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ABSTRACT ACM International Conference on Hybrid Systems: Computation and

The use of Neural Network (NN)-based controllers has at-
tracted significant attention in recent years. Yet, due to the
complexity and non-linearity of such NN-based cyber-physical
systems (CPS), existing verification techniques that employ
exhaustive state-space search, face significant scalability
challenges; this effectively limits their use for analysis of real-
world CPS. In this work, we focus on the use of Statistical
Model Checking (SMC) for verifying complex NN-controlled
CPS. Using an SMC approach based on Clopper-Pearson con-
fidence levels, we verify from samples specifications that are
captured by Signal Temporal Logic (STL) formulas. Specifi-
cally, we consider three CPS benchmarks with varying levels
of plant and controller complexity, as well as the type of con-
sidered STL properties — reachability property for a mountain
car, safety property for a bipedal robot, and control perfor-
mance of the closed-loop magnet levitation system. On these
benchmarks, we show that SMC methods can be successfully
used to provide high-assurance for learning-based CPS.
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1 INTRODUCTION

Modern Cyber-Physical Systems (CPSs) are increasingly us-
ing Neural Network (NN)-based controllers. Yet, despite the
tremendous promise that the use of such controllers would
have on performance of CPS, providing assurance for such
learning-based systems presents significant challenges. As a
result, verifying learning-based CPS has attracted significant
attention in recent years (e.g., [6, 7, 10, 19, 20, 23]).

The use of barrier functions is one of the common ap-
proaches to obtain safety guarantees for dynamical systems
controlled by deep neural networks (DNNs) (e.g., [17, 21]).
A disadvantage of this method is the reliance on an accurate
system model. Furthermore, it can only deal with simple
specifications, like safety and robustness, and does not easily
support general temporal logic specifications.

Recent advancements in verification and reachability meth-
ods have resulted in new tools for verification of NN-based
CPS [9]. For all these methods, in addition to the commonly
exhibited scalability problems, there exist additional con-
straints imposed on the underlying NN structure; these con-
straints usually depend on the type of specifications sup-
ported by the employed verification or reachability tools. For
example in [10], NN-controlled CPSs with sigmoid activa-
tion functions are verified based on a reachability analysis
that is performed for NNs with only differentiable activa-
tion functions; this means the Rectified Linear Unit (ReLU),
which is a common activation function for most NN-based
controllers, cannot be supported. Satisfiability modulo the-
ory (SMT) based methods or mixed-integer linear program
(MILP) optimizer approaches, such as [8, 11, 19], commonly
transform the considered DNN as an input to the SMT/MILP
solvers; to achieve this, the piecewise-linear nature of the
ReLUs is used to verify linear properties of the NN’s output
when the constraints on the inputs are linear. This, on the
other hand, means they do not capture nonlinear properties
of the considered physical plants.

Consequently, to avoid the aforementioned limitations,
such as scalability and nonlinearity, we adopt a Statistical
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Model Checking (SMC) approach to verify the desired specifi-
cations, formally defined in Signal Temporal Logic (STL) [15].
The main contribution of this works is to show the capability
of SMC for verifying complex NN-controlled CPS. Building
on an SMC approach based on Clopper-Pearson confidence
levels, which we recently introduced in [22], we statistically
verify STL specifications on three CPS benchmarks with
varying levels of plant and controller complexity (including
controllers with several layers containing several hundred
of neurons per layer). Specifically, we verified a reachability
property for a mountain car, safety property for a bipedal
robot, and control performance of a closed-loop magnet levi-
tation system, and showed how SMC can be used to provide
high-assurance for learning-based CPS of realistic size. On
the other hand, the bipedal robot verification problem is be-
yond the capability of the state-of-the-art verification tools,
such as Verisig [10], due to the 400-neurons layers in the
controlling neural network.

Compared to direct testing [23], our SMC approach pro-
vides guarantees on statistical accuracy of the results, with
provable bounds on their significance levels. Unlike existing
SMC methods that rely on sequential probability ratio tests
[12, 16, 18], our method is based on Clopper-Pearson bounds,
thus requiring no assumption on the “indifferent region”.

