl.gov

release of the SDSS DR14 QSO catalogue (Pâris et al. 2018),
visual inspection is no longer performed on all QSO targets. A
fully automated and statistically consistent method thus needs to
be presented for current and future surveys.

We provide a catalogue of DLAs using SDSS DR12 with 158 825
QSO sightlines. We demonstrate that our pipeline is capable of
detecting an arbitrary number of DLAs within each spectroscopic
observation, which makes it suitable for future surveys. Furthermore,
since our pipeline resides within the framework of Bayesian probabil-
ity, we have the ability to make probabilistic statements about those
observations with low signal-to-noise ratios. This property allows us
to make probabilistic estimations of DLA population statistics, even
with low-quality noisy data (Bird, Garnett & Ho 2017).

Other available searches of DLAs in SDSS include: a visual
inspection survey (Slosar et al. 2011), visually guided Voigt-profile
fitting (Prochaska et al. 2005; Prochaska & Wolfe 2009); and
three automated methods: a template-fitting method (Noterdaeme
et al. 2012), an unpublished machine-learning approach using Fisher
discriminant analysis (Carithers 2012), and a deep-learning approach
using a convolutional neural network (Parks et al. 2018). Although
these methods have had some success in creating large DLA cata-
logues, they suffer from hard-to-control systematics due to reliance
either on templates or black box training.

We present a revised version of our previous automated method
based on a Bayesian model-selection framework (Garnett et al.
2017). In our previous model (Garnett et al. 2017), we built a
likelihood function for the QSO spectrum, including the contin-
uum and the non-DLA absorption, using Gaussian processes (GPs;
Rasmussen & Williams 2005). The SDSS DR9 concordance cat-
alogue was applied to learn the covariance of the GP model. In
this paper, we use the effective optical depth of the Lyman-series
forest to allow the mean model of the likelihood function to be
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Multi-DLAs with GP 5437

adjustable to the mean flux of the QSO spectrum, which reduces
the probability of falsely fitting high column density absorbers at
high redshifts. We also improve our knowledge of low column
density absorbers and build an alternative model for sub-DLAs,
which are the H I absorbers with 19.5 < log10NH I < 20. These
modifications allow us to extend our previous pipeline to detect
an arbitrary number of DLAs within each QSO sightline without
overfitting.

Alongside the revised DLA detection pipeline, we present the
new estimates of DLA statistical properties at z > 2. Since the
neutral hydrogen gas in DLAs will eventually accrete on to galactic
haloes and fuel the star formation, these population statistics can give
an independent constraint on the theory of galaxy formation. Our
pipeline relies on a well-defined Bayesian framework and contains
a full posterior density on the column density and redshift for a
given DLA. We thus can properly propagate the uncertainty in the
properties of each DLA spectrum to population statistics of the whole
sample. Additionally, we are also able to account for low signal-to-
noise ratio samples in our population statistics since the uncertainty
will be reflected in the posterior probability. We thus substantially
increase the sample size in our measurements by including these
noisy observations.

2 N OTAT I O N

We will briefly recap the notation we defined in Garnett et al. (2017).
Imagine we are observing a QSO with a known redshift zQSO. The
underlying true emission function f(λrest) (f : X → R) of the QSO
is a mapping relation from rest-frame wavelength to flux. We will
always assume the zQSO is known and rescale the observed-frame
wavelength λobs to the rest-frame wavelength with λrest(= λobs/(1 +
zQSO)). We will use λ to replace λrest in the rest of the text because
we only work on λrest.

The QSO spectrum observed is not the intrinsic emission function
f(λ). Both the instrumental noise and absorption due to the inter-
vening intergalactic medium along the line of sight will affect the
observed flux. We thus denote the observed flux as a function y(λ).

For a real spectroscopic observation, we measure the function y(λ)
on a discrete set of samples λ. We thus denote the observed flux as a
vector y, which is defined as yi = y(λi) with i representing ith pixel.
For a given QSO observation, we use D to represent a set of discrete
observations (λ, y).

We exclude missing values of the spectroscopic observations in
our calculations. These missing values are due to pixel masking in the
spectroscopic observations (e.g. bad columns in the CCD detectors).
We will use NaN (‘not a number’) to represent those missing values
in the text, and we will always ignore NaNs in the calculations.

3 BAY ESIA N MODEL SELECTION

The classification approach used in our pipeline depends on Bayesian
model selection. Bayesian model selection allows us to compute the
probability that a spectroscopic sightline D contains an arbitrary
number of DLAs through evaluating the probabilities of a set of
models {Mi}, where i is a positive integer. This set of Mi contains
all potential models we want to classify: a model with no DLA and
models having between one DLA and k DLAs.

For eachMi , we want to compute the probability that best explains
the data D given a model M. To do this, we have to marginalize the
model parameters θ and evaluate the model evidence,

p(D | M) =
∫

p(D | M, θ )p(θ | M)dθ. (1)

Given a set of model pieces of evidence p(D | Mi) and model priors
Pr(Mi), we are able to evaluate the posterior of a model given data
based on Bayes’s rule,

Pr(M | D) =
p(D | M)Pr(M)

∑

i p(D | Mi)Pr(Mi)
. (2)

We will select the model from {Mi} with the highest posterior.
Readers may think of this method as an application of Bayesian
hypothesis testing. Instead of only getting the likelihoods conditioned
on models, we get posterior probabilities for each model given data.

Let k be the maximum number of DLAs we will want to detect in a
QSO spectrum. For our multi-DLA model selection, we will develop
k + 2 models, which include a null model for no DLA detection
(M¬DLA), models for detecting exactly k DLAs (MDLA(k)), and a
model with sub-DLAs (Msub). With a given spectroscopic sightline
D, we will compute the posterior probability of having exactly k

DLAs in data D, Pr(MDLA(k) | D).

4 G AU SSIAN PROCESSES

In this section, we will briefly recap how we use GPs to describe
the QSO emission function f(λ), following Garnett et al. (2017).
The QSO emission function is a complicated function without a
simple form derived from physically motivated parameters. We thus
use a non-parametric framework, GPs, for modelling this physically
unknown function f(λ). A detailed introduction to GPs may be found
in Rasmussen & Williams (2005).

4.1 Definition and prior distribution

We wish to use a GP to model the QSO emission function f(λ). We
can treat a GP as an extension of the joint Gaussian distribution
N (μ, �) to infinite continuous domains. The difference is that a GP
is a distribution over functions, not just a distribution over a finite
number of random variables (although since we are dealing with
pixelized variables here the distinction is less important).

A GP is completely specified by its first two central moments, a
mean function μ(λ) and a covariance function K(λ, λ

′
):

μ(λ) = E [f (λ) | λ] ,

K(λ, λ′) = E
[

(f (λ) − μ(λ))(f (λ′) − μ(λ′)) | λ, λ′]

= cov
[

f (λ), f (λ′) | λ, λ′] . (3)

The mean vector describes the expected behaviour of the function,
and the covariance function specifies the covariance between pairs
of random variables. We thus will write the GP as

f (λ) ∼ GP(μ(λ), K(λ, λ′)). (4)

We can write the prior probability distribution of a GP as

p(f ) = GP(f ; μ, K). (5)

Real spectroscopic observations measure a discrete set of inputs
λ and the corresponding f (λ), so we get a multivariate Gaussian
distribution

p( f ) = N (f (λ); μ(λ),K(λ,λ′)). (6)

Assuming the dimension of λ and f is d, the form of the multivariate
Gaussian distribution is written as

N ( f ; μ, K)

=
1

√

(2π )ddetK
exp

(

−
1

2
( f − μ)⊤K−1( f − μ)

)

. (7)
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5438 M.-F. Ho, S. Bird and R. Garnett

4.2 Observation model

We now have a GP model for a discrete set of wavelengths λ and true
emission fluxes f . To build the likelihood function for observational
data D = (λ, y), we have to incorporate the observational noise.
Here, we assume the observational noise is modelled by an inde-
pendent Gaussian variable for each wavelength pixel, allowing the
noise realization to differ between pixels but neglecting inter-pixel
correlations.

The noise variance for a given λi is written as ν i = σ (λi)2.
σ (λi) is the measurement error from a single observation on a given
wavelength point λ. With the above assumptions, we can write down
the mechanism of generating observations as

p( y | λ, f , ν) = N ( y; f , V), (8)

where V = diag ν, which means we put the vector ν on the diagonal
terms of the diagonal square matrix V.

Given an observational model p( y | λ, f , ν) and a GP emission
model p( f | λ), the prior distribution for observations y is obtained
by marginalizing the latent function f :

p( y | λ, ν) =
∫

p( y | λ, f , ν)p( f | λ)d f

=
∫

N ( y; f , V)N ( f ; μ, K)d f

= N ( y; μ, K + V), (9)

where the Gaussians are closed under the convolution. Our ob-
servation model thus becomes a multivariate normal distribution
described by a mean model μ(λ), covariance structure K(λ, λ

′
), and

the instrumental noise V. The instrumental noise is derived from
SDSS pipeline noise, so it is different from QSO-to-QSO; however,
since K encodes the covariance structure of QSO emissions, K should
be the same for all QSOs.

As explained in Garnett et al. (2017), there is no obvious choice
for a prior covariance function K for modelling the QSO emission
function. Most off-the-shelf covariance functions assume some sort
of translation invariance, but this is not suitable for spectroscopic
observations.2 However, we understand the QSO emission function
will be independent of the presence of a low-redshift DLA. We
also assume that QSO emission functions are roughly redshift
independent in the wavelength range of interest (Lyman limit to
Lyman α), as accretion physics should not strongly vary with
cosmological evolution. We thus build our own custom μ and K

for the GP prior to model the QSO spectra.

5 L E A R N I N G A G P PR I O R F RO M Q S O

SPECTRA

In this section, we will recap the prior modelling choices we made
in Garnett et al. (2017) and the modifications we made to reliably
detect multiple DLAs in one spectrum. We first build a GP model
for QSO emission in the absence of DLAs, the null model M¬DLA.
Our model with DLAs (MDLA) extends this null model. With the
model priors and model evidence of all models we are considering,
we compute the model posterior with Bayesian model selection.

