An Optimal Graph-Search Method for Secure State

Estimation *

Xusheng Luo #**, Miroslav Pajic ", Michael M. Zavlanos ?

& Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, U.S.A

Y Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, U.S.A

Abstract

The growing complexity of modern Cyber-Physical Systems (CPS) and the frequent communication between their components
make them vulnerable to malicious attacks. As a result, secure state estimation is a critical requirement for the control of these
systems. Many existing secure state estimation methods suffer from combinatorial complexity which grows with the number of
states and sensors in the system. This complexity can be mitigated using optimization-based methods that relax the original
state estimation problem, although at the cost of optimality as these methods often identify attack-free sensors as attacked. In
this paper, we propose a new optimal graph-search algorithm to correctly identify malicious attacks and to securely estimate
the states even in large-scale CPS modeled as linear time-invariant systems. The graph consists of layers, each one containing
two nodes capturing a truth assignment of any given sensor, and directed edges connecting adjacent layers only. Then, our
algorithm searches the layers of this graph incrementally, favoring directions at higher layers with more attack-free assignments,
while actively managing a repository of nodes to be expanded at later iterations. The proposed search bias and the ability to
revisit nodes in the repository and self-correct, allow our graph-search algorithm to reach the optimal assignment faster and
tackle larger problems. We show that our algorithm is complete and optimal provided that process and measurement noises
do not dominate the attack signal. Moreover, we provide numerical simulations that demonstrate the ability of our algorithm
to correctly identify attacked sensors and securely reconstruct the state. Our simulations show that our method outperforms
existing algorithms both in terms of optimality and execution time.

Key words: cyber-physical systems; system security; state estimation; graph-search algorithm

1 Introduction tacks often manipulate the state of the system by in-
jecting faulty data through compromised sensors, lead-
ing to undesirable feedback control signals. Recently,
cyber-attacks have been responsible for some incidents of
safety-critical automobiles (Koscher et al. 2010, Green-
berg 2015, Shoukry et al. 2013) and UAVs (Javaid et al.
2017), and even worse, catastrophic losses of large-scale
systems (Slay & Miller 2007, Chen & Abu-Nimeh 2011).

Therefore, developing attack-resilient methods for se-

Cyber-Physical Systems (CPS) are networked systems
consisting of embedded physical components, such as
sensors and actuators, and computational components,
such as controllers. Recently, CPS have been successfully
utilized in large-scale applications, including power net-
work control, industrial manufacturing processes, and
traffic control. However, the growing complexity of CPS

and the frequent communication between components
make them vulnerable to malicious attacks. Such at-

* This work is supported in part by the ONR under
agreements #N00014-18-1-2374 and #N00014-17-1-2504,
the AFOSR under award #FA9550-19-1-0169, as well as the
NSF under grant CNS-1652544. This paper was not pre-
sented at any IFAC meeting.
**Corresponding author.

Email addresses: xusheng.luo@duke.edu (Xusheng Luo
), miroslav.pajic@duke.edu (Miroslav Pajic),
michael.zavlanos@duke.edu (Michael M. Zavlanos).

Preprint submitted to Automatica

cure state estimation in CPS has recently gained signif-
icant attention (Lee 2008, Cardenas et al. 2008).

In this paper, we consider CPS modeled as linear time-
invariant systems, where a subset of sensors is subject
to malicious attacks represented as attack vectors added
to the measurements. Our goal is to detect the attacked
sensors fast and use the attack-free sensors to accurately
estimate the state. In this context, secure state estima-
tion is closely related to robust control (Pasqualetti et al.
2011, Manandhar et al. 2014), where the control design
is subject to process and measurement noise, modeled as

8 October 2020

an unknown disturbance that is bounded or follows some
probability distribution. Nevertheless, such assumptions
on the noise restrict the general application of robust
control methods for secure state estimation, since it is
difficult to predict the attack strategy. Similarly, fault
tolerant control methods (Blanke et al. 2006, Teixeira
et al. 2015) focus on internal faults with known failure
modes and statistical properties, rather than adversar-
ial attacks. Secure state estimation under specific attack
signals has been investigated in Teixeira et al. (2010),
Sundaram et al. (2010), Teixeira et al. (2012), Miao
et al. (2013), Mo, Hespanha & Sinopoli (2014), Hen-
drickx et al. (2014), Mo, Chabukswar & Sinopoli (2014).

Compared to the literature discussed above, we do not
impose any assumptions on the type of the attack sig-
nal. We assume that the number of attacked sensors is
smaller than an upper bound, which is necessary to en-
sure observability of the attacked system that is needed
to reconstruct the state. Under this assumption, we pro-
pose a new optimal graph search-based algorithm to cor-
rectly identify malicious attacks even in large-scale CPS
and securely estimate their state, when the power of at-
tack signals exceeds a certain threshold. The graph con-
sists of layers, each one containing two nodes capturing a
truth assignment of any given sensor, and directed edges
connecting adjacent layers only. Then, our algorithm
searches the layers of this graph incrementally, favoring
directions with more attack-free assignments and higher
layer, while actively managing a repository of nodes
whose expansion are intentionally delayed. The combi-
nation of search bias, intentionally delayed expansion
and the ability to self-correct allow our graph-search al-
gorithm to reach the optimal assignment fast and tackle
larger problems. Assuming that process and measure-
ment noise does not dominate the attack signal, we show
that our algorithm is complete and optimal meaning
that it will find a feasible attack assignment, if one ex-
ists, which does not incorrectly identify any attack-free
sensor as attacked. Finally, numerical simulations show
that our method outperforms existing algorithms both
in terms of optimality and execution time.

Most closely related to the work proposed here are the
methods in Fawzi et al. (2014), Pajic et al. (2014, 2015,
2017), Chong et al. (2015), Shoukry et al. (2017), Mishra
et al. (2017), Shoukry et al. (2018), which exploit the
measurement within a finite-length time window to con-
duct state estimation. Specifically, Fawzi et al. (2014)
consider discrete-time LTI systems without noise and
provides necessary and sufficient conditions under which
the state of the system can be reconstructed when a
subset of the sensors are under attack. The idea is to
formulate the secure state estimation problem as an £,
minimization problem that is computationally expen-
sive, and then relax it into an ¢ /¢, problem that can be
efficiently solved using convex optimization, which mit-
igates the combinatorial complexity of the methods in
Pasqualetti et al. (2013), Yong et al. (2015), Lee et al.

(2015). However, £y and ¢ /¢, optimization are not al-
ways equivalent, thus their relaxation can result in incor-
rect estimates. The work in Pajic et al. (2014) extends
this method to LTT systems where process and measure-
ment noises are considered in the presence of malicious
attacks, and formulates the ¢y optimization problem as
a mixed integer linear program (MILP). However, solv-
ing MILPs is NP-hard, so this method can not be used
for very large problems. Analytic bounds on the state-
estimation error for the proposed £, state estimator and
its convex ¢ relaxation in the presence of noise are de-
rived in Pajic et al. (2015, 2017), where it is shown that
using relaxation results in inaccurate estimation. The
work in Chong et al. (2015) provides similar necessary
and sufficient conditions for continuous-time LTI sys-
tems, and proposes two methods to estimate the state
involving the observability Gramian and the Luenberger
observer. However, both methods are computationally
expensive. An alternative approach based on Satisfiabil-
ity Modulo Theory (SMT) is proposed in Shoukry et al.
(2017), Mishra et al. (2017), Shoukry et al. (2018), that
formulates the secure state estimation problem as a sat-
isfiability problem subject to Boolean constraints and
convex constraints over real state variables. The pro-
posed iterative algorithm combines SMT solvers to ob-
tain a possible attack assignment for the sensors with
convex optimization methods to check whether this as-
signment is valid given the dynamical system equations.
Due to the formulation as a feasibility problem, the so-
lution is not guaranteed to be optimal even in the ab-
sence of process and measurement noise. Compared to
the literature discussed above, our graph-search method
is provably optimal, meaning it identifies the true attack
assignment and does not incorrectly identify attack-free
sensors as attacked. Moreover, numerical experiments
show that our method compares favorably to existing
methods in terms of execution time. This is due to the
proposed search bias that favors directions at higher lay-
ers with more attack-free assignments and the ability of
our algorithm to self-correct by managing a repository of
nodes that can be expanded at later iterations if needed.

The rest of the paper is organized as follows. Section 2
provides the problem formulation. In Section 3, we
present the proposed graph-search algorithm for se-
cure state estimation, and examine its completeness,
optimality, and complexity in Section 4. Finally, com-
parative numerical simulations are shown in Section 5,
while Section 6 concludes the paper.

2 Problem Formulation
2.1 Linear Dynamical Systems under Attack

Consider the linear time-invariant dynamical system:

x(t+1) = Ax(t) + Bu(t) + v(t),

y(t) = Cx(t) + e(t) + wi(t). (1)

where x(t) € R™,u(t) € R™, and y(t) € RP denote
the state vector, control vector, and measurement vec-
tor for p sensors at time instant ¢, respectively; A, B, C
are system matrices with appropriate dimensions; v(t)
and w(t) represent the process noise and measurement
noise at time ¢; and e(t) € R? is an attack vector so that
if the i-th element e;(t) of e(t) is non-zero then sensor 4
is under attack, and is attack-free otherwise. We assume
that the set of sensors that the attacker has access to
does not change over time. Moreover, let |[supp(e(t))| de-
note the number of attacked sensors, where supp(e(t)) C
{1,...,p} denotes the support of the vector e(t) € RP,
that is the set of indices that correspond to non-zero el-
ements in e(¢), | - | denotes the cardinality of a set.

