You Can Find Geodesic Paths in Triangle Meshes by Just Flipping Edges

NICHOLAS SHARP and KEENAN CRANE, Carnegie Mellon University

This paper introduces a new approach to computing geodesics on polyhe-
dral surfaces—the basic idea is to iteratively perform edge flips, in the same
spirit as the classic Delaunay flip algorithm. This process also produces a
triangulation conforming to the output geodesics, which is immediately
useful for tasks in geometry processing and numerical simulation. More
precisely, our FLIPOUT algorithm transforms a given sequence of edges into
a locally shortest geodesic while avoiding self-crossings (formally: it finds a
geodesic in the same isotopy class). The algorithm is guaranteed to termi-
nate in a finite number of operations; practical runtimes are on the order
of a few milliseconds, even for meshes with millions of triangles. The same
approach is easily applied to curves beyond simple paths, including closed
loops, curve networks, and multiply-covered curves. We explore how the
method facilitates tasks such as straightening cuts and segmentation bound-
aries, computing geodesic Bézier curves, extending the notion of constrained
Delaunay triangulations (CDT) to curved surfaces, and providing accurate
boundary conditions for partial differential equations (PDEs). Evaluation
on challenging datasets such as Thingil0k indicates that the method is both
robust and efficient, even for low-quality triangulations.
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1 INTRODUCTION

A geodesic is the natural generalization of a straight line to a curved
surface: it is a trajectory of zero acceleration, or equivalently, a
path of locally minimal length [Polthier and Schmies 2006]. Accu-
rate geodesics are essential for tasks across science and engineer-
ing [Bose et al. 2011], and the ability to construct “straight lines”
on polyhedral surfaces helps generalize classic algorithms from 2D
computational geometry to curved surfaces (see for example Sec-
tion 6.3). To date, there has been significant work on finding minimal
geodesics, i.e., globally shortest paths between two points (Section 2).
In many applications, however, one desires a straight path different
from the globally shortest one—consider for instance straightening
a given cut graph or segmentation boundary (Section 6). Moreover,
shortest path algorithms cannot find geodesics of more interesting
topology, such as closed loops or curve networks (Figure 1, top right).
The aim in this work is hence not to find geodesics of globally mini-
mal length (which we cannot always guarantee—see Section 6.5),
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Fig. 1. We introduce an edge-flip based algorithm for computing geodesic
paths, loops, and networks on triangle meshes. The algorithm also yields a
triangulation containing these curves as edges, which can be used directly
for subsequent geometry processing (e.g., for cutting, or for solving PDEs).

but rather to find locally shortest curves within the given isotopy
class, i.e., to “pull the given curves tight.”

Importantly, geodesics are intrinsic: they do not depend at all
at how a surface is embedded in space. For instance, a straight
line drawn on a sheet of paper is still a geodesic if the paper is
bent, folded, or rolled into a tube. Likewise, consider unfolding a
pair of triangles ijk, jil into the plane. If we replace edge ij with the
segment k!l (performing an intrinsic edge flip), the intrinsic geometry
of the surface—and hence its geodesics—remains unchanged, even
though the mesh these triangles belong to may no longer admit
a facewise linear embedding into R3. This perspective provides
substantial flexibility in developing algorithms: it empowers us to

“let go” of the triangulation initially used to encode the surface, and

instead work with the much larger space of intrinsic triangulations
(Section 3.1) which need not be realizable in R3. The basic idea of
our algorithm, then, is to start with a path encoded as a sequence
of edges. We repeatedly perform intrinsic edge flips to straighten
this path (Figure 4, inset), until we ultimately obtain a geodesic.

Fig. 2. An intrinsic edge flip, which is the basic operation in our algorithm.
Note that we never need to actually embed the final, flipped triangulation.
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Fig. 3. FLiPOuUT shortens a path through three consecutive vertices by pulling
it as tight as possible (left, dashed line). To do so, it performs all valid edge
flips in the “wedge” of triangles (in blue) incident on the middle vertex i.
The curve y’ along the outside of the wedge (far right) is always shorter.

For an ordinary planar triangulation, our shortening operation is
easy to describe. At any vertex i where the path is not yet straight,
there will be a “wedge” of triangles of total angle less than 180°
(Figure 3, far left). The following procedure always shortens the
path, by locally pulling it tight:

o repeatedly flip any flippable edge out of the wedge (namely,
any edge contained in a convex pair of triangles), and

e replace the initial path y with the path y’ along the outside
of the wedge.

Because this procedure literally flips edges out of a wedge, we
call it the FLipOuT algorithm. Geodesics are found by repeatedly
applying FLIPOUT at non-straight vertices (Section 4). To extend this
operation to curved surfaces we require additional data structures
(Section 3), and must show that our local flipping procedure is
guaranteed to reduce length in the general case (Appendix A).

2 RELATED WORK

Literature on geodesic algorithms is well-covered by several sur-
veys [Peyré and Cohen 2005; Bose et al. 2011; Patané 2016; Crane
et al. 2020]. Broadly, some algorithms compute geodesic distance,
whereas ours finds geodesic curves which need not be minimal. Like-
wise, some algorithms interpret a mesh as an approximation of a
smooth surface (in the spirit of scientific computing), whereas we
view it as an exact description of the shape of interest (as often done
in computational geometry). In short, we find exact geodesics that
locally minimize length with respect to the given polyhedral geome-
try, and hence focus primarily on methods with similar capabilities.

2.1 Shortest Geodesics

Early algorithms for exact geodesics focused on the shortest path
problem: find globally shortest geodesics from each vertex to a
source. Such algorithms have roots in the strategy of Mitchell et al.
[1987]: start at the source, and use a Dijkstra-like traversal to track
“windows” of geodesic paths sharing a common history. This strat-
egy does not apply to loops or networks, but has been generalized
to polygonal sources [Bommes and Kobbelt 2007]. Kapoor [1999]
gives an optimal algorithm for the minimal geodesic between two
points, but it is prohibitively difficult to implement [Kirsanov 2008,
Section 2]. Importantly, we do not advocate use of FLIPOUT when
the goal is to compute the geodesic distance function—many other
algorithms are specialized to this task [Kimmel and Sethian 1998;
Surazhsky et al. 2005; Xin and Wang 2009; Crane et al. 2013; Ying
et al. 2013; Xu et al. 2015; Ying et al. 2014; Qin et al. 2016; Wang
et al. 2017; Ying et al. 2019; Adikusuma et al. 2020; Cao et al. 2020].
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Fig. 4. Our algorithm straightens an input edge path (top left) to an exact
polyhedral geodesic (bottom right) by systematically flipping edges of an
intrinsic triangulation (inset).

2.2 Curve Shortening

Closer to our goal, several methods shorten a given curve—typically
via an iterative process similar in spirit to the curve shortening flow
from differential geometry [Gage 1990]. Such methods are critical
in applications which do not seek shortest paths, as explored in
Section 6. Lagrangian methods represent curves via vertices that
can move freely along the surface or in R* [Hass and Scott 1994;
Martinez et al. 2005; Xin and Wang 2007; Appleboim et al. 2009; Xin
et al. 2011; Han et al. 2017; Liu et al. 2017a; Remesikové et al. 2019;
An 2019], whereas Eulerian methods encode curves as level sets of
a scalar function [Sethian 1989; Wu and Tai 2010; Zhang et al. 2010].
Many of these methods seek to numerically approximate geodesics,
whereas our method considers a discrete configuration space (the
flip graph of a triangulation) that includes the exact solution. It
hence avoids error-prone projection of approximate curves onto the
surface, and terminates in finitely many operations (Theorem 4.2).
From the viewpoint of discrete differential geometry [Crane and
Wardetzky 2017] it faithfully captures key features of smooth curve-
shortening flow: curves remain non-crossing and

shrink to geodesics (or points) in finite time (a .

la [Hass and Scott 1994]). It can also be used to <
reliably find geodesics of mathematical interest, - \

such as loops passing through a single vertex of

a convex solid [Athreya et al. 2020] (see inset).