This paper is organized as follows. After preliminaries in
Section 2, Section 3 elaborates on the SMC method. In Sec-
tion 4, the SMC method is employed on three CPS with
learning-based controllers, before concluding in Section 5.

2 PRELIMINARIES

We denote the set of natural, rational, real numbers and non-
negative real numbers by N, Q, R and R, respectively. For
neN,let[n] ={1,...,n}.

An STL formula is defined by

¢ = flo)>0]-¢loreloUp, pe,

where o denotes an n-dimensional signal, f : R® — R
and t;,t, € Q with t, > #; > 0. Other temporal opera-
tors are defined as Oy, 1,10 = TrueUy,, 1,10 and Ly, 1,10 =
“(Crey,5,179), where & and O stand for “finally” and “al-
ways”, respectively.

The satisfaction of an STL formula on a given signal o :
Rs¢ — R" is defined by

ocFEu ©f(o(0)) >0

oFE-g o lEe

clEeAY SolkEpAdEY

o = oUp. ¥ &3t € [ty,t,] such that ¢ =

AV < t,o) = 0.

Here, o) denotes the t-shift of o, defined by ¢'(t') = o(t +
t') for any t’ € Ry,.
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Figure 1: SMC of NN-controlled CPS; ¢ is the path of
the controlled plant.

3 OVERVIEW OF SMC METHOD

As illustrated in Figure 1, we consider a NN-controlled CPS
S = P||C, similarly to e.g., [10]; the system is derived by
the (closed-loop) composition of a plant modeled as a hybrid
system ¥ and a controller C that is a (trained) neural net-
work. In general, our goal is to check whether a given STL
specification ¢ holds on S for all possible paths/signals ¢
of 8. However, when the initial state of S is uncertain, and
the NN-based controller is of realistic size, the problem is
currently out of reach of existing verification tools.

Consequently, as previously proposed for analysis of non-
learning-based embedded systems [16], we draw the initial
states of S from a probability distribution to model the un-
certainty. This allows us to map the considered verification
problem into reasoning whether the given STL specification
¢ holds on S with probability greater than p for a random
initial state; this can be specified as

po=Pr(c @) >p (1)
where o : Ry — R" is a path/signal of S from a random
initial state and p € [0, 1] is a probability threshold.

To statistically verify (1), we build on our SMC approach
based on the Clopper-Pearson significance levels from [22].
Compared to the SMC methods based on sequential probabil-
ity ratio test (SPRT), this approach requires no assumption
on the indifference margin [5, 13]. For i € [N], let o; be a
sample path of the system S from an initial state drawn as an
i.i.d. sample. For each o;, with a slight abuse of notation, let

o(01) = {1’

if ¢ is true on o, @)
0, otherwise.

ThenT = };¢(n} ¢(0i) should obey the binomial distribution
Binom(n, p,), and the average statistics T/N is an unbiased
estimator for p,. Intuitively, when T/N < p, it is more likely
that p, < p; and the same holds for the other case. Therefore,
we define the statistical assertion for problem (1) as

1, ifT/N<p

0, otherwise.

A(Pr(c F¢) <p) = { (3)
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Algorithm 1 SMC of Pr(c |= ¢) < pon S.

Require: CPS, desired significance level g, batch size B.
1: N « 0, T « 0, initial significance level acp « 1
2: while acp > a4 do
3: fori € [n] do
4 Draw on41,...0N+B from Sin S.
5 T T+YNP ¢(0i); N N+B.
6: end for
7 Update A by (3) and acp by (4) and (5).
8: end while
9: return A and acp.

This maps a formula Pr(c |= ¢) < p to 0 (“false”) or 1 (“true”).
From [22], the significance level of A - i.e., the probability
that A(Pr(c |= ¢) < p) disagrees with the truth value of
Pr(o |= ¢) < p, is given by the Clopper-Pearson (CP) bounds
as follows

acp(a,b|T,N) =1-

1-aN -1 -bV, ifT=0
bN —aN, ifT=N
FW|T+1,N-T)-Fg(a|T,N—-T+1), else,
(4)
where Fg(- | Ty, T2) is the cumulative probability function of
the beta distribution with the shape parameters (T3, T,), and

{[o, pl, ifT/N <p,
[a,b] = )
[p’l]9 lfT/N>p

Compared to the Hoeffding bounds, the CP bounds are tighter,
as they are specialized for Bernoulli distributions.

