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Abstract— This paper addresses the problem of secure state
estimation in the presence of attacks on sensor measurements
of a linear time invariant (LTI) system. We assume that the
system is equipped with a common l0-based attack-resilient
state estimator and a sound anomaly detector. We introduce
the notion of perfect attackability (PA) for LTI systems with
bounded noise, when the attacker may introduce an unbounded
estimation error while remaining undetected by the anomaly de-
tector. Finally, necessary and sufficient conditions for perfectly
attackable systems are provided, and illustrated on examples.

I. INTRODUCTION

The widespread use of dedicated communication networks
in modern control systems has increased the number of
security related incidents against control of physical pro-
cesses [1]. With such attacks, a control system’s sensory and
control unit data may be altered by the attacker, potentially
damaging physical components of the system. As a result,
the use of control theory techniques to increase resiliency
of control systems against attacks has attracted significant
attention in recent years.

The main idea has been to utilize knowledge of the system
dynamics for attack detection and attack-resilient control
(e.g., [2], [3], [4], [5], [6], [7], [8], [9]). For example, con-
sider the problem of attack-resilient control in the presence
of false-data injection attacks on system sensors. One line
of work focuses on widely-used legacy control architec-
tures that employ standard Kalman filter-based observers for
state estimation; in addition, they employ standard residual
probability-based detectors, such as X 2 detectors, to detect
system anomalies including the presence of attack [3], [10],
[11]. For such Kalman filter-based controllers of linear time-
invariant (LTI) systems, there are some standard types of
attacks that can impose unbounded state estimation errors,
while remaining stealthy (e.g., as shown in [3], [10], [4]).

The attack impact depends on the subset (including the
number) of compromised sensors. For systems with a Gaus-
sian noise model, where a Kalman filter-based controller and
a standard residual probability-based detector are employed,
the notion of perfect attackability is introduced in [3], [10].
It is shown in [3], [10] for χ2 detectors, and in [11] for a
more general type of statistical detectors, that such an LTI
system is perfectly attackable if and only if its dynamics is
unstable and the corresponding unstable eigenvectors satisfy
certain properties associated with the set of under attacked
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sensors. However, it is unclear what are the capabilities (and
limitations) of stealthy attackers in systems with bounded
noise where statistical detectors cannot be used.

For such systems, the problem of attack-resilient control is
commonly mapped into the problem of attack-resilient state
estimation [5], [12]. The idea is that the use of resilient
state estimation to correctly estimate system states and attack
vectors from corrupted sensor measurements, will enable the
use of standard feedback controllers even under attack. For
noiseless LTI systems for which the knowledge of the model
is exact, a resilient state estimator can be formulated as
a l0 optimization problem [5]. SMT-based state estimation
technique is also introduced in [6] for a noiseless LTI system.
In [7], l0 and l1 optimization based estimator is studied for
systems with bounded noise, and showed that the worst-
case error is linear with the size of the noise. However, the
common assumption among all existing works on this topic
(e.g., [5], [6], [7], [13]) is that the number of compromised
sensors is bounded – at best, only less than a half of sensors
should be under attack. Furthermore, the impact of stealthy
attacks has never been considered for such systems.

Consequently, in this paper, we consider the problem of
resilient state estimation for LTI systems with bounded-size
noise, for an arbitrary number of corrupted senors and in
the presence of stealthy attacks. We assume that the system
is equipped with a l0-based resilient state estimator (RSE)
and an intrusion detector (ID). The main contributions of the
paper are as follows. First, we introduce two different notions
of perfectly attackability (PA) – PA at a single time point and
PA over time for such systems; in PA systems, the attacker
is capable of introducing an unbounded estimation error
while remaining stealthy. Second, we provide a necessary
and sufficient condition for these two notions of PA. We
show that unlike PA in the Kalman filter-based estimators,
with l0-based RSEs, a system can be perfectly attackable
over time even if the physical plant is not unstable.

The paper is organized as follows. In Section II, we present
the system model and formalize our problem. Section III
introduces the concept of perfectly attackable systems and
find the necessary and sufficient conditions for PA. Finally,
in Section IV, we provide a numerical example to illustrate
these conditions, before concluding remarks in Section V.