/\/\/\AM

Fig. 5. Iterative averaging of continuous variables (here: coordinates in the
plane) can converge very slowly to a limit solution. We consider a discrete
state space, reaching the exact solution in finitely many steps.
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Fig. 6. Independently straightening each curve can introduce new crossings,
which is problematic if the curves are meant to represent region boundaries.
Our flip-based approach naturally preserves the given regions.

Like FLIpOUT, several methods transform a given curve into an
exact, locally shortest geodesic. Martinez et al. [2005] perform it-
erative local relaxation of continuous Lagrangian variables (Fig-
ure 5), which can be very slow to converge (Figure 17). Xin and
Wang [2007] and Xin et al. [2011] accelerate relaxation by find-
ing straight lines through unfolded triangle strips, yielding exact
paths and loops (resp.) after finitely many steps, and real-world
performance very similar to ours (Section 5.2.1). In contrast to these
methods, we encode curves via integer data on an evolving trian-
gulation, rather than floating-point coordinates on a fixed mesh.
Moreover, Lagrangian- and flip-based methods provide complemen-
tary functionality (Figure 6): Lagrangian methods allow curves to
cross (important when the input has crossings), whereas flipping
prevents crossing by construction (critical when curves represent,
e.g., cuts or region boundaries—see Section 6). Moreover, the flip-
based approach produces a significant asset that previous methods
do not: a triangulation conforming to the straightened curves. These
curves can hence be immediately used as cut or boundary curves
for subsequent mesh processing (Section 6).

2.3 Edge Flipping

Our method is also connected to Lawson’s greedy flip-based algo-
rithm for Delaunay triangulation [1977], which was generalized
by Rivin [1994, Section 10] to intrinsic Delaunay triangulations of
polyhedral surfaces [Kharevych et al. 2006; Dyer et al. 2007; Liu et al.
2015, 2017b]. Indermitte et al. [2001] and Bobenko and Springborn
[2007] show that an intrinsic Delaunay triangulation can always
be obtained via a finite number of flips; empirically, the number
of flips tends to be roughly linear in mesh size [Sharp et al. 2019b,
Figure 10]. FLipOuT exhibits analogous behavior: it always yields a
geodesic after finitely many flips (Theorem 4.2), and appears to take
about O(m!->) flips in practice, where m is the input path length
(Figure 16). Similar to Delaunay flipping, the crux of our termina-
tion proof is that there is a function which is reduced by each local
operation (namely, the path length), and that the set of geodesics
with bounded length is finite (Theorem 4.2). More broadly, flips
have proven to be a powerful tool in geometry processing [Fisher
et al. 2007; Sharp et al. 2019b], computational topology [Weeks 1993;
Bern et al. 2002; Erickson 2014; Bell 2016] and discrete differential
geometry [Rivin 1994; Springborn 2019], but to date have not been
used to compute geodesics.
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Fig. 8. Our path representation allows us to straighten paths that overlap
many times (top), or those that get pulled tight around endpoints of the
path itself (bottom).

3  PRELIMINARIES
3.1 Discrete Surfaces

We represent a polyhedral surface as an intrinsic triangulation T =
(M, €), where M gives the connectivity and edge lengths ¢ describe
the geometry, as detailed below. See Sharp et al. [2019b] for a more
thorough introduction to intrinsic triangulations.

3.1.1 Connectivity. We use M = (V, E, F)
to denote the combinatorics of a triangu-
lation with vertices V, edges E, and faces
F. Formally, by a triangulation we mean
a manifold two-dimensional A-complex in
the sense of Hatcher [2002, Section 2.1].
The vertices of an edge or triangle in a A-
complex are not required to be distinct—for
instance, it can contain a loop-edge connect-
ing a vertex to itself (see inset). Though such configurations do not
ordinarily appear in the input, they can arise due to subsequent
edge flips. A list of k + 1 indices denotes a k-simplex—for instance,
i is a vertex, ij is an edge, and ijk is a triangle (though in general,
distinct indices may refer to the same vertices). We use J'ik to denote
a triangle corner at vertex i of triangle ijk; two triangle corners are
edge connected if they share an edge, e.g., J'l.k and IIJ share edge ij.
Finally, an expression of the form a; = }};jx b;jx means that a value
a; at vertices is obtained by summing values b; ;. over all triangles
ijk containing i (and similarly for edges, etc.).

Fig. 7. A A-complex with
two vertices, four edges,
and two triangles.

3.1.2  Geometry. Though the geometry of a polyhedron is often
given by its vertex positions f : V — R3, we will need only the edge
lengths £;; := |fj — fil. In general, any collection of edge lengths
¢ : E — R that satisfy the usual triangle inequalities allow us
to locally construct each face as a triangle in the Euclidean plane.
From here, we can easily read off quantities such as the interior
angles Q{k at triangle corners, the angle sums ©; := 3} eF Q{k, and
the angle defects Q; := 2w — ©;, which provide a discrete analog of
Gaussian curvature. This intrinsic data is all we will need to compute
geodesics, though see Section 5.1 for comments about extracting
the final path.
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3.1.3 Intrinsic Edge Flips. Using an intrinsic triangulation enables
us to modify connectivity while exactly preserving the original in-
trinsic geometry. The only operation we need is an intrinsic edge flip
FLIPEDGE(T, ij), which replaces two triangles ijk, jil with the trian-
gles ilk, klj, and reads off the new length {4; from the planar layout
(Figure 2). Extrinsically, this new edge looks “bent”, but intrinsically
it is a perfectly straight geodesic along the input surface.

Most past work focuses on flipping non-Delaunay edges; serendip-
itously, such flips are always valid [Bobenko and Springborn 2007,
Proposition 11]). We flip edges for a completely different reason
(to compute geodesics), and must therefore carefully consider the
conditions under which an edge can be flipped.

' k Definition. An edge ij is flippable if i and j have

degree > 1, and the triangles containing ij form a

L j  convex quadrilateral when laid out in the plane.
flippable
(convex) . .
j These conditions ensure that we both maintain
a valid combinatorial triangulation (i.e., a valid A-
§ complex) and preserve the intrinsic geometry of

the original surface. Note that an ordinary, simpli-
cial input mesh cannot have degree-1 vertices. How-
ever, such vertices can still arise from a sequence
of edge flips, and in general it may not be possible
to construct geodesics without passing through a
j2k=1 non-simplicial triangulation. We therefore consider

not flippable  the more general case of a A-complex throughout.
(degree 1)

not flippable
(nonconvex)

3.2 Discrete Curves

3.2.1 Edge Paths. We represent curves as connected sequences of
directed edges, which we refer to as edge paths. We call the edges
of an edge path segments (reserving the word edge for mesh edges),
and the vertices of an edge path nodes (reserving the word vertex for
mesh vertices). Interior nodes are nodes not at path endpoints; e.g., a
closed loop has only interior nodes. A joint y .3, is a sequence of two
distinct segments (ab, bc). Joints are hence oriented, i.e., Yepa # Yabe-

Note that since the triangulation itself is mutable (via edge flips),
the set of curves that can be represented via edge paths is far larger
than the set of paths along edges of the input mesh. Most impor-
tantly, we can always represent a geodesic in the same isotopy class
as the given curve. To process input curves which might not be
aligned with mesh edges, one can either cut the mesh along the
curve (Figure 9), or simply snap the curve to nearby edges—yielding
a much smaller output triangulation.

mesh cut along curve

output geodesic

input curve

Fig. 9. Input curves not aligned with edges can be handled by either cutting
the mesh (as shown here) or just snapping to a nearby sequence of edges.
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Fig. 10. We consider any path of edges that is non-crossing, i.e., that can be
locally turned into a simple curve by a small perturbation.