In this paper, we do not consider the case where the ac-
tuators are under attack, thus, all the control inputs are
known and we can subtract their effect from the dynam-
ical equations due to linearity. Therefore, for simplicity,
we set the matrix B to be zero. Given T" measurements
y(t—T+1),...,y(t) that are subject to attack vectors
e(t—T+1),...,e(t), we can express them as a function
of the states x(t — T + 1) as

Y;7(t)=0rx(t—T+1)+ e r(t)+w,r(t), (2)
where
Yeir(t) =yt -T+1),y"t-T+2), -,y ()],

Or =|[CT, ATCT, (ANHTtemT,
er(t)=1[eT(t—T+ 1), eT(t —T+2),--,e"(t)",

[w(t—T+1)]
Cvit—TH+1)+w(t—-T+2)

wir(t)= | C7, A2 iv(t =T +i)+w(t —T+3)

Cy AT (t—T+i)+w(t)

The term e; r(t) denotes the attack vector, and with a
slight abuse of notation, w; 7(¢) represents noise vectors,
including both the process and measurement noise. If the
system is noiseless and attack-free, equation (2) becomes

Yir(t)=Orx(t—T+1). (3)
As is shown in Fawzi et al. (2014), for noiseless systems
that are under attack, we can reconstruct the state from
T measurements when s sensors are under attack if and
only if, Vx € R™ \ {0}, |supp(Cx) Usupp(CAx)U...U
supp(CAT~1x)| > 2s. Therefore, there is an upper limit
on the number of attacked sensors, denoted by s, beyond
which states can not be correctly estimated. This limit
depends on the system matrices A and C. In this paper,
we assume the number of attacked sensors is less than
or equal to §, i.e., |supp(e(t))] < §, and § is assumed to

be known a priori, a common assumption used in rele-
vant work. Furthermore, we assume the system in (1) is
25-sparse observable, which means the system is still ob-
servable after any 25 sensors are removed. As shown in
Fawzi et al. (2014), Shoukry et al. (2017), it is impossible
to correctly estimate the state if [p/2] or more sensors
are attacked. Thus, 5 < [p/2] —1. Besides these assump-
tions, we do not impose additional constraints on the
attack vector, which can be arbitrary and unbounded.

Moreover, let Z C {1,...,p} be a subset of sensors and
define by y (t)|z the vector composed of elements of y(¢)
indexed by the set Z. Then, we can define the set of
measurements corresponding to sensors in the set Z as
Yor@)lz =yt -T+ D,y (¢ =T +2)z, -,y (H)lz]"
Considering only measurements from sensors indexed by
the set Z, equation (2) can be rewritten as

Yt,T(t)‘I = OT|I X(t T+ 1) + et,T(t)|z + WtyT(t)|I.

For notational simplicity, we use Yz, Oz, ez, wz to de-
note Y, r(t)|z, Orlz,err(t)|z, wi,r(t)|z and x to de-
note x(t — T 4 1) when they are clear from the context.
Moreover, when Z = {i}, for i € {1,...,p}, is a single-
ton, we use the notations Y;, O;, e;, w;. Finally, we as-
sume that the noise term wy (t) is upper bounded. This
is a reasonable assumption since, otherwise, it is impos-
sible to estimate the state. Specifically, we assume that
||w1||<@2, for vt e N,T € {1,...,n},i € {1,. ..,p},
where ||-|| is ¢3-norm of a vector. Slmllarly, HWIH2
w3 =Y, w; and w? =0 | w?.

2.2 Secure State Estimation

Let b = (b1,...,by,) be a vector of binary variables such
that b; = 1 if sensor 7 is under attack and b; = 0, other-
wise. Let xg and by denote the true state and the true
attack assignment at time ¢t — T + 1, respectively. As-
suming the [supp(bg)| < 8, our goal is to find the attack
assignment b* that satisfies b* = by, and use the attack-
free sensors in b* to reconstruct the state. Specifically,
we formulate the following problem.

Problem 1 Consider the linear dynamical system in (1)
that is under attack. Determine the optimal state vector
and attack assignment (x*,b*) € R™ x BP that solve the
optimization problem

i b 4
S) 0
s.t. ||YI — OIXHQ <wr+ \/E, (4&)
|supp(b)| < 5, (4b)

where s is the mazximum allowable number of attacked
sensors in order to reconstruct states, T = {1,...,p}\

supp(b), and € is the acceptable numerical accuracy in
the solution specified by the user, which serves as the
stopping criterion of numerical iterations.

As shown in Shoukry et al. (2017), if the noise and so-
lution accuracy are zero, i.e., if w; = 0 and € = 0, and if
the system is 23-sparse observable, then any assignment
b with supp(b) C supp(by) and |supp(b)| < § is a fea-
sible assignment, where supp(b) is the complement of
the set supp(b), i.e., supp(b) = {1,...,n} \ supp(b). In
words, a feasible solution to Problem 1 correctly identi-
fies all attacked sensors, but it can also incorrectly treat
attack-free sensors as attacked. As shown in Shoukry &
Tabuada (2016), if the noise and solution accuracy are
zero, then the solution to Problem 1 correctly identi-
fies the true attack assignment, i.e., it satisfies b* = byg.
However, in the presence of noise and non-zero solution
accuracy, a feasible solution to Problem 1 can incorrectly
identify attacked sensors as attack-free if the attack sig-
nal is undetectable meaning that its effect is hidden by
the noise and solution accuracy.! Similarly, if the noise
is relatively large or the solution accuracy is low, then,
some attack-free sensors may be incorrectly treated as
being under attack. Nevertheless, if the attack vector is
strong enough so that it can not be hidden by noise and
solution accuracy, then it is reasonable to expect that
the solution to Problem 1 coincides with the true attack.
This discussion on attack detection in the presence of
noise is also supported by the theoretical analysis in Pa-
jicet al. (2017). The following proposition quantifies this
discussion in the current problem formulation.

However, before we show this result, we provide some
definitions. Let x’ be any reachable state of system (1).
Then, using the noiseless and attack-free model (3), we
can get T measurements Y’ = Ox’. Let x denote the
solution of the problem minyegn ||'Y’ —Ox|| for the given
x’. Then, we can define the solution accuracy €* as

¢ = inf{e|[[Y' — O%| < Ve, VX'}. (5)

In other words, €* is a uniform lower bound on € so that
for any x’ the solution X of the problem minyeg-||Y’ —
Ox|| satisfies ||[Y' — Ox| < Ve*. If € < ¢, then this
constraint can not be satisfied. Now, consider a set 7
containing only attack-free sensors. Then, the solution x
to the problem minyern || Y — Ozx|| also satisfies | Y, —
Ozx|| < Ve*. The reason is that for X, we have || Y/ —
O7x|| < |[Y' = 0%, and |[Y' — O%]|| < v/ by definition
of €*. Therefore, || Y%, — Ozx|| < v/¢*. Moreover, since X
is the minimizer of | Y7 — Ozx||, we have || Y, — Ozx|| <
'Y, — Ozx|. We conclude that | Y — Ozx|| < Ve,

Proposition 2 Let the linear system in (1) be 25-sparse
observable and let the number of attacked sensors be less

1 Typically, noise is the main factor that can hide the effect
of an attack signal.

than or equal to 5. Moreover, let € = €*, i.e., the lower
bound defined in (5). If the attack signal satisfies

2 _ €
el > (1—A> w + %’ (6)

where

-1
= To, To.
A= Fczgl{ai),(...,p} Amax { <Z 0O, 01> (Z O; Oz) } ,

IT|<5,|Z|>p—5 i€l €T

and Amax(+) is the maximal eigenvalue of a matriz, then
by is the unique optimal solution of Problem 1.

PROOF. First, we show that if there is an attacked
sensor in the index set Z with |Z| > p — 5, when (6)
is satisfied, mingegre || Yz — Ozx|| < Wz + /€ does not
hold anymore. It is shown in Theorem IV.3 in Shoukry
et al. (2017) that if there is an attacked sensor in the
index set Z with |Z| > p — §, for which the attack signal
satisfies (6), then the following two inequalities hold,

1Yz — Ozx|* > (|(I — 0z0F)ez|| — | (I — ozopwﬂ)(%

I(1 = 0z07)ez|| — [|(I — OzO7)wz|| > Wz + Ve, (8)

where OF = (0T07)7*O%, I is the identity matrix,
and (7) corresponds to (13) and (8) is the second to last
inequality in (14) in Shoukry et al. (2017). It’s worth not-
ing that the right-hand side of constraint (4a) takes the
form Wz +-e€ in equation (8) in Shoukry et al. (2017). How-
ever, this reformulation does not invalidate the theoret-
ical results in Shoukry et al. (2017), since the derivation
of inequalities (7) and (8) is irrelevant to any form of con-
straint (4a). Thus, combining (7) and (8), we have that
mingegn || Yz —Ozx|| < wz ++/€ does not hold anymore.
Therefore, the set Z should only include attack-free sen-
sors. This implies that when inequality (6) is satisfied,
any feasible solution b of Problem 1 needs to correctly
identify all attacked sensors, i.e., supp(bg) C supp(b),
and therefore |supp(bg)| < |supp(b)|.