Notation: We use B and R to denote the set of Boolean
and real numbers, while I(.) denotes the indicator function.
For a matrix A, N (A) denotes the null space of the matrix,
while AT denotes its transpose, A† its Moore-Penrose pseu-
doinverse, and ||A|| the l2 norm. For a vector x ∈ Rn, we
denote by ||x|| its 2-norm. We use xi to denote the ith element
of x, while supp(x) = {i | i ∈ {1, ..., n}, xi 6= 0}. Projection



Fig. 1: Control system architecture, considered in this work,
in the presence of network-based attacks.

vector ei is the unit vector (of the appropriate size) with a 1 in
its ith position being the only nonzero element of the vector.
For set S , |S| is used to denote the cardinality of the set and
S{ its complement. We use PKx to denote the projection
from the set S to set K (K ⊆ S) by keeping only elements
of x with indices from K; formally, PK = [ ej1 |...|ej|K| ]

T ,
where K = {sj1 , ..., sj|K|} ⊆ S and j1 < j2 < ... < j|K|.

II. PROBLEM DESCRIPTION

In this section, we introduce the considered system and
attack model, as well as formally capture the problem
addressed in this work.

A. System and Attack Model

We consider the setup from Figure 1 where each of the
components is modeled as follows.

1) Plant Model: We assume that the plant is an observable
LTI system modeled in the standard state-space form as

x(t+ 1) = Ax(t) +Bu(t) + vp(t),

y(t) = Cx(t) + vm(t).
(1)

Here, x ∈ Rn, u ∈ Rm, y ∈ Rp are the state, input
and output vectors, respectively. The plant output vector
captures measurements from the set of plant sensors S =
{s1, s2, ..., sp}.1 In addition, vp ∈ Rn and vm ∈ Rp are
the process and measurement noises that are assumed to be
bounded – i.e., there exist δvp

, δvm
> 0 such that

‖vp(t)‖2 ≤ δvp
, ‖vm(t)‖2 ≤ δvm

, for all t ≥ 0; (2)

note that we make no assumption regarding the distribution
of the sensor and measurement noises.

2) Attack Model: We assume that the attacker has com-
promised information-flow from a subset of sensors K ⊆ S;2

note that we make no assumption about the set K (e.g., its
size or elements). Thus, the sensor measurements delivered
to the controller can be modeled as

yc(t) = y(t) + a(t), (3)

1To simplify our notation, unless otherwise stated, we will use i instead
of si to denote the i-th sensor.

2To simplify our presentation, we will refer to these sensors as compro-
mised sensors since the effects of network-based attack are mathematically
equivalent to having specific sensors compromised, as described in [14].

where a(t) ∈ Rp denotes the sparse attack signal injected by
the attacker at time t via the compromised information flows
(i.e., sensors) from K. Therefore, K = supp(a(t)).

In this work, we consider the commonly adopted threat
model as in e.g., [15], where the attacker has full knowledge
of the system, its dynamics and employed architecture. In
addition, the attacker has the required computation power to
calculate suitable attack signals to inject via the set K, while
planning ahead as needed. Finally, the attacker’s goal is to
design attack signal a(t) such that it always remain stealthy
– i.e., undetected by the intrusion detection system – while
maximizing control performance degradation. The notions of
stealthiness and control performance degradation depend on
the employed control architecture, and thus will be formally
defined after the controller design has been introduced.

3) Controller Design: The controller, illustrated in Fig-
ure 1, is equipped with a resilient state estimator (RSE),
whose output is used for standard feedback control, as well
as an intrusion detector (ID). In what follows, we provide
more details on RSE and ID.

To simplify our notation while describing the RSE func-
tionality, the model from (1) can be considered in the form

x(t+ 1) = Ax(t),

y(t) = yc(t) = Cx(t) + w(t) + a(t),
(4)

as we can ignore the contribution of u(t) because it is a
known signal (no attacks on actuator are considered in this
work), and thus has no effect on the problem of resilient state
estimation. As shown in [13], [7], the bounds on the size of
measurement noise w in (4) can be related to the bounds on
the size of process and measurement noise vectors vp and
vm – i.e., there exists δw > 0 such that

||w(t)|| ≤ δw, for all t ≥ 0. (5)

Resilient State Estimator: The goal of an RSE is to
reconstruct the state of the system x(t) from a set of
measurements {y(t), ..., y(t+N−1)}, where N denotes the
number of previous sensor measurements that are used for
estimation. Throughout the paper, we assume that N = n;
yet, the results can be extended to the case N < n or N > n.