3.2.2  Non-Crossing Curves. We also require that edge paths are
non-crossing, which is weaker than saying that they are simple (i.e.,
injective). In particular, a curve y is non-crossing if in an arbitrarily
small open neighborhood around any point we can make a con-
tinuous motion (formally: a homotopy) such that the restriction of
the new curve to this neighborhood is simple (Figure 10). In other
words: if all intersections are non-transversal.

Non-crossing curves include multiply-covered curves, i.e., those
that wind over the same edge several times (Figure 8). To encode
such paths, we store (i) the sequence of segments, and, (ii) for each
edge in E, an ordered list of segments crossing over this edge (Fig-
ure 11). This data does not play a role in the description or analysis of
our algorithm, and primarily serves to clarify implementation. A key
strength of our approach is that we will guarantee that non-crossing
curves remain non-crossing while a curve is being shortened; this
property is crucial for applications in geometry processing (Sec-
tion 6.1).

3.2.3  Wedges. A joint y,p. partitions the triangles around vertex
b into two sets (one of which may be empty), which we call wedges.
The degree deg(‘W) is the number of triangles in wedge ‘W, and any
edges on the wedge interior are incident on the wedge (for instance,
a degree-1 wedge has no incident edges). The associated wedge angle
a(‘W) is just the sum of interior angles at the common vertex i:

a(wy= 3 o, (1)
Jkew
The outer arc of a wedge ‘W is the collection of edges opposite any
corner in ‘W. A boundary wedge ‘W is any wedge that includes
edges on the boundary of the surface; here we define the wedge
angle to be a(‘W) := co, which helps simplify our algorithm.

Ry,
R
>

Uk W
8
N

Fig. 11. Left: A curve may include the same edge multiple times. To specify
its isotopy class, we store an ordered list of segments at each edge. Right:
We represent more general curve networks by just storing several curves.
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Fig. 12. Anatomy of a wedge. Flexible joints y;;x can be shortened, since
they are not “blocked” by other parts of the path.

Zﬂ“ and &' to denote the smaller and larger wedge

angles (resp.); if the two angles are equal, the designation of min/max
is arbitrary. We use ‘W, to denote the wedge to the left of y .,
and @, to denote the angle of “W,,... Finally, a joint y . in path y
is flexible if it is isotopic to the outer arc of ‘W, (Figure 12, bottom
right). More explicitly, y,p. is flexible if (i) no other segments from
y are incident on W, and (ii) both ab and bc are the leftmost
segments on their respective edges. Intuitively, a flexible wedge is
not “blocked” from moving by any other segments of the curve.

We use

3.24 Geodesics. A geodesic on a polyhedral surface is a curve that
cannot be made shorter by any local perturbation. Away from ver-
tices, a polyhedral geodesic just look likes a straight line when the
triangles it passes through are unfolded into the plane. A curve
passing through a positively curved vertex (Q; > 0) cannot be a
geodesic, since we can always make it shorter by going around the
cone tip. However, there are many locally shortest paths passing
through any negatively curved vertex (Q; < 0). In general, then, a
polyhedral geodesic is comprised of straight lines through triangle
strips, possibly meeting at vertices of nonpositive curvature. See
[Crane et al. 2020, Section 2.2.1] for further discussion.

3.2.5 Geodesic Edge Paths. To see if an edge path is a geodesic, we
need only examine its behavior at vertices. In particular, a flexible
joint y,p. can always be made shorter if a,. < 7 (by pushing it
into the wedge). Hence, we say that y,;,. is locally shortest if

a;;nin > . 2)

As expected, this definition implies that a locally shortest joint
cannot pass through a positively-curved vertex: we have

0y = a;}“in + aznax, (3)

(Note that a locally shortest node at a flat vertex is somewhat non-
generic: there would have to be a partition into two wedges of
angle exactly equal to z.) An edge path is then geodesic if every
interior node is locally shortest. This definition agrees with the
usual notion of locally shortest polyhedral geodesics considered in
other exact algorithms [Mitchell et al. 1987, Lemma 3.5], rather than
the straightest definition studied by Polthier and Schmies [2006].

and since a;’“ax > ™" > 7, we have @) > 27, ie, Qp < 0.
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4 ALGORITHMS

We now give the general version of the FLipOuT algorithm, which
provably reduces length at any node that is not already locally short-
est. We can then find geodesic paths (Section 4.2), loops (Section 4.3)
and curve networks (Section 6.1) by greedily applying FLiPOUT un-
til Equation 2 holds at every interior node. Although an intrinsic
triangulation is used for computation, the final path is easily ex-
tracted either as a sequence of edge crossings on the input mesh, or
as points in R? (Section 5.1).

Throughout we consider a local isometric
unfolding of any wedge ‘W into the plane, as
shown in the inset. However, this unfolding
never needs to be constructed explicitly, since
all quantities of interest can be obtained di-
rectly from the intrinsic edge lengths ¢. Let k :=
deg(‘W), and let a = ng, ny,...,n, = c be the
vertices along the outer arc. Fori = 1,...,k — 1,
let B; be the angle between edge n;—in; and edge n;n;+1 in ‘W.
Whenever an edge is flipped, these quantities are re-labeled as just
described. Note that in a general A-complex the elements in this
diagram may not all be distinct—for instance, one of the n; may be
equal to b. Appendix A examines such cases in detail.

4.1 Local Shortening by Edge Flips

Consider a path consisting of a single joint y, .. If the angle . is
less than 7, then we can always shorten the path by the simple edge
flipping procedure in Algorithm 1. This algorithm iterates through
edges incident on the smaller wedge W, “flipping out” any edges
with f; < 7 to remove them from the wedge, until §; > 7 at all
vertices ny, . .., ng_1. The process is visualized in Figure 13.

Algorithm 1 FLipOUT(T, Ygpc)

Input: A triangulation 7, and a flexible joint y,;. where a 5. < 7
and segments ab, bc are distinct.

Output: A shorter edge path ygporter cOnnecting a to c in an updated
triangulation 7.

: while any ; < = do

je minist f;i <7m

FLIPEDGE(T, bnj)

: end while

¢ Yshorter < (a, Ny, e w5 Ng—1, C)

. return 7, Yshorter

U W N =

C C
input flip flip shorter
edge edge path
b b
Yshorter
Yabe
a a

Fig. 13. An edge path that is not yet geodesic can always be shortened by
flipping edges incident on a non-straight vertex, as described in Algorithm 1,
and replacing the old path y,5. with the new path yshorter-
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Implementation is simplified by observing that the smallest index
j is at most one smaller than its value on the previous iteration,
because all earlier angles are unchanged. If deg(‘W,;.) = 1, the
wedge contains just a single corner ¢¢ and the new path is just the
edge ac. If deg(‘W,p) = 0, the path contracts along an edge. (In a
practical implementation we must also update the segment lists for
all edges on the wedge boundary.)

