
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 1

Attacks on Distributed Sequential Control in
Manufacturing Automation

Zivana Jakovljevic, Member, IEEE, Vuk Lesi, and Miroslav Pajic, Senior Member, IEEE

Abstract—Industrial Internet of Things (IIoT) represents a
backbone of modern Reconfigurable Manufacturing Systems
(RMS), which enable manufacturing of a high product variety
through rapid and easy reconfiguration of manufacturing equip-
ment. In IIoT-enabled RMS, modular equipment is built from
smart devices, each performing its own tasks, while the global
functioning is achieved through their networking and intensive
communication. Although device communication contributes to
the system reconfigurability, it also opens up new security chal-
lenges due to potential vulnerability of communication links. In
this paper, we present security analysis for a major part of RMS
in which manufacturing equipment is sequentially controlled
and can be modeled as Discrete Event Systems (DES). Control
distribution within DES implies communication of certain events
between smart modules. Specifically, in this work we focus on
attacks on communication of these events. In particular, we
develop a method for modeling such attacks, including event
insertion and removal attacks, in distributed sequential control;
the method is based on the supervisory control theory framework.
We show how the modeled attacks can be detected and we
provide a method for identification of communication links that
require protection to avoid catastrophic damage of the system.
Finally, we illustrate and experimentally validate applicability
of our methodology on a real-world industrial case study with
reconfigurable manufacturing equipment.

I. INTRODUCTION

INDUSTRIAL implementation of Internet of Things (IoT)
and Cyber Physical Systems (CPS) significantly changes

the way we manufacture, leading to the evolution of manu-
facturing systems to a new level known as Industry 4.0 [1].
Industry 4.0 factory is a smart factory able to meet the require-
ments of each individual customer through implementation of
Reconfigurable Manufacturing Systems (RMS) [2]. RMS are
based on modular equipment that is physically and function-
ally reconfigurable and can be rapidly and easily adapted to
manufacturing of different products [3], [4]; Fig. 1 presents
an example of a reconfigurable pneumatic device. To facilitate
reconfigurability, the modularity should be achieved not only
in terms of mechanical elements, but also in equipment/tool

Manuscript received December 31, 2018; revised March 30, 2020. This
work is sponsored in part by the ONR under agreements N00014-17-1-
2504 and N00014-20-1-2745, AFOSR under award number FA9550-19-1-
0169, the NSF CNS-1652544 award, as well as the Serbian Ministry of
Education, Science and Technology grants TR35004 and TR35020. The
authors would like to express the gratitude to SMC Industrial Automation
Serbia for providing experimental equipment. (Corresponding Author: Zivana
Jakovljevic).

Z. Jakovljevic is with the University of Belgrade, Faculty of Mechanical
Engineering, Serbia e-mail: (zjakovljevic@mas.bg.ac.rs).

V. Lesi and M. Pajic are with the Department of Electrical and Com-
puter Engineering, Duke University, Durham, NC, 27708 USA (email:
vuk.lesi@duke.edu; miroslav.pajic@duke.edu).

control, where each mechanical module is augmented by its
own Local Controller (LC) with communication and compu-
tation capability, representing a smart IoT device.

Control system modularity leads to a shift from the clas-
sical IEC 62264 hierarchical industrial automation pyramid
to distributed control systems [1], where control is realized
through peer-to-peer communication of networked devices
that create Industrial IoT (IIoT) [5]. In distributed control of
manufacturing systems, each control task is realized through
coordinated operations of a number of smart devices that
comprise the considered reconfigurable equipment, with the
corresponding LCs communicating relevant information to
each other in order to achieve the desired system behavior. On
the other hand, (usually wireless) communication between LCs
introduces new security challenges [6] since communication
link may be prone to attacks by adversaries.

In IIoT systems, end-to-end (including communication) se-
curity guarantees are of crucial importance [7]. There are dif-
ferent ways to protect communication between devices, such
as the use of cryptographic mechanisms to provide continuous
or intermittent authentication or adding watermarking/random
noise signals (e.g., [8], [9], [10]). Yet, all such methods in-
troduce additional computation/communication overhead, in-
crease communication latency [11], and should be applied only
when necessary in resource constrained IIoT-enabled RMS.

Different types of cyberattacks have been reported
(e.g., in [12]), including replay attacks where attacker records
sensor/actuator signals in one period of time and replays them
in another, or covert attacks where adversary secretly takes
over control from the supervisor, with the goal to remain
undetected. For all attacks it is common that they are not
random (opposite to failures) and that adversaries are deceptive
and insidious in their goals – e.g., intention to remain stealthy
and to achieve negative effect on the system performance.
Usually the attackers have some a priori knowledge about the
system obtained through different cyber-physical intelligence
attacks [13], such as eavesdropping.

Whereas the attacks in continuous-time control systems
[12], [13] have gained significant attention, attacks in Discrete
Event Systems (DES) were only recently explored [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24]. Supervisory
Control Theory (SCT) models DES as generators of formal
languages whose behavior can be captured by Finite State
Machines (FSM) [25]. Since SCT and FSM were successfully
employed for fault detection in DES, their application in
studying DES attacks, as done in this paper, represents a
natural extension. An approach for modeling and detection of
actuator enablement/disablement and sensor removal/insertion

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 2

Cylinder A

Cylinder B

position IIposition I

Grip. C

position IIposition I

b)

Cylinder A

Cylinder Ba)

Fig. 1. Examples of reconfigurable manufacturing equipment: a) Running
example: Configuration of the system for parts marking, b) Case study:
Configuration of the system for parts manipulation.

attacks in remotely supervised plants is presented in [14].
System under attacks is modeled using FSM and SCT frame-
work, while attacks detection and prevention of system from
reaching unsafe state is based on DES fault diagnosis. Similar
approach for man-in-the-middle sensor attacks is presented in
[15], whereas the defense strategy for attacks from [14], [15] is
given in [26]. Furthermore, [22] provides the mechanisms for
implementation of security modules for the attacks from [15].

Intelligent adversary with a priori knowledge about super-
visor’s performance that arbitrary alters sensors’ readings is
modeled in [16], as well as a supervisor robust to these attacks.
The work from [17] models event insertion/removal attacks
as SCT-based projections that map observed into corrupted
events strings through events replacing or inserting, while
[18] studies replay and covert attacks in DES and proposes
detection method based on permutation of controller inputs
and outputs on the plant and supervisor side. In addition, [23]
considers the attacks that completely take over the control over
plant for a certain time period. Furthermore, [19], [20] propose
methods for design of stealthy attacks in such systems. Recent
review of the state of the art in application of SCT and FSM
in DES attacks modeling and detection is given in [24].

Existing work in modeling and analysis of attacks on DES
consider attacks on sensor and actuator signals in the case of
a remote plant and a supervisor that carries out centralized
control (e.g., [17], [21], [24]). On the other hand, distribution
of control tasks to smart devices within RMS and intensive
communication between them bring about new security chal-
lenges. For example, each cylinder from Fig. 1a is a smart
cylinder (with integrated limit switches and control valve)
that is augmented by its own LC; the control of the system
for parts marking is distributed over two LCs that intensively
communicate, enabling control of the desired system behavior.
In distributed sequential control for RMS, control can be cap-
tured as a DES [25]. In such systems every IIoT-enabled LC is
closely connected to the corresponding plant module, whereas
signals (events) that are communicated between remote LCs
(i.e., smart devices) may be vulnerable to attack.

Consequently, in this paper we focus on security-analysis of
distributed control systems for industrial automation, specifi-
cally addressing network-based attacks on event communica-
tion. To the best of our knowledge, these kinds of attacks have
not been considered in the past. Attacks on communicated
events in such systems could lead to an undesirable sequence
of system actions, and the system should be prevented from

generating unsafe sequence of events that can lead to catas-
trophic damage. We present an SCT-based modeling approach
to capture common attacks – event insertion and removal
in distributed sequential control. Furthermore, we introduce
a method for attack-detection and identification, focusing on
safety-critical attacks that could violate safety requirements of
system operation. To minimize computation and communica-
tion cost, we show how to determine a set of events whose
communication should be protected to ensure safe system
operation while minimizing security related overhead.