In what follows, we show that the converse is also true,
i.e., that any assignment b that satisfies supp(bg) C
supp(b) and |supp(b)| < 5 is a feasible solution to Prob-
lem 1, provided that (6) is satisfied. Then, we can con-
clude that since b = by satisfies supp(bg) C supp(b)
with equality and |supp(b)| < §, by is a feasible and
in fact the optimal solution to Problem 1. Moreover,
since by is a binary vector, there is no other assignment
b that satisfies supp(bg) C supp(b) with equality and
|supp(b)| < 5. Therefore, by is the unique optimal solu-
tion to Problem 1. Note that if € < €*, then it is possible
that an assignment b satisfies supp(bg) C supp(b) and
|supp(b)| < § but does not satisfy the constraint (4a).
Therefore, constraint (6) is a necessary condition.

To show that any assignment b that satisfies supp(bg) C
supp(b) and |supp(b)| < 5 is a feasible solution to Prob-
lem 1, note first that if all sensors in the set Z = supp(b)
are attack-free, we have that Yz = Ozxg + wz for the
true xo. Moreover, using the true state xq, we can gen-
erate measurements Y7 = Ozx(according to the noise-
less and attack-free model in (3). Combining those two
equations we get Y7 = Y% 4+ wz. By definition of €*,

min [|[Yz — Ozx — wz|| = min ||[Y7 — Ozx|| < Ver, (9)
x€ER™ XER™

where Yz = Y% + wz. Since by the triangle inequality
||YI — OIX” < ||YI — Ozrx — WIH + ||WI||7 and wr is
irrelevant to the minimization over x, we have

min ||YI — OIXH S mln ||YI — OIX — WIH + ||WI||
xeR” xER™
(10)
Finally, combining (9) and (10), we get mingern || Yz —

Orx|| < ||lwz|| + v/€*. Thus, providing (6) holds, if the
assignment b satisfies supp(bg) C supp(b), then Z =

supp(b) satisfies constraint (4a), completing the proof.

3 Graph Search-based Secure State Estimation

In this section, we propose a graph search algorithm that
incrementally assigns a truth value to each binary vari-
able in b. Specifically, our algorithm searches for the true
attack assignment on a directed graph with p 4 1 levels
and 2 nodes on each level; see Fig. 1. The graph is initial-
ized with an artificial root to provide a unique starting
point. This root corresponds to level 0. Each level except
level 0 captures the truth assignment of one sensor, so
that the nodes with values 1 and 0 at this level indicate
whether this sensor is under attack or not, respectively.
The edges in this graph connect nodes in adjacent levels
only, and all edges point towards a higher level. A path
starting from level 1 and ending at level p corresponds
to a possible attack assignment b. Throughout the rest
of this paper, we refer to the partial and full assignment
when part of or all of p sensors are assigned, respectively.

The key idea of the proposed algorithm is to priori-
tize search along paths in the graph that contain more
attack-free sensors. Search along these paths returns sen-
sor assignments with more 0 entries that minimize the
objective in (4). To decide whether a partial/full assign-
ment is valid, our algorithm also checks the feasibility of
the system of linear equations Yz = Ozx, as per the con-
straints in (4a).? During the early stages of the search,
this system of equations may be underdetermined or
square (when T - |Z| < n), according to the observabil-
ity matrix Oz € RTIZI*" Therefore, it is possible that

2 Here, T only includes sensors that have been assigned and
assigned as attack-free.

0 c level p
[——]

@ o levelp — 1
. . L]
. : .

0 c level 2

=]
@'o level 1

level 0

Fig. 1. The red path stands for one possible full assignment
b=0,1,...,1,0.

attacked sensors are incorrectly treated as attack-free.
However, as the search progresses, more sensors are as-
signed 0 values, which reduces the dimension of the ker-
nel space of the system of linear equations Yz = Ozx,
making the search less tolerant to such mistakes. To see
this, assume that the observability matrix Oz has full
rank n and the corresponding partial assignment is cor-
rect. Then, all subsequent sensors will also be correctly
assigned. This is because, if attacked sensors are incor-
rectly identified as attack-free, then the system of lin-
ear equations Yz = Ozx will become inconsistent. On
the other hand, if the observability matrix has full rank
n and the corresponding partial assignment is wrong,
then the search along this path will terminate immedi-
ately as soon as the next sensor assigned 0 is added to
the system of equations Y7 = Ozx, making it inconsis-
tent. Together with prioritizing search along paths that
contain more attack-free sensors to minimize the objec-
tive in (4), the proposed algorithm also actively man-
ages a repository of nodes whose exploration is deliber-
ately postponed until there is need to correct a search
that early on has made an incorrect sensor assignment.
The combination of search bias and the ability to self-
correct allow our graph-search algorithm to identify the
true attack assignment fast.

Before presenting our algorithm, we introduce the infor-
mation that a node needs to store and the resulting or-
der between any two nodes. We first associate with every
node a 5-tuple (level, value, parent, T, residual), where:
(1) level = [indicates that this node corresponds to the
l-th sensor except when [= 0 which corresponds to the
artificial root; (ii) value = 1 means that the I-th sensor
is under attack and value = 0 means that the [-th sen-
sor is attack-free; (iii) parent denotes the parent node of
the [-th sensor obtained from level I — 1; (iv) Z is the set
of levels with value 0 (attack-free sensors) from level 1
to level [. The set Z and the value level together provide
complete knowledge of the truth assignments of the first
[sensors, and they also contain information about the
objective (4) and the satisfaction of constraint (4b); (v)
residual = 0 if the inequality minkepn||Yz — Ozx| <
Wz ++/€ holds, otherwise residual = 1. We can tell from
residual whether the current attack assignment of the

Algorithm 1 Graph-Search for Secure State Estimation

Input: measurements Y, observability matrix O,
number of sensors p, noise bound w;, ¢ € {1,...,p}, solu-
tion accuracy €, maximum allowable number of attacked
Sensors s

Output: estimated state x, indices of attacked sen-
sor Z

—_

node.level <+ 0; node.value < 1; node.parent <
None; node.Z + (; node.residual =0

2: frontier < {node}; explored < 0; repo <+ ()
3: while true do

4: if Empty(frontier) and Empty(repo) then
5 | return failure

6: if Empty(frontier) then

7 frontier.put(repo.get())

8

: explored <
9: node < frontier.get()
10: if node.level = p then
11: | return argmin, g Yz — Ozx||2, node. T

12: explored.add(node)
13: foreach id € [0, 1] do

14: child < GetChild(node,id, Y, O, w;,¢€)
15: if child.residual = 0 then

16: if child.level — |child.Z| > 5 then
17: \ continue

18: if child € frontier or explored then
19: repo.put(child)

20: continue

21: else

22: | frontier.put(child)

first | sensors satisfies constraint (4a). Next, with the
help of the 5-tuple, we define an ordering between two
nodes v and v’ in the graph as follows. We say v = v/
if v.walue = v'.value and v.level = v'.level. That is,
two nodes are treated as equivalent if they correspond
to the same sensor and have identical Boolean values,
as shown in Fig. 1. Moreover, we use the lexicograph-
ical order to compare any two nodes. Specifically, we
define v > o' if v.level — |v.Z| < v'.level — |[v'.Z| or
(v.level — |v.Z| = v'.level — [v"Z|) A (v.level > v'.level).
In words, ordering of nodes is first determined by the
number of attacked sensors in the paths leading to those
nodes, so that fewer attacked sensors in these paths cor-
respond to nodes with higher priority. This is because
the goal of the algorithm is to find the true attack as-
signment and avoid incorrect assignments. On the other
hand, if the paths leading to two nodes contain the same
number of attacked sensors, ordering is determined by
the levels of these nodes; higher level corresponds to
higher priority in the ordering. This is because expand-
ing a node at a higher level can advance the algorithm
faster to terminate.

The proposed search algorithm, illustrated in Alg. 1,
generates the true attack assignment and estimates the
state. It starts by initializing the artificial root and the
three node sets, frontier, explored, and repo [lines 1-2].

The first set is the priority queue frontier, which contains
nodes that their parents have been expanded and they
themselves are eligible for expansion but have not yet
been selected for expansion. The priority is based on the
lexicographical order between nodes introduced before.
The second set is called explored, which stores nodes
that have been expanded. Storing those nodes avoids
repeated search. Finally, the third set is a priority queue
repo which is a repository for nodes for which (i) an
equivalent node is in queue frontier, or (ii) an equivalent
node has been expanded and is in the set explored.

After initialization, Alg. 1 repeatedly performs the fol-
lowing steps. First, it checks whether the queues frontier
and repo that contain nodes to be expanded are empty
[lines 4-8]. If both are empty, then the algorithm has
searched the whole graph and it was not able to find a
solution. If only frontier is empty, it is possible that the
solution is in the set repo, since repo also contains nodes
to be explored next. In this case, the algorithm picks the
node from repo with the highest priority and puts it in
the set frontier, meanwhile clearing the set explored. One
can think of selecting a node from repo as reinitializing
the search. Once a node is included in the set frontier,
Alg. 1 proceeds to check and expand it. If this node is at
the highest level [lines 10-11], the algorithm terminates
with a full assignment that satisfies the constraints (4a)
and (4b); otherwise, this node is expanded [lines 13-22].
Note that each node has two possible children nodes. We
discuss how to generate a child node later in Alg. 2.