For a desired significance level ¢y > 0, which captures
the upper bound of the probability that the SMC algorithm
returns a wrong answer, we design the following sequential
SMC algorithm. Specifically, at each iteration, we draw B
new samples to compute the significance level using (4), until
it becomes less than oy. This sequential approach is needed
to exactly achieve the desired significance level a4 [5]. The
detailed algorithm for verifying (1) on the NN-controlled
CPS 8§ is provided in Algorithm 1. Finally, from [22] the
following holds.

®)

THEOREM 1 ([22]). Algorithm 1 terminates with probability
1 and gives the correct statistical assertion with probability at
least 1 — g, when p, # p for (1).

4 CASE STUDIES

We statistically verified three NN-controlled CPS models
implemented in Simulink on a desktop with 16 GB RAM
and Intel Xeon E-2176 CPU; specifically, a mountain car, the
bipedal robot [3], and the magnetic levitation [4], differing
in model complexity and type of employed controller, with
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Figure 2: Mountain Car.

the latter two models being built-in Matlab/Simulink models.
All models and SMC source code are available at [1].

For each set of considered parameters and properties of
interest, we executed SMC Algorithm 1 exactly 100 times;
note that the number of samples used in each algorithm
execution may vary, based on the model and the considered
property. From each of these 100 algorithm runs, the majority
vote on whether a property of interest is violated or satisfied
captures the final SMC result, while the ratio of those 100
runs that align with the final SMC result is regarded as the
accuracy (thus, the accuracy cannot go below 50%). For each
case study, we report the accuracy (Acc.), average number
of samples (Sam.) used in the SMC analysis, average SMC
execution time (Time), and SMC results (Ans.); all these are
reported for SMC with different significance levels a.

4.1 Mountain Car

As illustrated in Figure 2, the dynamics of a mountain car is

X =, 0 = Fu/m — mg cos(3x) — Bfv

where F = 0.2, m = 0.2, g = 9.81, Bf =0.5 denote the time
step, force, mass, standard gravity, and friction factor, respec-
tively. In addition, x(¢) and v(t) are position and velocity of
the car at time t step, and u(¢) is the controller input. To meet
the constraints at the beginning of simulation, the initial po-
sition and velocity were chosen from a normal distribution
with mean parameters p, = 0, and p, = 0 and standard
deviation parameters o, = 0.1 and o,, = 0.05. Furthermore,
the car’s position, velocity, and input are constrained within
[-1.2,0.6], [-1, 1], and [-1, 1], respectively.

We trained a controller using an actor-critic learning [14].
The actor’s DNN structure contains two fully connected
layers; the first has 25 neurons, and the ReLU activation
function, and the second one consists of 15 neurons and
tanh activation function. During learning, the employed con-
trol action reward was —0.1u(t)?, penalizing larger control
inputs to avoid a ‘bang-bang’ strategy. The reward on the
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system states was —0.03E2, where & = 0.6 — x(t). Further-
more, a reward of 100 was added when the car reached its
goal, and the total reward was the summation of the afore-
mentioned rewards. Finally, we set the maximal simulation
time to 10 seconds; if the car reaches the top before that, the
simulation stops.

We considered the property that the car reaches the top of
the right mountain (x = 0.6 at Fig. 2) within time §, when the
car’s initial position and velocity are selected from Gauss-
ian distributions N (—0.3, 0.42%) and N (0, 0.46?), subjecting
to the above constraints on the car’s position and velocity,
respectively; i.e.,

Pr(o = Opo 51(x > 0.6)) > 1—e. (6)

To statistically verify (6), we used Algorithm 1 with parame-
ters ¢ € {0.7,0.4,0.1} and § € {4, 7,10}, under the desired
significance levels @ € {0.01, 0.05}; the obtained result are
summarized in Table 1. As can be observed, the desired con-
fidence level can be achieved with a relatively small number
of samples (at most a few hundred samples for each setup).
The estimated SMC accuracy complies with the desired sig-
nificance levels, except for a small deviation for the boldface
entry (which is caused by the fact that only 100 executions
of Algorithm 1 were used).