The GP prior is completely described by the first two moments,
the mean and covariance functions, which we derive from data. We
must consider the mean flux of QSO emission, the absorption effect

2Detailed explanations are in Garnett et al. (2017), section 4.2.1.

due to the Lyman α forest, and the covariance structure within the
Lyman series.

5.1 Data

Our training set to learn our GP null model comprises the spectra
observed by SDSS BOSS DR9 and labelled as containing (or not) a
DLA by Lee et al. (2013).3 The DR9 data set includes 54 468 QSO
spectra with zQSO > 2.15. We removed the following QSOs from the
training set:

(i) zQSO < 2.15: QSOs with redshifts lower than 2.15 have no
Lyman α in the SDSS band.

(ii) BAL: QSOs with broad absorption lines as flagged by the
SDSS pipeline.

(iii) Spectra with less than 200 detected pixels.
(iv) ZWARNING: spectra whose analysis had warnings as flagged

by the SDSS redshift estimation. Extremely noisy spectra (the
TOO MANY OUTLIERS flag) were kept.

5.2 Modelling decisions

Consider a set of QSO observations D = (λ, y); we always shift the
observer’s frame λobs to rest-frame λ so that we can set the emissions
of Lyman series from different spectra to the same rest wavelengths.
The assumption here is that the zQSOs of QSOs are known for all the
observed spectra, which is not precisely true for the spectroscopic
data we have here. Accurately estimating the redshift of QSOs is
beyond the scope of this paper, and is tackled elsewhere (Fauber
et al. 2020).

The observed magnitude of a QSO varies considerably, based on
its luminosity distance and the properties of the black hole. For the
observation y to be described by a GP, it is necessary to normalize all
flux measurements by dividing by the median flux observed between
1310 and 1325 Å, a wavelength region that is unaffected by the
Lyman α forest.

We model the same wavelength range as in Garnett et al. (2017):

λ ∈ [911.75Å, 1215.75Å], (10)

going from the QSO rest-frame Lyman limit to the QSO rest-frame
Lyman α. The spacing between pixels is 
λ = 0.25 Å. Note that we
prefer not to include the region past the Lyman limit. This is partly
due to the relatively small amount of data in that region and partly
because the non-Gaussian Lyman break associated with Lyman limit
systems can confuse the model. In particular, it occasionally tries to
model a Lyman break with a wide DLA profile with a high column
density. We shall see this is especially a problem if the QSO redshift
is slightly inaccurate. The code considers the prior probability of a
Lyman break at a higher redshift than the putative QSO rest frame to
be zero and thus is especially prone to finding other explanations for
the large absorption trough.

To model the relationship between flux measurements and the
true QSO emission spectrum, we have to add terms corresponding
to instrumental noise and weak Lyman α absorption to the intrinsic
correlations within the emission spectrum. Instrumental noise was
already added in equation (9) as a matrix V.

The remaining part of the modelling is to define the GP covariance
structure for QSOs across different redshifts. In Garnett et al. (2017),
Lyman α absorbers were modelled by a single additive noise term, �,

3However, we use the DR12 pipeline throughout.
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Multi-DLAs with GP 5439

accounting for the effect of the forest as extra noise in the emission
spectrum. This is not completely physical: it assumes that the Lyman
α forest is just as likely to cause emission as absorption.

Here, we rectify this by not only including the Lyman α pertur-
bation term in our GP as �, but introducing a redshift-dependent
mean flux (μ(z)) with a dependence on the absorber redshift
(z(λobs)). We model the overall mean model with a redshift-dependent
absorption function and a mean emission vector: μ(z) = a(z) ◦ μ.
The notation ◦ refers to Hadamard product, which is the element-
wise product between two vectors or matrices. The covariance matrix
is decomposed into AF(K + �)AF, where diag (AF) = a(z) and AF

is a diagonal matrix.4 The K matrix describes the covariance between
different emission lines in the QSO spectrum, which we will learn
from data. The AF matrix is applied to K because we assume that K

is learned before the absorption noise a(z) is applied. See Section 5.4
for how we learn the covariance.

Combining all modelling decisions, the model prior for an ob-
served QSO emission is

p( y | λ, ν, zQSO,M¬DLA) = N ( y; μ(z), AF(K + �)AF + V).

(11)

The mean emission flux is now redshift- and wavelength-dependent,
so the optimization steps will differ slightly from Garnett et al.
(2017). We will address the modifications in the following subsec-
tions.

5.3 Redshift-dependent mean flux vector

In this paper, instead of using a single mean vector μ to describe all
spectra, we adjust the mean model of the GP to fit the mean flux of
each QSO spectrum. For modelling the effect of forest absorption
on the flux, we adopt an empirical power law with effective optical
depth τ 0(1 + z)β for Ly α forest (Kim et al. 2007):

a(z) = exp (−τ0(1 + z)β ), (12)

where the absorber redshift z is related to the observer’s wavelength
λobs as

1 + z =
λobs

λLyα

=
λobs

1215.7Å

= (1 + zQSO)
λ

1215.7Å
, (13)

so the absorber redshift z(λobs) = z(λ, zQSO) is a function of the QSO
redshift and the wavelength.

In Garnett et al. (2017), we assumed the absorption from the forest
would only play a role in the additive noise term (ω) in our likelihood
model p( y | λ, ν, ω, zQSO,M¬DLA) with the form:

ω′(λ, λobs) = ω(λ)s(z(λobs))
2; (14)

s(z) = 1 − exp (−τ0(1 + z)β ) + c0, (15)

where z is the absorber redshift. The ω(λ) term represents the global
absorption noise, and the s(z) corresponds to the absorption effect
contributed by the Lyman α absorbers along the line of sight as a
function of the absorber redshift z.

Thus in our earlier model, the Lyman α forest introduces additional
fluctuations in the observed spectrum y. This assumption worked

4A
⊺

F = AF because it is diagonal.

well for low-redshift spectra, because mean absorption due to the
Lyman α forest at low redshifts is relatively small. At high redshifts,
however, the suppression of the mean flux induced by many Lyman α

absorbers is substantial, see Fig. 1. In our earlier model, essentially all
high-redshift QSO spectra were substantially more absorbed than the
mean emission model μ due to absorption from the Lyman α forest.
To explain this absorption, our model would fit multiple DLAs with
large column densities.

We have improved the modelling of the Lyman α forest by allowing
the mean GP model μ to be redshift dependent, having a mean optical
depth following the measurement of Kim et al. (2007):

τeff(z) = τ0(1 + z)γ

= 0.0023 × exp (1 + z)3.65. (16)

There are other measurements of τ eff at higher precision than Kim
et al. (2007; e.g. Becker et al. 2013). However, they are derived from
SDSS data while Kim et al. (2007) were derived from high-resolution
spectra. We therefore choose to use Kim et al. (2007) to preserve the
likelihood principle that priors should not depend on the data set in
question.

We include the effect of the whole Lyman series with a similar
model, but however accounting for the different atomic coefficients
of the higher order Lyman lines:

τeff,H I(z(λobs); γ, τ0)

=
N
∑

i=2

τ0
λ1if1i

λ12f12
(1 + z1i(λobs))

γ × I(z1i (min (λobs)),zQSO)(z) . (17)

Here, f1i represents the oscillator strength and λ1i corresponds to the
transition wavelength from the n = 1 to n = i atomic energy level.
We model the Lyman series up to N = 32, with i = 2 being Ly α

and i = 3 Ly β. The absorption redshift z1i for the n = 1 to n = i

transition is defined by

1 + z1i =
λobs

λ1i

. (18)

The optical depth at the line centre is estimated by

τ0 =
√

π
e2

mec

Nℓfℓuλℓu

b
, (19)

where ℓ indicates the lower energy level and u is the upper energy
level. For Lyman α, we have λℓu = 1215.7 Å and fℓu = 0.4164;
for Lyman β, we have λℓu = 1025.7 and fℓu = 0.07912. Given
equation (19), we have the effective optical depth for the Lyman β

forest:

τβ =
f31λ31

f21λ21
τ0 =

0.07912 × 1025.7

0.4164 × 1215.7
× 0.0023 = 0.0004. (20)

The mean prior of the GP model for each spectrum is rewritten as

μ(z) = μ ◦ exp (−τeff,H I(z; γ = 3.65, τ0 = 0.0023)). (21)

We will simply write τeff,H I(z) = τeff,H I(z; γ = 3.65, τ0 = 0.0023) in
the following text for simplicity. The new μ is estimated via

μ =
1

N¬NaN

∑

yij �=NaN

yij · exp (+τeff,H I(zij )). (22)

Equation (22) rescales the mean observed fluxes back to the expected
continuum before the suppression due to Lyman series absorption,
hopefully recovering approximately the true QSO emission function
f . Fig. 1 shows the retrained mean QSO emission model for an
example QSO. The mean model, μ, is much closer to the peak
emission flux above the absorbed forest.

MNRAS 496, 5436–5454 (2020)
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5440 M.-F. Ho, S. Bird and R. Garnett

Figure 1. The effect of the shift to the GP mean vector from the Lyman α forest effective optical depth model (μ ◦ exp (−τ0(1 + z)β )). The dotted red curve
shows the mean emission model before application of the forest suppression. The solid red curve is the mean model including the forest suppression.

For model consistency, we account for the mean suppression from
weak absorbers in our redshift-dependent noise model ω with:

ω′(λ, λobs) = ω(λ)sF (z(λobs))2; (23)

where sF (z(λobs)) = 1 − exp (−τeff,H I(z(λobs); β, τ0)) + c0 . (24)

τ 0, β, and c0 are parameters that are learned from the data. Fig. 2
shows the mean model and absorption noise variance we use,
compared to the model from Garnett et al. (2017).

Note that the mean flux model introduces degeneracies between
the parameters of equation (24). For example, c0 may be compensated
by the overall amplitude of pixel-wise noise vector ω. For this reason,
we should not ascribe strict physical interpretations to the optimal
values of equation (24). The optimized ω′ is simply an empirical
relation modelling the pixel-wise and redshift-dependent noise in
the null model given SDSS data.