Given a generated child node, Alg. 1 will discard this
node if it violates the constraint (4a). Otherwise, it
checks whether the number of attacked sensors in the
path leading to this child is larger than 5. If this is true,
then this node is also discarded due to the violation
of (4b). If not, then the algorithm searches the set fron-
tier and explored for equivalent nodes, i.e., nodes with
same values for value and level. If such nodes exist in
frontier or explored, then the child node is added to repo
and its expansion is delayed [lines 18-20]. This node
is not discarded because, compared to its equivalent
nodes that share the same level and value, it is associ-
ated with a different partial assignment. Later we show
that a node with a specific partial assignment exists
in frontier at most once throughout the whole search.
Furthermore, we place the child node into frontier if
no equivalent node exists in these two sets [line 22]. A
simple case study is shown in Example 3.

Alg. 2 describes how to generate a child node. The key
requirement is that the child node is always one level
higher than its parent [lines 1]. If child.value = 0, that
is, the corresponding sensor is attack-free, then the al-
gorithm checks whether sensors in the updated set Z of
attack-free sensors are consistent meaning that the in-
equality (4a) holds [lines 4-9]. If not, it means the current
partial assignment is wrong in that it incorrectly treats
attacked sensors as attack-free. If child.value = 1, i.e.,

Algorithm 2 GetChild (parentnode,id, Y, O, w;,)

child.level = parentnode.level + 1

child.value = id

child.parent = parentnode

if id =0 then

child.Z = parentnode.Z U {child.level}

if mingegn HYI - OIXHQ < wz + \/E then
| child.residual =0

else
9: | child.residual = 1

10: else

11: child.Z = parentnode. L

12: child.residual = parentnode.residual

Fig. 2. Graphical illustration of Example 3

the corresponding sensor is under attack, then the set 7
remains unchanged and the child node inherits the value
residual from its parent [lines 10-12]. This is because
the algorithm considers this sensor attacked, so it is not
used to reconstruct the state.

Example 3 Consider a system with 4 sensors and that
only the first sensor is under attack. Assume that this
system is 3-sparse observable, which means the observ-
ability matriz of each sensor has full rank and we can use
only one sensor to reconstruct states. The tree structure
in Fig. 2 shows how Alg. 1 searches the graph in Fig. 1.
We differentiate equivalent nodes with different assign-
ment explicitly, thus each path corresponds to one par-
tial/full assignment. Nodes are numbered with indices to
their right. Blue, green and yellow nodes are those that
are in sets frontier, explored and repo upon termination,
respectively; and red nodes are discarded due to the viola-
tion of constraints (4a) or (4b). The node numbered 11,
with tuple (4,0,9,{2,3,4},0), is the first one to reach
the highest level, and the path leading to it provides the
optimal solution, which is 1,0,0,0. Thus, only the first
sensor is under attack. Table 1 shows the node indices in
three sets at the beginning of each iteration.

4 Completeness, Optimality, and Complexity

In the following results, it will help to view two nodes
with the same value and level but distinct Z as different.

Table 1

The evolution of three different sets in Example 3 as the
Alg. 1 proceeds, where “—” means no nodes exist, and nodes
in frontier and repo are sorted by priority.

iteration frontier explored repo
1 0 — —
2 1,6 0 —
3 3,6 0,1 -
4 6,5 0,1,3 —
5 7,5 0,1,3,6 8
6 9,5 0,1,3,6,7 10,8
7 11,12,5 0,1,3,6,7,9 10,8
8 12,5 0,1,3,6,7,9,11 10,8

The reason is that, while such nodes are really equiva-
lent, they are treated differently by the algorithm in the
sense that a node is added to repo instead of being dis-
carded when another node with same value and level is
in queue frontier. In what follows, we show that Alg. 1
is complete and optimal and analyze its complexity.

4.1 Completeness and Optimality

Theorem 4 Let the attacked linear dynamical system in
(1) be 23-sparse observable and e = €*. Assume also that
the number of attacked sensors is less than § and that each

attack signal satisfies ||e;|| > (¢13A5> wH+ 1*{15 . Then

Alg. 1is complete that is, if there exists a solution (x,b)
that satisfies the constraints (4a) and (4b) in Problem 1,
then Alg. 1 will find it.

PROOF. We show that Alg. 1 terminates in a finite
number of iterations at which point the queue frontier
contains a feasible node that satisfies constraints (4a)
and (4b). A detailed proof of this result is provided in
Appendix A.

Next, we show that Alg. 1 is optimal, meaning that Alg. 1
can identify true attacks and makes no mistakes in treat-
ing attack-free sensors as attacked.

Theorem 5 Let the attacked linear dynamical system in
(1) be 25-sparse observable and € = €*. Assume also that
the number of attacked sensors is less than s and that

2 o Ve
17As) Wt 7

€
-A, -
Then, the solution of Problem 1 constructed by Alg. 1 is
optimal meaning that b* = by, where by represents the
true attack assignment.

each attack signal satisfies ||e;|| > (

PROOF. We show that it is not possible that a subop-
timal path can be formed before the optimal one. This is
because Alg. 1 always prioritizes search in directions of
possible attack-free assignments and in the case of mis-
takes, it uses the nodes in the set repo to take corrective

actions. A detailed proof of this result is provided in Ap-
pendix B.

4.2 Complexity Analysis

Given a LTT system in (1) and a true attack assignment,
in this section we discuss the complexity of Alg. 1 in
terms of the number of iterations until termination. Note
that at each iteration, a node is selected from the queues
frontier or repo, thus, we can focus on the number of
nodes that have been expanded before termination.

To simplify the analysis of complexity, consider an
“ideal” model without noise and solution accuracy.
Then the constraint (4a) becomes

in || Yz — =0. 11
min [Yz — Ozx|| = 0 (11)

The following theorem provides an upper bound on the
number of iterations taken to find the true assignment.

Theorem 6 Let the attacked linear dynamical system
in (1) be 25-sparse observable. Assume also that the true
number of sensors that are under attack is s. Let S = p—
25, where p is the number of sensors and 5 is the maximum
allowable number of sensors under attack. Then, without
considering noise and solution accuracy, Alg. 1 takes at

most Nupper = S5 () (CL%.°) (5 +) + p iterations to
find the true assignment, where (f) =0ifs<i.

PROOF. Alg. 1 achieves its worst performance if the
first s sensors are the ones that are under attack. This is
because, in this case, the attacked sensors can be treated
as attack-free when the system of equations Yz = Ozx
(where Oz € RTZ*7) is underdetermined or square,
i.e,, when T - |Z| < n, and Alg. 1 is biased towards ex-
panding attack-free sensors first. Recalling the graph in
Fig. 1, this worst scenario corresponds to the case where
the first s levels are associated with sensors that are un-
der attack. In what follows, we focus on this worst-case
attack scenario where the first s sensors are under at-
tack.

Since the system is 25-sparse observable, any observabil-
ity matrix Oz corresponding to Z with |Z| > p — 25 has
full rank n. Assume first that s > S = p — 25. When
|Z] < S, the rank of the observability matrix Oz can
be smaller than n. We further assume that the system
of linear equations Yz = Ozx is feasible, which could
occur when it is underdetermined or square. Then, the
algorithm can assign 0’s to S sensors out of the first s
sensors. But after the S-th sensor that is assigned 0, if
the next sensor is also assigned 0, then the system of
linear equations corresponding to those S 4 1 sensors,
which are treated as attack-free, becomes inconsistent

since it incorrectly treats attacked sensors as attack-free.
Therefore, the algorithm can only assign 1 to all sen-
sors past the S sensors that have been assigned 0 un-
til there are s 1’s in this path. Hence, in this case, the
whole searched path has 5+ .S nodes. Similarly, if S —1
nodes are assigned 0 and s — (S — 1) nodes are assigned
1 for the first s sensors, Alg. 1 can assign 0 to one more
sensor and 1 to another § — [s — (S — 1)] sensors. Fol-
lowing this logic, we get that if ¢ nodes are assigned 0
among the first s sensors, where 1 < i < S, Alg. 1 can
assign 0 to another S — i sensors and 1 to §— (s —14) sen-
sors. We conclude that our algorithm can only explore
i+(S—i)+(s—i)+[5—(s—14)] = 5+.5 nodes on one path
if this path is not feasible. Each assignment to the first
S + § sensors corresponds to one path. In the worst-case
scenario considered here, the path leading to the opti-
mal solution has the lowest priority in the sense that a
node at a specific level [< S on an infeasible path has
higher priority than the node with same value and level
on the optimal path. Hence, all infeasible paths will be
searched before the algorithm terminates, and we denote
by II the set of these paths.? Therefore, the search al-

gorithm searches at most 25:1 () (HSS;S) (5+.5) nodes
corresponding to infeasible paths. When no nodes are
assigned 0 at the first s levels, Alg. 1 will assign 0’s to
the remaining p — s sensors, which is exactly the num-
ber of nodes needed to be required corresponding to the
worst-case attack scenario. Because Alg. 1 explores one
node per iteration, we get the upper bound on the num-
ber of iterations taken to find the true assignment.

When s < S, the situation is less complex since the path
corresponding to the optimal solution is inside I, that is,
the path where the first s nodes are assigned 1 is inside
II, so there is no need to explore the graph until the first
S nodes are assigned 1, completing the proof.