Importantly, FLIPOUT always reduces the path length:

THEOREM 4.1. When Algorithm 1 terminates, |Yshorter| < |Yabel
i.e., the new path is shorter than the input path.

Proor. Upon termination the angles f; are all
greater than or equal to 7. Hence, in the planar
layout, yshorter 1S @ convex curve contained in
the initial curve y,j. (see inset). A corollary of
Crofton’s formula [1868] is that for two nested
convex curves sharing endpoints, the inner one is
shorter. Since the planar layout is isometric, the
lengths of curves in this planar diagram exactly match the lengths
of edge paths on the surface, and thus |yghorter| < [Yabel- O

Of course one must also argue that Algo-
rithm 1 terminates in a finite number of steps,
and that each step is valid (i.e., edges that need
to be flipped are actually flippable). For a sim-
plicial complex, these facts are easy to establish:
the algorithm terminates because each flip de-
creases the degree of W,,; all flips are valid since f; < 7 and
Aape < 7, hence the edge diamond is convex (and there are no
degree-1 vertices in a simplicial complex). Additional machinery
is needed to prove termination and validity in the general case, as
described in Appendix A.

4.2 Geodesic Paths

Given an edge path yxy between vertices x and y, we can itera-
tively apply FLIPOUT to interior nodes to obtain an exact polyhedral
geodesic in finitely many steps (Theorem 4.2). Here, the subroutine
UPDATEPATH(Yx sy, ¥, ¥') simply replaces the old subpath y with
the new (shorter) subpath y’. In practice we maintain a priority
queue of flexible joints, sorted by smallest a.

Algorithm 2 MAKEPATHGEODESIC(T , yxesy)

Input: A triangulation 7~ and an edge path yxy, connecting ver-
tices x and y.
Output: A geodesic edge path yx«y in an updated triangulation 7.
1: while yxy is not geodesic do
2 Yabe < flexible joint in yxcy with smallest angle a,p,
3 T Yshorter < FLirOUuT(7, }/abc)
4 Yxoy < UPDATEPATH(Yx oy, Yabes Vshorter)
5: end while
6: return 7, Yxoy

Processing flexible joints means we flip only edges that are not
part of a path, and hence need not consider how flips should modify
the path. It also ensures that we preserve the isotopy class (and thus
the non-crossing property): since the joint y,p, is flexible, it can
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Fig. 14. Basic results from our method, where an initial path is shortened
to a geodesic by flipping edges. Inset values give the runtimes. All of the
resulting curves shown are exact polyhedral geodesics.

(by definition) be moved to the outer arc of its wedge W, via
an isotopy. One might worry, however, that we run out of flexible
joints before the path is geodesic. Fortunately this is not the case: if
a joint is not flexible, then either (a) it is blocked by some other joint
(or sequence of joints), in which case the outermost joint can be
shortened and removed, or (b) it is blocked by an endpoint, in which
case it is already locally shortest within its isotopy class. Finally, the
algorithm always finishes in finite time (though note that this proof
does not apply to closed loops—see Section 4.3):

THEOREM 4.2. Algorithm 2 terminates in finitely many iterations.

Proor. The path y; at iteration ¢ is a collection of segments
which are geodesic curves between vertices. We have |y;+1| < |y¢|
by Theorem 4.1, and will denote the initial (maximum) length by L =
[y0|- To show termination, we will argue that the set of possible paths
Yt is finite. Consider Gy, the set of all geodesic curves which connect
pairs of vertices and have length < L; this set is finite [Indermitte
etal. 2001, Prop. 1]. Let Ii, be the shortest curve in Gy, and observe
that all y; have at most nmax := |L/Inin] segments. Thus every
possible path y; is a collection of at most nyax geodesics from the
finite set G1, and there are finitely many such collections. O

Rather than running to completion, one can also terminate Algo-
rithm 2 when there is a sufficient length decrease, or a sufficiently
large @™, Doing so generates curves which are shorter/straighter
but not yet geodesic, akin to curve-shortening flow (Section 6.1).

4.3 Closed Geodesic Loops

Algorithm 2 can be used to find geodesic loops (Figure 15) with one
small modification. Near termination, a loop y might be comprised of
a single node i connected to itself via a loop-edge—but still have an
angle a?‘i“ < 7. This node violates the precondition of Algorithm 1,
since the incident segments are not distinct. Here we simply replace
the loop-edge with the two opposite edges of the triangle in the
wedge at i. This step makes y longer, but allows Algorithm 2 to
continue making progress (see Appendix B). The modified procedure
cannot get stuck: flexible joints can always be processed. However,
since the curve can now get longer, our proof of termination no
longer applies. In practice, we have always observed termination,
obtaining geodesic loops after a fairly small number of iterations.
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Fig. 15. Our method also applies to loops—here initials loop are shortened
to geodesics via edge flips.

5 EVALUATION
5.1 Experimental Setup

Implementation. Our implementation uses the geometry-central
(C++) mesh processing library [Sharp et al. 2019a]; timings reported
in figures are measured using a single core of an i7-4790K CPU on
a machine with 16GB RAM. To determine where the final geodesic
path crosses edges of the input triangulation we use the signpost
data structure from Sharp et al. [2019b], though one could also use
the data structure of Fisher et al. [2007]. In all experiments we in-
clude the cost of extracting the path in the timing, and verify that
the resulting path is indeed an exact geodesic, as detailed below.

Datasets. We ran experiments on the manifold, non-degenerate
models in the Princeton Shape Benchmark [Shilane et al. 2004] (~600
models), the MPZ dataset [Myles et al. 2014] (~ 100 models), and
the Thingi10k dataset [Zhou and Jacobson 2016] (~ 6200 models).

Task. We compute many geodesics by shortening randomly gen-
erated initial paths. For each mesh we perform 10 trials in which we
sample two random (connected, distinct) vertices on the mesh, com-
pute an initial edge path between them using Dijkstra’s algorithm,
shorten the path to a geodesic using Algorithm 2, and extract the
resulting path as a polyline along the input surface. Trials where
the initial path was already geodesic are omitted from timing plots.
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Fig. 16. We do not derive any worst-case bound for the number of edge
flips needed to straighten a particular path, but in practice our algorithm
scales well. On the MPZ dataset, the number of flips needed to make a path
a geodesic goes as m!->, where m is the initial path length.
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iterative FlipOut
relaxation (ours)
3.3 sec 17 ms

3,938 iterations
14k edge flips

4.5 million iterations

Fig. 17. For a near-straight curve far from the solution, iterative local re-
laxation a la [Martinez et al. 2005] converges very slowly. Our flip-based
scheme gives the exact result in finitely many iterations, and is 200x faster.