To formally capture requirements for RSE, we rewrite the
model from (4) in the form

y(t) = Ox(t) + a(t) + w(t), (6)

where O = [OT
1 | ... | OT

p ]T . Here, for each sensor i and a
subset of sensors K, we define the matrices Oi and OK as

Oi =


eTi C
eTi CA

...
eTi CA

N−1

 , OK =


PKC
PKCA

...
PKCAN−1

 . (7)

Note that each of the block vectors a, y, w ∈ RpN , satisfies
a(t) = [aT1 (t) | ... | aTp (t)]T , y(t) = [yT

1 (t) | ... | yT
p (t)]T

and w(t) = [wT
1 (t) | ... | wT

p (t)]T . Furthermore, for each
sensor i ∈ S , it holds that

yi(t) = Oix(t) + ai(t) + wi(t), (8)



with ai(t) = [ai(t) | ai(t + 1) |...| ai(t + N − 1)]T ∈ RN

denoting the values injected via ith sensor’s information flow
at time steps t, ..., t+N−1, with ai(t) = 0 if i /∈ K. Finally,
yi(t) = [yi(t) | yi(t + 1) |...| yi(t + N − 1)]T ∈ RN and
wi(t) = [wi(t) | wi(t+1) |...| wi(t+N−1)]T ∈ RN are the
values of measurement and measurement noise of sensor i.

In the most general form, the RSE functionality can be
captured as [5]

E : RNp 7→ Rn×RNp s.t. E(y(t)) =

(
x̂(t), â(t)

)
. (9)

Here, x̂(t) and â(t) denote the estimation of the state and
attack vectors obtained by the RSE from the delivered sensor
measurements. To evaluate performance of an RSE, we
define the estimation error as

∆x(t) = x̂(t)− x(t). (10)

A commonly used RSE is the l0 decoder [7], or its
equivalent forms (e.g., [5], [6]). Such RSE may be defined
by the following optimization problem

min
x̂(t),â(t)

p∑
i=1

I
(
‖âi(t)‖ > 0

)
s. t. y(t) = Ox̂(t) + ŵ(t) + â(t)

ŵ(t) ∈ Ω.

(11)

Here, Ω denotes the feasible set of noise vectors, determined
by the noise bounds from (5). The vectors ŵ(t) and â(t)
are estimated at time t independently from the estimated
vectors at time t − 1. Hence, we may denote ŵ(t) =
[ŵT

1 (t) | ... | wT
p (t)]T , â(t) = [âT1 (t) | ... | âTp (t)]T ,

with ŵi(t) = [ŵ
(t)
i (t)|...|ŵ(t)

i (t + N − 1)]T and âi(t) =

[â
(t)
i (t)|...|â(t)i (t+N − 1)]T , where â(t)i (k) and ŵ(t)

i (k) are
the estimated noise and attack vectors at time k, as computed
at time t (i.e., for k = t, ..., t+N − 1).

The RSE from (11) ensures that if less than s number
of sensors are compromised in a system that is 2s-sparse
observable [16], then the state will be estimated with a
bounded error [7]; whether the system is 2ssparse observable
depends on the observability matrix of (A,C).

Intrusion Detector (ID): The system is equipped with
an ID that should detect the presence of system anomalies.
As we consider systems with bounded-size noise (and not
stochastic noise model), we capture the ID functionality in
the general form as mapping D : RNp 7→ B defined as

D(â(t)) = I(‖â(t)‖ > 0); (12)

i.e., if the estimated attack vector is non-zero, the ID will
sound an alarm. The threshold in (12) is set to zero due to
the fact that for â(t) 6= 0 it is impossible to have a(t) = 0,
because if a(t) = 0 then x̂(t) = x(t), ŵ(t) = w(t) and
â(t) = 0 are feasible solutions that minimize the objective
function of optimization problem (11). Note that in this work,
we only focus on determining whether the whole system
is under attack or not, rather than identifying the exact set
of attacked sensors. Designing sound attack identification

for the latter problem would require the use of nonzero
comparison thresholds in (12), as shown in [7].

Finally, in the rest of this work, we denote the described
control system from (4) as Σ(A,C, δw,K).

