
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

Distributing Sequential Control for Manufacturing Automation Systems
Zivana Jakovljevic , Member, IEEE, Vuk Lesi, Stefan Mitrovic, and Miroslav Pajic , Senior Member, IEEE

Abstract—Recent trends in manufacturing require the use of
reconfigurable equipment that facilitates rapid and cost-effective
change of functionality through modular design, which supports
fast integration. Intelligent devices (e.g., sensors, actuators) with
integrated computation and communication capabilities enable
high-level modularity, not only with the respect to hardware
components but also in terms of control functionality; this can be
achieved by distributing control to different network-connected
devices. Thus, to enable fast and reliable system reconfigurations,
in this brief, we introduce a method for distribution of control
tasks and generation of control code for the devices in the control
network. Our approach is based on the control interpreted Petri
nets (CIPNs) formalism. We start from a CIPN capturing the
centralized (overall) control system, and the mapping of input
and output signals to local controllers (LCs) (i.e., smart devices)
that have direct physical access to system sensors and actuators.
From these, our method automatically designs distributed control
tasks for LCs in the network, as well as generates control
code for each LC. The applicability of the proposed method is
experimentally verified on two real-world case studies.

Index Terms—Discrete-event systems, distributed control, petri
nets, sequential systems.

I. INTRODUCTION

MODERN manufacturing critically depends on fast and
economically sustainable release of highly diversified

low-cost products [1]. Accordingly, manufacturing systems
need to be characterized by extremely high flexibility and
adaptability that can be achieved through the development
of reconfigurable manufacturing systems (RMS), one of the
key Industry 4.0 features [2]. RMS are based on modular
equipment that is easily integrated into new configuration and
scalable with respect to production capacity [3], [4].
Functional reconfiguration of manufacturing systems can

be achieved through flexible scheduling of manufacturing
tasks, which has attracted significant research attention [5].
For example, Wan et al. [6] proposes a three-layer architec-
ture based on ontology and IEC 61499 for pharmaceutical

Manuscript received February 2, 2019; revised April 6, 2019; accepted
April 17, 2019. Manuscript received in final form April 19, 2019. This
work was supported in part by the Office of Naval Research (ONR) under
Grant N00014-17-1-2012 and Grant N00014-17-1-2504, in part by NSF under
Grant CNS-1652544, and in part by the Serbian Ministry of Education, Sci-
ence and Technological Development under Grant TR35004. Recommended
by Associate Editor K. Rudie. (Corresponding author: Zivana Jakovljevic.)
Z. Jakovljevic is with the Faculty of Mechanical Engineering, University of

Belgrade, 11000 Belgrade, Serbia (e-mail: zjakovljevic@mas.bg.ac.rs).
V. Lesi and M. Pajic are with the Department of Electrical and Computer

Engineering, Duke University, Durham, NC 27708 USA (e-mail: vuk.lesi@
duke.edu; miroslav.pajic@duke.edu).
S. Mitrovic is with Lola Institute, 11000 Beograd, Serbia (e-mail:

stefan.mitrovic@li.rs).
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCST.2019.2912776

manufacturing flexible scheduling. A Petri net-based method
to design supervisors that ensure deadlock-free distributed
control of parallel processes with mutual resources in assembly
systems is presented in [7] and [8]. Also, software component
reusability during functional system reconfigurations may be
facilitated by optimization of control software parameters
as in [9].
Reconfiguration of manufacturing systems requires not only

functional but also physical reconfiguration of manufacturing
equipment, which is enabled by its modular design. Although
the mechanical elements are inherently modular and promote
reconfigurability, the state of the art controllers are centralized,
which requires significant effort during equipment recon-
figuration [10]. For example, pneumatic cylinders support
easy reconfiguration of mechanical subsystems in a lego-like
manner. Still, their integration into a centralized control system
requires considerable effort in terms of control valves and limit
sensors wiring to the central controller. On the other hand,
smart devices (e.g., sensors and actuators) with integrated
computational and communication capabilities, effectively
enable control system modularity that follows mechanical
modules. In the pneumatic cylinder example, mechanical
components (cylinder with limit sensors and valves) are easily
augmented with a low-level controller that is in charge of
local input–output signals acquisition and processing.
In addition to modular equipment, to facilitate the deploy-

ment of RMS, it is necessary to develop methods for their fast
and easy design, integration, and reprogramming. Unlike cen-
tralized control architectures for which there exist systematic
approaches to design sequential controllers in manufacturing
systems [11]–[14], there is a lack of systematic engineering
methods for distributed control systems design. Currently,
the design of a distributed control system that will assure
desired global behavior requires considerable human interven-
tion and it is mostly the result of trial and error [9], [10].
To address this, standard IEC 61499: Function Blocks [15] was
introduced for modeling of distributed control and automa-
tion systems through a network of function blocks, each
representing functionality of a software or hardware system
component [16]. Although the standard provides modeling
guidelines, there is no systematic method for the distribution
of tasks to the devices.
Accordingly, the problem of control task distribution has

attracted significant attention in recent years. For example, [17]
proposes a method for manual and ad hoc synthesis of dis-
tributed supervisory control from local controllers (LCs) that
are obtained using supervisory control theory and aggregated
into a global system through constraints expressed by Boolean
relations on local inputs and outputs. In [18], a method

1063-6536 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7878-2909
https://orcid.org/0000-0002-5357-0117


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 1. Distributed control framework for sequential discrete-event systems.

for distributed control of discrete event dynamic systems is
introduced, based on the use of timed continuous Petri nets,
where the interaction between LCs modeled as Petri nets is
captured through special places called buffers. In addition,
Zhang et al. [19] present a method for modeling of a virtual
coordinator and communication protocols for reconfigurable
coordination of distributed discrete-event control system using
timed net condition/event systems, which is a modular exten-
sion of Petri nets. Automatic layout recognition after a recon-
figuration, using infrared communication, is proposed in [20],
but the control program still needs to be revised by a human
operator. Finally, a service-oriented SystemJ programming
framework [21] represents another approach to manufacturing
systems dynamic reconfiguration.
On the other hand, all such methods, including the IEC