5.2 Performance

Our method is extremely fast in practice: typical

examples take a few milliseconds, large meshes

take only 10s of milliseconds (see inset), and

our most expensive experiment took just 0.5

seconds to shorten a 1500 segment path down 9ms

to a single-segment geodesic. As a point of refer- 2M faces

ence, straightening a shortest path to a geodesic

adds negligible overhead to initializing the path

via Dijkstra’s algorithm (about 1/10th the cost—

see Figure 18). Empirically, the number of edge flips to straighten
a path scales as O(m!->), where m is the number of initial path
segments (Figure 16). Since a mesh with V vertices has shortest
edge paths of average length m ~ VV, this translates to a roughly
O(V?-75) cost for straightening a shortest path between two vertices.

5.2.1 Performance Comparisons. We also compared performance
with other exact path straightening methods. Importantly, all re-
cent path straightening methods (with the exception of Martinez
et al. [2005]) cost significantly less than computing an initial guess
via Dijkstra’s algorithm. Hence, the relative cost of these methods
makes little difference for real-world use; other features such as
accuracy, robustness, and the type of inputs/outputs provided are
likely more important in practice. Note that we did not perform
direct comparisons with window-based methods, which are quite
fast but solve a fundamentally different problem (see Section 2.1).

Comparison to iterative relaxation. In our experiments, FLIPOuUT
was about 100x faster on average than the iterative relaxation
scheme of Martinez et al. [2005] (Figure 18); we used the recom-
mended stopping tolerance of € = 0.005 radians, but initialized via
Dijkstra rather than fast marching since this choice had no signifi-
cant effect on relative timings. The slow performance of iterative
relaxation might be attributed to the fact that the amount of progress
made on each iteration is not bounded away from zero (Figure 5),
whereas each FLIpOUT iteration decreases the size of a discrete set
of possible states (Theorem 4.2). Acceleration via L-BFGS can help,
but yields only approximate geodesics [Liu et al. 2017a, Figure 1]
and very similar performance to FLIPOUT (compare speedup relative
to Martinez et al. [2005] in Figure 18 with Liu et al. [2017a, Table 2]).
On the other hand, optimization-based schemes like these nicely
support user-defined penalties like anisotropic metrics.
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Fig. 18. On average, our method is about 100X faster than basic iterative
relaxation, and comparable to iterative unfolding. These histograms show
runtimes on the MPZ dataset for shortening an initial path to a geodesic,
normalized by the time to run Dijkstra’s algorithm between the endpoints.
Our method adds little additional cost on top of computing an initial Dijkstra
path; here only about 10% more.

Comparison to iterative unfolding. FLIPOUT also achieves com-
parable performance to the iterative unfolding scheme of Xin and
Wang [2007] (Figure 18), which computes exact shortest paths in
unfolded triangle strips; Xin et al. [2011] apply a similar technique
for loops. A possible explanation for the similar performance is that
these schemes construct similar sequences of geodesic polylines
between vertices. Yet in contrast to iterative unfolding, FLiPOuT
guarantees that curves remain non-crossing, and provides a con-
forming triangulation suitable for subsequent processing.

5.3 Floating Point Robustness

In exact arithmetic, FLIPOUT is guaranteed
to yield an exact geodesic after finitely
many iterations. Yet algorithms that are
provably correct in exact arithmetic can
still have trouble when implemented in
finite-precision floating point. For instance,
even CGAL’s implementation of Xin and
Wang [2009] can yield bogus results due
to floating point issues, as shown in the
inset where some vertices are erroneously
marked as unreachable [Kiazyk et al. 2015].
Likewise, if meshes are bad enough (as in
the inset, bottom), floating-point implemen-
tations of exact curve shortening algorithms can suffer from numer-
ical issues (e.g., iterating forever). Our implementation of FLipPOuT
yields a geodesic polyline to within 107* radians on 99.4% of trials
from Section 5.1; problem cases can all be attributed to extremely
skinny triangles in the input mesh. For comparison, our implemen-
tations of Xin and Wang [2007] and Martinez et al. [2005] achieve
success rates of 96.2% and 84.4% respectively, for the same task.
In the case of FLIPOuUT, challenging models might easily be dealt
with by applying the simple intrinsic mollification strategy recently
proposed in [Sharp and Crane 2020, Section 4.5]. On meshes with-
out near-degenerate triangles our floating point implementation of
FrLirOuT works perfectly—achieving, for instance, a 100% success
rate on the MPZ dataset.

009]

_UThingi10k #472044
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Fig. 19. Curve networks arise naturally as texture seams—here for instance
seams on 3D scans of a statue (top) and a panda humerus (bottom) are
straightened by our method while preserving the seam topology.

6 EXTENSIONS AND APPLICATIONS

We briefly explore applications enabled by our approach, many of
which require geodesics beyond shortest paths: straightening curves
that are far from minimal, working with closed loops or general
networks, preserving partitions or cut regions, or using a conform-
ing triangulation for subsequent mesh processing. Overall, a unified
framework for straightening curves inside a triangulation provides
a natural analog for constraining segments in a 2D triangulation—a
critical tool in 2D computational geometry (Section 6.3).

6.1 Curve Networks

A curve network is a collection of non-crossing paths and loops, with
endpoints meeting at fixed, marked vertices. Such networks arise
naturally when, e.g., segmenting a surface into regions, or cutting a
surface to flatten it—in such applications, generating intersecting
curves during straightening can render the output meaningless (Fig-
ure 6). Algorithm 2 can be applied to networks with essentially no
modification: we simply choose a joint from any curve to shorten
on each iteration. Since all curves are contained in the same trian-
gulation, the topology of the network is automatically preserved.
Figure 19 shows an example where jagged texture seams in a param-
eterization are naturally smoothed out by the shortening process.
Similarly, segmenting mesh faces yields unnatural, irregular bound-
aries; shortening these curves yields more plausible smooth part
boundaries (Figure 21). For segmentations, we stop the flow when
curves reach 90% of their original length, preventing regions from
drifting or contracting to a point.

Low-curvature seams are especially valuable for computational
fabrication, where designs are cut out of flat materials such as thin
plywood or sheet metal [Callens and Zadpoor 2018]—here jagged
seams may be difficult to manufacture. Accordingly, recent research
has sought to design smooth cuts [Lucquin et al. 2017; Sharp and
Crane 2018]. One approach is to connect special darts or cone points
via shortest paths [Kharevych et al. 2006]; we further improve these
cuts via straightening (Figure 22), and generate a conforming trian-
gulation which facilitates subsequent analysis (Section 6.4).
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Fig. 20. Our Algorithm 2 acts as curve-shortening flow; stopping the pro-
cedure early via a length or angle threshold generates straighter curves,
without drifting too far from the initialization or contracting to a point.
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Fig. 21. Face-based segmentations have jagged region boundaries—
straightening boundaries yields a more natural segmentation while preserv-
ing patch topology. A length threshold prevents excessive drift. Segmenta-
tions from Chen et al. [2009].
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Fig. 22. A common operation in computational fabrication is to cut and
flatten a shape to be manufactured from sheets of material. Our method
is perfectly suited to straighten an initial cut network along edges (left)
to a geodesic network (right), yielding a much more natural pattern for
fabrication (bottom).
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Fig. 23. Bézier curves are widely used to represent smooth curves in space.
Geodesic shortening provides the necessary operation to construct Bézier
curves on surfaces, via midpoint subdivision with de Casteljau’s algorithm.