After introducing the effective optical depth into our GP mean
model, we decrease the number of large DLAs we detect at high
redshifts and thus measure lower �DLA at high redshifts (see
Section 10.3 for more details). This is because, for high-redshift
QSOs, the mean optical depth may be close to unity. To explain
this unexpected absorption, the previous code will fit multiple high
column density absorbers to the raw emission model, artificially
increasing the number of DLAs detected. With the mean model
suppressed, there is substantially less raw absorption to explain, and
so this tendency is avoided.

5.4 Learning the flux covariance

K and � (equation 11) are optimized to maximize the likelihood
of generating the data, D. The mean flux model is not optimized,
but follows the effective optical depth reported in Kim et al. (2007).
Thus, we remove the effect of forest absorption before we train
the covariance function and train on D′ = {λ, y ◦ exp (+τeff,H I(z)) −
μ(z)} to find the optimal parameters for K and �.

We assume the same likelihood as Garnett et al. (2017) for
generating the whole training data set (Y ):

p(Y | λ, V, M, ω, zQSO,M¬DLA)

=
Nspec
∏

i=1

N ( yi ; μ, K + � + Vi), (25)

where Y means the matrix containing all the observed flux in the
training data, and the product on the right-hand side says we are
combining all likelihoods from each single spectrum. The noise

matrix � = diag ω′ is the diagonal matrix that represents the Lyman
α forest absorption from equation (24).

M is a low-rank decomposition of the covariance matrix K we
want to learn:

K = MM⊤, (26)

where M is an (Npixels × k) matrix. Without this low-rank decomposi-
tion, we would need to learn N2

pixel = 1217 × 1217 free parameters.
With equation (26), we can limit the number of free parameters to
be Npixels × k, where k ≪ Npixels; also, it guarantees the covariance
matrix K to be positive semidefinite. Each column of the M can be
treated as an eigenspectrum of the training data, where we set the
number of eigenspectra to be k = 20. We will optimize the M matrix
and the absorption noise in equation (24) simultaneously.

A modification performed in this work is to, instead of directly
training on the observed flux, optimize the covariance matrix and
noise model on the flux with Lyman α forest absorption removed
(de-forest flux):

y := y ◦ exp (+τeff,H I(z));

Yij := Yij exp (+τeff,H I(z))ij . (27)

We may write this change into the likelihood:

p(Y ◦ exp (+τeff,H I(z)) | λ, V, M, ω, zQSO,M¬DLA)

=
Nspec
∏

i=1

N ( yi ◦ exp (+τeff,H I(zi)); μ, K + � + Vi), (28)

where μ is the mean model from equation (22). The rest of our
optimization procedure follows the unconstrained optimization of
Garnett et al. (2017).

We use de-forest fluxes for training as we want our covariance
matrix to learn the covariance in the true emission function. The
emission function (like our kernel K) is independent of QSO emission
redshift, whereas the absorption noise is not. We only implement the
mean forest absorption of Kim et al. (2007), so we need an extra term
to compensate for the variance of the forest around this mean. We
thus still train the redshift- and wavelength-dependent absorption
noise from data. The optimal values we learned for equation (24)
are:

c0 = 0.3050; τ0 = 1.6400 × 10−4; β = 5.2714. (29)

As we might expect, the optimal τ 0 value is smaller than the τ 0 =
0.01178 learned in Garnett et al. (2017), which implies the effect of
the forest is almost removed by applying the Lyman-series forest to
the mean model. The final covariance matrix is shown in Fig. 3.
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Multi-DLAs with GP 5441

Figure 2. The difference between the original pixel-wise noise variance ω (Garnett et al. 2017) and the retrained ω from equation (28). The retrained ω decreases
because the fit no longer needs to account for the mean forest absorption.

Figure 3. The trained covariance matrix M, which is almost the same as the
covariance from Garnett et al. (2017). Note that we normalize the diagonal
elements to be unity, so this is more like a correlation matrix than a covariance
matrix. The values in the matrix are ranging from 0 to 1, representing the
correlation between λ and λ

′
in the QSO emission.

5.5 Model evidence

Consider a given QSO observation D = (λ, y) with known observa-
tional noise ν(λ) and known QSO redshift zQSO. The model evidence
for M¬DLA can be estimated using

p(D | M¬DLA, ν, zQSO) ∝ p( y | λ, ν, zQSO,M¬DLA), (30)

which is equivalent to evaluating a multivariate Gaussian

p( y | λ, ν, zQSO,M¬DLA)

= N ( y; μ ◦ exp (−τ eff,H I), AF(K + �)AF + V). (31)

Here, exp (−τ eff,H I) = diag AF describes the absorption due to the
forest and modifies the mean vector μ, the covariance matrix K, and
the noise matrix � to account for the Lyman α forest effective optical
depth.

6 A G P M O D E L FO R Q S O SI G H T L I N E S W I T H

MULTIPLE DLAS

In Section 5, we learned a GP prior for QSO spectroscopic mea-
surements without any DLAs for our null model M¬DLA. Here, we
extend the null model M¬DLA to a model with k intervening DLAs,
MDLA(k).

Our complete DLA model, MDLA, will be the union of the models
with i DLAs: MDLA = {MDLA(i)}k

i=1. We consider only until k = 4,
as DLAs are rare events and our sample only contains one spectrum
with four DLAs.

6.1 Absorption function

Before we model a QSO spectrum with intervening DLAs, we need
to have an absorption profile model for a DLA. Damped Lyman
alpha absorbers, or DLAs, are neutral hydrogen (H I) absorption
systems with saturated lines and damping wings in the spectroscopic
measurements. Having saturated lines means the column density of
the absorbers on the line of sight is high enough to absorb essentially
all photons. The damping wings are due to natural broadening in the
line.

The optical depth from each Lyman series transition is

τ (λ; zDLA, NH I) = NH I

πe2f1uλ1u

mec
φ(v, b, γ ), (32)

where e is the elementary charge, λ1u is the transition wavelength
from the n = 1 to n = u energy level (λ12 = 1215.6701 Å for Lyman
α), and f1u is the oscillator strength of the transition. The line profile
φ is a Voigt profile:

φ(v, b, γ ) =
∫

dv
√

2πσv

exp (−v2/2σ 2
v )

×
4γℓu

16π2[ν − (1 − v/c)νℓu]2 + γ 2
ℓu

, (33)

which is a convolution between a Lorenztian line profile and a Gaus-
sian line profile. The σ v is the one-dimensional velocity dispersion,
γ ℓu is a parameter for Lorenztian profile, ν is the frequency, and u

represents the upper energy level and ℓ represents the lower energy
level.

Both profiles are parametrized by the relative velocity v, which
means both profiles are distributions in the one-dimensional velocity
space:

v = c

(

λ

λ1u

1

(1 + zDLA)
− 1

)

. (34)

The standard deviation of the Gaussian line profile is related to the
broadening parameter b =

√
2σv , and if we assume the broadening

is entirely due to thermal motion:

b =

√

2kT

mp

. (35)

Introducing the damping constant Ŵ = 6.265 × 108s−1 for Lyman α,
we have the parameter γ ℓu to describe the width of the Lorenztian
profile

γℓu =
Ŵλℓu

4π
. (36)
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5442 M.-F. Ho, S. Bird and R. Garnett

Our default DLA profile includes Ly α, Ly β, and Ly γ absorptions.
We fix the broadening parameter b by setting T = 104 K, which
increases the width of the DLA profile by 13 km s−1, small compared
to the effect of the Lorenztian wings. Thus, for a given QSO and a
true emission function f(λ), the function for the observed flux y(λ)
is

y(λ) = f (λ) exp (−τ (λ; zDLA, NH I)) exp (−τeff,H I(λobs)) + ǫ, (37)

where ǫ is additive Gaussian noise including measurement noise and
absorption noise.

Suppose we have a DLA at redshift zDLA with column density NH I.
We can model the spectrum with an intervening DLA by calculating
the DLA absorption function:

a = exp (−τ (λ; zDLA, NH I)). (38)

We apply the absorption function to the GP prior of y with

p( y | λ, ν, zQSO, zDLA, NH I,MDLA)

= N ( y; a ◦ (aF ◦ μ), A(AF(K + �)AF)A + V), (39)

where A = diag a.
For a model with k DLAs with k ∈ N, we simply take the element-

wise product of k absorption functions:

a(k) =
k
∏

i=1

a(λ; zDLAi, NH Ii);

diag A(k) = a(k). (40)

The prior for MDLA(k) would therefore be

p( y | λ, ν, zQSO, {zDLAi}k
i=1, {NH Ii}k

i=1,MDLA(k))

= N ( y; a(k) ◦ (aF ◦ μ), A(k)(AF(K + �)AF)A(k) + V). (41)

Here, we briefly review our notations in equation (41): a(k),
which is parametrized by ({zDLAi}k

i=1, {NH Ii}k
i=1), represents the

absorption function with k DLAs in one spectrum. Note that each
DLA is parametrized by a pair of (zDLA, NH I). aF corresponds to
the absorption function from the Lyman series absorptions, which
is derived from Kim et al. (2007) in the form of equation (21). The
covariance matrix K and the absorption model � are both learned
from data, as described in Section 5.4. V is the noise variance
matrix given by the SDSS pipeline, so each sightline would have
different V.

6.2 Model evidence: DLA(1)

The model evidence of our DLA model is given by the integral:

p(D | MDLA(1), zQSO) ∝
∫

p( y | λ, ν, θ, zQSOMDLA(1))

× p(θ | zQSO,MDLA(1))dθ, (42)

where we integrated out the parameters, θ = (zDLA, log10NH I), with
a given parameter prior p(θ | zQSO,MDLA(1)).