61499 standard, are bottom-up. They start from a represen-
tation of LCs and generate appropriate interactions between
them to achieve seamless operation of the overall system. Con-
sequently, in this brief, we introduce a top-down approach to
design distributed control for sequential discrete-event dynam-
ical systems in manufacturing automation (Fig. 1). Unlike the
existing bottom-up methods, our approach supports backward
compatibility and enables the proliferation of distributed con-
trol in everyday practice—we start from a specification of the
global controller in an intuitive form frequently employed in
practice.
Specifically, we start from a high-level description of the

control system based on control interpreted Petri nets (CIPNs),
where the system is described in the traditional (centralized)
manner, as if all sensors and actuators are connected to the
central controller; thus we refer to this representation as a
global CIPN. Each smart device due to its communication
and computation capabilities represents an LC. Thus, we use
physical connections of the system’s sensors and actuators to
actual smart physical devices, as their mapping to LCs. Since
our goal is to decentralize execution of any CIPN-specified
global controller by automatically creating a specification of
LCs, the presented method automatically generates a CIPN for
each LC. Finally, we show how such LCs, defined by CIPNs,
can be used to automatically obtain low-level code that can
be directly executed on the local smart devices.
This brief is structured as follows. In Section II, we present

CIPNs and their use in behavioral specification of sequential
control of discrete-event systems in manufacturing automa-
tion. Section III presents our method for generation of
CIPNs and executable code for LCs, whereas in Section IV,

real-world case studies are described, before concluding
remarks (Section V).

II. CONTROL INTERPRETED PETRI NETS

Before introducing CIPNs that will be used in this brief,
we provide a brief overview of Petri nets. A Petri net is
defined [22] as a five-tuple pn = (P, T, F,Weig,M0), where:
(1) P = {P1, P2, . . . , Pm} is a finite set of places; (2) T =
{T1, T2, . . . , Tn} is a finite set of transitions with P ∪ T �= ∅
and P ∩ T = ∅; (3) F ⊆ {P × T } ∪ {T × P} is the set of arcs
between places and transitions; (4) Weig : F → {0, 1 . . . } is
a weight function, and (5)M0 : P → {0, 1, 2 . . . } is the initial
marking. Petri nets can be represented as bipartite graphs in
which places are denoted by circles and transitions as bars.
The state of a Petri net is defined by the marking represented

as an m × 1 vector M that assigns M(Pi ) ∈ [0,∞) tokens to
each place Pi . The dynamic behavior, i.e., the evolution of
markings Mk of Petri net is defined by the incidence matrix
W, initial marking M0, and the following state equation:

Mk = M0 +WT
k∑

i=1
ui . (1)

Here, {u1,u2, . . .uk} represents transitions firing sequence
and W = [wi j ] is m × n matrix whose elements are defined
as wi j = w+

i j − w−
i j where w+

i j = Weig(i, j) is the weight
of the arc from the transition i to its output place j , and
w−
i j = Weig(i, j) is the weight of the arc to the transition i

from its input place j . Throughout this brief, we use •Tj and
Tj• to denote all places preceding and succeeding transition
Tj , respectively, and •Pj and Pj• to denote all transitions
preceding and succeeding place Pj , respectively.
CIPNs represent a special type of Petri nets in which tran-

sition firings are synchronized with the inputs from controlled
systems (sensory information), and actions of the system (out-
puts) are associated with the Petri net places [23]. In this brief,
to simplify our notation, we focus on Boolean inputs/outputs.
Thus, we define CIPN as follows.
CIPN is a six-tuple CIPN = (P, T, F,C, A,M0), where:

(1) and (2) P and T are defined as for a Petri net pn;
(3) F ⊆ {P × T } ∪ {T × P} is the set of arcs between
places and transitions, all with weights being equal to 1;
(4) C = {C1, . . . ,Cn} is the set of logical conditions Ci each
associated with the transition Ti , i.e., Ci represents a Boolean
function Ci = fi (I1, . . . , Ik), where I j , j = 1, . . . , k,
represent one of k Boolean inputs from the controlled system
each corresponding to the sensor X j ; (5) A = {A1, . . . , Am}
is the set of actions Ai , each associated with place Pi , i.e., Ai
represents a set of Boolean or some other functions (e.g.,
delays) of Oj , i.e., Ai = { fi,1(O1), . . . , fi,l (Ol )} where
Oj , j = 1, . . . , l, represent l outputs to the controlled system,
each corresponding to the actuator Y j ; and (6) M0 : P →
{0, 1} is the initial marking, where exists exactly one Pi ∈ P
such that M0(Pi ) = 1. Note that if condition C j in transition
Tj is not specified, then C j = 1 (i.e., it is always true). Also,
if Pj contains no action A j , then the outputs will not change
when Pj is marked.
Thus, CIPNs represent ordinary Petri nets, where all arcs

have weights equal to 1. In addition, in a CIPN only one place



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAKOVLJEVIC et al.: DISTRIBUTING SEQUENTIAL CONTROL FOR MANUFACTURING AUTOMATION SYSTEMS 3

Fig. 2. Graphical representation of places (Pi ) and transitions (Tj ) in CIPNs.
Ai : corresponding actions. C j : conditions.