6.2 Geodesic Bézier Curves

Morera et al. [2008] extend Bézier curves to polygonal surfaces—
such curves are useful for, e.g., annotation and geometric modeling.
Given a set of control points (connected by Dijkstra paths), a ge-
odesic version of de Casteljau’s algorithm transforms the control
polygon to a smooth Bézier curve by repeated application of the
following procedure:

(1) Shorten all curves between control points to geodesics

(2) Insert a new control point vertex at the midpoint between
each pair of old control points

(3) Un-mark all old control points except the first and last

(4) If there are > 2 points left, return to (1), and shrink the work-
ing set to exclude the first and last control points.

By using Algorithm 2 for step (1) as shown in Figure 23, we inherit
all the benefits of our flip-based scheme, such as the construction
of a conforming triangulation (Figure 26, bottom).

6.3 Intrinsic Constrained Delaunay Triangulation (iCDT)

In the plane, a constrained Delaunay triangulation (CDT) is a maxi-
mally Delaunay triangulation of a fixed set of points py . . ., pr € R?
and a prescribed set of segments, known as a planar straight line
graph—see Chew [1989] for a precise definition. The ability to in-
clude segments is critical for, e.g., meshing a simulation domain for
finite element analysis.

We generalize this idea to surface meshes, where the mesh ver-
tices play the role of the points p; (Figure 25), and straight segments
are replaced by geodesics. We call such input a polyhedral geodesic
curve graph (PGCG). Specifying this graph is slightly trickier than in
2D, since (i) there is not a unique geodesic between two endpoints,
and (ii) it is difficult for a user to provide segments that are already
geodesic. We hence take as input any collection of edge paths in the
same isotopy class as the desired PGCG (Figure 25, bottom left) and
apply our straightening procedure. We then apply the usual Delau-
nay flip algorithm (Lawson’s algorithm), but do not flip any edges
belonging to the PGCG. The result is an intrinsic constrained Delau-
nay triangulation (iCDT) (Figure 25, bottom center). As in the plane,
no new vertices need to be inserted to construct this triangulation,
and all prescribed (geodesic) segments are included.
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Fig. 24. Straightening a geodesic may introduce long skinny triangles (cen-
ter); applying intrinsic Delaunay refinement as a post-process yields a high
quality triangulation well-suited for subsequent computation (right).
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Fig. 25. In the plane, a constrained Delaunay triangulation (CDT) (top center)
contains a given set of input segments (top left); CDTs with good angle
bounds (top right) are critical for, e.g., numerical simulation. The intrinsic
triangulations produced by our geodesic straightening procedure extend
CDTs to surface meshes (bottom row).

6.4 Boundary Conditions for PDEs

Even after Delaunay flips, a geodesic CDT may contain poor-quality
triangles, making it ill-suited for calculations like solving partial dif-
ferential equations (PDEs). If greater element equality is desired we
can run intrinsic Delaunay refinement (Figure 25, bottom right), as
described by Sharp et al. [2019b]. Geodesic curves are split as though
they are boundary edges [Chew 1993; Shewchuk 1997]. This pro-
cess yields a triangulation where elements have good aspect ratios,
satisfy the intrinsic Delaunay property, and exactly conform to the
requested geodesic paths. In contrast to, say, slicing along geodesics
and retriangulating (a la Figure 29, left) or weakly enforcing bound-
ary conditions on the input mesh, the intrinsic triangulation can
be used directly for simulation and PDE-based geometry process-
ing via standard algorithms. For instance, Figure 22, bottom right,
shows a parameterization computed using the method of Spring-
born et al. [2008]; Figure 26 shows examples of solving a Poisson
equation subject to Dirichlet boundary conditions, and generating
a feature-aligned cross field (d la [Knoppel et al. 2013]).
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Fig. 26. An intrinsic triangulation conforming to geodesic or Bézier curves
can be used to directly enforce boundary conditions for PDE-based algo-
rithms. Here we compute the smoothest cross field aligned to a set of
geodesic paths (top), and solve a Poisson equation with Dirichlet boundary
conditions enforced along a geodesic Bézier curve (bottom).

6.5 Single Source Geodesic Paths

Our flip-based strategy can also be used to construct a tree of
geodesics from all vertices to a given source, all of which are ei-
ther minimal or very close to minimal. Remarkably, all of these
geodesics can be simultaneously realized by edges of a single in-
trinsic triangulation (Figure 27). The basic idea is to repeatedly run
Dijkstra’s algorithm from the source vertex, use FLIPOUT to shorten
a single flexible wedge, then recompute the shortest path tree until
convergence. However, we do not recompute the entire tree each
time—instead we incrementally straighten paths at the frontier of
the Dijkstra search, accepting a vertex only once it is connected to
the source by a geodesic. This procedure is guaranteed to yield a
geodesic tree in finite time by the same arguments as in Theorem 4.2.

Experimentally, this technique provides exact distances to most
vertices: for instance, in Figure 27 more than95% of geodesics are
minimal (up to a relative error in length of less than 1076); of the re-
maining 5%, the maximum error was no more than 1.04%. However,
we did not compare against existing shortest geodesic algorithms
(Section 2.1), which are specifically tailored to this problem and are
likely more accurate/efficient. The intriguing observation here is
simply that the solution can be obtained via edge flips, and repre-
sented in a triangulation of the same size as the input.

This same technique also provides a logarithmic map from the
source, which gives the direction and distance one needs to walk
from the source vertex i to reach any given target vertex j (Fig-
ure 28). Such maps are valuable in geometry processing for tasks
from surface statistics to decaling [Schmidt et al. 2006; Sharp et al.
2019c; Herholz and Alexa 2019]. For each target vertex we locate the
ancestor edge in the geodesic tree which emerges from the source—
the direction of this edge in the tangent space of the source gives
the angular component of the logarithmic map, and the geodesic
distance gives the magnitude.
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Fig. 27. Our approach can also be used to find geodesics to all vertices
from a single source. Perhaps surprisingly, all of these geodesic edges exist
simultaneously in a single intrinsic triangulation.

single-source geodesic edges

logarithmic map

Fig. 28. Our FLIPOUT procedure can be used to efficiently introduce a ge-
odesic edge path from a single source to all other vertices (left). Reading
off distance to each vertex and the direction of the edges emanating from
the source yields a discretization of the logarithmic map (right). The cyclic
color palette encodes the angular component of the logarithmic map, while
stripes denote isocontours of its magnitude.

6.6 Comparison to Lagrangian Approaches

One could also try implementing the applications from this section
using a Lagrangian method, such as Martinez et al. [2005], Xin and
Wang [2007], or Xin et al. [2011]. Like FLipOuT, these methods yield
exact locally shortest geodesic paths (Figure 30) but with a funda-
mental difference: they do not produce a triangulation conforming
to the straightened paths. Moreover, inserting a Lagrangian curve by
“slicing” through triangles introduces additional vertices, whereas
FLipOUT preserves the input vertex set (which can be important for
downstream processing). This property in turn yields smaller and
higher-quality triangulations for finite element problems (Figure 29).