B. Problem Formulation

Our goal is to capture conditions under which a stealthy
attacker could introduce unbounded estimation error ∆x(t),
as defined in (10). Here, by an attack being stealthy we as-
sume that under the attack a(t) the stealthiness condition
for the ID

D(â(t)) = 0 (13)

holds. Due to the batch-processing nature of the employed
RSE, the approach and the derived conditions from [3], [10]
cannot be used. Consequently, we start by introducing an
equivalent notion of perfectly-attackable systems for LTI
dynamical systems with bounded-size noise.

III. PERFECT ATTACKABILITY OF SYSTEMS WITH
BOUNDED NOISE

To capture the attacker’s impact on a system
Σ(A,C, δw,K), we start with the definition of perfect
attackability (PA). In [3], [10], where the notion of PA
in the presence of stealthy attacks is first introduced, the
considered controller employs a statistical ID (χ2) and a
Kalman-filter that implements continuous (i.e., streamed)
processing of sensor measurements. On the other hand,
existing RSEs for systems with bounded noise (e.g., [7],
[6], [17], [18]) are based on batch-processing of sensor
data – i.e., they process a window of sensor measurements
at each time step (mostly even without taking previous
computations into account).

Consequently, the notion of PA needs to differentiate
between PA at a single time point vs. PA over any time
interval. In this section, we first define both of these PA
notions for any system Σ(A,C, δw,K), before providing the
necessary and sufficient condition for both types of PA.

Definition 1. System Σ(A,C, δw,K) is perfectly attackable
at a single time step if for all M > 0, there exists a sequence
of attack signals a(t) over N time steps, such that the RSE’s
estimation error satisfies ||∆x(t)|| > M , while the attack is
stealthy from the ID (i.e., (13) holds). Such an attack vector
a(t) is called a perfect attack for the system Σ(A,C, δw,K).

Definition 1 only describes a perfect situation for the at-
tacker at a single time step t when the system Σ(A,C, δw,K)
is under attack. This definition means there is no guarantee
that the attack remains stealthy at time steps before and/or
after time t. In the following definitions, we characterize
a more realistic requirements for a stealthy attacker, by
considering PA over an interval of time, as well as introduce
a notion of a perfect attack vector.

Definition 2. System Σ(A,C, δw,K) is perfectly attackable
over time if for all M > 0 there exists a sequence of attack
signals a(t),a(t + 1), ... and a time point t′ ≥ t such that
for all k, where k ≥ t′, it holds that ||∆x(k)|| > M , and



for all time steps, the estimated attack vectors â satisfies the
stealthiness requirements (D(â(k)) = 0) during the attack.

Remark 1. Note that from the system model, ∆x(t) ef-
fectively depends on a free input argument a(t) and a
bounded input w(t). Therefore, to simplify our presentation
we sometimes state the conditions of Definition 1 as ∆x(t)
being unbounded, meaning that the mapping ∆x(a(t)) is
unbounded for stealthy attacks a(t).

From the above definitions, PA over time is a stronger
notion than PA at a single time step, because D

(
â(t)

)
should

be equal to zero for all time steps. Therefore, the following
directly holds.

Proposition 1. If system Σ(A,C, δw,K) is perfectly attack-
able over time, then it is also perfectly attackable at a single
time step.

Example 1. To illustrate PA, consider system Σ(A,C, δw,K)
with δw = 0, K = S = {s1, s2}, N = 2,

A =

[
1 1
1 .5

]
, C =

[
1 0
1 1

]
.

It is straightforward to check that attack vector a(t) =[
aT (t) aT (t+ 1)

]T
= Oz results in the estimation error

∆x(t) = z and â(t) = 0, for z being any arbitrary nonzero
vector; thus may be used as a perfect attack vector.

A. Conditions for Perfect Attackability at a Time Point
The following result captures necessary and sufficient

conditions for PA at a single time.

Theorem 1. The system Σ(A,C, δw,K) is perfectly attack-
able at a single time step if and only if the pair (A,PK{C)
is not observable.