However, equation (42) is intractable, so we approximate
it with a quasi-Monte Carlo method (QMC). QMC selects
N = 10 000 samples with an approximately uniform spatial
distribution from a Halton sequence to calculate the model
likelihood, approximating the model evidence by the sample
mean:

p(D | MDLA(1), zQSO) ≃
1

N

N
∑

i=1

p(D | θi, zQSO,MDLA(1)). (43)

6.3 Model evidence: Occam’s razor effect for DLA(k)

For higher order DLA models, we have to integrate out not only the
nuisance parameters of the first DLA model MDLA(1), (θ1) but also
the parameters from MDLA(2) to MDLA(k),

p(D | MDLA(k), zQSO) ∝
∫

p(D | MDLA(k), {θi}k
i=1)

× p({θi}k
i=1 | MDLA(k),D, zQSO)d{θi}k

i=1,

(44)

which means we are marginalizing {θi}k
i=1 in a parameter

space with 2 × k dimensions. The parameter prior of multi-
DLAs is a multiplication between a non-informative prior p(θi |
MDLA(1), zQSO) and the posterior of the (k − 1) multi-DLA
model,

p({θi}k
i=1 | MDLA(k),D, zQSO)

= p({θi}k−1
i=1 | MDLA(k−1),D, zQSO)p(θk | zQSO,MDLA(1)). (45)

We can approximate this integral using the same QMC method.
For example, if we want to sample the model evidence for MDLA(2),
we would need N = 10 000 samples for each parameter dimension
{θi}2

i=1, which results in sampling from two independent Halton
sequences with 108 samples in total. If we want to sample up to
MDLA(k) with N samples for each {θ i} from i = 1, ..., k, we would
need to have:

p(D | MDLA(k), zQSO) ≃
1

N

N
∑

j (1)=1

1

N

N
∑

j (2)=1

1

N

N
∑

j (3)=1

. . .
1

N

N
∑

j (k)=1

p(D | MDLA(k), {θ1j (1) , θ2j (2) , θ3j (3) , . . . , θkj (k) }, zQSO), (46)

where {j(1), j(2), j(3), . . . , j(k)} indicate the indices of QMC samples.
The above equation (46) is thus in principle evaluated with Nk

samples.
In practice, we only sample N = 10 000 points from p({θi}k

i=1 |
MDLA(k),D, zQSO) instead of sampling Nk points, as a uniform
sampling of the first DLA model may be reweighted to cover
parameter space for the higher order models. A Nk − 1 factor of
normalization is thus left behind in the summation,

p(D | MDLA(k), zQSO)

≃
1

N k

N
∑

j=1

p(D | MDLA(k), {θij }k
i=1, zQSO)

≃
1

N k−1

⎛

⎝

1

N

N
∑

j=1

p(D | MDLA(k), {θij }k
i=1, zQSO)

⎞

⎠

≃
1

N k−1
meanj

(

p(D | MDLA(k), {θij }k
i=1, zQSO)

)

. (47)

The additional 1
Nk−1 factor penalizes models with more parameters

than needed, and can be viewed as an implementation of Occam’s
razor. This Occam’s razor effect is caused by the fact that all
probability distributions have to be normalized to unity. A model
with more parameters, which means having a wider distribution in
the likelihood space, results in a bigger normalization factor.

The motivation for us to draw N samples from the multi-DLA
likelihood function p({θi}k

i=1 | MDLA(k),D, zQSO) is that we believe
the prior density we took from the posterior density of MDLA(k−1) is
representative enough even without Nk samples. For example, if we
have two peaks in our likelihood density p(D | MDLA(1), θ1, zQSO),
we expect the sampling for θ2 in p(D | MDLA(2), {θ1, θ2}, zQSO)
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Multi-DLAs with GP 5443

would concentrate on sampling the density of the first highest peak in
p(D | MDLA(1), θ1, zQSO) density. Similarly, while we are sampling
for MDLA(3), we expect θ3 and θ2 would cover the first- and the
second-highest peaks.

To avoid multi-DLAs overlapping with each other, we inject a
dependence between any pair of zDLA parameters. Specifically, if
any pair of zDLAs have a relative velocity smaller than 3000 km s−1,
then we set the likelihood of this sample to NaN.

6.4 Additional penalty for DLAs and sub-DLAs

In Section 6.3, we apply a penalty, Occam’s razor, to regularize DLA
models using more parameters than needed. This effect is due to the
normalization (to unity) of the evidence.

In a similar fashion, and for a similar reason, we apply an addi-
tional regularization factor between the non-DLA and DLA models
(including sub-DLAs). This additional factor ensures that when both
models are a poor fit to a particular observational spectrum, the code
prefers the non-DLA model, rather than preferring the model with
more parameters and thus greater fitting freedom. We directly inject
this Occam’s razor factor in the model selection:

Pr(MDLA | D)

=
Pr(MDLA)p(D | MDLA) 1

N
(

Pr(MDLA)p(D | MDLA)
+Pr(Msub)p(D | Msub)

)

1
N

+ Pr(M¬DLA | D)
, (48)

where N = 104 is the number of samples we used to approximate
the parametrized likelihood functions. We evaluated the impact of
this regularization factor on the area under the curve (AUC) in the
receiver-operating characteristics (ROC) plot.5 For N = 104, the AUC
changed from 0.949 to 0.960. We considered other penalty values
and found that the AUC increased up to N = 104 and then plateaued.

In addition, we found by examining specific examples that this
penalty regularized a relatively common incorrect DLA detection:
finding objects in short, very noisy low redshift (z ∼ 2.2) spectra. In
these spectra our earlier model would prefer the DLA model purely
because of its large parameter freedom. In particular a high column
density DLA, large enough that the damping wings exceed the width
of the spectrum, would be preferred. Such a fit exploits a degeneracy
in the model between the mean observed flux and the DLA column
density when the spectrum is shorter than the putative DLA. The
Occam’s razor penalty avoids these spurious fits by penalizing the
extra parametric freedom in the DLA model.

6.5 Parameter prior

Here, we briefly recap the priors on model parameters chosen in
Garnett et al. (2017). Suppose we want to make an inference for the
column density and redshift of an absorber θ = (NH I, zDLA) from a
given spectroscopic observation, the joint density for the parameter
prior would be

p(θ | zQSO,MDLA(1)) = p(NH I, zDLA | zQSO,MDLA(1)). (49)

Suppose the absorber redshift and the column density are condition-
ally independent and the column density is independent of the QSO
redshift zQSO:

p(θ | zQSO,MDLA(1)) = p(zDLA | zQSO,MDLA(1))

× p(NH I | MDLA(1)) (50)

5See Section 10.1 for how we compute our ROC plot.

We set a bounded uniform prior density for the absorber redshift
zDLA:

p(zDLA | zQSO,MDLA(1)) = U[zmin, zmax], (51)

where we define the finite prior range to be

zmin = max

{

λLy ∞
λLy α

(1 + zQSO) − 1 + 3000 km s−1/c
min λobs

λLy α
− 1

(52)

zmax = zQSO − 3000 km s−1/c; (53)

which means we have a prior belief that the centre of the absorber is
within the observed wavelengths. The range of observed wavelengths
is either from Ly ∞ to Ly α of the QSO rest frame (λrest ∈ [911.75 Å,
1216.75 Å]) or from the minimum observed wavelength to Ly α. We
also apply a conservative cut-off of 3000 km s−1 near to Ly ∞ and
Ly α. The −3000 km s−1 cut-off for zmax helps to avoid proximity
ionization effects due to the QSO radiation field. Furthermore,
the +3000 km s−1 cutoff for zmin avoids a potentially incorrect
measurement for zQSO. An underestimated zQSO can produce a
Lyman-limit trough within the region of the QSO expected to contain
only Lyman-series absorption, and the code can incorrectly interpret
this as a DLA.

For the column density prior, we follow Garnett et al. (2017). We
first estimate the density of DLAs column density p(NH I | MDLA)
using the BOSS DR9 Lyman α forest sample. We choose to put our
prior on the base-10 logarithm of the column density log10NH I due
to the large dynamic range of DLA column densities in SDSS DR9
samples.

We thus estimate the density of logarithm column densities
p(log10 NH I | MDLA(1)) using univariate Gaussian kernels on the
reported log10NH I values in DR9 samples. Column densities from
DLAs in DR9 with NDLA = 5 854 are used to non-parametrically
estimate the logarithm NH I prior density, with

pKDE(log10 NH I | MDLA(1)) =
1

NDLA

NDLA
∑

i=1

N (log10 NH I; li, σ
2),

(54)

where li is the logarithm column density log10NH I of the ith sample.
The bandwidth σ 2 is selected to be the optimal value for a normal
distribution, which is the default setting for MATLAB.

We further simplify the non-parametric estimate into a parametric
form with

pKDE(log10 NH I = N | MDLA(1))

≃ q(log10 NH I = N ) ∝ exp (aN2 + bN + c); (55)

where the parameters (a, b, c) for the quadratic function are fitted
via standard least-squared fitting to the non-parametric estimate of
density pKDE(log10 NH I | MDLA(1)) with the range log10NH I ∈ [20,
22]. The optimal values for the quadratic terms were

a = −1.2695; b = 50.863; c = −509.33. (56)

Note that we have the same values as in Garnett et al. (2017).
Finally, we choose to be conservative about the data-driven column

density prior. We thus take a mixture of a non-informative lognormal
prior with the data-driven prior to make a non-restrictive prior on a
large dynamical range:

p(log10 NH I | MDLA(1)) = αq(log10 NH I = N )+(1 − α)U[20, 23].

(57)

Here we choose the mixture coefficient α = 0.97, which favours
the data-driven prior. We still include a small component of a non-
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5444 M.-F. Ho, S. Bird and R. Garnett

informative prior so that we are able to detect DLAs with a larger
column density than in the training set, if any are present in the
larger DR12 sample. Note that α = 0.97 is 7 per cent higher than
the coefficient chosen in Garnett et al. (2017), which was α = 0.90.
Our previous prior slightly overestimated the number of very large
DLAs.

6.6 Sub-DLA parameter prior

As reported in Bird et al. (2017), the column density distribution
function (CDDF) exhibited an edge feature: an overdetection of
DLAs at low column densities (∼1020 cm−2). This did not affect
the statistical properties of DLAs as we restrict column density to
NH I � 1020.3 cm−2 for both line densities (dN/dX) and total column
densities (�DLA). However, to make our method more robust, here
we describe a complementary method to avoid overestimating the
number of low column density absorbers.

The excess of DLAs at ∼1020 cm−2 is due to our model excluding
lower column density absorbers such as sub-DLAs. Since we limited
our column density prior of DLAs to be larger than 1020 cm−2, the
code cannot correctly classify a sub-DLA. Instead it correctly notes
that a sub-DLA spectrum is more likely to be a DLA with a minimal
column density than an unabsorbed spectrum.