Other differences between FLiPOuT and Lagrangian methods
depend on the application. For instance, when straightening seg-
mentation boundaries or cut curves, Xin and Wang [2007] yields
identical results for examples in Figures 19, 21 and 22, but in Fig-
ure 6, center yields overlapping curves that fail to define a valid
segmentation. Here one would have to implement a collision de-
tection scheme to preserve the isotopy class; FLIPOUT preserves
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Fig. 29. To get a high-quality simulation mesh, one could straighten curves
using a Lagrangian method, “slice” through triangles, then perform either
extrinsic (left) or intrinsic (center) Delaunay refinement. However, FLIPOUT
produces meshes with fewer vertices and higher-quality triangles (right)
since it need not insert vertices where geodesics cross extrinsic edges.
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Fig. 30. For non-crossing curves, the geodesics from FLIPOUT are generally
indistinguishable from past Lagrangian approaches. However, FLIPOUT uses
a very different representation, enabling it to guarantee non-crossing output
and further generate a complete triangulation of the domain.

this class by construction. As noted in Morera et al. [2008, Section
4.2], any exact method yields identical geodesic Bézier curves (d
la Figure 23), though FLIPOUT provides a smaller mesh that omits
extrinsic edge crossings. Notably, Lagrangian methods such as Xin
and Wang [2007] cannot be used to construct geodesic CDTs (a la
Figure 24), since they must insert new vertices. Like a standard 2D
CDT, FLipOuUT triangulates the given points and segments without
inserting any new vertices (Section 6.3). The PDE examples in Sec-
tion 6.4 yield nearly identical results when starting with Lagrangian
geodesics, though again yield larger meshes with poorer-quality
elements (Figure 29) that reduce accuracy and increase solve time.

Finally, solving the single-source problem via a Lagrangian method
is far more expensive than our simultaneous Dijkstra approach
(Section 6.5), since each path must be straightened independently.
Moreover, though neither strategy guarantees minimal geodesics,
our approach tends to find shorter paths. E.g., for the gear in Fig-
ure 27 straightening each curve via Xin and Wang [2007] takes
6240 ms, and yields minimal geodesics to only 84.9% vertices, versus
348 ms and 99.6% minimal geodesics for FLiPOuT. Our flip-based
approach also preserves an important invariant of the minimal so-
lution, namely that paths cannot cross transversely (since they are
supported on the edges of a common triangulation).
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7 LIMITATIONS AND FUTURE WORK

We have not established worst-case bounds on the time complex-
ity of our method. Flip-based algorithms on surfaces have resisted
worst-case analysis in part because (unlike in 2D) there is not a finite
number of intrinsic triangulations on a fixed vertex set [Bobenko
and Springborn 2007]. Yet just as intrinsic Delaunay flipping ex-
hibits good empirical scaling behavior [Sharp et al. 2019b, Fig. 10],
FLipOuT exhibits good scaling in practice across a variety of models
(Section 5.2). Also, our proof of termination does not apply to closed
loops—though we always observe termination in practice.

Since we encode curves as edge sequences, our approach is fun-
damentally limited to non-crossing curves. But for the same rea-
son, it preserves a curve’s isotopy class—complementing existing
Lagrangian methods that do not, for instance, respect region bound-
aries. In the context of geometry processing, preserving such ar-
rangements is a key strength of our approach (Section 6.1).

Like all other exact methods, trouble can still arise due to floating-
point arithmetic—though in practice we succeed on all but a handful
of pathological examples (Section 5.3). Mollification a la Sharp and
Crane [2020, Section 4.5] may eliminate even these cases.

Overall, formulating geodesic problems in the setting of intrin-
sic triangulations opens up rich new possibilities. For instance,
anisotropic metrics, which we did not explore here, might be ad-
dressed by simply adjusting the input edge lengths (in the spirit
of Campen et al. [2013]). More broadly, our investigation makes it
clear that intrinsic triangulations have utility far beyond intrinsic
Delaunay triangulations, which have been the main focus of prior
work. We are optimistic that continued investigation of the intrinsic
picture will lead to creative new approaches to geometry processing.
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A LOCAL SHORTENING IN A A-COMPLEX

In this appendix we prove the validity and termi-
nation of our local shortening routine in the gen-
eral case of a A-complex. The difficulty arises
from the counter-intuitive existence of twice-
incident edges (defined below). We first provide
some general comments, then prove that the
procedure works as stated in Algorithm 1, even
in the general setting. Throughout we use the
notation of the unfolded wedge shown inset.

Flipping the first edge. Algorithm 1 flips the edge bnj, where j is
the minimum index i such that f; < 7. Choosing this edge to flip,
as opposed to any such edge, may seem incidental, but is in fact
necessary for the correctness of the algorithm, and is used twice in
our argument. First, there may be an edge incident on a degree-1
vertex n; where f; < r; these edges cannot be flipped topologically.
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However, letting j be the minimum i ensures that we will select
some other edge to be flipped, as will be shown in Theorem A.5.
Second, one could get stuck in an infinite cycle flipping an edge
back and forth within the wedge; selecting the minimum i avoids
this possibility, as shown in Theorem A.8.

Alternatives. Many other possible algorithms leverage the same
basic idea as Algorithm 1. For example, we considered a variant
which first flips all twice-incident edges, then flips the remaining
edges in any order—or even a variant which randomly flips any
flippable edge. One can argue that these strategies achieve the same
effect. We chose the variant given in Algorithm 1 because its im-
plementation is straightforward, and does not involve any special
consideration of A-complexes (although the proof does).

A.1  Preliminaries

All statements in the remainder of this Appendix assume the precon-
ditions of Algorithm 1. Recall that Xz refers to the corner at vertex
y, formed by the counter-clockwise triple xyz, and that an edge is
incident on a wedge if it is contained in its interior.

Twice-incident edges. The complexity in the case of a A-complex
arises because the elements of the unfolded wedge diagram are
not necessarily distinct. In particular, there may exist twice-incident
edges, where for some incident edge e, both endpoints of e meet
b within the wedge. Such an edge appears twice in the unfolded
diagram, and some n; will be equal to b. Twice-incident edges are
necessarily loop-edges, so this situation does not arise in a simplicial
complex—we must treat this general case nonetheless, because edge
flips may create a A-complex at intermediate steps of our algorithm.

Our proof carefully considers which tri-

angle corners in the unfolding belong to Moy in wedge [l
the wedge ‘W, formed by a joint y,p - noiﬁ&i‘t’g: -

as flipping proceeds. This wedge is com- n;
prised of an edge connected set of inner
corners Mifli1 incidenton b (for 0 < i < k).
The inner corners are all distinct, since ™1
they arise from splitting the neighbor-
hood of vertex b along y,;.. However, not all elements of the un-
folded diagram are necessarily distinct: triangles may appear twice
in the unfolding, and thus some outer corners ";’;jlb and bg;’—l may co-
incide with inner corners, i.e., they also belong to the wedge W,..
Our arguments will follow from reasoning about which of the outer
corners are necessarily not included in the wedge.

LeEmmA A.1. No triangle has all three corners in Wy,,.

Proor. The interior angles of a triangle sum to 7, but Algorithm 1
considers only wedges of total angle o < . o

LEMMA A.2. The bounding edges ab and bc are not incident on the
wedge, i.e. they are distinct from every edge bn; for0 < i < k.