Since our focus is on network-based attacks on sequential
controllers in industrial automation systems, we are mainly
considering impact on the automation due to false-data in-
jection attacks as well as Denial-of-Service attacks, which
prevent some of the messages from being delivered to the
controllers.1 Such attacks have been previously investigated in
the other CPS domains where continuous control is applied,
as in [27], [28], [29] where e.g., attacks on power-grid infras-
tructure as well as on continuous control via SCADA systems
were considered. On the other hand, we do not consider the
origin of the attacks – e.g., the type of software/hardware
vulnerability exploited by the attacker to launch the attack. The
security-aware framework for industrial automation, which we
introduce in this work, enables system designers to provide a
formal proof about the attack-detectability and performance
for the wide class of attacks, by employing a wide-range of
tools for analysis of SCTs, such as [30].

The reminder of the paper is organized as follows. Section
II briefly presents a method that is used for distribution of
sequential controllers for RMS into LCs, while Section III
maps such LCs into the SCT formalism. In Section IV
we present a method for attack-modeling, which allows for
the identification of events whose communication should be
protected (elaborated in Section V). The application of our
security-aware methodology is presented on a simple running
example, as well as a real-world industrial case study in
Section VI. Finally, Section VII provides concluding remarks
and avenues for future work.

II. DISTRIBUTING SEQUENTIAL CONTROL TASKS TO
SMART DEVICES

Before considering security challenges in distributed se-
quential control, which are the topic of this paper, we briefly
outline the method from [31] that we use for distribution of
control tasks to the LCs. We utilize this method since it is
strongly related to the IEC 60848 and IEC 61131-3 standards
that are commonly employed in practice for control specifica-
tion. Furthermore, this is a top-down approach, starting from
a description of the system functionality as a whole and then
distributing control tasks to LCs; thus, the representation of
the LCs’ functionalities and their relation to the overall control
system is transparent and easily understandable. However, the
results of this paper (which considers attacks in distributed
DES control) are not limited to the utilized method for
distribution of control tasks and they can be applied to any

1On the other hand, since DES do not consider timing information, there
is no need to address attacks that result in information only being delayed.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 3

TABLE I
RUNNING EXAMPLE: SIGNALS MAPPING TO LCS

Cyl. LC Home
sensor

End sen-
sor

Cyl. adv.
signal

Cyl. retr.
signal

Other
signals

A LC1 a0 a1 ap am -
B LC2 b0 b1 bp bm st

distributed DES control regardless the way LCs are generated
(using another approach, such as e.g., [32], or manually).

The method from [31] is based on Control Interpreted Petri
Nets (CIPNs) [33] that are captured as bipartite graphs with
vertices referred to as places (denoted by P and graphically
presented by circles) and transitions (denoted by T and
graphically presented by bars), as illustrated in Fig. 2. The
state of a CIPN is represented by a marking, which assigns
one token to some of the places and which is dynamically
changed by transitions firing. In CIPNs, transitions firings
are synchronized with sensing events, while actuator outputs
(commands) are issued from marked places.

The sequential control distribution starts from a CIPN-based
high-level description of the desired system behavior when all
sensors and actuators are connected to a centralized controller
(referred to as global-CIPN). Once a global CIPN is defined,
and input and output signals are mapped into LCs with physi-
cal access to corresponding sensors and actuators, the method
automatically generates local CIPNis, i = 1, . . . N describing
local controllers (LCs) executed on IIoT-enabled smart devices
that communicate between each other to achieve coordination
– e.g., Send commands in Fig. 2. We describe this in more
detail using our running example, introduced below.

Example 1. We consider a system for parts marking shown
in Fig. 1a2, which consists of two double-acting cylinders
(A and B) controlled by bistable dual control valves 5/2 (2
positions, 5 ports); the valves are activated/deactivated by
signals introduced in Table I. Cylinders are also equipped
with proximity sensors for detecting limit positions. System
operation starts when the start switch (st in Table I) is pressed.
The system’s work cycle is described by the following sequence

B + B − A+ B + B − A− (1)

where X+ denotes advancement, and X− retracting of cylin-
der X (X ∈ {A,B}). Cylinders represent smart devices with
integrated LCs where the assignment of dual control valve
activating signals and sensor signals to LCs is given in Table I.

From the behavior of system described in (1), we obtain
a global CIPN shown in Fig. 2a that captures the functional
specification for sequential control of the whole system. Using
the procedure from [31], from the global CIPN we obtain each
CIPNi describing local control behavior for LCi (Fig. 2b-c),
while ensuring the desired overall system behavior (as with
the centralized controller). To achieve this, the LCs coordinate
by communicating certain events. For example, LC2 (Fig. 2c),
while at place P 2

4 (P4) sends information about rising edge
at b0 to LC1 (Fig. 2b) which receives this information at

2This system is similar to one of the systems used for illustration of control
tasks distribution in [31].

b0==1

ap=1;
am=0;

a1==1

Send(B, a1);

b0==1

am=1;
ap=0;

a0==1

(T)3

(T)3

(T)4

(T)6

(T)7

(P)1

(P)4

(P)5

(P)7

st==1

bp=1;
bm=0;

b1==1

T
1

T
2

P
1

P
2

b0==1

Send(B, a0);(P)2

st==1

bp=1;
bm=0;

b1==1

(T)1

(T)2

(P)1

(P)2

a) b) c)

T
init

T
5

1

T
2

1

T
3

1

T
4

1

P
1

1

P
2

1

P
3

1

P
4

1

P
5

1

T
1

2

T
2

2

P
1

2

P
2

2

b0==1

ap=1;
am=0;

a1==1

bp=1;
bm=0;

b1==1

b0==1

am=1;
ap=0;

a0==1

T
3

T
4

T
5

P
3

P
4

P
5

b0==1

Send(A, b0);

a1==1

bp=1;
bm=0;

b1==1

b0==1

Send(A, b0);

a0==1

(T)3

(T)4

(T)5

(P)3

(P)4

(P)5

T
3

2

T
4

2

T
5

2

P
3

2

P
4

2

P
5

2

T
6

T
7

P
6

P
7

(T)6

(T)7

(P)6

(P)7

T
6

2

T
7

2

P
6

2

P
7

2

bm=1;
bp=0;

bm=1;
bp=0;

bm=1;
bp=0;

bm=1;
bp=0;

Fig. 2. Running example: a) global CIPN, b) CIPN1 representing the
behavior of LC1, c) CIPN2 representing the behavior of LC2 (notation
of places and transitions from CIPN are given in parentheses); x == 1
represents input reading allocated to the transition, while x = 0/1 denotes
output assignment allocated to the place; Send commands are marked green,
and receptive transition conditions red.

6

b0

am

a0

1 2

5

3

4

ap

b0

a1

d)

7 a0

1 3

6

4

5

a1

am

b0

c) 2b0 ap

b0

3

5 4

bp

b1

bm

b0

1 2stb)1 2

4 3

ap

a1

am

a0

a)

11

bp

b0

a0

1 2st 3

10

4

9

6

7

5

8

b1 bm b0

a1

bpb1bm

e)

Fig. 3. Running example: a) Automaton G1 modeling behavior of cylinder A,
b) Automaton G2 representing cylinder B, c) Automaton S1′ obtained from
controller CIPN1 (Fig. 2b), d) Automaton S1 equivalent to S1′ representing
LC1, e) Automaton S2 representing LC2 obtained from CIPN2 (Fig. 2c).
Events that supervisors send are marked green and the events that they receive
are marked red.

T 1
init(T3) or at T 1

5 (T3), depending on the CIPN1 marking and
marks P 1

2 (P4). In this way the sequence T3P4 captured in the
global CIPN (Fig. 2a) is achieved in the distributed setup. �

III. MODELING DISTRIBUTED SEQUENTIAL CONTROL

CIPNs are commonly used to model DES since they provide
easily understandable graphical representation, especially in
case of parallel processes. On the other hand, DES can also be
represented as Finite State Automata (FSA). Since FSA pro-
vide convenient formalisms for modeling attacks on DES [34],
in this work we transform each CIPNi to FSA, utilizing
procedures from [35], [36], within the SCT framework [25].