Proof. (Only if:) For the sake of contradiction, let us assume
that the pair (A,PK{C) is observable, while the system
Σ(A,C, δw,K) is perfectly attackable at a single time step,
which we denote as t. Then, there exists a stealthy attack
sequence a(t) for which the RSE estimated attack vector
â(t) = 0 and ‖∆x(t)‖ is unbounded. Consider the impact of
attack vectors on measurements of noncompromised sensors
from K{. We have that

PK{y(t)
(i)
= OK{x(t) + PK{w(t) =

(ii)
= OK{ x̂(t) + PK{ŵ(t),

(14)

where (i) holds because the attacker does not inject false
data over noncompromised sensors, while (ii) holds since
the attack is stealthy (i.e., â(t) = 0). Hence, it follows that

OK{∆x(t) = PK{∆w(t) (15)

where ∆w(t) = w(t) − ŵ(t). Since the the matrix OK{ is
full rank (from (A,PK{C) being observable), we have that

∆x(t) =
(
OK{

)†(PK{∆w(t)
)
, (16)

and thus

‖∆x(t)‖ ≤
∥∥∥(OK{

)†∥∥∥( ‖PK{∆w(t)‖
)
. (17)

The matrix
(
OK{

)†
has a bounded norm, and w(t) and

ŵ(t) are also bounded. Thus, the right side of (17) is
bounded, which implies that ∆x(t) is also bounded, con-
tradicting our initial assumption.

(If): Suppose that the pair (A,PK{C) is not observable.
This means that there exists a nonzero vector z such that
OK{z = 0. Now, let us assume that the system is in state

x(t) when attack vector a(t) =

[
PKa(t)
PK{a(t)

]
= Oz =

[
OKz

0

]
is applied. For such signal, the information y(t) delivered to
the RSE is captured in (6), for some noise realization w(t).
On the other hand, the output of RSE (x̂(t), â(t)) satisfies

y(t) = Ox(t) + w(t) + a(t) = Ox̂(t) + ŵ(t) + â(t) (18)

Consider ŵ′(t) = ŵ(t), x̂′(t) = x̂(t) + z and â′(t) = 0.
Now, (x̂′(t), ŵ′(t), â′(t)) is a feasible point for the RSE
optimization problem from (11) that also minimizes the ob-
jective function to zero. Thus, the output of RSE (x̂(t), â(t))
also has to have the same value for the objective function,
meaning that â = 0, and thus the attack will not be detected.

On the other hand, since (A,C) is observable, from (18)
and (10) it follows that

∆x(t) = O†∆w(t) + O†a(t) = O†∆w(t) + z

Since ∆w(t) is bounded, and z is any nonzero vector in the
null-space of OK{ , it can be chosen to have an arbitrarily
large norm. Therefore, the system Σ(A,C, δw,K) is perfectly
attackable at a single time step.

In the system model, we assumed that the plant (A,C) is
observable. Hence, from Theorem 1 and its proof, the next
results directly follow.

Corollary 1. System Σ(A,C, δw,S), i.e., if all sensors are
compromised, is perfectly attackable at a single time step.

Corollary 2. If an attack vector injected to the system
Σ(A,C, δw,K) has the form a(t) = Oz, for some z ∈ Rn,
then â(t) = 0 and the RSE error satisfies

∆x(t) = O†∆w(t) + z.

These results also provide a starting point for analysis of
the notation of PA over time.

B. Conditions for Perfect Attackability over Time

Theorem 1 describes a necessary and sufficient condition
for a system to be perfectly attackable at a single time step.
The following theorem provides the condition under which
system Σ(A,C, δw,K) is perfectly attackable over time.

Theorem 2. Consider the system Σ(A,C, δw,K) and let us
define the matrix F (K, N) as

F (K, N) =
[
OT
K{ (PKC)T ... (PKCAN−2)T

]T
.

(19)
a) Suppose that the matrix F (K, N) is not full rank. Then,

the system Σ(A,C, δw,K) is perfectly attackable over time if
and only if the system Σ(A,C, δw,K) is perfectly attackable
at a single time step.



b) Suppose that the matrix F (K, N) is full rank. Then the
system Σ(A,C, δw,K) is perfectly attackable over time if
and only if the system Σ(A,C, δw,K) is perfectly attackable
at a single time step and the matrix A is unstable.

From Theorem 2 it holds that unlike the notion of PA in
systems with probabilistic noise and statistical IDs [3], [10],
[11], for systems with bounded noise and l0-based RSEs
considered in this work, a system can be perfectly attackable
over time even if the matrix A is not unstable. Before
proving Theorem 2, we introduce the following lemmas used
in the proof – due to space constraint, the proofs of all
lemmas can be found in [19]).