Finally, Figure 3 shows whether STL property <o s1(x >
0.6) is satisfied or violated (green/red dots) for different initial
states (x(0), v(0)) of the plant (i.e., car). The results show
that (6) is true if the horizon § = 10 and false if § = 7. This
means that the exact § to make the satisfaction probability
be 0.9 is somewhere between [7, 10].

4.2 Bipedal Robot

The bipedal robot model [3] emulates human motions by a
complex dynamical system of 5-links connected by revolute
joints (2-links for each leg, and 1-link for the torso). As shown
in Fig. 4a, each of the two identical legs is composed of the hip
joint between the torso and thigh, knee joints between the
thigh and shank, ankle joint between shank and foot, and a
rigid body forms the torso. This joint structure has 5 Degrees
of Freedom (DOF) for each leg and 1 DOF for waist or torso.
The DOF for the waist is shared between legs. Also, the hip
joint has 2-DOF, which allows its motion in the sagittal and
the lateral plane. The employed (forward) kinematics for a
geometric configuration of the robot determines the position
and orientation of a foot with reference to the torso for the
known values of the joint variables of the kinematic chain.
To support the SMC analysis and allow us to randomly
reinitialize the initial state of the robot, we developed a sim-
plified robot model based on the model’s inverse kinematics
(IK); the model captures the values of the joint variables,
when the position and orientation of the feet are given. The
simplified model has 25 joint variables, whose values depend

Figure 3: Initial states of the mountain car resulting in
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d 1-¢ a Acc. Sam. Time (s) Ans.
4 0.3 0.01 1.00 3.4e+01 3.8e-02 True
4 03 0.05 1.00 2.1e+01 4.2e-02 True
4 0.6 0.01 1.00 8.9e+00 8.4e-03 True
4 0.6 0.05 1.00 5.4e+00 4.6e-03 True
4 0.9 0.01 1.00 3.5e+00 2.7e-03  True
4 0.9 0.05 1.00 2.2e+00 1.7e-03  True
7 0.3 0.01 0.98 1.2e+02 1.5e-01 False
7 0.3 0.05 098 5.3e+01 6.8e-02 False
7 0.6 0.01 1.00 3.5e+01 4.4e-02 True
7 0.6 0.05 099 2.1e+01 2.6e-02 True
7 0.9 0.01 1.00 5.4e+00 5.6e-03  True
7 0.9 0.05 1.00 4.0e+00 4.3e-03 True
10 0.3 0.01 1.00 6.6e+00 6.5e-03  False
10 0.3 0.05 1.00 4.3e+00 3.8e-03 False
10 0.6 0.01 1.00 2.4e+01 2.7e-02 False
10 0.6 0.05 1.00 1.6e+01 1.8e-02 False
10 0.9 0.01 099 1.6e+02 2.0e-01 True
10 0.9 0.05 099 7.2e+01 8.8e-02 True

Table 1: SMC results for the mountain car case study -

the property of interest is captured by (6).

on different randomly sampled initial positions and orienta-
tions of the feet. Specifically, as the Simulink model captures
the 2D dynamics of the robot, the designed controller only
controls the sagittal movement of the robot. Therefore, the
initial state of the robot only contains the initial position and
velocity in x-direction, while the initial position and velocity
in y-direction are set to zero. Moreover, the heights of the
torso h is a constant value h = 22.66. Thus, the following
dynamics based on the Zero Moment Point (ZMP) and the
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Center of Mass (CoM) positions was used

£ = F0) = pe i) = W0~ py).