Fig. 3. Example 1: configuration of the manipulator.

initially contains a token. Graphical representation of places,
transitions and arcs in CIPNs along with associated conditions
and actions is shown in Fig. 2 [23]. In the following example,
we illustrate how a CIPN can be used to specify a centralized
control system for a simple pneumatic manipulator.
Example 1: Consider a pneumatic manipulator (Fig. 3) that

consists of two double-acting cylinders, A and B , and a gripper
C; the cylinders provide translational degrees of freedom,
and both the cylinders and the gripper are controlled by
monostable dual control valves 5/2 (i.e., with five ports and
two positions) activated by output signals xp ∈ {ap, bp, cp}.1
The double-acting cylinders are also equipped with proximity
sensors for detecting retracted (home)—x0 ∈ {a0, b0} and
advanced (end)—x1 ∈ {a1, b1} limit position. Timer tim1
ensures gripping/releasing of a part before return stroke of
cylinder B . Finally, the system has a start switch (st) to start
the operation.
The work cycle of the pneumatic manipulator, started by

pressing the start switch, can be described by the sequence

B + C + B − A + B + C − B − A − . (2)

Note that X+ denotes advancing and X− retracting cylinder X

(in this example, X ∈ {A, B,C}), while
{
X
Y

}
denotes parallel

(i.e., concurrent) actions and XY sequential actions.
A global CIPN representing sequential control functionality

of the manipulator is shown in Fig. 4(a), capturing the behavior
of the system from (2). In this CIPN, P1 is initially marked
and from this place commands (ap = 0, bp = 0, and cp = 0)
for initial retracting of all cylinders are issued. When the
start switch st is pressed (st = 1), transition T1 fires and
marks P2 which issues the command bp = 1 for cylinder
B advancing [B+ in (2)]. After cylinder B reaches the end
position, condition b1 = 1 is fulfilled, and thus T2 fires and
marks P3. P3 realizes C+ from (2) by issuing command
cp = 1 and activates timer tim1 to ensure gripping of the
part before return stroke of cylinder B . On the rising edge of
t1 associated with tim1, T3 fires and marks P4, from which
the command bp = 0 for retraction of cylinder B [B− in (2)]

1In this brief, we use lower letter x to denote the signals related to the asset
denoted in capital letter X

Fig. 4. CIPNs for Example 1. (a) Global CIPN for centralized control.
(b) CIPN1. (c) CIPN2. (d) CIPN3. In (b)–(d), places and transitions from the
global CIPN are denoted in parenthesis. We use the standard notation: y = 1
denotes an assignment (i.e., action), while x = 1 denotes a logical condition.

is issued. In a similar manner, the remaining transitions and
places along with the associated conditions and actions ensure
cyclic realization of the sequence from (2) without additional
st pressing. Note that logical conditions and actions assigned
to transitions and places in the global CIPN are designed by
an expert. �
Finally, note that the CIPN actions associated with its

places represent actuation inputs, whereas conditions asso-
ciated with the transitions represent sensor outputs of the
controlled system (i.e., the plant). In this brief, the plants
are sequential systems whose outputs depend on the current
input and sequence of past inputs, i.e., which are causal. This
implies that the current input to the CIPN (transition conditions
fulfillment) will depend on the sequence of actions, i.e., on the
sequence of the CIPN markings. If we represent the whole
set of CIPN arcs as F = FP ∪ FT where FP ⊆ {P × T }
and FT ⊆ {T × P}, we can observe that the arcs from FT
represent the reaction of the control system (CIPN) to the
plant’s outputs, whereas the arcs in FP represent the reaction
of the plant to the sequence of actions imposed by the control
system (CIPN), e.g., for the manipulator from Fig. 3, action
B− must precede activation of sensor b0 that detects when
the cylinder is fully retracted.

III. GENERATING LCS FROM GLOBAL CIPNS

Control system built on intelligent devices can be regarded
as a network of LCs that communicate with each other, where
each LC is executed on a smart device with direct physical
access to some system sensors or actuators; we assume that
each LC contains at least one sensor or actuator. Our goal is to



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

distribute control functionality to LCs by deriving local control
behaviors such that the obtained decentralized control systems
comply with the overall centralized controller specification.
Our method starts from a global CIPN that describes the

overall system, with the goal of obtaining local CIPNi , that
describe functioning of LC Ni , for each i ∈ {1, . . . , Q}.
We assume that each LC Ni has already been assigned sensors
that provide set of input signals Ii = {Ii, j }, j ∈ {1, . . . , ki }
and/or actuators that are operated using set of output signals
Oi = Oi, j , j ∈ {1, . . . , li }. In addition, it holds that

Q∑

i=1
ki = k,

⋃Q

i=1 Ii = {I1, . . . , Ik},
Q⋂

i=1
Ii = ∅ (3)

Q∑

i=1
li = l,

⋃Q

i=1 Oi = {O1, . . . , Ol },
Q⋂

i=1
Oi = ∅. (4)

The method to derive each local CIPNi , i = 1, . . . , Q from
the global CIPN is summarized in Procedure 1. First, the ini-
tialization step of the procedure adds the place initially marked
in CIPN to CIPNi ; this is the place P1. Furthermore, this
step finds the succeeding transitions and adds them along with
arcs from P1 to CIPNi , if these transitions will not be added
in Step 2. The main part of the procedure (Step 2) extracts
all the places from the global CIPN whose actions’ outputs
are associated with the LC Ni (Step 2a.i). Places with empty
actions are also considered; if any succeeding transition from
such a place contains inputs assigned to Ni , or if there exists a
succeeding transition with the empty condition, then the place
is also extracted (Step 2a.ii). The extracted places are, along
with the preceding transitions, mapped into CIPNi .
Transitions from the global CIPN whose conditions’ inputs

are associated with the LC Ni are also considered (Step 2b);
they are, along with the succeeding places, mapped into CIPNi
if this was not done in Step 2a. If the identified succeeding
places contain output signals assigned to other LCs (not Ni ),
then communication commands are added to these places to
send information about the change of sensor signals during
the transition; the information is sent to the LCs that are
assigned actuators from the succeeding place. In addition, if a
succeeding place has an empty action, then the information
is sent to all LCs. This way, the information about change of
inputs in one LC is made available at the transitions receptive
to these inputs in other LCs. Finally, in Step 3, all missing
arcs between places and transitions on the token paths from
the global CIPN are established within the CIPNi .
Note that in the given procedure, places Pj in CIPNi keep