To resolve our ignorance, we introduce an alternative model Msub

to account the model posterior of those low column density absorbers
in our Bayesian model selection. The likelihood function we used for
sub-DLAs is identical to the one we built for DLA model MDLA(1)

in equation (39) but has a different parameter prior on the column
densities p(log10 NH I | Msub). We restricted our prior belief of sub-
DLAs to be within the range log10NH I ∈ [19.5, 20], and, as we do
not have a catalogue of sub-DLAs for learning the prior density, we
put a uniform prior on log10NH I:

p(log10 NH I | Msub) = U[19.5, 20]. (58)

We place a lower cut-off at log10NH I = 19.5 because the relatively
noisy SDSS data offer limited evidence for absorbers with column
densities lower than this limit.

7 M O D E L P R I O R S

Bayesian model selection allows us to combine prior information
with evidence from the data-driven model to obtain a posterior belief
about the detection of DLAs p(MDLA | D) using Bayes’ rule. For
a given spectroscopic observation D, we already have the ability
to compute the model evidence for a DLA (p(D | MDLA)) and no
DLA (p(D | M¬DLA)). However, to compute the model posteriors,
we need to specify our prior beliefs in these models. Here, we
approximate our prior belief Pr(MDLA) using the SDSS DR9 DLA
catalogue.

Consider a QSO observation D = (λ, y) at zQSO. We want to find
our prior belief that D contains a DLA. We count the fraction of QSO
sightlines in the training set containing DLAs with redshift less than
zQSO + z

′
, where z′ = 30 000 km s−1/c is a small constant. If N is the

number of QSO sightlines with redshift less than zQSO + z
′
, and M

is the number of sightlines in this set containing DLAs in the QSO
rest-frame wavelengths range we search, then our empirical prior for
MDLA is

Pr(MDLA | zQSO) =
M

N
. (59)

We can break down our DLA prior Pr(MDLA | zQSO) for multiple
DLAs in a QSO sightline Pr(MDLA(k) | zQSO) via

Pr(MDLA(k) | zQSO) ≃
(

M

N

)k

−
(

M

N

)k+1

. (60)

For example, M
N

represents our prior belief of having at least one
DLA in the sightline, and ( M

N
)2 represents having at least two DLAs.

M
N

− ( M
N

)2 is thus our prior belief of having exactly one DLA at the
sightline.

7.1 Sub-DLA model prior

The CDDF of Bird et al. (2017) exhibited an edge effect at log10NH I ∼
20 due to a lack of sampling at lower column densities. We thus
construct an alternative model for lower column density absorbers
(sub-DLAs, DLAs’ lower column density cousins) to regularize DLA
detections. We use the same GP likelihood function as the DLA
modelMDLA to compute our sub-DLA model evidence p(D | Msub)
but with a different column density prior p(log10 NH I | Msub).

There is no sub-DLA catalogue available for us to es-
timate the empirical prior directly. We, therefore, approxi-
mate our sub-DLA model prior by rescaling our DLA model
prior:

Pr(Msub | zQSO) ∝ Pr(MDLA | zQSO), (61)

and we require our prior beliefs to sum to unity:

Pr(M¬DLA | zQSO) + Pr(Msub | zQSO) + Pr(MDLA | zQSO) = 1.

(62)

The scaling factor between the DLA prior and sub-DLA prior
should depend on our prior probability density of the column density
of the absorbers. Here, we assume the density of sub-DLA log10NH I

is an uniform density with a finite range of log10NH I ∈ [19.5, 20].
We believe there are more sub-DLAs than DLAs as high column
density systems are generally rarer. We thus assume the probability
of finding sub-DLAs at a given log10NH I is the same as the probability
of finding DLAs at the most probable log10NH I, which is

p(log10 NH I = N | {MDLA,Msub})
= αq(N | MDLA)I(20,23)(N )

+α max (q(N | MDLA))I(19.5,20)(N )

+ (1 − α)U[19.5, 23]. (63)

Since q(N | MDLA) has a simple quadratic functional form,
we can solve the maximum value analytically, which is
max (q(N | MDLA)) ≃ q(N = 20.03 | MDLA).

We thus can use our prior knowledge about the logarithm of
column densities for different absorbers to rescale model priors:

Pr(Msub | zQSO) =
Zsub

ZDLA
Pr(MDLA | zQSO), (64)

where the scaling factor is

Zsub

ZDLA
=

∫ 20
19.5 p(N | {MDLA,Msub})dN
∫ 23

20 p(N | {MDLA,Msub})dN
, (65)

which is the odds of finding absorbers in the range of log10NH I ∈
[19.5, 20] compared to finding absorbers in log10NH I ∈ [20, 23]. Note
that we will treat the model posteriors of the sub-DLA model as part
of the non-detections of DLAs in the following analysis sections.
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Multi-DLAs with GP 5445

8 C ATA L O G U E

The original parameter prior in Garnett et al. (2017) is uniformly
distributed in zDLA between the Lyman limit (λrest = 911.76 Å) and
the Ly α emission of the QSO. In Bird et al. (2017), we chose the
minimum value of zDLA to be at the Ly β emission line of the QSO
rest frame (instead of the Lyman limit) to avoid the region containing
unmodelled Ly β forest. The primary reason for this was that the
original absorption noise model did not include Ly β absorption.
With the updated model from equation (24) we are able to model
this absorption. Hence, for our new public catalogue, we sample
zDLA to be from Ly∞ to Lyα in the QSO rest frame and for the
convenience of future investigators our public catalogue contains
DLAs throughout the whole available spectrum, including Ly β to
Ly ∞. There is still some contamination in the blue end of high-
redshift spectra from the Ly β forest and occasional Lyman breaks
from a misestimated QSO redshift. In practice we shall see that the
contamination is not severe except for zDLA > 3.75. However, in
the interest of obtaining as reliable DLA statistics as possible, when
computing population statistics we consider only 3000 Å redward of
Ly β to 3000 Å blueward of Ly α in the QSO rest frame.

In this paper, we computed the posterior probability of M¬DLA to
MDLA(k) models. For each spectrum, the catalogue includes:

(i) The range of redshift DLA searched [zmin, zmax],
(ii) The log model priors from log Pr(M¬DLA | zQSO),

log Pr(Msub | zQSO), to log Pr({MDLA(i)}k
i=1 | zQSO),

(iii) The log model evidence log p( y | λ, ν, zQSO,M), for each
model we considered,

(iv) The model posterior Pr(M | D, zQSO), for each model we
considered,

(v) The probability of having DLAs Pr({MDLA} | D, zQSO),
(vi) The probability of having zero DLAs Pr(M¬DLA | D, zQSO),
(vii) The sample log likelihoods log p( y |

λ, ν, zQSO, {zDLA(i)}k
i=1, {log10 NH I(i)}k

i=1,MDLA(k)) for all DLA
models we considered, and

(viii) The maximum a posteriori (MAP) values of all DLA models
we considered.

The full catalogue will be available alongside the paper: http://ti
ny.cc/multidla catalog gp dr12q. The code to reproduce the entire
catalogue will be posted in https://github.com/rmgarnett/gp dla det
ection/tree/master/multi dlas.

8.1 Running time

We ran our multi-DLA code on UCR’s High-Performance Comput-
ing Center (HPCC) and Amazon Elastic Compute Cloud (EC2). The
computation of model posteriors of M¬DLA, Msub, {MDLA(i)}4

i=1

takes 7–11 s per spectrum on a 32-core node in HPCC and 3–5
seconds on a 48-core machine in EC2. For each spectrum, we have to
compute 10 000 ∗ 5 + 1 log likelihoods in the form of equation (11).
If we scale the sample size from N = 10 000 to 100 000, it costs
38–52 s on a 32-core node in HPCC.

9 EX A M P LE SP ECTRA

Here, we show a few examples of the fitted GP priors, both to compare
our method to others and to aid the reader in understanding concretely
how our method works.

We show an exmple where our older model detected only one
DLA, as shown in Fig. 4, while our new code detects three DLAs in
this single spectrum as shown in Fig. 5. Because the mean QSO model

includes a redshift-dependent term corresponding to intervening
absorbers, our new mean model can now fit the mean observed QSO
spectrum better. Although we show the sample likelihoods in the
MDLA(1) parameter space, our current code finds these three DLAs
in the six-dimensional parameter space (zDLA(i), log10 NH I(i))3

i=1.
In Fig. 6, we show a representative sample of a very common

case in our MDLA(1) model. The red curve represents our GP prior
on the given spectrum, and the orange curve is the curve with fitted
DLAs provided by the CNN model presented in Parks et al. (2018).6

We found Parks et al. (2018) underestimated the column densities
of the underlying DLAs in the spectra due to not modelling Lyman
β and Lyman γ absorption in DLAs, while the predictions of NH I

in our model are more robust since the predicted NH I is constrained
by α, β, and γ absorption. In the spectrum, Lyman β absorption
is clearly visible (although noisy). In Fig. 6, Parks et al. (2018)
have actually mistaken the Ly γ absorption line of the DLA for
another, weaker, DLA. This demonstrates again the necessity of
including other Lyman-series members in the modelling steps. Since
Parks et al. (2018) broke down each spectrum into pieces during
the training and testing phases, it is impossible for the CNN to
use knowledge about other Lyman series lines associated with the
DLAs. Another example, from a spectrum where we detect two
DLAs and the CNN detects four (although at low significance) is
shown in Fig. 7. Here, the CNN has mistaken both the Ly β and Ly γ

absorption associated with the large DLA at z ∼ 3 (near the QSO
rest frame) for separate DLAs at z = 2.4 and z = 2.22, respectively.
The large DLA at z ∼ 3 has been split into two of reduced column
density and reduced confidence. The CNN has also missed the second
genuine DLA at a rest-frame wavelength of 1025 Å, presumably
due to the proximity of an emission line. Our code, able to model
the higher order Lyman lines, has used the information contained
within them to correctly classify this spectrum as containing two
DLAs.