In SCT, all possible behaviors of a to-be-controlled-physical
modules, which we will refer to as plants, (e.g., cylinders
in Fig. 1) can be represented as an FSA denoted by Gi =
(Qi, Ei, f i, qi0), where Qi is the finite set of states, Ei is the
finite set of events, f i : Qi × Ei∗ → Qi is the transition
function (here, ∗ denotes Kleene star), and qi0 denotes the
initial state of Gi. Such plant can be regarded as a generator

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 4

11,6

bp

am

a0

1,1 2,1st 3,1

11,5

4,1

10,4

5,1

9,4

b1 bm b0

b1bmb0

6,3

7,4

a1

6,2

8,4

ap

bp

Fig. 4. Running example: Supervisor S = S1||S2; in state notation x, y:
x, y refer to states from S2 and S1, respectively. In parallel composition,
a transition on shared event can occur only if both automata are in a state
where such transitions are enabled – e.g., transition on b0 (shared for S1 and
S2) from (1,1) cannot occur as S2 has no transition from (1) on b0

of a language Li(Gi) that contains strings wi such that
Li(Gi) := {wi ∈ Ei∗ : f i(qi0, w

i)!}, where ! denotes that
the f i(qi, wi) is defined. Behavior of N plants within the
system can be captured as the FSA G obtained by parallel
composition of Gi, i = 1, ...N , denoted by G = ||iGi.

For each plant, events in Ei can be partitioned as Ei =
Ei

o ∪ Ei
uo, where Ei

o and Ei
uo are the sets of observable and

unobservable events, respectively. Similarly, the set Ei can be
partitioned into the sets of controllable (Ei

c) and uncontrollable
events (Ei

uc) such that Ei = Ei
c ∪ Ei

uc. Since each physical
plant modeled as Gi is locally controlled by a LC specified by
CIPNi, sensor signals assigned to CIPNi transitions belong to
Ei

uc, while actuator signals assigned to the places are in Ei
c.

With distributed sequential control, LCi provides controlled
behavior of the plant Gi through a feedback control loop by
imposing supervisor Si that restricts the language Li(Gi) by
disabling certain events. Supervisor is only aware of observ-
able events Ei

o obtained from the set Ei by the natural projec-
tion P i

o : Ei∗ → Ei∗
o where (i) P i

o(ε) = ε, with ε denoting the
empty string; and (ii) P i

o(witi) = P i
o(wi)ti if ti ∈ Ei

o, and
P i
o(witi) = P i

o(wi) if ti /∈ Ei
o. Such supervisor can be realized

using automaton Si = (Qi
s, E

i
s, f

i
s, q

i
0s). Here, in addition to

observable events from Ei, Si contains events that are received
(communicated) from other supervisors Sj , j = 1, ..., i −
1, i+ 1, ...N ; we denote these events as cij,k, where k denotes
different events if more than one event is communicated from
supervisor Sj to Si. Thus, Ei

s = Ei
o ∪ {∪j ∪k cij,k}. Sj

transmits cij,k to Si on the transition from state qjc for which
f j(qjc , c

i
j,k)! to the state f j(qjc , c

i
j,k).

Finally, the coordinated operation of all supervisors Si (i.e.,
all controllers) in the system is captured by S = ||iSi, while
the controlled loop behavior of the system as a whole can be
represented as S ×G, where × denotes the product operator.

Running example continued. All possible failure free be-
haviors of cylinders A and B are captured by automata
G1 and G2 (Fig. 3a-b), respectively. Here, E1 = E1

o =
{ap, a1, am, a0}, with E1

c = {ap, am}, and E2 = E2
o =

{bp, b1, bm, b0, st}, with E2
c = {bp, bm}. LC1 and LC2

implement supervisor controllers S1′ and S2, respectively,
as shown in Fig. 3c and Fig. 3e; these supervisors are
obtained from CIPNi in Fig. 2b and Fig. 2c. To simplify
the presentation, automaton S1′ is replaced by equivalent
automaton S1 (Fig. 3d)3. To capture event communication
between controllers LC1 and LC2, S1 and S2 have the follow-

3All automata operations throughout the paper are carried out in DESUMA
software [30], where the equivalence of automata S1′ and S1 is checked.

1 2

4 3

ap

a1

am

a0

6

b0

am

a0

1 2

5

3

4

ap

b0

a1

b)a) b0a

b0a

b0a

b0a

Fig. 5. Running example under b0 insertion attack on LC1: a) Automaton
S1
a – LC1 under attack, b) Automaton G1

a – cylinder A under attack.

ing events sets: E1
s = {ap, a1, am, a0, b0} where b0 = c12,1,

and E2
s = {bp, b1, bm, b0, st, a1, a0} where a0 = c21,1,

and a1 = c21,2. Communicated events are marked green in
transmitting and red in receiving supervisor in Fig. 3c-e;
these events model Send commands from Fig. 2. The conjoint
operation of S1 and S2 – i.e., S = S1||S2 – is graphically
presented in Fig. 4. �

IV. MODELING IMPACTS OF ATTACKS IN DISTRIBUTED
SEQUENTIAL CONTROL

In this work, we assume that the attacker may compromise
events communicated between LCs. Using the LC representa-
tion from Sec. III, the compromised events for supervisor Si

are all the events that Si receives from and transmits to other
LCs, captured in sets Ei

rx and Ei
tx :

Ei
rx =

⋃
j

⋃
k

cij,k ⊆ Ei
s, Ei

tx =
⋃
i

⋃
k

cji,k ⊆ E
i
s (2)

Since sequential control does not capture timing-related
information, and thus communication delays do not impact
correctness of the system operation, in such systems we have
to consider two possible types of attacks: (i) event insertion,
where a controller Si receives an event cij,k before Sj sends
it (i.e., without Sj sending it), and (ii) event removal, where
an event sent to a controller Si from a controller Sj is not
received. These attacks capture standard Denial-of-Service and
false-data injection attacks [12], while attacks such as Man-in-
the-Middle, which swap one event for another, can be obtained
with a combination of these two attacks.

In this section, we focus on capturing impacts of such
attacks on system operation. We assume that the attacker’s
goal is to affect the performance of the system without being
immediately revealed; note that there is a number of attacks
that can be easily detected, such as inserting events like b0
when automaton S1 is in e.g., state 3 (Fig. 3d). In addition,
we assume that the attacker knows the current states of the
plants and supervisors, and can use this information to plan
his attacks. Finally, the attacker is not able to compromise
protected communication links as integrity of these links is
ensured with the use of standard cryptographic mechanisms
for which the attacker does not posses the shared secret keys.

A. Insertion Attack

Let us consider the insertion attack that inserts event cij,k ∈
Ei

rx ; to simplify our notation, we use sir to denote the ‘regular’
event (cij,k) and sia the event inserted by the attacker. To
avoid being immediately revealed, the attacker has to insert

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 5

1,1,1,1 2,3,1,3 2,4,1,4 2,5,1,5

3,3,2,3 3,4,2,4 3,5,2,5

6,10,4,5 6,9,4,4 6,8,4,3 6,7,4,2

5,10,3,5 5,9,3,4 5,8,3,3 5,7,3,2

6,11,4,2 1,2,1,2 1,3,1,3 1,4,1,4 2,6,1,21,5,1,5

5,11,3,2 4,10,3,5 4,9,3,4 4,8,3,3 3,6,2,24,7,3,2

2,2,1,2

3,2,2,22,1,1,1

3,1,2,1

st

a0 bp b1 bm

st

bp b1 bm

st

bp b1 bm

bpb1bm

bpb1bm

bpb1bmb0

b0a

ap

b0a

ap

b0a

ap

b0a b0a

ap ap

b0

a1

ap

b0a

am

b0a

amamam

b0a

am

b0a

Fig. 6. Running example - b0 insertion attack on LC1: Automaton GA; states
that GA can enter after attack are marked red.

event sia only while the supervisor Si is in a state qir for
which f is(qir, s

i
r)!. To achieve this, the attacker employs his

knowledge of the current state of Si.
Therefore, we will model the attacks that cannot be im-

mediately revealed and that can affect the system behavior.
Here, for every event that can be inserted we need to capture
effects of such attack on the supervisor that receives the event,
and, as we describe below, modify the corresponding plant
model to ensure that adding a new event does not prevent the
plant model from evolving (as the plant-generated events are
not directly affected by the inserted event). With attack event
sia that inserts sir at state qir ∈ Qi

s for which f is(qir, s
i
r)!, Si

transitions to the state f is(qir, s
i
r) since Si considers that real

sir is received. Thus, the LCi under attack can be modeled as
automaton Si

a = (Qi
s, E

i
sa, f

i
sa, q

i
0s) with Ei

sa = Ei
s∪{sia} and

f isa(qi, si) =

{
f is(qi, si) if si ∈ Ei

s and f is(qi, si)!
f is(qi, sia) if si = sia and f is(qi, sir)!