only those parts of actions A j that involve actuators assigned
to Ni , while transitions Tj keep all the conditions C j if any of
the succeeding places has action with an actuator assigned to
Ni , or only those parts of C j that involve sensors assigned to
Ni , otherwise. Thus, the aforementioned information transmis-
sions are necessary; in conditions that keep all sensory signals,
input signals from sensors assigned to Ni are directly obtained
within its LC, while the signals from remote LCs are acquired
using the employed communication protocols.
Furthermore, as result of the procedure, one place can

belong to multiple CIPNi depending on its action and

Procedure 1 Deriving CIPNi for LC Ni Starting From the
Overall Control Specification CIPN
Step 1. Start from the place P1 containing the token in the
initial marking M0 and take it into CIPNi ; if P1 action A1
contains output signal Oi, j assigned to Ni take •P1 along. If a
Tl ∈ P1• condition Cl does not contain inputs Ii,l assigned to
Ni and neither of Pl ∈ Tl• contains output signal Oi,l assigned
to Ni keep moving the token through the CIPN as if all
transitions’ conditions are true, until a place Pj with action A j
that contains output signal Oi, j assigned to Ni , or transition
Tj with condition C j that contains input signal Ii, j assigned
to Ni is found; take •Pj or Tj (the first encountered) into
CIPNi and create the arc from P1 to this transition; mark the
transition as initialization transition Tinit .
Step 2. Start from the P1• and keep moving the token through
the CIPN as if all transitions’ conditions are true, until all
places and transitions in the CIPN have been visited.
a) If we are considering a place, let us denote the place as Pj .
i) If the corresponding action A j contains output signal
Oi, j assigned to Ni , add the place Pj and all transitions
•Pj (with whole associated condition) along with the
arc(s) between them to CIPNi .

ii) If Pj does not contain associated action A j (i.e., action
is empty), and there exists a transition Tk ∈ Pj• whose
condition Ck contains input signal assigned to Ni or
Ck is an empty condition (i.e., always true), then add
Pj and all transitions •Pj (with the whole condition)
along with the arc(s) between them to CIPNi .

b) If we are currently considering a transition, let us denote
the transition as Tj . Now, if Tj ’s corresponding condition
C j contains input signal Ii, j assigned to Ni add Tj into
CIPNi . If none of the Ph ∈ Tj• actions contains output
signals from Ni , in transition condition C j keep only
parts referring to Ii, j from Ni , otherwise take whole C j .
Furthermore:
i) If for a place Ph ∈ Tj• corresponding action Ah contains
output signals Ol,h that are assigned to nodes Nl (not to
Ni ), add Ph to CIPNi with action containing command
to send the information about Ii, j change to all Nl .

ii) If for a place Ph ∈ Tj•, the corresponding action Ah
is empty, add Ph to CIPNi with action containing
command to send the information about Ii, j change to
all LCs containing inputs from Ph• conditions, i.e., to
all LCs if Ph• has empty condition, except to Ni .

Step 3. Connect all missing arc loops on each token path
between places and transitions assigned to CIPNi based on
the arc loops from CIPN. Furthermore, for each place Pj in
CIPNi add parts of action A j that contain output signal Oi, j
assigned to Ni .

preceding transition, i.e., place Pj will belong to each CIPNi
corresponding to Ni that contains actuators with output signals
used in action A j , as well as to each CIPNi corresponding to
Ni that contains sensors with input signals used in condition
allocated to preceding transition. Similarly, a transition can
belong to multiple CIPNi , depending on the sensors used in
associated conditions and succeeding places.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAKOVLJEVIC et al.: DISTRIBUTING SEQUENTIAL CONTROL FOR MANUFACTURING AUTOMATION SYSTEMS 5

In addition, the procedure will map all places and transitions
from the global CIPN to at least one of local CIPNi . For
example, Step 2a assures that both all places with nonempty
actions, as well as all places with empty actions are assigned to
at least one LC; specifically, any place with the empty action,
no matter whether it is followed by a transition with the empty
condition or with a condition whose input signals are assigned
to some LCs, will be mapped to the corresponding LCs
(i.e., the place will be mapped to at least one LC). Finally,
since places are always assigned along with the preceding tran-
sitions, it follows that all transitions are assigned to at least one
of the local CIPNi . To illustrate this, consider, e.g., place P2
from Fig. 4(a). The place will be assigned along with T1 and
T9 to the CIPN of the LC that contains output bp [as shown
in Fig. 4(c), described in the continued Example 1 below].
Example 1 (Continued): Control of the system from Fig. 3

is distributed over three LCs: N1, N2, and N3. The mapping of
sensors and actuators, i.e., input and output signals mapping
to the LCs, is shown in Fig. 3. Using Procedure 1, from the
global CIPN [Fig. 4(a)], local CIPNis [Fig. 4(b)—(d)] were
obtained. �
Therefore, starting from the global CIPN, each local

CIPNi , i ∈ {1, . . . , Q} that is obtained using Procedure 1
can be formally specified by the following six-tuple.
1) Pi = {Pi1 , Pi2 , . . . , Pimi } where Pi ⊆ P and ∀Pij it holds

that Aij contains only fk(Ok) such that Ok ∈ Oi ∪ ∅.
2) T i = {T i1 , T i2 , . . . , T ini } where T i ⊆ T and if Pij = Pl

and Pij contains A
i
j ∈ A, then •Pl = •Pij and •Pl ⊆ T i .

3) Ai = {Ai1, Ai2, . . . , Aimi } where ∀Aij the following holds:
if Pij = Pl , then

Aij =
⎛

⎝
⋃

Ok∈Oi
fl,k(Ok)

⎞

⎠ ∪ �ix, j

where �ix, j is the set of transmission commands from the
LC Ni to N f in the form Send(N f , Ii,q )—see Step 2b.