Remark 7 (Ideal worst case): The worst-case complez-
ity in Theorem 6 assumes that if Y7 = Ozx is underde-
termined or square, i.e., if T - |Z| < n, then feasible so-
lutions exist. However, in practice, it is possible that no
solution exists. Furthermore, as the index set T grows,
the system of linear equations becomes overdetermined
(T-|Z| > n), which is almost always inconsistent and thus
has no solutions. In this case, the wrong assignment will
terminate much sooner, as demonstrated in Section 5.2.
Therefore, we refer to the worst case in the proof as the
“ideal” worst case. Whether the ideal worst case might
occur is application-dependent, and relies on the dynam-
ical system, the number of measurements T' and injected
attack signals.

3 Note that infeasible paths can only be partially searched.
As shown in Theorem 5, it is not possible that infeasible
paths can be fully searched before the optimal path.

5 Experimental Results

In this section, we present several test cases for values of
p and n, implemented using Python 3.6.3 on a computer
with 2.3 GHz Intel Core i5 and 8G RAM, that illustrate
the correctness and efficiency of the proposed algorithm
for large-scale estimation problems. To validate our
method, we compare with the Mixed Integer Quadrat-
ically Constrained Programming (MIQCP) method
in Winston & Goldberg (2004) and with the solver
IMHOTEP-SMT.* The formulation of the MIQCP
problem takes the form

(x,b)€R™ xBP

p
min Zbi (12)
=1

Since M € R is a very big number, the constraints in (12)
are called Big-M constraints, which are used to model
the binary activation/deactivation of constraints defined
over real decision variables. The performance of MIQCP
is sensitive to the value of M. Given different M, the re-
sulting attack assignment may vary significantly. Note
that we can get x and b simultaneously by solving the
MIQCP, but in our experiments, using the commercial
solver Gurobi (Gurobi Optimization 2018), we observed
that selecting a very large M can provide a feasible as-
signment b but a bad state x. This is because using large
M places more emphasis on the optimization over the
binary variables b rather than the real variables x. To
overcome this issue, we implement MIQCP in two steps.
First, we solve the MIQCP problem (12) for large M to
obtain a feasible assignment b and then use this assign-
ment to solve the unconstrained least square problem

min || Yz — Ozx||,
x€ER”

for the state x, where the set Z is the set of attack-free
sensors predicted by the solution of the MIQCP. On the
other hand, IMHOTEP-SMT is mainly designed to find
a feasible solution, and it can be used to find the optimal
solution in the noiseless case if executed repeatedly for
different values of 5 by performing a binary search over
3, checking feasibility of the system of equations in (4a),
decreasing § if these equations are feasible, and repeating
this process until the constraint (4a) is violated or until
s = 0. However, IMHOTEP-SMT needs to search all
possible combinations of truth assignments to all sensors
to ensure that a problem is infeasible, thus selecting a
feasible but less conservative 5 for IMHOTEP-SMT is
not easy. Hence, we run IMHOTEP-SMT once until the
first feasible solution is found.

4 IMHOTEP-SMT source code in Matlab can be found at
http://nesl.github.io/Imhotep-smt/index.html.

Table 2
Properties of LTI systems

s As 2 N

mean std min max 1-4s upper
2 0985 0.024 0.894 0.999994 16.341 226
3 0986 0.021 0.910 0.999890 17.202 248
4 0999 0.002 0.994 0.999994 55.541 94

We randomly construct sparse matrices A and C for
various parameters p and n with entries in the interval
[0, 1]. Furthermore, the initial state and the set of the at-
tacked sensors and corresponding attack signals are also
randomly generated, as in Fawzi et al. (2014), Shoukry
et al. (2017), Pajic et al. (2015, 2017). Specifically, given
an LTT system, we adopt two schemes to select the set
of attacked sensors (Park et al. 2017). The first scheme
attacks the first s sensors in the graph in Fig. 1, which
we refer to as the greedy attack, and the second scheme
randomly selects s sensors to attack. For the random
attack scheme, we randomly generate m different true
attack assignments, and attack signals that satisfy in-
equality (6) over T' = n time instants for each attack as-
signment. Specifically, the attack signals are generated
by first sampling a vector which follows a standard nor-
mal distribution, then normalizing it, and finally multi-
plying by a number which captures the magnitude, as
in Shoukry et al. (2017). For the greedy scheme, we ran-
domly generate m such attack signals. The solution ac-
curacy is set to e = 107°. The quantity M in MIQCP is
set to be 108. We monitor the execution time and rela-

:
tive estimation error of each method, defined as |X|TXO’ﬁ I

Note that xq is the true state, while with a slight abuse
of notation, x* is the output of each method.

5.1 Optimality and Complexity

In this section, we validate the optimality and complex-
ity of the proposed algorithm. For this, we need to get
the maximum allowable number of attacked sensors s by
increasing § from 1 to [p/2] — 1 and checking the ob-
servability matrix after excluding any 25 sensors. Since
this problem is combinatorial, we consider small sys-
tems with n = p = 10 for which 5 and the resulting A,
in inequality (6) are computationally tractable. Then,
we validate optimality by generating attack signals that
satisfy (6), and complexity by comparing the number of
iterations taken with the upper bound.

Specifically, we consider both the noiseless and noisy
cases. For each case, we randomly generate three sets
of 25-sparse-observable and small-scale systems, 50 sys-
tems per set, with p = n = 10, such that each set cor-
responds to systems with 5 = 2, 3, 4, respectively. Then,
for each system, we set the number of attacked sensors
s to be 5. Table 2 records the statistics, including the
mean, standard deviation, and minimum and maximum
value of A with respect to the maximum allowable num-
ber of attacked sensors §, computed over the 50 systems

http://nesl.github.io/Imhotep-smt/index.html

60 60

random attack o
® greedy attack
501 50
E 40 404
2
; 30 301
= 201 20
104 o 10 A o o
2 3 1 2 3 1
5 5

(a) Noiseless case (b) Noisy case

Fig. 3. Secure state estimations for small systems

Vi
value and represents the average power of the attack sig-
nal compared to that of the noise. The last column shows
the theoretical upper bound on the maximum number
of iterations that Alg. 1 will take given p, s and s = 5.
For the noiseless and noisy cases, we compare the perfor-
mance of Alg. 1 for different values of 5 and for the two
different attack schemes. From our simulations, we ob-
serve that the true attack assignment can be identified
every time for both the noiseless and noisy cases. Fur-
thermore, in Fig. 3 we report the statistics on the num-
ber of iterations taken over 1000 trials per case. It can
be seen that, on average, identifying the true attack as-
signment for the greedy attack requires more iterations
compared to the random attack. For small-scale systems,
we found that when the index set Z contains only one
sensor that is also under attack, it is often the case that
the square matrix Oz, with T' = n, is non-singular and
thus the system of linear equations Yz = Ozx is con-
sistent. In this case, the sensor will be mistakenly iden-
tified as attack-free. Thus, more iterations are required,
which verifies the complexity analysis for the ideal worst
case presented in Section 4.2. Notably, the number of
iterations of Alg. 1 is lower than the upper bound re-
gardless of the presence or absence of the noise and the
attack scheme. This is because when the index set Z in-
cludes more than one sensors and at least one of those
sensors is under attack, the system of linear equations
is overdetermined and inconsistent, so that the wrong
assignment will terminate immediately.

in Table 2 shows the mean

per set. The column

Next, we demonstrate that the upper bound on the num-
ber of iterations given in Thm. 6 is independent of the
number of states. For this, we assume no process or mea-
surement noise. Specifically, we first fix n at values 50,
100, 200, respectively, and then gradually increase the
number of sensors up to 200. Then, we fix p at values 50,
100, 200, respectively, and gradually increase the num-
ber of states up to 200. For each combination of p and n,
we randomly generate 5 LTI systems. For each LTI sys-
tem, the number of attacked sensors is chosen to equal

10

2

=

8 300 n =50

§ n =100

= 2001 n =200

=}

2100

=1

=

4 T T T T T T T
0 20 40 60 80 100 120 140 160 180 200

p

”

g ¥ T T = = - Eaa &

£ 3001

g p=50 p =100 p =200

S 200

5 T R

E

zs 100 4 — - - -~
0 20 40 60 80 100 120 140 160 180 200

40 8 n=50
n =100
n = 200

Time(sec)
N

100 120 140 160 180 200
1)

0 20 40 60 80

p =50
30 p =100
© p=200

Time(sec)
N

100 120 140 160 180 200
n

0 20 40 60 80

Fig. 5. Runtimes versus scales of systems

30% of the total number of sensors, and the correspond-
ing attack assignment is generated according to the ran-
dom attack scheme with m = 5. The number of itera-
tions of Alg. 1 averaged over 25 trials are shown in Fig. 4.
It can be seen that the number of iterations increases as
p grows but it is not affected by n. We show the execu-
tion time in Fig. 5. Although the number of iterations of
Alg. 1 for the same p does not change significantly with
n, the runtime of the algorithm for the same p increases
as n increases. This is due to the time required to solve
the minimization problem in line 6, Agl. 2.

5.2 Secure State Estimation without Noise

In this section, we consider the noiseless scenario where
the number of states n and the number of states p
are the same, both varying from 20 to 200. For each
combination of p and n, we randomly generate 5 LTI
systems. For each LTI system, the number of attacked
sensors is chosen to equal 10%,20%, 30% of the total
number of sensors, respectively, and the corresponding
attack support is generated according to the greedy
and random attack schemes, respectively, with m = 5.