Furthermore, the robot’s IK was used to calculate the joint
space parameters — i.e., for each leg, it holds that

Xfoot = 11 sin(91) + lg sin(91 + 92) (7)
Yfoor = —l1 cos(61) — I cos(6 + 62),

From (7), we find the hip pitch (6;) and knee pitch (6,). The an-
kle pitch (05) is obtained by 65 = —(6, + 6;). Finally, the initial
position and velocity for each legs are chosen from a nor-
mal distribution with mean parameters Hxpoor = —0.05, and
Hopoor = —0.05 and standard deviation parameters Oxfoor =
0.08 and o, = 0.08. And the feet are symmetrically posi-
tioned for stability.

We verified safety of the actor-critic learning-based con-

troller from the Simulink Reinforcement Learning Toolbox [2].

This verification problem is beyond the capability of the
state-of-the-art verification tools (e.g., Verisig [10]), due to
the 400-neurons layers in the controlling neural network.
The actor and critic’s DNN structures are depicted in Figs. 4b
and 4c, respectively. The actor structure contains three layers
NN where the first and second layers are fully connected,
and each of them has 400 neurons employing the ReLU ac-
tivation function. On the other hand, the third layer is a
fully-connected layer with six neurons, and its activation
function is tanh. The critic is constructed by concatenating
two parallel layers — action layer, whose inputs are the con-
trol outputs, and observation layer, whose inputs are the
system states (i.e., plant outputs). The action space contains
6 torques (on the ankle, knee, and hip for each leg) within
[-3, 3] (N - m). The action layer contains two fully connected
layers; the first one has 400 neurons employing the ReLU
activation function, and the second one has 300 neurons. The
concatenated layers are passed through a ReLU activation
function to generate the output.
The following conditions were used to capture the safe

properties of interest:

e 7; : The lateral movement is greater than a thresh-

old (Jly| > 0.5),
e 1, : The robot has fallen (z < 0.1),
o 73 : The robot’s roll, pitch, or yaw are greater than a
threshold (|¢| > 7, 10| > Z., || > %).

Specifically, we considered whether the robot reaches the
desired goal position while the errors in angles and move-
ment direction stay less than the predefined thresholds; the
desired specification may be captured as

Pr(<>[0,5](x > &) A Opo,s1(—m1 A =z A —|r]3)) >1-¢. (8)

We statistically verified property (8) using Algorithm 1
with parameters ¢ € {0.02,0.12,0.2} and § € {3.0, 2.4}, with

HSCC 20, 2020,

§ 1-¢ a Acc. Sam. Time (s) Ans.

2.4 0.02 0.01 1.00 7.4e+01 3.0e-01 False
2.4 0.02 0.05 099 4.4e+01 1.4e-01 False
2.4 0.12 0.01 1.00 4.2e+01 1.2e-01 True
2.4 0.12 0.05 1.00 2.1e+01 7.0e-02  True
2.4 0.20 0.01 1.00 1.3e+01 4.0e-02 True
2.4 0.20 0.05 1.00 6.7e+00 1.4e-02 True
3.0 0.02 0.01 1.00 1.1e+01 2.4e-02 False
3.0 0.02 0.05 1.00 6.5e+00 1.1e-02 False
30 012 001 1.00 14e+02 4.3e-01 False
3.0 0.12 0.05 098 7.0e+01 2.3e-01 False
3.0 0.20 0.01 1.00 1.6e+02 5.5e-01 True
3.0 0.20 0.05 098 1.0e+02 2.9e-01 True

Table 2: SMC results for the bipedal robot case study -
the property of interest is captured by (8).

the desired significance levels @ € {0.01,0.05}; the obtained
results are summarized in Table 2. As can be seen, while the
robot satisfies the safety conditions, its walking distance is
greater than § = 2.4 with probability 1 — ¢ = 0.12, but not
greater than § = 3.0 with the same probability, showing that
the 0.12 percentile is between [2.4, 3.0].

4.3 Magnet Levitation

The Magnet Levitation Simulink model [4] captures the con-
trol of the magnet in a power transformer, with dynamics
ai’(t)  p

o~ 3 ©)

Here, y(t) is the distance of the magnet above the electro-
magnet, i(t) is the current flowing in the electromagnet, M
is denoted the mass of the magnet, and g is the gravitational
constant. The parameter f is a viscous friction coefficient,
and « is a field strength constant.