4) Ci = {Ci1,Ci2, . . . ,Cini } where ∀Cij it holds that if T ij =
Tl , then Cij ⊆ Cl ;

5) Fi = Fi1∪Fi2∪Fi3∪Fi4 , where: (i) Fi1 = ⋃
T f ∈•Pl (T f , Pl),

∀Pij = Pl , where Pl was extracted in Step 2a; (ii) Fi2 =⋃
Pl∈T f •(T f , Pl), ∀T ij = T f , where T f and Pl were

extracted in Step 2b; (iii) Fi3 = ⋃
T f ∈Pl•(Pl , T f )

for all Pij = Pl such that T f ∈ T i (Step 3);
(iv) Fi4 = ⋃

(Pij , T
i
l ) such that there exist (Pij , Tx1),

(Tx1, Px1), (Px1, Tx2), . . . , (Txn, Pxn), (Pxn, T il ) ∈ F ,
such that Tx1, Tx2, . . . , Txn /∈ T i , and Px1, Px2, . . . ,
Pxn /∈ Pi ; in such case, we refer to Pij as a transmitting
place with sending command(s) �ix, j ;

6) Mi
0 is the initial marking in which the place P

i
1 is marked.

It is important to note that the arcs from sets Fi1 , F
i
2 , and

Fi3 are present in the initial CIPN, whereas the arcs from
Fi4 are introduced during the derivation of the local CIPNi .
Furthermore, the arcs (T f , Pl ) ∈ Fi2 are present not only in
CIPNi but also in all CIPN j to which information is sent from
Pl . For example, consider CIPN1 presented in Fig. 4(b); here

F11 = {(T4, P5), (T8, P9)}, F12 = {(T5, P6), (T9, P2)}, F13 =
{(P5, T5), (P9, T9)}, and F14 = {(P1, T4), (P6, T8), (P2, T4)},
where we use the notation from the global CIPN (i.e.,
the place/transition names specified in the parentheses). Thus,
the CIPN from Fig. 4(a) contains all arcs from F11 , F

1
2 , and

F13 , whereas arcs from F14 are added during the derivation
of CIPN1. In addition, the arcs from F12 are present in F21
[Fig. 4(c)].
Procedure 1’s computational complexity is O[(m+n)S] for

each of the Q LCs, where S is a total number of sensors and
actuators. Nevertheless, the procedure is carried out offline,
during system design (or reconfiguration) phase. On the other
hand, the complexity of each derived CIPNi , which are used
to generate control software for each smart device is lower
than or equal to the complexity of the global CIPN, thus
not imposing additional timing constraints on the system
implementation.

A. Properties of Derived Local Controllers
The distribution of control functionality to LCs raises the

issue of safeness and liveness of the obtained distributed
system. Note that the initial, centralized controller is modeled
by a global CIPN, which is 1-bounded (i.e., safe) and deter-
ministic [23]. We also assume that by design, the global CIPN
satisfies liveness criterion; thus, the initial system is both safe
and live. In what follows, we argue that the behavior of the
controlled system imposed by the global CIPN is preserved
by the composition of the derived local CIPNi , i = 1, . . . , Q.
From the definition of CIPN and formal representations of

all CIPNi , i = 1, . . . , Q, the following directly holds:

P =
Q⋃

i=1
Pi , T =

Q⋃

i=1
T i , C =

Q⋃

i=1
Ci , A =

Q⋃

i=1
Ai .

On the other hand, the set of arcs F does not represent the
simple union of Fi . Nevertheless, it holds that

⋃Q
i=1 Fi1 =

FT , while the union of Fi3 represents only a subset of FP ,
i.e., generally arcs from FP are not present in union of arcs
from CIPNi . However, by construction (Procedure 1, Step 3)
and through the introduction of transmission commands,
the sequence of CIPN actions (controlled system inputs)
is preserved. Thus, since the controlled system is causal,
the sequence of its outputs (CIPN conditions fulfillment) will
be also preserved, and the behavior of the plant is the same
when control is distributed to CIPNi , as with the centralized
control (CIPN).
Due to space constraint, we provide only a proof outline.

Let us assume that control with the global CIPN and the
composition of the local CIPNis has resulted in the same
sequence of actions until place P1 in the CIPN is active, and
the corresponding places in local CIPNi s. This is satisfied in
the initial places of CIPN and CIPNis, and thus for the control
equivalence to hold, it is enough to show that the sequences of
control actions (and thus the plant’s outputs) for the centralized
and distributed control remain identical until a next place P2
in the CIPN is reached over a transition T1, as well as the
corresponding places in the CIPNi s. To achieve this, it is
necessary to consider all possible combinations of the mapping



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 5. Composition of local CIPNi . (a) Part of a global CIPN. (b) Places
and transitions mapped from the CIPN to LCs CIPN1 and CIPN2 (places and
transitions notations in the CIPN are denoted in parentheses).

of places P1 and P2, transition T1, and the corresponding arcs
of CIPN into the LCs specified by the CIPNi s, as captured in
the cases of Procedure 1.
To illustrate this on an example, let us consider a global

CIPN from Fig. 5(a), for which Procedure 1 produces two LCs,
specified by CIPN1 and CIPN2 [Fig. 5(b)]. Comparison
of the CIPN with CIPN1 and CIPN2 shows that the arcs
(P2, T2), (P5, T5) from CIPN are present neither in CIPN1
nor in CIPN2. Nevertheless, due to the information trans-
mission command in P24 , and by the construction of CIPNi ,
the sequence of actions and transitions firing will be preserved.
For example, since the control system is causal, T 22 condition
C2 will not be enabled and T 2

2 will not fire before A2 is per-
formed (P12 is marked). The same holds for P15 and T 2