1600 1600

Alg.1

14001 IMHOTEP-SMT 1400
1200 1200
10004 1000
2 8001 800 1
£ 600 600 1
400 1 400
2001 200

0 0]

0 40 80 120 160 200 0 40 80 120 160 200
p=n p=n
Random attack Greedy attack
Fig. 6. Runtimes versus scales of systems for the noiseless

case

Since it is computationally expensive to obtain 5 for
large-scale systems, line 16 in Alg. 1 is replaced by
child.level — |child.Z| > [p/2]. The solutions returned
by Alg. 1 and IMHOTEP-SMT are identical to the true
attack assignment in each trial, and their estimation
error is close to 0. However, this is not the case for
MIQCP. The statistics of the runtimes averaged over
25 trials for s/p = 30% are shown in Fig. 6. The results
for s/p = 10%, 20% are similar to those shown in Fig. 6
and thus, we omit them due to space limitations. When
the number of states and sensors are small, execution
times are comparable for Alg. 1 and IMHOTEP-SMT.
However, as the system scale becomes large, Alg. 1
significantly outperforms IMHOTEP-SMT in terms of
runtime. Specifically, for the random attack scheme
and n = p = 200, Alg. 1 requires 57.7s, 49.7s and
41.0s on average to find the truth assignment when
s/p = 10%,20%, 30%, respectively, while IMHOTEP-
SMT requires 691.1s, 992.2s and 1216.7s and these
times grow much faster than Alg. 1. Fig. 7 shows the
number of iterations required by Alg. 1, which grow
almost linearly with p and n. Note that fewer iterations
are required in the greedy attack case, contrary to the
result in Thm. 6 where the ideal worst case is analyzed.
For large-scale systems, we found that when the index
set Z contains only one sensor and this sensor is also
under attack, it is more likely that the square matrix
O7 is singular so that the system of linear equations
Y; = Ozx is inconsistent. Therefore, the ideal worst
case does not take place and the inconsistency causes the
wrong partial assignment to terminate early. Although
it is computationally almost impossible to calculate the
maximum allowable number of attacked sensors § and
the upper bound Nypper for large systems, we here pro-
vide the upper bound Nypper when 5 = 1,2,3,97,98, 99,
respectively, for p = 200,s/p = 10%. Approximately,
these bounds are 39801, 3.86 x 10°,2.47 x 108,1.08 x
101,2.55 x 108,1.83 x 10°, respectively. Calculating
Nypper for other 5 is not achievable within reasonable
amount of time. Observe that in Fig. 7(a) the maximum
number of iterations required by Alg. 1 is lower than

11

random attack greedy attack

2 2 2
4 x10 4 x10 4 x10
2 3 31 3
b
g
52 21 2
g
Z1 14 1
T T ~ () +— T 0+ T T
40 120 200 40 120 200 40 120 200

(a) s/p=10% (b) s/p=20% (c) s/p=30%

Fig. 7. Number of iterations taken versus system scales

Table 3
Misidentification ratio of MIQCP for the noiseless case

s/p 20 40 60 80 100 120 140 160 180 200
0.1 024 0.0 0.2 0.64 0.24 0.52 0.88 0.52 0.6 0.8
0.2 0.32 0.04 024 056 0.2 0.6 0.8 048 0.48 0.8
0.3 0.44 0.08 0.24 0.56 0.28 0.52 0.8 0.52 0.56 0.72
0.1 0.2 00 0.2 056 024 056 0.8 0.44 0.56 0.8
0.2 0.24 0.08 024 0.6 0.24 0.52 0.8 0.48 0.52 0.92
0.3 0.6 0.12 0.32 0.44 0.2 0.56 0.8 0.48 0.64 0.84

400, which makes our algorithm at least two orders of
magnitude faster than the above upper bound.

As for MIQCP, Table 3 shows the misidentification ra-
tio between the number of trials where the truth assign-
ment cannot be identified divided by the total number
of 25 trials, where the first 3 rows show the results for
the random attack scheme and the last 3 rows for the
greedy scheme. It can be seen that the performance of
MIQCP is heavily affected by the selection of big M and,
in simulation, it behaves poorly in terms of estimation
accuracy. Note that, in practice, tuning M does not help
recover the true attack assignment, as suggested by ex-
tensive numerical simulations we have conducted. More-
over, there is no way to justify the selection of M if the
truth assignment is not known beforehand.

Since IMHOTEP-SMT has been already compared to
the event-triggered projected gradient descent method
(ETPG) (Shoukry & Tabuada 2016) in terms of exe-
cution time and relative estimation error and has been
shown to exhibit better performance, we did not com-
pare with this method here. Moreover, we did not com-
pare with methods that relax ¢y-based formulations to
convex problems since they lack correctness guarantees.

5.8 Secure State Estimation with Noise

In this part, we consider the noisy case by following
the same simulation procedure as in the noiseless case.

1000

1000 A -
Alg.1 -
IMHOTEP-SMT | .
8001 800 1
— 600+ 600 T
k] -
£ 400 400
200+ T 200 1 -
04 ,_._._;l-z-;‘/x 0

40 80 120 160 200
p=n
Greedy attack

0 40 80 120 160 200 0
p=n
Random attack

Fig. 8. Runtimes versus scales of systems for the noisy case

Note that it is computationally expensive to calculate
the term A when p and n are large. Instead, we estimate
Ag by simulating the process and measurement noises
subject to truncated normal distributions. Then, we se-
lect attack signals with relatively large strengths. Since
the selected attack vectors can be much stronger than
the noise, which is a strategy that a true attacker would
not typically follow, we numerically tune the strength
of the attack vector by running a large number of tri-
als and checking if IMHOTEP-SMT is able to correctly
identify the truly attacked sensors in all trials. If yes,
we reduce the strength of the attack vector and repeat
this process until our algorithm fails to identify the true
attack assignment in all trials. When this happens, we
select values for the attack vector from the last success-
ful trial. Then, Alg. 1 is applied to the same attacked
dynamical system and corresponding measurements. It
turns out that Alg. 1 and IMHOTEP-SMT can identify
the truth assignment, which validates the workaround
above when n and p are large.

As in Section 5.2, we monitor the execution time aver-
aged over 25 trials. The results for s/p = 30% are shown
in Fig. 8. The results for s/p = 10%, 20% are similar to
those shown in Fig. 8 and thus, we omit them due to
space limitations. We observe that, Alg. 1 outperforms
IMHOTEP-SMT in terms of runtime. Specifically, for
p = n = 200, Alg. 1 requires 55.1s, 47.5s and 41.3s
on average to return the solution for s/p = 10%,20%
and 30%, respectively, while IMHOTEP-SMT requires
275.4s, 526.1s and 557.7s and this runtime grows much
faster than Alg. 1, as in the noiseless case. The relative
estimation errors of Alg. 1 are shown in Fig. 9. Further-
more, the misidentification ratio of MIQCP is similar to
Table 3 and we omit showing it due to space limitations.

5.4 Discussion

Our numerical results for the noiseless and noisy case
studies in Sections 5.2 and 5.3, show that our method
outperforms IMHOTEP-SMT in terms of runtime. The
reason is that, in IMHOTEP-SMT, the optimization

12

random attack greedy attack
0.6] 12 N
1.0 T
0.5 111.01 o
. TF [[0.81 T
= 041 081 ATIT
= 0.6 1T
? 0.31 T 0.6 1
| 4
%402 0.4 L 410.4 7
{ / e
0.1 021 021
00 1 T T _ T 00 1 T T _ T OU L T 71777 T
40 120 200 40 120 200 40 120 200

(a) s/p=10% (b) s/p=20% (c) s/p=30%

Fig. 9. Relative estimation errors versus scales of systems

solver only checks the correctness of a full truth assign-
ment for all sensors provided by the SMT solver. How-
ever, our method also checks partial assignments, which
allows a search to terminate early if an assignment is
infeasible. Second, in IMHOTEP-SMT, certificates that
exploit the geometry of the problem are explicitly gen-
erated to serve as heuristics targeting a smaller set of
sensors where at least one sensor is attacked, when a full
set of truth assignments is not successful. The idea is
that the affine half-spaces Y7 = Ozx corresponding to
the attack-free sensors should intersect, and a small set
of affine subspaces failing to intersect means there exists
at least one attacked sensor that is incorrectly identi-
fied as attack-free. In our algorithm, prioritizing search
along paths with more attack-free sensors reduces the di-
mension of the kernel space of the equations Yz = Ozx,
which makes the search less tolerant to mistakes. There-
fore, assigning higher priority to nodes in frontier that
contain larger numbers of attack-free sensors implicitly
acts as a heuristic that shrinks the space to be explored.
This allows our method to significantly outperform com-
peting methods in practice, even for larger problems.
What’s more, although IMHOTEP-SMT can detect the
true assignments in the simulation, Shoukry et al. (2017)
doesn’t provide the optimality guarantee.

6 Conclusion

In this paper, we proposed a new optimal graph-search
algorithm to correctly identify malicious attacks and to
securely estimate the states in large-scale CPS mod-
eled as linear time-invariant systems. The graph con-
sists of levels, each one containing two nodes capturing a
truth assignment of any given sensor, and directed edges
connecting adjacent layers only. Then, our algorithm
searches the levels of this graph incrementally, favoring
directions with attack-free assignments, while actively
managing a repository of partially explored paths with
early truth assignments, that can be further explored
in the future. The combination of search bias and the

ability to self-correct allow our graph-search algorithm
to reach the optimal assignment fast. We showed that
our algorithm is complete and optimal provided that
the attack signal is not dominated by process and mea-
surement noise. Moreover, numerical simulations show
that our method outperforms existing algorithms both
in terms of optimality and execution time.