Fig. 9 shows an example that was problematic in both the models
of Garnett et al. (2017) and Parks et al. (2018). This is an extremely
noisy spectrum, where the length of the spectrum is not long enough
for us to contain higher order Lyman-series absorption or even to
see the full length of the putative Lyman α absorption. By eye,
distinguishing a DLA from the noise is challenging. If we examine
the sample likelihoods from our model (shown in Fig. 10), we see that
the DLA posterior probability is spread over the whole of parameter
space; in other words, all models are a poor fit for this noise-
dominated spectrum. The model selection is thus really comparing
the likelihood function on the basis of how much parametric freedom
it has. After implementing the additional Occam’s razor factor
between the null model and parametrized models (DLAs and sub-
DLAs) described in Section 6.4, we found that the large DLA fitted
to the noisy short spectrum by Garnett et al. (2017) was no longer
preferred. This indicates that our Occam’s razor penalty is effective.
As shown in Fig. 16, �DLA at low redshifts is lower than the
measurements in Bird et al. (2017), indicating that this class of error
is common enough to have a measurable effect on the column density
function. We checked that the addition of the Occam’s razor penalty,
�DLA is insensitive to the noise threshold used when selecting the
spectra for our sample.

There are still some very high redshift QSOs (zQSO � 5) where our
code clearly detects too many DLAs in a single spectrum, even at low
redshift. We exclude these spectra from our population statistics. At

6We used the version of Parks et al. (2018)’s catalogue listed in the published
paper and found on Google Drive at https://tinyurl.com/cnn-dlas.
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5446 M.-F. Ho, S. Bird and R. Garnett

Figure 4. An example of finding DLAs using Garnett et al. (2017)’s model. Here, we use the single-DLA per spectrum version of Garnett’s model. Upper:
sample likelihoods p( y | θ,MDLA) in the parameter space θ = (zDLA, log10NH I). Red dots show the DLAs predicted by Parks et al. (2018), and the blue squares
show the MAP prediction of the Garnett et al. (2017). Bottom: the observed spectrum (blue), the null model GP prior (orange), and the DLA model GP prior
(red). So that the upper and bottom panels have the same x-axis, we rescale the observed wavelength to absorber redshift.

Figure 5. The same spectrum as Fig. 4, but using the multi-DLA model reported in this paper. Upper: sample likelihoods p( y | θ,MDLA) in the parameter
space of the MDLA(1), with θ = (zDLA, log10NH I). Bottom: the observed spectrum (blue), the null model GP prior before the suppression of effective optical
depth (orange), and the multi-DLA GP prior (red). The orange curve is slightly higher than the one in Fig. 4 because we try to model the mean spectrum before
the forest. However, the DLA QSO model (red curve) matches the level of the observed mean flux better than Fig. 4 due to the inclusion of a term for the
effective optical depth of the Lyman α forest.

high redshift, the Lyman α forest absorption is so strong as to render
the observed flux close to zero. We thus cannot easily distinguish
between the null model and the DLA models. It is also possible that
at high redshifts, the mean flux of the forest is substantially different
from the Kim et al. (2007) model we assume, and that this biases
the fit. Finally, there are few such spectra, and so we cannot rule

out the possibility that covariance of their emission spectra differs
quantitatively from lower redshift QSOs.

1 0 A NA LY S I S O F T H E R E S U LT S

In this section, we present results from our classification pipeline,
and we also present the statistical properties (CDDF, line densities

MNRAS 496, 5436–5454 (2020)
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Multi-DLAs with GP 5447

Figure 6. Blue: The normalized observed flux. The spectral ID represents spec-plate-mjd-fiber id. Yellow: Parks’ predictions on top of our null
model. Our model predicts only one DLA while the CNN model in Parks et al. (2018) predicts two DLAs. One of the DLAs predicted by Parks et al. (2018) is
coincident with the Ly γ absorption from our predicted DLA. z dla corresponds to the DLA redshifts reported in Parks’ catalogue, and lognhi corresponds
to the column density estimations of Parks’ catalogue. p dla is the dla confidence reported in Parks. Red: Our current model with the highest model
posterior and the MAPs of column densities. In this spectrum, we show that it is crucial to include Lyβ and Lyγ absorption from the DLA in the DLA profile.
It not only helps to localize the DLA, but it also predicts NH I more accurately using information from the Ly β region. The blue line shows the observed flux,
the red curve is our multi-DLA GP prior, and the orange curve shows the predicted DLAs from Parks et al. (2018) subtracted from our mean model.

Figure 7. A spectrum in which we detect two DLAs. Blue: Normalized flux. Red: GP mean model with two intervening DLAs. Yellow: The predictions from
Parks’ catalogue. Pink: The MAP prediction of Garnett et al. (2017) on top of the GP mean model without mean flux suppression. The model posterior from
Garnett et al. (2017) is listed in the legend (1) with the MAP value of log10NH I. The column density estimate for the DLA near λrest = 1 025 Å has large
uncertainty (see Fig. 8). It is thus possible that this DLA could be a sub-DLA, as preferred by Parks et al. (2018).

Figure 8. The log sample likelihoods for the DLA model of the spectrum shown in Fig. 7, normalized to range from −∞ to 0. The DLA at
zDLA ∼ 2.52 could be a sub-DLA (as preferred by Parks et al. 2018), as the log10NH I estimate is uncertain. However, we found that the two-DLA
model posterior log p(MDLA(2) | y, λ, ν, zQSO) = −638 is still higher than the model posterior from combining one-DLA and one-sub-DLA, which is
log p(MDLA(1) + Msub | y, λ, ν, zQSO) = −691.47.

dN/dX, and total column densities �DLA) of the DLAs detected in
our catalogue.

10.1 ROC analysis

To evaluate how well our multi-DLA classification reproduces earlier
results, we rank our DLA detections using the log posterior odds

between the DLA model (summing up all possible DLA models
{MDLA(i)}k

i=1) and the null model:

log(odds)

= log Pr({MDLA} | D, zQSO) − log Pr(M¬DLA | D, zQSO), (66)

where the ranking is over all sightlines. From the top of the ranked
list based on the log posterior odds, we calculate the true positive
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5448 M.-F. Ho, S. Bird and R. Garnett

Figure 9. A noisy spectrum at zQSO = 2.378 fitted with a large DLA by Garnett et al. (2017). Red: The model presented in this paper predicts no DLA detection
in this spectrum. Pink: The MAP prediction of Garnett et al. (2017) on top the GP mean model without the mean-flux suppression. Gold: The prediction of
Parks et al. (2018) subtracted from our mean model. Note that Parks et al. (2018) also indicate a detection of a DLA at zDLA = 2.53, but outside the range of
this spectrum.

Figure 10. Top: The sample likelihoods of the spectrum shown in Fig. 9. The colour bar indicates the normalized log likelihoods ranging from −∞ to 0.
Bottom: The orange curve indicates the GP mean model before mean-flux suppression, the red curve represents the mean model after suppression, and the blue
line is the normalized flux of this spectrum. The x-axis of this spectrum is rescaled to be the same as the zDLA presented in the upper panel.

rate and false positive rate for each rank:

TPR =
TP

TP + FN
;

FPR =
FP

FP + TN
. (67)

The true positive rate is the fraction of sightlines where we detect
DLAs (ordered by their rank) divided by the number of sightlines
with DLAs detected by earlier catalogues. The false positive rate is
the number of detections of DLAs divided by the number of sightlines
where earlier catalogues did not detect DLAs. In Fig. 11, we show
the TPR and FPR in a receiver-operating characteristics (ROC) plot
to show how well our classification performs. We have compared to
the concordance DLA catalogue (Lee et al. 2013) in the hope that it
approximates ground truth, there being no completely reliable DLA
catalogue.

We also want to know how well our pipeline can identify the
number of DLAs in each spectrum. The DR9 concordance catalogue

does not count multiple DLA spectra, and so we compare our multi-
DLA detections to the catalogue published by Parks et al. (2018).
Each DLA detected in Parks et al. (2018) comes with a measurement
of their confidence of detection (dla confidence or pParks

DLA ) and
an MAP redshift and column density estimate. We compare our
multiple DLA catalogue to those spectra with pParks

DLA > 0.98. The
resulting ROC plot is shown in Fig. 12. We count a maximum of two
DLAs in each spectrum: three or more DLAs in a single sightline
are extremely rare and do not provide a large enough sample for an
ROC plot. Parks’ catalogue is not a priori more reliable than ours,
especially in spectra with multiple DLAs, but comparing the first two
DLAs is a reasonable way to validate our method’s ability to detect
multiple DLAs.

These spectra are counted by breaking down each two-DLA sight-
line (either in Parks or our catalogue) into two single observations.
For example, if there are two DLAs detected in Parks and one DLA
detected in our pipeline for an observation D, we will assign one
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Multi-DLAs with GP 5449

Figure 11. The ROC plot made by ranking the sightlines in BOSS DR9
samples using the log posterior odds of containing at least one DLA. Ground
truths are from the DR9 concordance catalogue. The orange curve shows the
ROC plot of our current multi-DLA model, and the blue curve is derived from
Garnett et al. (2017). In this plot, we consider only the model containing at
least one DLA p({MDLA} | D), rather than the multiple DLA models, as the
concordance catalogue contains only one DLA per spectrum.

Figure 12. The ROC plot for sightlines with one and two DLA detections, by
using the catalogue of Parks et al. (2018) (with dla confidence >0.98)
as ground truth.

ground-truth detection to p(MDLA(1) | D) and assign one ground-
truth detection to p(M¬DLA | D). On the other hand, if there is only
one DLA detected in Parks and two DLAs detected in our pipeline,
we will assign one ground-truth detection to p(MDLA(2) | D) and
one ground-truth non-detection to p(MDLA(2) | D).

In Fig. 13, we also analyse the MAP estimate of the parameters
(zDLA, log10NH I) by comparing with the reported values in DR9
concordance DLA catalogue. The median difference between these
two is −2.2 × 10−4 (−66.6 km s−1) and the interquartile range is
2.2 × 10−3 (662 km s−1). For the log column density estimate, the
median difference is 0.040, and the interquartile range is 0.26. The
medians and interquartile ranges of the MAP estimate are very similar
to the values reported in Garnett et al. (2017) with the median of zDLA

slightly smaller and the median of log10NH I slightly larger. Note that
the DR9 concordance catalogue is not the ground truth, so small
variations in comparison to Garnett et al. (2017) can be considered
to be negligible. As shown in Fig. 13, both histograms are roughly
diagonal, although the scatter in column density MAP is large. Note
that our DLA-detection procedure is designed to evaluate the model
evidence across all of parameter space: a single sample MAP cannot
convey the full posterior probability distribution. In Section 10.2, we
thus describe a procedure to propagate the posterior density in the
parameter space directly to column density statistics.