5 . Thus,
with distributed control, the sequence of actions and conditions
(sensor inputs) will be the same as in the case of CIPN,
i.e., A1C1A2C2A3C3A4C4A5C5A6C6. Similarly, in Exam-
ple 1 LCs CIPNi will impose the sequence defined by (2).
Furthermore, the behavioral equivalence of the global

(i.e., centralized) control and the composition of distributed
controllers can be also formally verified with the use of model
checking techniques and the corresponding tools. However,
since the control models feature conditions on sensor values,
suitable models of the plant have to be taken into account [24].
For example, the model of a double-acting cylinder from Fig. 3
has two places representing cylinder’s limit positions, and
two transitions corresponding to cylinder advancing/retracting
whose firing is enabled on the corresponding LC commands.
CIPNs can be directly analyzed, e.g., by transforming them

to logical models for which properties captured in Linear Tem-
poral Logic or Computation Tree Logic can be verified [25],
or through their modeling in a Hardware Description Language
and simulation in a suitable tool [26]. Yet, since CIPN and its
Grafcet interpretation have exactly the same behavior [23],
and Grafcet models can be modeled as time Petri nets (TPN)
[27] for which open verification tools are available [28],
we have opted to employ TPNs to enable model verifica-
tion. In TPN, transitions are timed, meaning that transition
firing takes a time specified for each transition. The interface
between the controller and plant models is achieved through
the introduction of marking-dependent guard functions (spec-
ified within the model) which allow transitions in one
(e.g., plant) model to be explicitly conditioned on the mark-
ing of another (e.g., LC) model. Similarly, communication

between LCs is modeled via guard functions [e.g., the receiv-
ing Ni on its receiving transition with condition I j,q = 1/0
guards the marking of the place issuing Send(Ni , I j,q ) in the
transmitting N j ]. On such models, TPN analysis tools support
verification of formally specified properties by examining
the underlying state space. Due to semantical equivalence,
the translation of the CIPN-based to TPN-based LC models is
straightforward.
For the models from Example 1, we formally verified

relevant behaviors from the process control perspective using
Romeo, a TPN model checking tool [28]. For instance,
in addition to deadlock absence and safeness, the consid-
ered behaviors included requirements that: 1) gripper C is
never closed when cylinder B advances toward the pick
position; 2) gripper C is always closed while cylinder A
advances; and 3) cylinder B is always retracted while cylin-
der A is active. Specifically, we formally verified that all
these properties, which were satisfied when the plant was
controlled with the global CIPN, were also satisfied when
the distributed controllers specified by CIPNis were used.
Furthermore, we verified that the only possible trace is the
trace from (2), ensuring that the desired system behavior is
preserved after moving from centralized to the distributed
control.

B. Code Generation From Local CIPNis
There are a number of methods for generation of control

code from CIPNs. For example, [29] presents a method for
IEC 61131-3 Ladder Diagram generation, [14] proposes a
similar procedure for transforming hierarchical Grafcets into
programmable logic controller (PLC) code, the work in [24]
employs an approach for IEC 61131-3 Instruction List gener-
ation, whereas in [25] CIPNs are transformed to the Register
Transfer Level that can be used for code synthesis. In this
brief, we have opted to employ procedure from [29] that can
be easily adapted to another programming language. Due to
the intended type of application, we have chosen to generate
C code using the following approach:
1) Assign a Boolean variable mi to each place Pi in CIPN.
2) Introduce initialization by adding variable m0 that is set

if the condition Ck assigned to •Pinit is true (Pinit is
marked in M0). Set minit simultaneously with m0.

3) For each place Pi in CIPN that corresponds to mi .
a) If mi is active, carry out actions Ai associated with Pi

including sending commands.
b) If mi is active and condition Cl corresponding to a

Tl ∈ Pi• is true, reset mi and set ml , for all Pl ∈ Tl•;
reset values of all LC external sensors that led to the
transition.

c) If Pi contains command for sending sensor input Ik to
LC N j , associate pmi to mi to assure that the sending
command is executed only once.

In Step 3b, the values of all LC’s external sensors that have
led to the transition have to be reset to avoid conflict since the
LC will not necessarily receive the change of external sensor
value. An example of the code generated for the CIPN1 from
Fig. 4(b) for the first three places is given in Fig. 6.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAKOVLJEVIC et al.: DISTRIBUTING SEQUENTIAL CONTROL FOR MANUFACTURING AUTOMATION SYSTEMS 7

Fig. 6. C code generated for CIPN1 from Fig. 4(b) for the first three places.
Send commands should be based on the employed communication API.

Fig. 7. Case study 1. A photograph of pneumatic manipulator with
three degrees of freedom (A—translation; C—rotation; and B—translation)
and gripper D; LC is MCU based with IEEE 802.15.4 compatible
transceivers.

IV. CASE STUDIES
We have tested the performances of our method using two

real-world case studies. The first focuses on a pneumatic
manipulator with a similar structure but higher complexity
than the manipulator described in Example 1. The second case
study considers the prototype of a manipulator whose control
requires the parallel execution of tasks. In our experiments, for
control of system components and for distribution of control
tasks we used a microcontroller (MCU)-based wireless nodes
with IEEE 802.15.4 compatible transceivers.

A. Case Study 1: Pneumatic Manipulator
We consider a pneumatic manipulator (Fig. 7) that immerses

parts into liquid. The manipulator has three degrees of freedom
in the configuration: translation—rotation—translation and a
pneumatic gripper D. Translational degrees of freedom are
carried out using two double-acting cylinders (A and B) and
for the rotational degree of freedom, rotary cylinder C is used.
All cylinders are controlled by bistable dual control valves

5/2 and they are equipped with proximity sensors—one for
each limit position (x0, x1 for cylinder X , where x ∈
{a, b, c}). The gripper is controlled by a monostable dual
control valve 5/2, while gripping/releasing of the part before
return stroke of cylinder B is ensured by a timer tim1. In the
desired system operation, the manipulator takes the part from
the starting position to the position above the container with
liquid, immerses the part, takes it out, shakes off liquid excess
by rotational motion, and returns the part into the starting
position. The first cycle of manipulation is initiated by the start
switch (st). The work cycle of the manipulator is described by

B + D + B − A + B + B − C + C − A − B + D − B − .