A PROOF OF THEOREM 4

The proof of completeness of Alg. 1 can be divided into
two steps. First, we show by contradiction, that each
node that is associated with a specific partial truth as-
signment in the set node.Z, can be visited at most once.
Then, to show completeness we show that the algorithm
can terminate in a finite number of iterations and the
queue frontier is not empty.

First, assume that a node associated with a given par-
tial assignment, is visited more than once. Since each
partial assignment corresponds to a distinct path from
the root to that node, we get that the parent of the node
that is associated with this partial assignment except for
the last value, is also visited more than once. Repeat-
ing this argument, we have that the root is visited more
than once, which is a contradiction. Thus, every node
associated with a given partial assignment is visited at
most once, which means that every node is visited no
more times than the maximum number of truth assign-
ments starting from the root and ending at that node.
For a node that is at level [, the maximum number for
such truth assignments is 2, i.e., the number of truth
assignments of the first [sensors.

Next, since the nodes and edges in the graph are finite,
the previous result implies that the algorithm will ter-
minate in a finite number of iterations. Furthermore,
the queue frontier can not be empty when the algo-
rithm terminates. This is because we do not discard
any node unless its partial assignment Z is invalid, that
is, the corresponding residual violates minyegn| Yz —
Ozx| < wz + v/e. The reason is that we have shown
that if all sensors in Z are attack-free, then we have that
mingegrn || Yz — Ozx| < Wz 4 /€ when € = €* and (6)
is satisfied. Therefore, violation of this inequality means
that at least one attacked sensor is incorrectly treated
as attack-free. Therefore, only the node with an invalid
assignment is discarded. If there exists a solution, the
algorithm will search the right node eventually. Once
it terminates, the output is a feasible solution. Recall
that a child node can be added to the queue frontier
or repo if mingegn || Y7 — Ozx|| < Wz + /e. Hence, the
constraint (4a) is met. Moreover, the constraint (4b) is
checked each time before a child node can be added to
frontier or repo [Alg. 1, line 16]. Thus, each node existing
in frontier must satisfy (4b), completing the proof.

13

B PROOF OF THEOREM 5

We prove the optimality of Alg. 1 using contradiction.
Suppose that the algorithm returns a feasible but sub-
optimal assignment, which is equivalent to say that the
suboptimal path 7, is formed before the optimal 7*. This
is because the algorithm terminates as soon as the first
feasible path is found. Since the paths 7 and 7* are dif-
ferent, they share identical attack assignments up to a
level and then differ in their assignments beyond that
level (this level could also be the root). Consider the time
when the last shared node v;_1, at level [— 1, is selected
to be expanded. Its child node, denoted by vlo with su-
perscript 0 for value = 0, is on the optimal path 7* and
v} is on the suboptimal path 7. This is because when (6)
is satisfied, a feasible path can only treat attack-free sen-
sors as attacked by mistake, but the optimal path does
not contain such mistakes.

Let #* denote the subpath of 7* 5tarting with v and 7
denote the subpath of T startlng with v} . There are four
cases as to whether vl and Ul can be added to the priority
queue frontieror repo: (i) both v} and v} are added to the
priority queue frontier; (ii) both vl and vl are added to
the reserved queue repo; (iii) vl is added to the frontzer
queue but ! is added to the queue repo; and (iv) v) is
added to the frontier queue but vl is added to the queue
repo. We discuss these four cases separately. The idea
is that by assumption, the suboptimal path is formed
before the optimal path, thus the algorithm has to switch
to expand v} eventually. But the following discussion
states that even though the algorithm searches the path
starting from v}, it will switch back to searching the
optimal path.

(i) Both vl and vl are added to the priority queue fron-
tier. Since both v and v} are added to the set fron-
tier, there does not exist a third node in explored or
frontier with the same value and level as v? or vll, see
Fig. B.1(a). Therefore, no node with level =1+ 1 is in
frontier or explored. Moreover o) is selected before v}
since it has higher priority. Expandlng vl , our algorithm
generates two children v, and v} . If the (I + 1)-th
sensor is attack-free, then both these children nodes will
enter frontier. The algorithm will continue expanding
nodes on the path starting from v?. When the search
algorithm reaches the first node with value = 1 on 7*,

denoted by v} , then either v}, will enter frontier and
Alg. 1 will cont1nue expandmg 1t or v}, Wlll enter repo
and the algorithm will expand v} Slnce v) has been ex-
panded, the children of vl will enter repo. Moreover vk
will be selected from repo before the children of v} since
it has higher priority. Therefore, the algorithm contin-
ues searching on the path Starting from v?. Since we as-
sume that the assignment corresponding to 7 is the out-
put, the algorithm should switch to searching the chil-
dren of Uz eventually In order to expand the children
of Uz , except for v}, there rnust exist another node on
7 with value 1, denoted by v}, and it should be put

.@ AO2C

%‘

(c)

Fig. B.1. (a) Case (i), the dashed arrow represents that the
tail node is on the path starting from the head node, with
intermediate nodes omitted. v} enters repo because another
node with value = 1 is in frontier or explored, shown as a
node with number 1 inside on its left. (b) Case (iii), nodes
oY and 0} are in frontier or explored; nodes v? and v} are in
repo; (c) Case (iv), all nodes between 0 and v}, are assigned
1. The level of the first node with value = 1 on subpath 7*
can be higher, equal or lower than the level of v},.

in repo. This is because if v} enters frontier, the search
will still advance on 7*. But if v} enters repo, the chil-
dren of v} will exit repo before v}, since they contain
fewer number of attacked sensors. Meanwhile, the set
explored is emptied. However, the counterpart 9} of v}
on 7 will also enter repo, since the algorithm will take
identical steps searching 7 as when searching 7*. But
v} has higher priority than o, therefore, the algorithm
sw1tches to searching 7* agaln Followmg this logic, we
conclude that the search on 7 never surpasses that on
7*. Intuitively, for those nodes that are assigned 1 on 7*,
the nodes on 7 will be assigned 1 as well, since all fea-
sible paths should detect all attacked sensors correctly.
Furthermore, the zero assignments on 7 are a subset of
those on 7*. The nodes on 7* always have the advan-
tage over their counterparts on 7 with the same value
and level in terms of priority since the optimal path has
the least number of attacked sensors. In addition, v} is
expanded before vl Therefore, the last node on the op-
timal path will exit frontier before the last node on the
suboptimal path. Thus, it is impossible that the subop-
timal path is fully formed before the optimal one.

(ii) Both v and v} are added to the reserved queue repo.
If v is selected from repo before v}, frontier only con-

14

tains vl and exploredis empty. Thus, the algorithm starts
searching nodes on the path starting from o}, as if v is
the new root. As we have discussed in (i), the algorlthm
will continue searching on the path starting from v .In
order to expand v}, since v} is on the suboptimal path
that corresponds to the output of the algorithm, there
must exist a second node v} with value = 1 which enters
repo. Then vl can be selected from repo. But even in this
case When v} is selected for expansron the counterpart
oL of v} on the subpath startlng from vl still enters repo
Same as in (i), the search on 7 never surpasses that on 7*

(iii) v} is added to the frontier queue but v{ is added to
the queue repo. The graphical illustration of this case is
shown in Fig. B 1(b). If v? is added to the queue repo,
then a node vl with the same value and level as vlo is
already in the queue frontier or the set explored. There-
fore, the parent 9, of node), with same level as v;_1,
is expanded before v;_;. Note that only when ¢;_; has
higher or equal priority than v;_1, can ;1 be expanded
before v;_1. The reason is that if v;_; has higher priority
than 9;_1, then the only way that 9;_; can be expanded
before v;_4 is if v;_1 or one of its predecessors on 7* are
in the queue repo and remain there until they are se-
lected. When this happens, the set explored is emptied
and frontier contains only v;_; itself or its predecessor.
Therefore, there is no need to check whether an equiv-
alent node is in frontier or explored, and U? will not en-
ter repo. Thus, v;—1 can not have higher priority than
0;_1. Since ¥;_1 is expanded before v;_1, @ll enters fron-
tier or repo (because an equivalent node is in frontier or
explored) before v;_1 is expanded. This means that v}
will be put in repo, a contradiction. Hence, case (iii) is
impossible.

(iv) v} is added to the frontier queue but v} is added
to the queue repo. Like case (iii), since Ul is put in repo
when expanding v;_1, there exists a node 7;_; that is
expanded before v;_; and vl is in fmntzer or explored.
Since vY can enter frontier, we have that 9 is invalid, see
Fig. B.1(c). o) being invalid means that the observablhty
matrix corresponding to the path leading to ¥;_1 has
full rank or sensor [is under attack. However, the true
attack assignment to sensor [is 0, thus the first case
holds. Then, @? makes the system of linear equations
overdetermined and inconsistent, meaning an attacked
sensor is mistreated as attack-free on the path leading
to vl Thus for the following nodes on the path startlng
from o} that shares the same parent 9,1 with 0, value
can only be set to 1 when those nodes are generated.
Assume that when Alg. 1 expands v;_1, the highest node
that is in frontier or repo on the path starting from 9} is

m Since the algorithm switches to search Ul 1, we have
that v;_; has fewer attacked sensors than v} . After the
algorithm switches back to search v;_1, we analyze what
will happen next by the relationship between the level
of the first node with value = 1 on 7* and the level of
v},. (a) If the level of the first node with value 1 on 7* is

m
less than or equal to the level of v} , this node will enter

repo and exit repo before v}. (b) If the first node on 7*
with value 1 is at a higher level than v}, then the search
will advance on 7* until reaching the second node with
value 1. But this node will enter frontier instead of repo,
hence, the search will continue on 7*. The search on 7

never surpasses that on 7*.