(3)

Hence, using (3), a transition labeled sia is added in parallel
with the transition labeled sir to capture that the inserted event
will lead the supervisor to the same state as the real event.

On the other hand, when event sia is inserted by the attacker,
the plant modeled by Gi can be at any state qig for which
f i(qig, s

i
n)!, where sin is event such that f isa(f isa(qis, s

i
a), sin)!

– i.e., event following sia in Si
a. To model the receptiveness of

the plant to the attack, we add a loop with sia to every state qig
in the Gi and generate the model of the physical plant under
attack sia, denoted by Gi

a. Automaton Gi
a = (Qi, Ei

ga, f
i
ga, q

i
0)

where Ei
ga = Ei ∪ {sia} and f iga is defined as:

f iga(qi, si) =

 f is(qi, si) if si ∈ Ei and f i(qi, si)!
qi if si = sia and f i(qi, sin))!

and f isa(f isa(qis, s
i), sin)!

(4)
The second part of relation (4) models that the plant does not
change the state on the attack event, but on the following event
as imposed by the supervisor. Finally, the overall system be-
havior under attack GA is captured by GA = (||iSi

a)×(||iGi
a),

where Si
a = Si and Gi

a = Gi if LCi is not under attack.

Running example continued. We illustrate the modeling of
the insertion attack on communicating b0 between LC2 and
LC1 in the running example – i.e., S1 from Fig. 3d is attacked

b0

a0

1 2 3ap

a1

bp

a0

1

2

st

3

4

6

5

b1

bm

b0

a1

a)

b)

6 am 5 4b0

11

b0

10

9

7

8

bp

b1

bm

b0 b0

b0 b0

b0a

a0a1

a0
a1

a0
a1

a0
a1

a1
a0

a0a0

a1

a1

a0
a1

a1
a0

a1
a0

d

d
a0

1

13 2 3 4bp b1 bm 65 b0

14 15 16 17 18

19 20 21 22 23

31 30 29 bpb1bm 28

27 26 25 bpb1bm 24

12 b0 11 10 9 bpb1bm 78 a1

st

apam

b0a

st bp b1 bm
b0

b0st bp b1 bm

b0a b0a b0a b0a

ap ap ap ap

b0a b0a b0a b0a

amamamam
b0

b0

a1 a1 a1 a1 a1

a0a0a0a0

c)

d1

d2 d4

d3

b0a

Fig. 7. Running example - b0 insertion attack on LC1: a) Automaton
S1
adet representing LC1 under attack with integrated attack detection state d,

b) Automaton S2
adet representing LC2 with integrated attack detection state

d, c) Sadet = S1
adet||S

2
adet.

by inserting ‘fake’ b0a. Using our approach, models of LC1

– S1
a and cylinder A – G1

a under attack are derived (Fig. 5).
From S1

a and G1
a (Fig. 5), as well as S2 and G2 (Fig. 3),

we obtain the model of the system under such attack – GA

(Fig. 6); the states that GA could enter after b0 insertion attack
are marked red. The states in GA are denoted by (x, y, z, u),
where x, y, z and u denote the state of S1, S2, G1 and G2,
respectively. It can be observed that, to remain undetected at
the moment of attack, the attack occurs when S1 is at the state
1 or 4 which are receptive to b0. If the attack occurs while
S1 is at another state, it will be immediately detected.

To illustrate this, in Fig. 7 we provide the supervisors S1
adet

and S2
adet with integrated state d that detects the receipt of an

event at the state that is not receptive to this event. Namely,
S1
adet (Fig. 7a) is obtained from S1

a (Fig. 5a) by adding the
detection state d and transitions labeled b0 from all the states
not receptive to event b0 to d. Thus, automaton S1

adet will
enter the state d if it receives b0 at states other than 1 and
4. Similarly, automaton S2

adet (Fig. 7b) will enter state d if
it receives a0 or a1 while at states not receptive to these
events. Parallel operation of the supervisors S1

adet and S2
adet

(i.e., Sadet = S1
adet||S2

adet) is presented in Fig. 7c; in Sadet,
d1-d4 correspond to the entrance of S1

adet and/or S2
adet in the

state d. �

Generally, Si
adet can be derived from Si

a as follows. Si
adet =

(Qi
sdet, E

i
sa, f

i
sadet, q

i
0s) where Qi

sdet = Qi
s ∪ {d} and:

f isadet(q
i, si) =

f
i
sa(qi, si)if si ∈ Ei

sa and f isa(qi, si)!
d if si ∈ Ei

rx
and ¬ f isa(qi, si)!

(5)

Implementing Si
adet instead of Si at LCi leads to immediate

detection of any unexpected event that is received; this in-
cludes the insertion attack if it is not carried out while the
supervisor is at the state that is receptive to the attack event.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 6

3

5 4

bp

b1

bm

b0

1 2st

6

b0

am

a0

1 2

5

3

4

ap

b0

a1

11

bp

b0

a0

1 2st 3

10

4

9

6

7

5

8

b1 bm b0

a1

bpb1bm

a) b)

c)

b0a b0a

b0a

b0a

b0a

Fig. 8. Running example - b0 removal attack on LC1: a) Automaton G2
a

representing cylinder B under the attack; b) Automaton S1
a representing LC1

under the attack; c) Automaton S2
a representing LC2 under the attack.

1,1,1,1 st 3,6,2,21,2,1,2 1,3,1,3 1,4,1,4 2,6,1,21,5,1,5bp b1 bm b0

4,11,3,2

ap

a1a0
1,6,1,2

4,7,3,26,11,4,2 5,11,3,2 4,10,3,5 4,8,3,34,9,3,4bmb0am b1 bp

b0a

b0a

Fig. 9. Running example - b0 removal attack on LC1: Automaton GA; states
that GA can enter after attack are marked red.

Conjoint operation of all Si
adet in the system is presented

as Sadet = ||iSi
adet, and it describes the conjoint behavior

of all supervisors with integrated insertion attack detection
implemented at LCs.

In addition to modeling a single insertion attack, a model
of combined insertion attacks and the corresponding system
behavior can be similarly obtained. Suppose that the supervisor
Si can be attacked by li different insertion attacks siaj

, j ∈
[1, . . . li]. Following the presented procedure, all these attacks
can be modeled by Si

aU
, such that the language L(Si

aU
) =

∪jL(Si
aj

), where Si
aj

is obtained applying relation from (3)
for each of siaj

. Similarly, we can obtain models of the plants
under all insertion attacks Gi

aU
, as well as the model of the

system under all insertion attacks GAU
. Due to the properties

of parallel composition, the language generated by the system
under all insertion attacks modeled by GAU

represents the
union of languages generated by system under isolated attacks.

B. Removal Attack

Let us consider the removal attack that removes the event
cij,k ∈ Ei

rx that is sent to Si from Sj ; again, to simplify our
notation, we use sir to denote the ‘regular’ event (cij,k) and
introduce event sia to capture the attack. To remove event
sir, the adversary should attack when Si is at a state qir
where f is(qir, s

i
r)!, while Sj is at one of the states f js (qj , sir).

Furthermore, Gj should be in a state f j(qj , sir). As a result
of the removal attack, Si will remain at the state qir, while the
operation of Sj and Gj will continue as if attack did not occur.
We capture the described system behavior as follows. The
attack on sir at state qir ∈ Qi

s keeps Si in qir. Thus, LCi under
attack can be modeled as automaton Si

a = (Qi
s, E

i
sa, f

i
sa, q

i
0s)

where Ei
sa = Ei

s ∪ {sia} and f isa is expanded by adding self
loops on event sia to the states qir for which f is(qir, s

i
r)! – i.e.,

f isa(qi, si) =

{
f is(qi, si) if si ∈ Ei

s and f is(qi, si)!
qi if si = sia and f is(qi, sir)!

(6)

Since Si
a does not change the state during attack, the attack

will not influence the behavior of plant Gi.