Lemma 1. Consider an attack vector for the system
Σ(A,C, δw,K) in the form a(t) = Oz(t), where if
N (F (K, N)) = 0 then z(t) 6∈ N (A). If z(t+ 1) = Az(t) +
α(t), where α(t) ∈ N (F (K, N)), then a(t+1) = Oz(t+1)
is also a stealthy attack vector for the system Σ(A,C, δw,K).

Lemma 2. Let the system Σ(A,C, δw,K), at two consecutive
time steps t and t + 1 have estimation error ∆x(t) and
∆x(t+1), while D

(
â(t)

)
= D

(
â(t+1)

)
= 0. Then ∆x(t+

1) = A∆x(t) +α(t) + p(t) where α(t) ∈ N (F (K, N)) and
p(t) is a bounded vector.

Lemma 3. Suppose that the system Σ(A,C, δw,K) is per-
fectly attackable at a single time step and ∆x(t) is bounded
while â(t) = 0. If the matrix F (K, N) is full rank, then there
exists no attack vector a(t+1) such that ∆x(t+1) becomes
unbounded while â(t+ 1) = 0.

Corollary 3. For the system Σ(A,C, δw,K), if the matrix
F (K, N) is full rank, it is impossible to initiate attack with
unbounded estimation error while remaining stealthy.

Proof. Before starting the attack at time t0, the estimation
error is obviously bounded. Now, based on Lemma 3, if the
matrix F (K, N) is full rank, it will be impossible to have
unbounded estimation error ∆x(t0) while â(t0) = 0

Lemma 4. There exists a nonzero attack vector a(t) (ε <
‖a(t)‖ with ε > 0) such that D(â(i)) = 0 for any t− (N −
1) ≤ i ≤ t+N − 1.

We now prove Theorem 2.

Proof of Theorem 2. a) First, assume that the system is
perfectly attackable over time. Based on Proposition 1, the
system is also perfectly attackable at a single time step.

Inversely, assume that the system is perfectly attackable
at a single time step. Suppose that the attack starts at time
t0. Therefore, D(â(t)) = 0 for any t < t0 − (N − 1). The
augmented attack vector a(t0− (N − 1)) can be captured as

a(t0 − (N − 1)) =

[
0

PKa(t0 − (N − 1))

]
(20)

where

PKa(t0 − (N − 1)) =
[
0 . . . 0 (PKa(t0))T

]T
. (21)
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Fig. 2: The evolution of ∆x(t) and D(â(t)) when the matrix
F (K, N) is full rank. It is assumed that the attack starts at t = 20.

Since the matrix F (K, N) is not full rank, there exists a
nonzero vector (referred to as z(t0− (N − 1))) that satisfies
F (K, N)z(t0 − (N − 1)) = 0, as well as

a(t0 − (N − 1)) =
[
0 . . . 0 (PKa(t0))T

]T
=

[
OK{

OK

]
z(t0 − (N − 1)) = Oz(t0 − (N − 1)).

(22)

Here, z(t0 − (N − 1)) can be chosen arbitrarily large and
this means that a(t0 − (N − 1)) is a perfect attack vector
for the system. Now, based on the Lemma 1, the consec-
utive perfect attack vectors can also be constructed using
a(t) = Oz(t) with z(t) = At−t0+(N−1)z(t0 − (N − 1)) +∑t−1

i=t0
At−i−1α(i) for any t > t0 − (N − 1), where α(i) ∈

N (F (K, N)). Since α(i) can be unbounded, the system will
have unbounded estimation error for t ≥ t0 − (N − 1)
while remaining stealthy from ID. Therefore, the system is
perfectly attackable over time.

b) (If ) Let us assume that the matrix A has at least one
eigenvalue outside the unit circle. From Lemma 4, we know
there exists a nonzero attack vector a(t0) such that for any
t0 − (N − 1) ≤ i ≤ t0 + N − 1, D(â(i)) = 0. This
means there exists ε > 0 such that ‖a(t0)‖ = ε. Since a(t0)
can have any structure, we can assume a(t0) = Oz(t0).
Since O is full rank, z(t0) can be any nonzero vector that
satisfies ‖Oz(t0)‖ ≤ ε; any such vector z(t0) may be chosen
arbitrarily by the attacker.