We conclude that, except case (iii) which does not occur,
in the other three cases the algorithm always switches
back to expanding the optimal path. This means that
the optimal path is formed first, which contradicts our
assumption that the suboptimal path is formed before
the optimal one, completing the proof.

References

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M. &
Schroder, J. (2006), Diagnosis and fault-tolerant con-
trol, Vol. 2, Springer.

Cardenas, A. A., Amin, S. & Sastry, S. (2008), Secure
control: Towards survivable cyber-physical systems,
in ‘Distributed Computing Systems Workshops, 2008.
ICDCS’08. 28th International Conference on’;, IEEE,
pp- 495-500.

Chen, T. & Abu-Nimeh, S. (2011), ‘Lessons from
stuxnet’, Computer 44(4), 91-93.

Chong, M. S., Wakaiki, M. & Hespanha, J. P. (2015),
Observability of linear systems under adversarial at-
tacks, in ‘American Control Conference (ACC), 2015,
IEEE, pp. 2439-2444.

Fawzi, H., Tabuada, P. & Diggavi, S. (2014), ‘Secure es-
timation and control for cyber-physical systems under
adversarial attacks’, IEEE Transactions on Automatic
Control 59(6), 1454-1467.

Greenberg, A. (2015), ‘Hackers remotely kill a jeep on
the highway’.

URL: http:/ /www.wired.com/2015/07/hackers-
remotely- kill-jeep-highway/

Gurobi Optimization, L. (2018), ‘Gurobi optimizer ref-
erence manual’.

URL: hitp://www.gurobi.com

Hendrickx, J. M., Johansson, K. H., Jungers, R. M.,
Sandberg, H. & Sou, K. C. (2014), ‘Efficient computa-
tions of a security index for false data attacks in power
networks’, IEEFE Transactions on Automatic Control
59(12), 3194-3208.

Javaid, A. Y., Jahan, F. & Sun, W. (2017), ‘Analy-
sis of global positioning system-based attacks and
a novel global positioning system spoofing detec-
tion/mitigation algorithm for unmanned aerial vehi-
cle simulation’, Simulation 93(5), 427-441.

Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno,
T., Checkoway, S., McCoy, D., Kantor, B., Anderson,
D., Shacham, H. et al. (2010), Experimental security
analysis of a modern automobile, in ‘2010 IEEE Sym-
posium on Security and Privacy’, IEEE, pp. 447-462.

Lee, C., Shim, H. & Eun, Y. (2015), Secure and ro-
bust state estimation under sensor attacks, mea-

15

surement noises, and process disturbances: Observer-
based combinatorial approach, in ‘Control Conference
(ECC), 2015 European’, IEEE, pp. 1872-1877.

Lee, E. A. (2008), Cyber physical systems: Design chal-
lenges, in ‘11th IEEE Symposium on Object Oriented
Real-Time Distributed Computing (ISORC)’, IEEE,
pp. 363-369.

Manandhar, K., Cao, X., Hu, F. & Liu, Y. (2014), Com-
bating false data injection attacks in smart grid using
kalman filter, in ‘Computing, Networking and Com-
munications (ICNC), 2014 International Conference
on’, IEEE, pp. 16-20.

Miao, F., Pajic, M. & Pappas, G. J. (2013), Stochas-
tic game approach for replay attack detection, in
‘52nd IEEE conference on decision and control’, IEEE,
pp- 1854-1859.

Mishra, S., Shoukry, Y., Karamchandani, N., Diggavi,
S. N. & Tabuada, P. (2017), ‘Secure state estimation
against sensor attacks in the presence of noise’, IEFE
Transactions on Control of Network Systems 4(1), 49—
59.

Mo, Y., Chabukswar, R. & Sinopoli, B. (2014), ‘Detect-
ing integrity attacks on scada systems’, IEEE Trans-
actions on Control Systems Technology 22(4), 1396—
1407.

Mo, Y., Hespanha, J. P. & Sinopoli, B. (2014), ‘Resilient
detection in the presence of integrity attacks’, IEEE
Transactions on Signal Processing 62(1), 31-43.

Pajic, M., Lee, I. & Pappas, G. J. (2017), ‘Attack-
resilient state estimation for noisy dynamical sys-
tems’, IEEFE Transactions on Control of Network Sys-
tems 4(1), 82-92.

Pajic, M., Tabuada, P., Lee, I. & Pappas, G. J. (2015),
Attack-resilient state estimation in the presence of
noise, in ‘2015 54th IEEE Conference on Decision and
Control (CDC)’, IEEE, pp. 5827-5832.

Pajic, M., Weimer, J., Bezzo, N., Tabuada, P., Sokol-
sky, O., Lee, I. & Pappas, G. J. (2014), Robust-
ness of attack-resilient state estimators, in ‘ICCPS’14:
ACM/IEEE 5th International Conference on Cyber-
Physical Systems (with CPS Week 2014)’, IEEE Com-
puter Society, pp. 163-174.

Park, J., Ivanov, R., Weimer, J., Pajic, M., Son, S. H. &
Lee, I. (2017), ‘Security of cyber-physical systems in
the presence of transient sensor faults’, ACM Trans-
actions on Cyber-Physical Systems 1(3), 15.

Pasqualetti, F., Dorfler, F. & Bullo, F. (2011), Cyber-
physical attacks in power networks: Models, fun-
damental limitations and monitor design, in ‘Deci-
sion and Control and European Control Conference
(CDC-ECC), 2011 50th IEEE Conference on’, IEEE,
pp. 2195-2201.

Pasqualetti, F., Dérfler, F. & Bullo, F. (2013), ‘At-
tack detection and identification in cyber-physical
systems’, IEEFE Transactions on Automatic Control
58(11), 2715-2729.

Shoukry, Y., Chong, M., Wakaiki, M., Nuzzo, P.,
Sangiovanni-Vincentelli, A., Seshia, S. A., Hespanha,
J. P. & Tabuada, P. (2018), ‘Smt-based observer de-

sign for cyber-physical systems under sensor attacks’,
ACM Transactions on Cyber-Physical Systems 2(1), 5.

Shoukry, Y., Martin, P., Tabuada, P. & Srivastava,
M. (2013), Non-invasive spoofing attacks for anti-
lock braking systems, in ‘International Workshop on
Cryptographic Hardware and Embedded Systems’,
Springer, pp. 55-72.

Shoukry, Y., Nuzzo, P., Puggelli, A., Sangiovanni-
Vincentelli, A. L., Seshia, S. A. & Tabuada, P. (2017),
‘Secure state estimation for cyber-physical systems
under sensor attacks: A satisfiability modulo theory
approach’, IEEE Transactions on Automatic Control
62(10), 4917-4932.

Shoukry, Y. & Tabuada, P. (2016), ‘Event-triggered
state observers for sparse sensor noise/attacks’, IEEE
Transactions on Automatic Control 61(8), 2079-2091.

Slay, J. & Miller, M. (2007), Lessons learned from
the maroochy water breach, in ‘International Confer-
ence on Critical Infrastructure Protection’, Springer,
pp- 73-82.

Sundaram, S., Pajic, M., Hadjicostis, C. N., Mangharam,
R. & Pappas, G. J. (2010), The wireless control net-
work: Monitoring for malicious behavior, in ‘49th

16

IEEE Conference on Decision and Control (CDC)’,
IEEE, pp. 5979-5984.

Teixeira, A., Amin, S., Sandberg, H., Johansson, K. H.
& Sastry, S. S. (2010), Cyber security analysis of state
estimators in electric power systems, in ‘49th IEEE
Conference on Decision and Control (CDC). Atlanta,
GA. DEC 15-17, 20107, pp. 5991-5998.

Teixeira, A., Pérez, D., Sandberg, H. & Johansson, K. H.
(2012), Attack models and scenarios for networked
control systems, in ‘Proceedings of the 1st interna-
tional conference on High Confidence Networked Sys-
tems’, ACM, pp. 55-64.

Teixeira, A., Shames, I., Sandberg, H. & Johansson,
K. H. (2015), ‘A secure control framework for resource-
limited adversaries’, Automatica 51, 135-148.

Winston, W. L. & Goldberg, J. B. (2004), Operations
research: applications and algorithms, Vol. 3, Thomson
Brooks/Cole Belmont.

Yong, S. Z., Zhu, M. & Frazzoli, E. (2015), Resilient
state estimation against switching attacks on stochas-
tic cyber-physical systems, in ‘Decision and Con-
trol (CDC), 2015 IEEE 54th Annual Conference on’,
IEEE, pp. 5162-5169.

	Introduction
	Problem Formulation
	Linear Dynamical Systems under Attack
	Secure State Estimation

	Graph Search-based Secure State Estimation
	Completeness, Optimality, and Complexity
	Completeness and Optimality
	Complexity Analysis

	Experimental Results
	Optimality and Complexity
	Secure State Estimation without Noise
	Secure State Estimation with Noise
	Discussion

	Conclusion
	PROOF OF THEOREM 4
	PROOF OF THEOREM 5