Procedure 1 Identification of the events whose communication
should be protected
INPUT:

Ωk
c = {wk

c,1, . . . w
k
c,lk
}: set of lk strings (events sequences)

that would lead to catastrophic damage CDk, k ∈ 1, . . .M
saj

, j ∈ 1, . . . P possible attacks

1: for all attacks saj
, j = 1 to P do

2: generate Sajdet, Gaj , GAjdet, and Obs(GAjdet)
3: for all CDk k = 1 to M do
4: for all strings that lead to CDk, i = 1 to lk do
5: if Obs(GAjdet) accepts wk

c,i then
6: sr corresponding to saj

needs encryption
7: end if
8: end for
9: end for

10: end for

To model the behavior of the transmitting module dur-
ing the attack on the receiving controller, automata Sj

a =
(Qj

s, E
j
sa, f

j
sa, q

j
0s), with Ej

sa = Ej
s ∪ {sia}, and Gj

a =
(Qj , Ej

ga, f
j
ga, q

j
0), with Ej

ga = Ej∪{sia}, are introduced. Note
that by construction sir ∈ E

j
tx . The attack has no effect on Sj

and Gj – i.e., they should continue their working cycle as if the
attack did not occur. However, the attack affects operation of
the overall system, which we model by f jsa and f jga defined as

f jsa(qj , sj) =

{
f js (qj , sj) if sj ∈ Ej

s and f js (qj , sj)!
f js (qj , sia) if sj = sia and f js (qj , sir)!

(7)

f jga(qj , sj) =

{
f js (qj , sj) if sj ∈ Ej and f j(qj , sj)!
f js (qj , sia) if sj = sia and f j(qj , sir)!

(8)

Eq. (7) and (8) add a transition labeled by sia in parallel with
the transition labeled by sir to capture that LCj is not aware of
the attack, and that it continues operation as if attack did not
occur. The overall behavior of the system under attack GA is
now obtained as in the case of the insertion attack.

Running example continued. We illustrate the modeling of
the removal attack on removal of b0 while transmitting it from
LC2 to LC1, in our running example (b0a). Following the
proposed modeling approach, models of LC1 – S1

a, LC2 – S2
a

and cylinder B – G2
a under attack are derived as presented in

Fig. 8. Automaton GA representing the behavior of the system
under b0 removal attack is shown in Fig. 9 – it can be observed
that the removal of b0 leads to a deadlock, that stops the work-
cycle, but will not lead to catastrophic damage. �

V. IDENTIFICATION OF UNDESIRED SYSTEM BEHAVIOR

In systems in which two-way communication between LCs
exists – i.e., where Si not only receives information from,
but also sends information to other LCs in the network,
insertion attacks will be eventually revealed. Using our running
example, this can be observed e.g., in the case of S1 that in
regular operation (i) at state 1, receives b0 from S2, while S2

transits from state 5 to 6, and (ii) sends a1 to the S2 during the
transition from state 3 to state 4, while S2 is at the state 6 (Fig.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 7

TABLE II
RUNNING EXAMPLE: Ωk

c DEFINITION

CD1 w1
c,1 = wr1(ama0ap)∗bp, w1

c,2 = wr1(amap)∗bp
where wr1 = wrbpb1bmb0ap(a1ama0ap)∗

CD2 w2
c,1 = wr2am, w2

c,2 = wr2b1am, w2
c,3 = wr2b1bmam

where wr2 = wrbpb1bmb0apa1bp(b1bmb0bp)∗

CD3 w3
c,1 = wr3bm, w3

c,2 = wr3b1bmb0apa1bpbm
where wr3 = wrbp

13 am

a0

7

a1

apbp1 2st 3 4 5b1 bm b0 6

bp14 15st 16 17 18b1 bm b0

12 11 10 b1bmb0 89 bp

22 21 b1bmb0 1920 bp

a1 a1 a1 a1 a1

ap ap ap ap ap

am am am am

a0 a0 a0 a0

d6

d1 d2 d3 d4 d5

d11

d10 d9 d7d8

CD2 CD2

Fig. 10. Running example - b0 insertion attack: Automaton Obs(GAdet)
that represents all possible system behaviors under b0 insertion attack.

3d-e). Now, let’s assume that S1 is attacked by b0 insertion
attack – i.e., inserting event b0a – while at state 1; then, S2

did not reach state 6. This is represented in Fig. 7c in states 1-
5 corresponding to states (1, y, 1, u) in GA from Fig. 6. If S2

reaches state 6 (and sends real b0) before S1 reaches state 4,
S1 will receive real b0 while at state 2 or 3, and attack will be
revealed; this is represented by transitions from states 18 and
23 to state d1 in Fig. 7c. As an alternative, if S1 comes into
state 4 before S2 enters state 6 (i.e., before it sends real b0), it
will send a0 to S2 that is not in the correct state and the attack
will be revealed again as illustrated on transitions from states
19-23 to d2 in Fig. 7c. Thus, the attack is detected at one of
the states corresponding to GA states (3, y, 2, u), (x, 5, z, 5)
(Fig. 6). To summarize, by implementing Si

adet instead of Si

at LCs, the insertion attacks will be detected at some point for
systems in which two-way communication is present.

Note that when LCs have, both, sensor and actuator signals,
two-way communication is always present. On the other hand
if only actuators or sensors are mapped to LC, two-way
communication is introduced with acknowledgment signals
used for safety reasons. Thus, the attack will be detected
at some point. Nevertheless, between attack occurrence and
detection, in general, the system will not behave as desired.
The question is whether the system behavior after attack will
lead to significant damage, e.g, to the collision of systems’
elements or manufactured parts damage.

System behaviors that lead to Catastrophic Damage CDk,
k ∈ 1, ...M can be described by a set of undesired event strings
Ωk

c = {wk
c,1, ...w

k
c,lk
}. The question is, whether the system

will exhibit a sequence from Ωk
c , i.e., will CDk occur under

attack event sia before the attack is revealed. Namely, if sia
potentially leads to CDk, than communication of sir between

a0

bp1 2st 3 4b1 bm

bm13 am 12 11b0

7

a1

ap5 b0 6

10 b1 89 bp

16 17 d12

d15 d14

bp bp

b1 b1

bm bm

b0 b0

ap a1

CD1

18 19 d13

14 15 d11

ap

ap

a1

a1
bp14 15st 16 17 18b1 bm

b0

22 21 b1bm
b0

1920 bp

a1 a1 a1 a1 a1

ap ap ap ap ap

am am am am

a0 a0 a0 a0

d16
d21 d20 d19 d18 d17

d6
d7 d8 d10d9

CD2 CD2

17 16ama0d2

d4 d5

b1 b1

bm bm

b0 b0

15 14ama0d1

19 18ama0d3

bp bp

a0 insertion
a1 insertion
b0 insertion

Fig. 11. Running example - Obs(GAUdet) that represents all possible system
behaviors under a0, a1, and/or b0 insertion attacks.

LCs has to be protected. To answer the question, we employ
the automaton GAdet that represents the system behavior under
the attack event sia. This automaton incorporates states for
detection of the event being received at a wrong state, and it
is obtained from Sadet and Ga, as GAdet = Sadet ×Ga.

Here, GAdet contains the unobservable event4 sia that will
break the chain of events from Ωk

c and cannot be directly
used for checking whether the system will exhibit the be-
havior specified by Ωk

c , since the strings from Ωk
c do not

contain sia. Event sia could be easily eliminated from GAdet

by a natural projection. However, this could lead to generation
of a nondeterministic automaton; to solve this issue and to
preserve language equivalence, observer Obs(GAdet) of GAdet

should be generated [37]. If Obs(GAdet) accepts any string
from Ωk

c , than CDk could happen during the sia attack, and
communication of sir should be protected, as summarized
in Procedure 1. It should be noted that Obs(GAdet) is used
offline, during system design, to model the behavior of the sys-
tem under attack and to identify communication channels that
require protection. The observer that considers all insertion
attacks saj simultaneously, is obtained from GAUdet, and the
language L(Obs(GAUdet)) represents the union of languages
L(Obs(GAjdet))

We illustrate the use of Procedure 1 on our running example.