The magnet (9) is controlled by the Nonlinear Auto Re-
gressive Moving Average (NARMA-L2) NN-controller shown
in Figure 5. The NN-controller has seven hidden layers,
with five nodes per layer, as well as three delayed plant
inputs and two delayed outputs. The activation functions
are all tansig functions. Moreover, the sampling interval is
0.01s. The training is carried out with 100 epochs with the
Levenberg-Marquardt back-propagation method, and the
maximum number of samples is set to 10000. Besides, the
system’s inputs are set within [0.5, 4].

The NARMA-L2 NN-controller is evaluated using the In-
tegral Absolute Error (IAE) of the magnet’s y-position for
random reference inputs. Formally, the desired specification
for the IAE is expressed as

PI'(D[O,5](IAE < 5)) >1-—e, (10)

j(t) = —g +
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Figure 4: The bipedal robot case study — the number above each layer captures the number of neurons in the layer.
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Figure 5: NARMA-L2 controller for magnetic levita-
tion, with seven hidden layers, each with five neurons.

and the reference input of the NARMA-L2 NN-controller
(r(t) in Figure 5) is set to be a random step function whose
amplitude obeys the normal distribution with mean p, = 2
and standard deviation o, = 0.7, subjecting to the input
constraint [0.5, 4]. The specification (10) is statistically ver-
ified using Algorithm 1, with parameters ¢ € {0.5,0.3,0.1}
and § € {1, 1.05, 1.1}, under the desired significance levels
a € {0.01,0.05}.

Summary of the obtained results is presented in Table 3.
As can be observed, within 5 seconds., the IAFE index ! for the
closed-loop system stays less than § = 1.05 with probability
1—¢ = 0.5, but not less than § = 1.1 with the same probability,
showing that the 0.5 percentile is between [1, 1.1].

5 CONCLUSIONS

In this work, we have shown feasibility of statistical verifi-
cation of learning-enabled CPSs for specifications captured
using Signal Temporal Logic (STL) formulas. We have ad-
dressed the inherent scalability problems of the conventional
methods based on the use of reachability analysis or SMT
solvers; this is achieved by implementing a Statistical Model
Checking (SMC) framework for Neural Networks (NN)-based

1Since IAE is monotone, we checked the values at the end of simulations.

§ 1-¢ a Acc. Sam. Time (s) Ans.
1.00  0.50 0.01 1.00 1.6e+01 2.6e+00 True
1.00 0.50 0.05 1.00 1.1e+01 1.7e+00 True
1.00 0.70 0.01 1.00 6.6e+00 1.3e+00 True
1.00 0.70 0.05 1.00 4.9e+00 7.8e-01  True
1.00 090 0.01 1.00 3.6e+00 6.5e-01 True
1.00 090 0.05 1.00 2.5e+00 4.4e-01 True
1.05 0.50 0.01 1.00 3.6e+01 5.9e+00 True
1.05 0.50 0.05 0.99 1.9e+01 3.8¢+00 True
1.05 0.70 0.01 1.00 9.7e+00 1.8e+00 True
1.05 0.70 0.05 1.00 6.3e+00 1.3e+00 True
1.05 0.90 0.01 1.00 4.6e+00 8.1e-01  True
1.05 0.90 0.05 1.00 3.1e+00 5.6e-01 True
1.10 050 0.01 1.00 3.3e+02 5.5e+01 False
1.10  0.50 0.05 0.92 1.2e+02 2.3e+01 False
1.10 0.70 0.01 1.00 5.6e+01 9.6e+00 True
1.10  0.70 0.05 0.99 29e+01 5.0e+00 True
1.10  0.90 0.01 1.00 8.9e+00 1.5e+00 True
1.10 0.90 0.05 1.00 6.6e+00 1.1e+00 True

Table 3: SMC results for the magnetic levitation study
— the property of interest is captured by (10).

CPS using Clopper-Pearson confidence levels. On three CPS
real-world benchmarks (mountain car, bipedal robot, and
magnetic levitation system) with varying levels of plant and
controller complexity, as well as different types of considered
STL properties, we showed that SMC methods can be used
to reason about learning-based CPS of realistic-size.
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