10.2 CDDF analysis

We follow Bird et al. (2017) in calculating the statistical properties of
the modified DLA catalogue presented in this paper. We summarize
the properties of DLAs using the averaged binned CDDF, the incident
probability of DLAs (dN/dX), and the averaged matter density as a
function of redshift (�DLA(z)).

To plot these summary statistics, we need to convert the proba-
bilistic detections in the catalogue to the expected average number
of DLAs and their corresponding variances. We first describe how
we compute the expected number of DLAs in a given column
density and redshift bin. Next, we show how we derive the CDDF,
dN/dX, and �DLA(z) from the expected number of DLAs. A sample
of n observed spectra contains a sequence of n model posteriors
p1

DLA, p2
DLA, ..., pn

DLA defined by

pi
DLA = p({MDLA} | yi,λi, νi, zQSOi), (68)

where i = 1, 2, ..., n is the index of the spectrum, and the DLA model
here includes all computed DLA models {MDLA} = {MDLA(i)}k

i=1,
so that k = 4 is the maximum possible number of DLAs in each
spectrum in our model.

Suppose the region of interest is in a specific bin �, an in-
terval in the parameter space of column density or DLA redshift
� ∈ {NH I, zDLA}. To compute the posterior of having DLAs in each
spectrum in a given bin �, pi

DLA({MDLA} | �), we integrate over
the sample likelihoods in the bin and multiply the model posterior
by the total pi

DLA for spectrum i:

pi
DLA({MDLA} | �)

∝ pi
DLA ×

∫ �

�

p( yi | {MDLA}, λi, νi, zQSOi, θ )dθ . (69)

θ is either zDLA or log10NH I and θ ∈ � = (�,�).
We calculate the posterior probability of having N DLAs by noting

that the full likelihood follows the Poisson–Binomial distribution.
Consider a sequence of trials with a probability of success equal to
pi

DLA({MDLA} | �) ∈ [0, 1]. The probability of having N DLAs out
of a total of n trials is the sum of all possible N DLAs subsets in the
whole sample:

Pr(N ) =
∑

DLA∈FN

∏

i∈DLA

pi
DLA({MDLA} | �)

×
∏

j∈DLAc

(1 − p
j

DLA({MDLA} | �)), (70)

where FN corresponds to all subsets of N integers that can be selected
from the sequence {1, 2, ..., n}. The above expression means we
select all possible N choices from the entire sample, calculate the
probability of those N choices having DLAs and multiply that by
the probability of the other n − N choices having no DLAs. If
all pi

DLA({MDLA} | �) are equal, the Poisson–Binomial distribution
reduces to a Binomial distribution.

The above Poisson–Binomial distribution is not trivial to compute
given our large sample size. The technical details of how to evaluate
equation (70) efficiently are described in Bird et al. (2017). In short,
we use Le Cam (1960)’s theorem to approximate those spectra
with pi

DLA({MDLA} | �) < pswitch = 0.25 by an ordinary Poisson
distribution, and evaluate the remaining samples with the discrete
Fourier transform (Fernandez & Williams 2010). Our catalogue
contains the posteriors of samples in a given spectrum. Combined
with the above probabilistic description of the total number of DLAs
in the entire sample, we are able to obtain not only the point
estimation of Pr(N) but also its probabilistic density interval.
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5450 M.-F. Ho, S. Bird and R. Garnett

Figure 13. The MAP estimates of the DLA parameters θ = (zDLA, log10NH I) for DLAs detected by our model in spectra observed by SDSS DR9, compared
to the values reported in the concordance catalogue. The straight line indicates a perfect fit. Note that the concordance log10NH I values are not ground truth, so
the scatter in column density predictions was expected.

We thus compute the CDDF in a given bin � = NH I ∈
[NH I, NH I + 
NH I] with

f (N ) =
F (N )


N
X(z)
, (71)

where F (N ) = E(N | NH I ∈ [NH I, NH I + 
NH I]) is the expected
number of absorbers at a given sightline within a column density
interval. Thus, the CDDF f(N) is the expected number of absorbers
per unit column density per unit absorption distance, within a given
column density bin.

The definition of absorption distance 
X(z) is

X(z) =
∫ z

0
(1 + z′)2 H0

H (z′)
dz′, (72)

which includes the contributions of the Hubble function H 2(z)/H 2
0 =

�M(1 + z)3 + ��, with �M the matter density and �� the dark
energy density.

The incident rate of DLAs dN/dX is defined as

dN

dX
=

∫ ∞

1020.3
f (N | NH I, X ∈ [X, X + dX])dNH I, (73)

which is the expected number of DLAs per unit absorption distance.
The total column density �DLA is defined as

�DLA =
mPH0

cρc

∫ ∞

1020.3
NH If (N | NH I, X ∈ [X, X + dX])dNH I,

(74)

where ρc is the critical density at z = 0 and mP is the proton mass.

10.3 Statistical properties of DLAs

Based on the above calculations, we show our CDDF in Fig. 14,
dN
dX

in Fig. 15, and �DLA in Fig. 16.7 Note that for determining the
statistical properties of DLAs, we limit the samples of zDLA to the
range redward of the Lyman β in the QSO rest frame, as in Bird et al.
(2017).

Fig. 14 shows the CDDF from our DR12 catalogue in comparison
to the DR9 catalogue of Noterdaeme et al. (2012). Our CDDF
analysis combines all spectral paths with QSO redshift smaller than
5, zDLA < 5. The CDDF statistics are dominated by the low-redshift

7The table files to reproduce Figs 14–16 will be posted in http://tiny.cc/mult
idla catalog gp dr12q.

Figure 14. The CDDF based on the posterior densities for at least one DLA
(blue, ‘GP’). The DLAs are derived from SDSS DR12 spectra using the
method presented in this paper. We integrate all spectral lengths with z <

5. We also plot the CDDF of Noterdaeme et al. (2012) (N12; black) as a
comparison. The error bars represent the 68 per cent confidence limits, while
the grey filled band represents the 95 per cent confidence limits. Note that
our CDDF completely overlaps with those of N12 for column densities in the
range 1021 cm−2 < NH I < 1022 cm−2.

Figure 15. The line density of DLAs as a function of redshift from our DR12
multi-DLA catalogue (blue, ‘GP’). We also plot the results of Noterdaeme
et al. (2012) (N12; black) and Prochaska & Wolfe (2009) (PW09; grey). Note
that statistical error was not computed in Noterdaeme et al. (2012).
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Multi-DLAs with GP 5451

Figure 16. The total H I density in DLAs, �DLA, from our DR12 multi-DLA
catalogue as a function of redshift (blue, ‘GP’), compared to the results of
Noterdaeme et al. (2012) (N12; black), Prochaska & Wolfe (2009) (PW09;
grey), and Crighton et al. (2015) (C15; red).

Figure 17. The redshift evolution (or non-evolution) of the CDDF. Labels
show the absorber redshift ranges used to plot the CDDFs. In column density
and redshift ranges with no detection at 68 per cent confidence, a down-
pointing arrow is shown indicating the 68 per cent upper limit.

absorbers, as demonstrated in Fig. 17. The error bars represent the
68 per cent confidence interval, while the grey shaded area encloses
the 95 per cent highest density region. The CDDF values in Fig. 14 are
calculated from the posterior distribution directly. We note that there
are only two DLAs with MAP log10NH I > 22.5 in our catalogue with
high confidence (pDLA > 0.99). The non-zero values in the CDDF
are due to uncertainty in log10NH I, not positive detections.

Noterdaeme et al. (2012) contains multi-DLAs, but, as described
in section 2.2 in their paper, they applied a stringent cut on their
samples with CNR >3, where CNR refers to the continuum-to-noise
ratio. The CDDF of N12 in Fig. 14 is thus a subsample of their
catalogue. We, on the other hand, use all data even those with low
signal-to-noise ratios. Comparing to our previously published CDDF
(Bird et al. 2017), the CDDF in this paper shows DLA detections at
low NH I are consistent with Noterdaeme et al. (2012). Introducing the
sub-DLA as an alternative model successfully regularizes detections
at ∼1020 cm−2.8

Fig. 15 shows the line density of DLAs. Our results are again
consistent with those of Prochaska & Wolfe (2009) and Noterdaeme
et al. (2012) where they both agree. Our detections are between those

8Note again the artefact at ∼1020 cm−2 will not affect the analyses of dN/dX

or �DLA as the definition of a DLA is absorbers with NH I > 1020.3 cm−2.

two catalogues at low-redshift bins and consistent with Prochaska &
Wolfe (2009) in the highest redshift bin. Comparing to our previous
dN/dX (Bird et al. 2017), we moderately regularize the detections of
DLAs at high redshifts. This change shows that changing the mean
model of the GP to include the mean flux absorption prevents the
pipeline confusing the suppression due to the Lyman alpha forest
with a DLA. While the change of posterior modes in dN/dX is
large at high-redshift bins, we note that those changes are mostly
within 95 per cent confidence interval of our previously published
line densities. All analyses shown measure a peak in dN/dX at z ∼
3.5. This may be partially due to zDLA = 3.5 the SDSS colour
selection algorithm systematic identified by Prochaska, Worseck &
O’Meara (2009), which oversamples Lyman-limit systems (LLS),
especially near the QSO, in the redshift range 3.0–3.6 (Worseck
& Prochaska 2011; Fumagalli et al. 2013). Note, however, that in
our analysis neighbouring redshift bins are highly correlated and
so a statistical fluctuation is also a valid explanation. We have
checked visually that our sub-DLA model successfully models
spectra with an LLS in the proximate zone of the QSO emission
peak.