Running example continued. In the running example, three
insertion and three removal attacks could occur – a0 and
a1 on communication from LC1 to LC2, and b0 on com-
munication from LC2 to LC1. The regular cycle of the sys-
tem can be presented by string wr ∈ Σr, where Σr =
{st(bp b1 bm b0 ap a1 bp b1 bm b0 am a0)∗, st}. Mechanical
design of the system (Fig. 1a) is such that marker can come
into the position I to take marking liquid and leave it either in

4By design, the system is not aware that attack signals are attack; thus these
are not observable events.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 8

TABLE III
CASE STUDY: Ωk

c DEFINITION

CD1 w1
c,1 = wr1ap, w1

c,2 = wr1bmap, w1
c,3 = wr1bmb0bpap

where wr1 = wrbpb1cp(bmb0bpb1)∗

CD2 w2
c,1 = wr2am, w2

c,2 = wr2b1am, w2
c,3 = wr2b1bmam

where wr2 = wrbpb1cpbmb0apa1bp(b1bmb0bp)∗

CD3 w3
c,1 = wr3(ama0ap)bp, w3

c,2 = wr3(amap)∗bp
where wr3 = wrbpb1cpbmb0ap(a1ama0ap)∗

CD4 w4
c,1 = wr4bp

where wr4 = wrbpb1cpbmb0apa1(bpb1bmb0)∗am

1 2cp

a)

cm 4

b1

b1

cm

1 2

3

c)

cp

13

bp

b0

a0

1 2st 3

12

4

11

5

10

b1 cp bm

b1cmbm

7

8

a1

6

9

b0

bp

b)

Fig. 12. Case study: a) Automaton G3 representing gripper C, b) Automaton
S2 representing LC2, c) Automaton S3 representing LC3.

horizontal or in vertical direction (note that in regular work-
cycle approaching and leaving are in vertical direction). On
the other hand, it can enter and leave position II only in ver-
tical direction; otherwise the marking liquid could be diffused
over the part thus endangering marking quality. Furthermore,
to ensure part marking, it is necessary that cylinder B reaches
end position before retracting at both, position I and II. Thus,
there exist three situations that endanger the quality of the
process: (i) CD1 - marker enters position II from horizontal
direction, (ii) CD2 - marker leaves position II in horizontal
direction, and (iii) CD3 - cylinder B retracts before reaching
end position. For each of these situations, events strings sets
Ωk

c can be identified as presented in Table II.
Obs(GAdet) that contains all possible consequences of

insertion attacks on b0 is presented in Fig. 10. It is obtained
from GAdet = Sadet×Ga, where Sadet = S1

adet||S2
adet (Fig. 7)

and Ga = G1
a||G2 (Fig. 5b and Fig. 3b); states d1 - d11

are derived from states d in S1
adet and/or S2

adet. In case of
b0 insertion attack CD2 could occur (strings w2

c,1, w2
c,2 and

w2
c,3). Fig. 11 represents Obs(GAUdet); it can be observed

that in the case of a1 insertion attack, the occurrence of
CD1 is possible (string w1

c,1). Nevertheless, a0 insertion attack
will not have catastrophic effect on the system performance.
Furthermore, neither of insertion attacks would cause CD3.
All three removal attacks will lead to deadlock, as presented
in Fig. 9 for b0 removal attack. System behavior models
are similar in the case of a0 or a1 removal attacks. Thus,
removal attacks will lead to none of CDk. Consequently, the
communication of b0 and a1 should be protected, while for
a0 encryption is not necessary. �

VI. INDUSTRIAL CASE STUDY

We consider a case study that refers to the manipulator
obtained by reconfiguring the marking device from our running
example as presented in Fig. 1b. We also considered a more
complex system with concurrent processes (specifically, the
case study from [31]), and similar results were obtained. Due

b0bp1 2st 3 4 5b1 cp bm 6

15 am 14 13 12 cmbmb0 11 b1

7

10

8

9

20

a1

d5

16 17 18

a1 a1 a1

d7

d1 d2 d3

19

a1

d4

21

a1

d6

26 25 24 23 22

a0 a0 a0 a0 a0

d13

d12 d11 d10 d9 d8

ap ap ap ap ap ap

b0

ap

a1

bp

st bp b1 cp bm

amamamamam

bpb1cmbmb0

a0

CD1

CD2

Fig. 13. Case study – Obs(GAdet): b0 insertion attack on LC1.

to the space constraint, the detailed system analysis for the
second case study has been omitted from this work.

The manipulator has two translational degrees of freedom
realized by smart cylinders A and B as in running example
(Table I). It is also equipped with a smart vacuum gripper C
that is controlled by a monostable dual control valve 3/2, and
has integrated LC3 with mapped signal cp for part gripping
and cm for part releasing. Manipulator moves elastic part from
position I to II and performs the following work cycle:

B + C + B − A+ B + C − B − A− (9)

where cylinder activities are denoted as in (1), whereas C+
refers to part gripping and C− to part releasing. Work cycle
is started by pressing start switch (st) mapped to LC2.

A. Attack Modeling and Identification of Undesired System
Behaviors

Following the introduced modeling approach, automata G1,
G2 and G3, representing all possible legal behaviors of
cylinders A and B, and gripper C are generated. G1 and
G2 are the same as in the running example (Fig. 3a-b),
whereas G3 has the following set of events E3 = E3

o =
E3

c = {cp, cm} and it is shown in Fig. 12a. Local controllers
LC1, LC2 and LC3 impose supervisors S1, S2, and S3,
respectively. Supervisor S1 is the same as in the running
example (Fig. 3d) and has event set E1

s = {ap, a1, am, a0, b0}
with the event b0 = c12,1 that is communicated from LC2.
Supervisor S2 (Fig. 12b) is based on the following events set
E2

s = {st, bp, b1, bm, b0, a0, a1, cp, cm} and it has four com-
municated events: (1) a0 = c21,1 and a1 = c21,2 received from
LC1, and (2) cp = c23,1 and cm = c23,2 received from LC3.
Finally, S3 (Fig. 12c) contains the events E3

s = {cp, cm, b1},
where b1 = c32,1 is received from LC2. Note that gripper C
does not contain sensors and that acknowledgment events cp
and cm are sent from S3 to S2 for safety reasons to ensure
two-way communication in S3 as elaborated in Section V.

The strings wr ∈ Σr, where Σr = {st(bp b1 cp bm
b0 ap a1 bp b1 cm bm b0 am a0)∗, st} define regular cycles
of the system. On the other hand, catastrophic damages could
happen in the following scenarios (described by events string
sets wk

c,lk
, k ∈ {1, 2, 3, 4} defined in Table III):

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 9

b0bp1 2st 3 4 5b1 cp bm 6

15 am 14 13 12 cmbmb0 11 b1

7

10

8

9

ap

a1

bp

a0

19 18ama0d2

23 22ama0d1

bp bp

b1b1

cp cp

bmbm

b0 b0

b)

17 16ama0d3

d4 d5

21 20ama0d1

18 19

bp bp

b1 b1

cm cm

d2

22 23 d3

ap a1

ap a1

b0 b0

bm bm

CD1

b0bp1 2st 3 4 5b1 cp bm 6

15 am 14 13 12 cmbmb0 11 b1

7

10

8

9

ap

a1

bp

a0a)

16 17

d4 d5

d1

20 21 d3

ap a1

ap a1

Fig. 14. Case study - Obs(GAdet): a) a1 and b) a0 insertion attack on LC2.

CD1 manipulator with gripped part in position I tries to
advance cylinder A before retracting cylinder B,
CD2 manipulator in position II tries to retract A before
releasing part and before retracting B,
CD3 manipulator tries to put down the part while moving it
from position I to position II,
CD4 manipulator does not leave the part in position II and
tries to put it down while moving it from position II to I.

Observers for insertion attacks: (1) b0 and (2) a1 and a0 are
shown in Fig. 13 and Fig. 14, respectively. From these figures,
it can be observed that CD1 can appear during b0 insertion
attack on LC1 (w1

c,1 and w1
c,2 on transitions from 5 to 20 and

6 to 21 - Fig. 13) and during a1 insertion attack on LC2 (w1
c,3

and w1
c,1 on transitions from 16 to 17 and 18 to 19 - Fig. 14a).

Furthermore, CD2 can occur during b0 insertion attack on LC1

(w2
c,1 and w2

c,2 on transitions from 10 to 23 and 11 to 24 -
Fig. 13). Other insertion attacks (observers are omitted due to
space limitation) will not lead to CDs. Furthermore, removal
attacks will lead to immediate deadlock and will not cause
any damage. Thus, transmissions of b0 from LC2 to LC1 and
of a1 from LC1 to LC2 should be protected.

B. Experimental Validation

We experimentally evaluated our approach to attack mod-
eling and detection on a real-world industrial case-study –
industrial manipulator shown in Fig. 15. Each actuator (two
cylinders and gripper) represents a smart device with its own
LC, where the mapping of sensors and actuators is captured
in Table I for cylinders A and B, while cp and cm are mapped
to LC3 (i.e., the gripper’s LC).