(5)

Each actuator (three cylinders and gripper) represents a
module (smart device) with its own LC, and with assigned

Fig. 8. Case study 1: comparison of the time diagrams capturing changes
in the input and output signals for centralized and distributed control during
one cycle of the manipulator operation.

TABLE I
CASE STUDY 1: MAPPING OF INPUTS AND OUTPUTS TO THE NODES

Fig. 9. Case study 2: configuration of the manipulator with parallel processes.

sensors and actuators as given in Table I. Hence, the control
system is implemented using four wireless nodes (LCs)
based on low-cost ARM Cortex-M3 MCU boards running
at 96 MHz (Fig. 7.) The nodes communicate via IEEE
802.15.4-compliant wireless transceivers, with the generated
control code directly using the employed communication
application program interface (API).
The structure of the control system for this manipulator is

similar (although more complex in terms of the number of LCs
and output signals per LC) to the structure of manipulator from
Example 1. Thus, the obtained CIPN, CIPNi s, and code are
similar to those from Figs. 4 and 6, and are thus not shown.
To test the performance of the obtained distributed control

system, we have also developed a centralized control sys-
tem where all sensors and actuators from all modules were
assigned to a single MCU implementing the global CIPN,
i.e., with wired connections between sensors/actuators and the
MCU. Fig. 8 presents the time diagrams of sensor and actuator
signals from Table I for one manipulator cycle for both
centralized and distributed control. It can be observed that the
sequence of input (x0 and x1) and output (xp and xm) signals
is the same for both control modes. Furthermore, Fig. 8(b)
presents points of communication between LCs in colored
lines. For example, red lines present sending information from
LC1 to LC2 about a0 and a1 inputs (assigned to N1) changes
that invoke changes in bm and bp outputs (assigned to N2).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 10. Case study 2 (manipulator with parallel processes). (a) Global CIPN.
(b) CIPN1 (CIPN2 has equivalent representation). (c) CIPN3.

As expected, the communication between nodes introduced
some latency, which resulted in a longer duration of the
cycle in the case of a distributed system, compared to the
centralized. However, it is important to highlight that this delay
is mainly caused by the use of low-bandwidth wireless links
(802.15.4 compatible) and not due to the control distribution.
When, instead of physical wiring, wireless links between the
centralized controller and sensors/actuators are used, the same
latency levels are also observed in the centralized control
setup.

B. Case Study 2: Manipulator With Parallel Processes
Second case study refers to another pneumatic manipulator

in which parallel processes are present. This manipulator
consists of two double-acting cylinders and a rotary cylinder
controlled by monostable dual control valves 5/2. Double-
acting cylinders A and B carry out simultaneous loading and
unloading of parts to and from the platform placed on rotary
cylinder C (Fig. 9.) All cylinders are equipped with proximity
sensors, one for each limit position (x0, x1 for cylinder X ,
where x ∈ {a, b, c}). The system is equipped with a start
switch. Finally, the manipulator’s work cycle is described by

C +
{
A+
B+

}{
A−
B−

}
C −

{
A+
B+

}{
A−
B−

}
. (6)

In this case study, there exist parallel processes (advancing and
retracting of cylinders A and B) and they are represented by
branches in the global CIPN shown in Fig. 10(a). Distributed
control system consists of three LCs—one for each cylinder,
and the input-output signals assignment to LCs is shown
in Fig. 9. The obtained CIPNi for LCs Ni are presented
in Fig. 10(b) and (c) (CIPN2 is equivalent to CIPN1 due
to similar work cycle of the cylinders). As in the first case
study, the performance of the distributed system matched the

centralized one during testing, meaning that the method is able
to adequately distribute control tasks in systems with parallel
processes.

V. CONCLUSION

We have presented a method for automatic generation of
distributed controllers for sequential discrete event dynamic
systems used in manufacturing automation. Our approach is
based on the representation of the control task using the CIPN
formalism. Once the control sequence of the overall system as
if centrally controlled is defined, and sensors and actuators
are mapped to LCs, our method is able to automatically
distribute control tasks to LCs as well as generate code for
such LCs.
The presented design framework is especially advantageous

when the control distribution to LCs is carried out such
that intensive communication between LCs, along with a
relatively small number of commands between communica-
tions is necessary to accomplish the desired functionality.
Nevertheless, the description of systems in which a large
sequence of commands is executed on one LC (i.e., one
module of reconfigurable resource) without communication
to other LCs can lead to an unnecessarily complex global
CIPN. In such case, a hierarchical structure introduced through
a higher level of abstraction in generating actions (such as
macro-steps in Grafcet [14]) can reduce the complexity of the
global CIPN.
Our approach is independent of the employed commu-

nication APIs. Communication induced latencies, erroneous
communication and attacks by different adversaries depend
on the applied communication protocol, they are beyond
the scope of this brief and present an avenue for future
efforts.

REFERENCES

[1] H. ElMaraghy et al., “Product variety management,” CIRP Ann., vol. 62,
no. 2, pp. 629–652, 2013.

[2] H. Kagermann, W. Wahlster, and J. Helbig. (2013). Recom-
mendations for Implementing Strategic Initiative INDUSTRIE 4.0.
[Online]. Available: http://www.acatech.de

[3] Y. Koren, X. Gu, and W. Guo, “Reconfigurable manufacturing systems:
Principles, design, and future trends,” Frontiers Mech. Eng., vol. 13,
no. 2, pp. 121–136, 2018.

[4] V. Lesi, Z. Jakovljevic, and M. Pajic, “Towards plug-n-play numerical
control for reconfigurable manufacturing systems,” in Proc. IEEE Int.
Conf. Emerg. Technol. Factory Automat. (ETFA), Sep. 2016, pp. 1–8.