Fig. 16 shows the total column density �DLA in DLAs in units
of the cosmic density. Our results are mostly consistent with
Noterdaeme et al. (2012) although we have slightly lower �DLA

at z ∼ 2. This is due to our Occam’s razor penalty, which suppresses
DLAs in spectra which are not long enough to include the full width
of the DLA. Since these are all low-redshift QSOs, this suppresses
DLA detections at z < 2.3. As discussed in Noterdaeme et al. (2012),
Sánchez-Ramı́rez et al. (2016), and Bird et al. (2017), the relatively
low �DLA of Prochaska & Wolfe (2009) is due to the smaller sample
size of the SDSS DR5 data set. We also compare our �DLA to that
measured by Crighton et al. (2015) at high redshifts (z = 4 and z =
5). Crighton et al. (2015) used a small but higher signal-to-noise
data set. Our results at z = 4 and z = 5 are consistent with those
from Crighton et al. (2015). However, we note that the relatively
small sample of Crighton et al. (2015) may bias it slightly low, as
contributions from DLAs with NH I higher than expected to be in the
survey will not be included in their �DLA estimate. Our Bayesian
analysis includes possible contributions of undetected DLAs with
column density up to log10NH I = 23 in the error bars via the prior on
the column density.

Compared to our previously published �DLA (Bird et al. 2017),
we found a reduction in �DLA between z = 4 and z = 5. This
is due to the incorporation of a better mean flux vector model,
which reduces the posterior density of high column density sys-
tems for high-redshift absorbers (although within the 95 per cent
confidence bars of the earlier work). Our confidence intervals are
also substantially smaller for zDLA � 3.7 than in (Bird et al.
2017). This is due to our inclusion, for the first time, of infor-
mation from the Lyman β absorption of the DLAs, which both
constrains DLA properties and helps to distinguish DLAs from noise
fluctuations.

We have tested the robustness of our method with respect to spectra
with different SNRs and found that, as in Bird et al. (2017), the
statistical properties predicted by our method are uncorrelated with
the QSO SNR. Furthermore, the presence of a DLA is uncorrelated
with the QSO redshift, fixing a statistical systematic in the earlier
work.

As a cross-check of our wider catalogue, we also tested the CDDF,
line densities, and total column densities of the DLAs in our catalogue
with a full range of zDLA, from Ly ∞ to Ly α. The CDDF was very
similar to the CDDF excluding the Ly β region shown in Fig. 14, but
with a moderate increase at high column density. dN/dX was almost
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5452 M.-F. Ho, S. Bird and R. Garnett

identical to Fig. 15, indicating that the detection of DLAs is robust
even though we extend our sampling range to Ly ∞. However, �DLA

increases for 3.5 < zDLA < 4.0. By visual inspection we found that
this is due to the spectra where the QSO redshift from the SDSS
pipeline in error and a Lyman break trough appears at the blue end
of the spectrum in a region the code expects to contain only Ly β

absorption. As our model does not account for redshift errors, it
explains the absorption due to these troughs by DLAs.

10.4 Comparison to Garnett’s catalogue

To understand the effect of the modifications we made to our model
in this paper, we visually inspected a subset of spectra with high
model posteriors of a DLA in Garnett et al. (2017) (pGarnett

DLA ) but low
model posteriors in our current model (pDLA). In particular, we chose
spectra with (pGarnett

DLA − pDLA > 0.99).
A large fraction of these spectra falls within the Ly β emission

region. One plausible explanation is that the Ly β emission region
has a higher noise variance, which makes it harder to distinguish
the DLA and sub-DLA models. We also checked that we are not
unfairly preferring the sub-DLA model during model selection. Our
model selection uses the sub-DLA model only to regularize the DLA
model and does not consider cases where DLAs and sub-DLAs occur
in the same spectrum. Thus a spectrum with a clear detection of a
sub-DLA could fail to detect a true DLA at a different redshift. In
light of this, we also tested if combining multi-DLA models with a
sub-DLA affects our results.

We modified the DLA model, assuming that the DLA and sub-
DLA models are independent, to include the sub-DLA model prior.
We then considered an iterative sampling procedure: First, we
sampled the k-th DLA likelihood. Next we used the k-th DLA
parameter posterior as a prior to sample MDLA(k) and combine
MDLA(k) with the sub-DLA model via sampling a non-informative
prior. The full procedure can be written as

p({θi}k
i=1 | M′

DLA(k),D, zQSO) = (1 + p(θsub | Msub, zQSO))

×p({θi}k
i=1 | MDLA(k),D, zQSO),

(75)

For computational simplicity, we only consider the modified model
until M′

DLA(3); the probability of M′
DLA(4) is expected to be in-

significant comparing to the total DLA model posterior, p({MDLA} |
D, zQSO).

In practice, however, we found that this made a small difference
to our results, only marginally modifying the ROC curve and CDDF.
Moreover, the ability of the sub-DLA model to regularize low column
density DLAs was reduced, so we have preserved our default model.

10.5 Comparison to Parks catalogue

In this section, we compare our results with Parks et al. (2018).
We first show the differences between our MAP predictions and
Parks’ predictions for DLA redshift and column density. We required
pParks

DLA > 0.98. We measured the difference in posterior parameters
when both pipelines predicted one DLA. As shown in Fig. 18, both
histograms are roughly symmetric. We measure small median offsets
between two pipelines with

median(zMAP
DLA − zParks

DLA ) = 0.00010;

median(log NMAP
H I − log NParks

H I ) = 0.016. (76)

We also compared our absorber redshift measurements and column
density measurements to Parks’ catalogue for those spectra that we

both agree contain two DLAs. The differences between these two
have small median offsets of 
zDLA = 0.000052 and 
log10NH I =
0.006 (and dominated by low column density systems).

We show the disagreement between multi-DLA predictions for
our catalogue and Parks’ catalogue in Table 1. Note that though
the multi-DLA detections between our method and Parks do not
completely agree, the level of disagreement is small: 6.1 per cent.
Moreover, if Parks predicts one or two DLAs, our method generally
detects one or two DLAs. There are, however, some spectra where
we detected >2 DLAs, but Parks detected none. To understand the
statistical effect of this discrepancy, we compare our DLA properties
to those reported by Parks et al. (2018). We plot the CDDF and dN/dX

of that catalogue. We assume pParks
DLA > 0.9 represents a DLA and use

zDLA and log10NH I reported in their catalogue in JSON format.9 To
compute the sightline path searched over, we assume their CNN
model was searching the range Ly ∞ to Ly α in the QSO rest frame.
Note this differs slightly from Parks et al. (2018), section 3.2, where
a sightline search radius ranging from 900 to 1346 Å in the QSO rest
frame is given. However, we know the centres of DLAs should be at
a redshift between Ly ∞ and Ly α in the rest frame and modify our
search paths accordingly.

Fig. 19 shows that dN/dX is consistent with Noterdaeme et al.
(2012) for zDLA < 3.5 (although lower than our measurement at
higher redshift). The CNN is thus successfully detecting DLAs,
especially the most common case of DLAs with a low column density.
There are fewer DLAs detected at higher redshift, likely reflecting
the increased difficulty for the CNN of distinguishing DLAs from
the Lyman α forest. This is discussed in Parks et al. (2018), who note
that the CNN finds it difficult to detect a weak DLA in noisy spectra.
However, as shown in Fig. 20, the CDDF measured by the CNN
model is significantly discrepant with other surveys for large column
densities. Note that the scale is logarithmic: the CNN is failing to
detect >60 per cent of DLAs with log10NH I > 21. We noticed that
large DLAs were often split into two objects with lower column
density, which accounts for many of the discrepancies between our
two data sets. We suspect this might be due to the limited size of the
convolutional filters used by Parks et al. (2018). If the filter is not
large enough to contain the full damping wings of a given DLA, the
allowed column density would be artificially limited.

1 1 C O N C L U S I O N

We have presented a revised pipeline for detecting DLAs in SDSS
QSO spectra based on Garnett et al. (2017). We have extended
the pipeline to reliably detect up to four DLAs per spectrum. We
have performed modifications to our model for the Lyman α forest
to improve the reliability of DLA detections at high redshift and
introduced a model for sub-DLAs to improve our measurement of
low column density DLAs. Finally, we introduced a penalty on the
DLA model based on Occam’s razor which meant that spectra for
which both models are a poor fit generally prefer the no-DLA model.

Our results include a public DLA catalogue, with several examples
shown above and further examples easily plotted using a PYTHON

package. We have visually inspected several extreme cases to
validate our results and compared extensively to several earlier DLA
catalogues: the DR9 concordance catalogue (Lee et al. 2013) and a
DR12 catalogue using a CNN (Parks et al. 2018). Our new pipeline
had very good performance validated against both catalogues.

9https://tinyurl.com/cnn-dlas
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Figure 18. The difference between the MAP estimates of the DLA parameters θ = (zDLA, log10NH I), against the predictions of Parks et al. (2018). We consider
spectra that both catalogues agree contain one DLA.

Table 1. The confusion matrix for multi-DLAs detections between Garnett with multi-DLAs
and Parks. Note we require both the model posteriors in Garnett and DLA confidence in Parks
to be larger than 0.98. We also require log10NH I > 20.3.

Parks 0 DLA 1 DLA 2 DLAs 3 DLAs 4 DLAs
Garnett with multi-DLAs

0 DLA 138 726 6197 142 6 0
1 DLA 3050 8752 335 4 0
2 DLAs 293 570 566 28 0
3 DLAs 30 39 34 21 0
4 DLAs 5 9 6 1 0

Figure 19. dN/dX from Parks et al. (2018). The dN/dX agrees well with other
surveys, but there is a moderate deficit of DLAs at high redshifts.

Figure 20. The CDDF from Parks et al. (2018), showing that the CNN
algorithm substantially underestimates the number of DLAs in the high-NH I

regime.

Based on the revised pipeline, we also presented a new measure-
ment of the abundance of neutral hydrogen from z = 2 to z = 5 using
similar calculations to Bird et al. (2017). The statistical properties

of DLAs were in good agreement with our previous results (Bird
et al. 2017) and consistent with Noterdaeme et al. (2012), Prochaska
& Wolfe (2009), and Crighton et al. (2015). The modifications
made, including introducing a sub-DLA model, adjusting the mean
flux, and penalizing complex models with Occam’s razor, remove
overdetections of low column density absorbers and make more
robust predictions for the properties of DLAs at z > 4. Similarly
to previous work, we detect only a small increase in the CDDF for
2 < z < 4, and a similarly moderate increase in the line density of
DLAs and �DLA over this redshift range.
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