Hence, the control system of the manipulator from Fig. 15 is
implemented using three wireless nodes (LCs); we employed
ARM Cortex-M3 microcontroller boards that communicate
over IEEE 802.15.4-compliant wireless transceivers. LC1-LC3

implement S1
adet, S

2
adet, and S3

adet obtained from S1 (shown in
Fig. 3d), S2 (Fig. 12b), and S3 (Fig. 12c) by adding the attack

a) b) 0 1 2 3 4 5 6 7 8

a0

a1

ap

b0

b1

bp

cp

time [s]

1
Fig. 15. Industrial case study: a) Experimental installation; b) Timing diagram
capturing inputs and outputs of the system in a scenario without attack.

detection state. On the entrance to the state d at any of the LCs,
the system stops immediately. Timing diagram capturing the
sequence of controllable and uncontrollable events acquired
from the real-world manipulator during a regular work-cycle
(i.e., without attack) is presented in Fig. 15; due to space
constrains, we do not show am, bm, and cm signals, as they
are only inverted signals of the ap, bp, and cp, respectively.

In addition to wireless nodes implementing the distributed
controllers, the experimental installation also contains the
fourth LC, based on the same ARM board, which is used as an
attacker. The attacker is completely aware of the system design
and performance, as it can eavesdrop all communication
between control LCs and has the knowledge of the LCs design.
Thus, the attacker is capable of crafting attacks that will not
be immediately revealed. To validate the proposed method for
attacks modeling and detection, using the attack LC, we have
implemented all attacks on the manipulator from the case-
study (i.e., previous subsection). The observed executions of
the system were completely compliant with the previously
described observers (in Figures 13 and 14).

For example, in Fig. 16 we present the timing diagrams
experimentally acquired from the system in the presence of
attacks; specifically, we illustrate system performance under
b0 and a1 insertion attacks launched at different time instants;
note that the attacks may have different impact based on
the timing instance in which they are launched. We first
illustrate system execution under the b0 insertion attack that
was activated at time t = 4.55s, resulting in the sequence
wr bp b1 cp ap bm b0,5 as shown in Fig. 16a, which
corresponds to transitions through states 5, 20, 21, d7 from
Fig. 13 before attack detection at d7; this attack leads to CD1.

On the other hand, b0 insertion attack at time t =
7.31s results in the event sequence, shown in Fig. 16b:
wr bp b1 cp bm b0 ap a1 bp b1 cm am bm b0; this reflects
transitions through states 12, 25, 26 before detection at d13
(Fig. 13) and does not lead to any catastrophic damage.

Similarly, a1 insertion attacks at times t = 5.40s and
t = 5.86s lead to the event sequences from Fig. 16c-d:
(i) wr bp b1 cp bm b0 ap bp b1 a1 corresponding to
transitions 8, 17, 19, d2 in the observer from Fig. 14a, and
(ii) wr bp b1 cp bm b0 ap bp b1 cm bm b0 a1 corresponding
to the transitions 8, 17, 19, 21, 23, d5 in the observer from

5Under b0 insertion attacks, the occurrence of uncontrollable events a1
or a0 after attack detection is caused by the controllable events ap/am and
system inertia.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 10

a0

a1

ap

b0

b1

bp

cp

time [s]

a)

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

a0

a1

ap

b0

b1

bp

cp

time [s]

b)

0 1 2 3 4 5 6 7 8

a0

a1

ap

b0

b1

bp

cp

time [s]

c)

0 1 2 3 4 5 6 7 8

a0

a1

ap

b0

b1

bp

cp

time [s]

d)

attack detection

Fig. 16. Case study: experimentally captured timing diagrams of the inputs
and outputs of the manipulator in the presence of: (a-b) bo insertion attacks,
and (c-d) a1 insertion attacks at different time instants.

Fig. 14a before attack detection. Neither of the illustrated a1
insertion attacks leads to catastrophic damage of the system.

VII. DISCUSSION AND CONCLUSION

In this paper, we have focused on security challenges in
design of sequential control systems for industrial automa-
tion, where the control is distributed over IIoT-enabled smart
devices. We have presented a method for modeling relevant
attacks on communication between such Local Controllers
(LCs), which share information about local events to ensure
their coordination and the desired overall system operation.
We have focused on event-insertion and event-removal attacks
that allow us to capture a wide-range of standard attacks on in-
dustrial systems, such as Denial-of-Service attacks, false-data
injection attacks, as well as Man-in-the-Middle attacks. We
have considered attacks that cannot be immediately detected,
in order to have significant impact on system operation, and for
such attacks we have presented methods to model their impact
on the system. To achieve this, we have employed a standard
Supervisory-Control Theory (SCT) framework that is widely
adopted for modeling of sequential control systems used
for industrial automation; this allows for modeling of both
physical behavior of smart IIoT-enabled devices as well as
cyber behavior of their LCs in the presence of the attacks.

In the considered case studies, we have shown that stealthy
event-removal attacks lead to system deadlock; the reason is
that the considered systems for safety reasons already employ
two-way communication where every command is followed
by either a corresponding sensing event or a communication
acknowledgment event. The deadlock is immediate for such
systems that do not have parallel (concurrent) processes since
in these processes there is no branching in input and output
sequence, and removing any actuation command or sensing
event would prevent continuation of the system execution.

On the other hand, in such systems (i.e., with such two-
way communication) that do contain parallel processes, the
deadlock is immediate on the attacked branch, whereas the
parallel branches continue work-cycle until they converge with

the attacked branch; the deadlock on the whole system occurs
at the convergence point.6 It should be noted that concurrent
processes in sequential control are parallel in their nature
and do not impose any time-related, mechanical or other
constraints on branch parallelism that could lead to security
related issues.

Furthermore, we have shown that due to two-way commu-
nication between LCs, event-insertion attack can be eventually
revealed using the developed detection mechanism. Never-
theless, between attack occurrence and detection, the system
can exhibit undesired behaviors that could result in significant
damage. Hence, we have provided a method to identify events
whose communication should be protected, to ensure satisfi-
able system operation in resource-constrained systems, in the
presence of attacks.

The proposed method is experimentally verified using a real-
world case study with three LCs. For the systems with higher
number of LCs and with higher complexity of control tasks
where a large number of commands are executed between
subsequent communications, the sequence of events can be
modeled by higher level of abstraction, such as macro steps
in Grafcet [38]. In this way a hierarchical structure can be
introduced into events. Our future efforts will include timing-
based analysis of the system under attacks, and the use of
(time) intermittent authentication to protect communication.

REFERENCES

[1] H. Kagermann, W. Wahlster, and J. Helbig, Recommendations for
implementing the strategic initiative INDUSTRIE 4.0., 2013. [Online].
Available: http://www.acatech.de

[2] H. ElMaraghy, G. Schuh, W. ElMaraghy, F. Piller, P. Schnsleben,
M. Tseng, and A. Bernard, “Product variety management,” CIRP Annals
- Manuf. Technol., vol. 62, no. 2, pp. 629 – 652, 2013.

[3] Y. Koren, X. Gu, and W. Guo, “Reconfigurable manufacturing systems:
Principles, design, and future trends,” Frontiers of Mech. Eng., vol. 13,
no. 2, pp. 121–136, 2018.

[4] V. Lesi, Z. Jakovljevic, and M. Pajic, “Towards plug-n-play numerical
control for reconfigurable manufacturing systems,” in IEEE ETFA, 2016.

[5] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
internet of things (iiot): An analysis framework,” Computers in Industry,
vol. 101, pp. 1–12, 2018.

[6] M. Cheminod, L. Durante, and A. Valenzano, “Review of security issues
in industrial networks,” IEEE Trans. Ind. Informat., vol. 9, no. 1, pp.
277–293, 2013.

[7] IIC, The Industrial Internet of Things Volume G1: Reference
Architecture, 2017. [Online]. Available: https://www.iiconsortium.org

[8] V. Lesi, I. Jovanov, and M. Pajic, “Security-aware scheduling of em-
bedded control tasks,” ACM Trans. Embedded Comput. Syst., vol. 16,
no. 5s, 2017.

[9] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE
Trans. Wireless Commun., vol. 7, no. 6, pp. 2180–2189, 2008.