[5] J. Wan, B. Yin, D. Li, A. Celesti, F. Tao, and Q. Hua, “An ontology-
based resource reconfiguration method for manufacturing cyber-physical
systems,” IEEE/ASME Trans. Mechatron., vol. 23, no. 6, pp. 2537–2546,
Dec. 2018.

[6] J. Wan et al., “Reconfigurable smart factory for drug packing in
healthcare industry 4.0,” IEEE Trans. Ind. Informat., vol. 15, no. 1,
pp. 507–516, Jan. 2019.

[7] H. Hu and M. Zhou, “A Petri net-based discrete-event control
of automated manufacturing systems with assembly operations,”
IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 513–524,
Mar. 2015.

[8] Y. Yang, H. Hu, and Y. Liu, “A Petri net-based distributed control of
automated manufacturing systems with assembly operations,” in Proc.
IEEE Int. Conf. Autom. Sci. Eng., Aug. 2015, pp. 1090–1097.

[9] J. Otto, B. Vogel-Heuser, and O. Niggemann, “Automatic parameter
estimation for reusable software components of modular and recon-
figurable cyber-physical production systems in the domain of discrete
manufacturing,” IEEE Trans. Ind. Informat., vol. 14, no. 1, pp. 275–282,
Jan. 2018.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAKOVLJEVIC et al.: DISTRIBUTING SEQUENTIAL CONTROL FOR MANUFACTURING AUTOMATION SYSTEMS 9

[10] R. Vrabič, D. Kozjek, A. Malus, V. Zaletelj, and P. Butala, “Distributed
control with rationally bounded agents in cyber-physical production
systems,” CIRP Ann., vol. 67, no. 1, pp. 507–510, 2018.

[11] D. A. Huffman, “The synthesis of sequential switching circuits,”
J. Franklin Inst., vol. 257, no. 3, pp. 161–190, 1954.

[12] D. A. Huffman, “The synthesis of sequential switching circuits: Part II,”
J. Franklin Inst., vol. 257, no. 4, pp. 275–303, 1954.

[13] C. Yen and W.-J. Li, “Web-based learning and instruction support system
for pneumatics,” Comput. Educ., vol. 41, no. 2, pp. 107–120, 2003.

[14] R. Julius, M. Schürenberg, F. Schumacher, and A. Fay, “Transformation
of GRAFCET to PLC code including hierarchical structures,” Control
Eng. Pract., vol. 64, pp. 173–194, Jul. 2017.

[15] Function Blocks—Part 1: Architecture, IEC Standard 61499-1:2012,
International Electrotechnical Commission Standard, 2012.

[16] Z. Jakovljevic, S. Mitrovic, and M. Pajic, “Cyber physical production
systems—An IEC 61499 perspective,” in Proc. 5th Int. Conf. Adv.
Manuf. Eng. Technol., in Lecture Notes in Mechanical Engineering,
2017, pp. 27–39.

[17] Y. Qamsane, A. Tajer, and A. Philippot, “A synthesis approach
to distributed supervisory control design for manufacturing systems
with Grafcet implementation,” Int. J. Prod. Res., vol. 55, no. 15,
pp. 4283–4303, 2017.

[18] L. Wang, C. Mahulea, and M. Silva, “Distributed model predictive
control of timed continuous Petri nets,” in Proc. IEEE Conf. Decis.
Control, Dec. 2013, pp. 6317–6322.

[19] J. Zhang, M. Khalgui, Z. Li, G. Frey, O. Mosbahi, and
H. Ben Salah, “Reconfigurable coordination of distributed discrete event
control systems,” IEEE Trans. Control Syst. Technol., vol. 23, no. 1,
pp. 323–330, Jan. 2015.

[20] J. W. Park, M. Shin, and D. Y. Kim, “An extended agent communica-
tion framework for rapid reconfiguration of distributed manufacturing
systems,” IEEE Trans. Ind. Informat., to be published.

[21] U. D. Atmojo, Z. Salcic, and K. I.-K. Wang, “Dynamic reconfiguration
and adaptation of manufacturing systems using sosj framework,” IEEE
Trans. Ind. Informat., vol. 14, no. 6, pp. 2353–2363, Jun. 2018.

[22] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[23] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets,
2nd ed. Berlin, Germany: Springer, 2010.

[24] G. Frey and L. Litz, “Verification and validation of control algorithms
by coupling of interpreted Petri nets,” in Proc. IEEE Int. Conf. Syst.,
Man, Cybern., Oct. 1998, pp. 7–12.

[25] I. Grobelna and M. Adamski, “Model checking of control interpreted
Petri nets,” in Proc. 18th Int. Conf. Mixed Design Integr. Circuits Syst.,
Jun. 2011, pp. 621–626.

[26] R. Wiśniewski, A. Karatkevich, M. Adamski, A. Costa, and L. Gomes,
“Prototyping of concurrent control systems with application of Petri nets
and comparability graphs,” IEEE Trans. Control Syst. Technol., vol. 26,
no. 2, pp. 575–586, Mar. 2018.

[27] M. Sogbohossou and A. Vianou, “Formal modeling of grafcets with
time Petri nets,” IEEE Trans. Control Syst. Technol., vol. 23, no. 5,
pp. 1978–1985, Sep. 2015.

[28] G. Gardey, D. Lime, M. Magnin, and O. Roux, “Romeo: A tool for
analyzing time Petri nets,” in Proc. Int. Conf. Comput. Aided Verification.
Berlin, Germany: Springer, 2005, pp. 418–423.

[29] J.-S. Lee and P.-L. Hsu, “A systematic approach for the sequence
controller design in manufacturing systems,” Int. J. Adv. Manuf. Technol.,
vol. 25, nos. 7–8, pp. 754–760, 2005.