Based on Lemma 1 if z(t0 +1) = Az(t0)+N (F (K, N)),
then it is possible to have a(t0 + 1) = Oz(t0 + 1). Since
F (K, N) is full rank, N (F (K, N)) = 0. By continuing
injecting attack vector in the form of a(t) = Oz(t) for a
period of time [t0, t], we can get z(t) = At−t0z(t0). Let
us assume the unstable eigenvalues of the matrix A are
diagonizable (the results can be extended to non-diagonizable
case), and denote the corresponding unstable eigenvectors
of A by v1, ..., vq . Moreover, let us assume that z(t0) =
cvi 6= 0, such that ‖Oz(t0)‖ ≤ ε. Therefore, we get that
z(t) = At−t0z(t0) = cλt−t0i vi. Since |λi| > 1, ||z(t)|| will
be unbounded if t → ∞. This implies that, based on the
Corollary 2 and Definition 2, the system will be perfectly
attackable over time.
(Only If ) For the sake of contradiction, let us assume that
the system is perfectly attackable over time while the matrix



A is stable. From Definition 2, it holds that ∀M > 0 there
exists a time step t′ such that for any t ≥ t′, ||∆x(t)|| > M .

On the other hand, since the matrix F (K, N) is full
rank, using Corollary 3 it holds that the estimation error
should be bounded when the attack starts at time t0, i.e.,
||∆x(t0)|| ≤ δ for some δ > 0. Now, for the interval t0 <
t < t′ using Lemma 2 we have ∆x(t) = At−t0∆x(t0) +∑t−1

i=t0
At−i−1p(i). Since the eigenvectors of the matrix A

can span the space Rn (here we assume that the matrix A
is diagonizable; however, the results can be easily extended
to the undiagonizable case), we have ∆x(t0) = d1v1 + ...+
dnvn, p(i) = d′i,1v1 + ...+ d′i,nvn. Now, it holds that

‖∆x(t′)‖ =

∥∥∥∥∥∥At′−t0∆x(t0) +
t′−1∑
i=t0

At′−i−1p(i)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

j=1

djλ
t′−t0
j vj +

t′−1∑
i=t0

n∑
j=1

d′i,jλ
t′−i−1
j vj

∥∥∥∥∥∥
≤δ +

1

1− |λmax|
||pmax||

where λmax is the eigenvalue with the largest absolute value.
Therefore, ‖∆x(t′)‖ must be bounded, which contradicts
our first assumption that the system is perfectly attackable
over time.

IV. SIMULATION RESULTS

To illustrate the derived conditions for PA of LTI systems
with bounded noise, let us consider the system model (4),
with −.1 < w(t) < .1 and

A =

[
1.1 1
0 1

]
, C =

[
1 1

]
. (23)

The pair (A,C) is observable and the system is unstable with
eigenvalues 1.1 and 1. Assume that the system is equipped
with the RSE from (11) with N = 2. Clearly, the matrix
F (K, N) = C for the RSE is not full rank.

If the attacker starts compromising the sensor values at
time 0, it is sufficient to inject a(0) = CAz(−1) where
z(−1) ∈ N (C). By having z(−1) = c

[
1 −1

]T
(where c

denotes a scalar with any arbitrary value), the attack vector
at time zero and the following time steps is a(t) = Cz(t)
and z(t + 1) = Az(t) + N (C) for t ≥ 0. Therefore, the
system is perfectly attackable over time.

Now, let us assume that N = 3, meaning that the RSE is
using one more sensor measurement to estimate the system
state. In this case, the matrix F (K, N) =

[
CT ATCT

]T
is full rank. However, since the matrix A has an eigenvalue
outside the unit circle, from Theorem 2 it follows that the
system is perfectly attackable over time.

Figure 2 shows the evolution ∆x(t) when the attack starts
at time 20, and the output of the anomaly detector is zero
during the attack. Before the start of the attack, the estimation
error is less than a threshold δ, which is the maximum state
estimation error when the system is in normal condition and
can be obtained from [7]. On the other hand, after the attack
starts, the error increases over time.

V. CONCLUSION

In this paper, we have considered the problem of perfect
attackability (PA) of linear-time invariant (LTI) dynamical
systems with bounded noise, when attacks can compromise
sensor measurements from any subset of plant sensors. First,
we have defined PA at single time step and PA over period
of time. Then, we have derived necessary and sufficient
conditions for these two notions of PA. We have showed
that PA over time needs stronger condition than PA at single
time step for some class of LTI systems, as well that a system
does not have to be unstable to be perfectly attackable.
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