[10] Y. Zou and G. Wang, “Intercept behavior analysis of industrial wireless
sensor networks in the presence of eavesdropping attack,” IEEE Trans.
Ind. Informat., vol. 12, no. 2, pp. 780–787, 2016.

[11] L. Zhou, K. . Yeh, G. Hancke, Z. Liu, and C. Su, “Security and privacy
for the industrial internet of things: An overview of approaches to
safeguarding endpoints,” IEEE Signal Process. Mag., vol. 35, no. 5,
pp. 76–87, 2018.

[12] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A se-
cure control framework for resource-limited adversaries,” Automatica,
vol. 51, pp. 135–148, 2015.

[13] A. O. De S, L. F. R. D. C. Carmo, and R. C. S. Machado, “Covert
attacks in cyber-physical control systems,” IEEE Trans. Ind. Informat.,
vol. 13, no. 4, pp. 1641–1651, 2017.

6As captured in Section VI, we have also performed security analysis for
a system with parallel processes. However, due to the space constraints, a
detailed description of the example of such system is omitted from this paper.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. X, NO. X, XX 202X 11

[14] L. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection and
mitigation of classes of attacks in supervisory control systems,” Auto-
matica, vol. 97, pp. 121–133, 2018.

[15] P. M. Lima, M. V. S. Alves, L. K. Carvalho, and M. V. Moreira,
“Security against network attacks in supervisory control systems,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 12 333–12 338, 2017.

[16] R. Su, “Supervisor synthesis to thwart cyber attack with bounded sensor
reading alterations,” Automatica, vol. 94, pp. 35–44, 2018.

[17] M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control of
discrete-event systems under attacks,” Dynamic Games and Appl., 2018.

[18] R. Fritz and P. Zhang, “Modeling and detection of cyber attacks on
discrete event systems,” IFAC-PapersOnLine, vol. 51, no. 7, pp. 285–
290, 2018.

[19] Q. Zhang, Z. Li, C. Seatzu, and A. Giua, “Stealthy attacks for partially-
observed discrete event systems,” in IEEE ETFA, 2018, pp. 1161–1164.

[20] R. M. Ges, E. Kang, R. Kwong, and S. Lafortune, “Stealthy deception
attacks for cyber-physical systems,” in 2017 IEEE 56th Annu. Conf. on
Decision and Control, CDC 2017, 2018, pp. 4224–4230.

[21] Y. Wang, A. K. Bozkurt, and M. Pajic, “Attack-resilient supervisory
control of discrete-event systems,” CoRR, vol. abs/1904.03264, 2019.
[Online]. Available: http://arxiv.org/abs/1904.03264

[22] P. Lima, M. Alves, L. Carvalho, and M. Moreira, “Security against
communication network attacks of cyber-physical systems,” J. Control,
Autom. Electr. Syst., vol. 30, no. 1, pp. 125–135, 2019.

[23] R. Fritz, P. Schwarz, and P. Zhang, “Modeling of cyber attacks and a
time guard detection for ics based on discrete event systems,” in ECC
2019, 2019, pp. 4368–4373.

[24] A. Rashidinejad, B. Wetzels, M. Reniers, L. Lin, Y. Zhu, and R. Su, “Su-
pervisory control of discrete-event systems under attacks: An overview
and outlook,” in ECC 2019, 2019, pp. 1732–1739.

[25] P. Ramadge and W. Murray Wonham, “The control of discrete event
systems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[26] P. M. Lima, L. K. Carvalho, and M. V. Moreira, “Detectable and
undetectable network attack security of cyber-physical systems,” IFAC-
PapersOnLine, vol. 51, no. 7, pp. 179–185, 2018.

[27] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and
G. Pappas, “Robustness of attack-resilient state estimators,” in 2014
ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS
2014, 2014, pp. 163–174.

[28] Y. Mo, R. Chabukswar, and B. Sinopoli, “Detecting integrity attacks on
scada systems,” IEEE Trans. Control Syst. Technol., vol. 22, no. 4, pp.
1396–1407, 2014.

[29] Y. Mo, T. H.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and
B. Sinopoli, “Cyber–physical security of a smart grid infrastructure,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 195–209, 2012.

[30] L. Ricker, S. Lafortune, and S. Genc, “Desuma: A tool integrating giddes
and umdes,” in Proceedings - Eighth International Workshop on Discrete
Event Systems, WODES 2006, 2006, pp. 392–393.

[31] Z. Jakovljevic, V. Lesi, S. Mitrovic, and M. Pajic, “Distributing sequen-
tial control for manufacturing automation systems,” IEEE Trans. Control
Syst. Technol., pp. 1–9, 2019.

[32] Y. Qamsane, A. Tajer, and A. Philippot, “A synthesis approach to
distributed supervisory control design for manufacturing systems with
grafcet implementation,” Int. J. of Prod. Res., vol. 55, no. 15, pp. 4283–
4303, 2017.

[33] R. David and H. Alla, Discrete, continuous, and hybrid petri nets
(second edition). Springer Berlin Heidelberg, 2010.

[34] F. Schneider, “Enforceable security policies,” in Foundations of Intrusion
Tolerant Systems, OASIS 2003, 2003, pp. 117–137.

[35] M. Droste and R. Shortt, “From petri nets to automata with concurrency,”
Applied Categorical Structures, vol. 10, no. 2, pp. 173–191, 2002.

[36] M. Cantarelli and J.-M. Roussel, “Reactive control system design using
the supervisory control theory: Evaluation of possibilities and limits,” in
Proc. - 9th Int. Workshop on DES, WODES’ 08, 2008, pp. 200–205.

[37] C. Cassandras and S. Lafortune, Introduction to discrete event systems.
Springer US, 2008.

[38] IEC 60848:2013 GRAFCET specification language for sequential func-
tion charts, International Electrotechnical Commission Std., 2013.

Zivana Jakovljevic (M’18) received the Dipl. Ing.,
M.Sc. and Ph.D. degrees in mechanical engineering
from the Faculty of Mechanical Engineering, Uni-
versity of Belgrade, Serbia, in 1999, 2004 and 2010,
respectively.

She is currently Associate Professor and Head of
Laboratory for Manufacturing Automation at Faculty
of Mechanical Engineering, University of Belgrade,
Serbia, where she was the member of academic staff
since 2001. Her research interests include intelligent
manufacturing systems, cyber physical systems, in-

dustrial internet of things, distributed control, 3D vision systems in manufac-
turing automation, machine learning and non-stationary signal processing.

Vuk Lesi received his B.Sc. degree in electrical
and computer engineering from the University of
Belgrade, Serbia, in 2015, and his Ph.D. in electrical
and computer engineering from Duke University,
Durham, North Carolina, in 2019. His research inter-
ests span design and analysis of reconfigurable man-
ufacturing systems, distributed industrial automa-
tion, embedded and real-time control, and security-
aware safety-critical cyber-physical systems. He re-
ceived multiple recognitions including the Best Pa-
per Award at the 2017 ACM SIGBED International

Conference on Embedded Software (EMSOFT).
He is currently a Research Scientist at Security and Privacy Research, Intel

Labs, Hillsboro, Oregon. This paper was submitted for publication prior to
Dr. Lesi joining Intel Labs, and the views expressed do not necessarily reflect
those of Intel Corporation.

Miroslav Pajic (S’06-M’13-SM’19) received the
Dipl. Ing. and M.S. degrees in electrical engineering
from the University of Belgrade, Serbia, in 2003
and 2007, respectively, and the M.S. and Ph.D.
degrees in electrical engineering from the University
of Pennsylvania, Philadelphia, in 2010 and 2012,
respectively.

He is the Nortel Networks Assistant Professor
in Electrical and Computer Engineering Department
at Duke University, with a secondary appointment
in the Computer Science Department. His research

focuses on the design and analysis of high-assurance cyber-physical systems
with varying levels of autonomy and human interaction.

Dr. Pajic received various awards including the ACM SIGBED Early-Career
Award, IEEE TCCPS Early-Career Award, NSF CAREER Award, ONR
Young Investigator Award, ACM SIGBED Frank Anger Memorial Award,
Joseph and Rosaline Wolf Best Dissertation Award from Penn Engineering,
IBM Faculty Award, as well as seven Best Paper and Runner-up Awards. He
is an associate editor in the ACM Transactions on Computing for Healthcare
and a co-Chair of the 2019 ACM/IEEE International Conference on Cyber-
Physical Systems (ICCPS’19).