Proor. If these edges were incident, then the joint would not be
flexible, because a segment of the path would be in the interior of
the wedge. However, Algorithm 1 assumes the joint y,, is flexible
as a precondition. O
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LemMA A.3. The first outer corner ”51’ and last outer corner b”ck—l
are not in the wedge W p,..

in wedge [l
not in wedge []
unknown:

PROOF. Observe that ™? is bordered ~ bny_,
on the right by edge ab, thus for ”&b to &
be in the wedge, ab would need to ap-
pear as some bn; for i > 1. However,
by Lemma A.2 edge ab is not an interior
edge, so the first corner can only be in the
wedge if ab = bc. But this is not possible,
since then the joint y,5. would not be flexible: both segments of the
joint (which must be distinct, by precondition) would run along the
same edge, blocking an isotopy to the outer arc. A nearly identical
argument applies to the last corner b”Ck—l. O

LEMMA A4. For0 < i < k, the outer corner bgzj—l is in the wedge if
and only if the adjacent outer corner "i+1b is also in the wedge.
n;
in wedge @

ot in wedge []
unknown: :

Proor. There are only two places $ n
in the wedge where corners that share
an edge endpoint have different wedge p,
memberships: at the bounding edges ab
and bc. However, Lemma A.2 establishes
that none of the edges bn; are the bound-
ing edges. Thus the corners bg:;—l and ";’;jlb must either both be in
the wedge, or both not be in the wedge. O

both or
neither
in wedge

Note that when the two outer corners in Lemma A.4 are in the
wedge, then the edge bn; is a twice-incident edge.

A2 Validity

To show that Algorithm 1 is valid, we must argue that every edge
flip is valid and can actually be performed. As noted in Section 3.1.3,
an edge is flippable as long as it satisfies a geometric condition
(it is contained in a convex quadrilateral), and a topological one
(both endpoints have degree > 1). Theorem A.5 will show that the
algorithm preserves a key invariant: none of the outer corners in the
already-processed region are contained in the wedge. Theorem A.6
will then use this property to show that all flips are valid.

THEOREM A.5. When flipping edge bn;j in Algorithm 1, none of the
previous outer corners ";‘;r_lb and bngl fori < j are in the wedge.

ProOF. The first corner "&b is not in c in wedge l
the wedge by Lemma A.3. All other pre- not in wedge []
unknown:

vious outer corners come in pairs, inci-
dent on some edge bn; with 0 < i < j. ™
From Lemma A.4, we know that if one
of the corners in the pair were in wedge,
then both would be, and bn; would be a
twice-incident edge. Twice-incident edges always have f < 7 since
both endpoints are contained in the wedge with a < 7. Thus we
would have f; < =, for some i < j, yet this is impossible, since we
chose j as j = min; f; < . Therefore none of the previous outer
corners are in the wedge. O

previous
corners
never

a in wedge

ACM Trans. Graph., Vol. 39, No. 6, Article 249. Publication date: December 2020.

We now prove the key result needed to ensure
validity of our algorithm, namely that we only
perform valid edge flips. Henceforth we will use

prev . _ ,.p next .__ ppn;
ct = nj and c: 1= bn;
1 ni-1 L N1

to refer to the outside corners before and after
the interior edge bn;, resp.

THEOREM A.6. In Algorithm 1, the edge bnj can always be flipped.

Proor. To see that the edge flip is geometri-
cally valid (i.e., the quadrilateral is convex), the
argument is the same as in the simplicial case.
The two angles at ¢ and ¢?* are less than
7, since they are corners of Euclidean triangles.
The angle at the outer corner is f; < , since
the algorithm only flips the edge when f; < 7. Finally, the angle at
the inner corner "J-1"+1 < 7 because it is contained in the wedge
angle which is @ < 7 by the precondition of the algorithm.

We must also argue that bn;
can be flipped topologically. Ver-
tex b always has degree > 1 be- b nj A b
cause bn; is distinct from the - v
bounding edges by Lemma A.2. b .

Ifn j = b, this same reasoning J
applies to the other endpoint (e.g. when bn;j is a twice-incident
edge). If n; # b, then nj cannot be degree 1—if it were, then the

. . N . . rev
incident corner "/7+1 is the same as the previous outer corner cﬁ.’

b:nj+1

(identified with single tick marks in the inset figure). However, by
Theorem A.5 the previous outer corner is never incident, so this
situation cannot occur. m|

A.3 Termination

We next argue that Algorithm 1 terminates, i.e. we do not flip edges
indefinitely. In the simplicial case it is easy to see that the algorithm
terminates, since each edge flip removes an edge from the wedge and
decreases the wedge degree k. In a general A-complex, the argument
is somewhat more complicated, because flipping an edge adjacent
to a twice-incident edge does not remove it from the wedge, but
merely moves the flipped edge to a different location in the wedge
and leaves k unchanged.

We will argue that on each iteration either the wedge degree
shrinks, or the first twice-incident edge gets closer to the beginning
of the wedge. More precisely, let p be the smallest index i such that
edge bn; is a twice-incident edge (p need not be defined if there
are no such edges). In Theorem A.7 we will argue that k never
increases, and that on every iteration either (a) k decreases, or (b)
p decreases. These decreases will then imply termination of the
algorithm (Theorem A.38).

THEOREM A.7. On each iteration, either (a) k decreases or (b) p
decreases and k does not change.

Proor. Each iteration flips some edge bn;. In the common case
where ¢t is not in the wedge then k will decrease, and otherwise
if it is in the wedge then p will decrease. Recall that in both cases,

we know by Theorem A.5 that c? " is not in the wedge.



Suppose ¢ is not in the wedge. Then, neither endpoint of the

newly created edge will be incident on the wedge, and thus the
wedge degree k decreases by at least 1.

Now, suppose X! is in the wedge. The edge bn; cannot be a
twice-incident edge, because if it were then all three corners of
the triangle bnj1n; would be incident on the wedge, violating
Lemma A.1. Moreover, &' is not in the wedge, so the flip trades
this once-incident edge for a once-incident edge at corner c;.le"t, and
k does not change. However, in this case the edge bnj is necessar-
ily a twice-incident edge (Lemma A.4) and p = j + 1. Furthermore,
none of the outer corners prior to j are incident (Theorem A.5), so
the newly created edge will not occupy any of the corners T
with | < j. Therefore the newly created edge will appear at some
index j* > j + 1, and will come after the twice-incident edge bnj .

Thus p, the index of the first twice-incident edge, decreases. m]

Of course, whenever we flip a twice-incident edge, p may increase
as we uncover a new nearest twice-incident edge—this does not
affect the next argument. Similarly, when we remove the last twice-
incident edge p is undefined, but this does not matter since all
subsequent flips will decrease k. The combined decrease of k and p
implies the algorithm must terminate.

THEOREM A.8. Algorithm 1 terminates.

ProoF. Let kg denote the initial wedge degree, and note that on
every iteration we have k < ko and p < ko, and both are bounded
below by 0. By Theorem A.7, k will never increase, and furthermore
k must decrease at most every ko iterations because p cannot de-
crease more than k times in row. Therefore k must decrease at most
every ko iterations, and is bounded from below, so the algorithm
terminates. O

B PERTURBING SINGLE-SEGMENT LOOPS

In Section 4.3, we consider applying our Algorithm 2 to closed loops,
rather than just open paths. This generalization comes almost for
free, except one edge case: a loop composed of a single segment.
This case violates the preconditions of our Algorithm 1. We suggest
an additional update rule which covers the case of a single-segment
loop; this appendix gives additional explanation and justification
for this rule.

Fig. 31. We resolve a single-segment loop by perturbing the path to run
along the opposite edges of its triangle, enabling the algorithm to keep
making progress. In general there may be zero or more than one triangle in
the regions swept out by the angles ¢ and ¢, (here exactly one triangle is
drawn for both)—nonetheless, the argument made by measuring the labeled
angles still applies.
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Whenever a loop consists of a single segment and has @ < 7 ata
flexible joint, one can identify the triangle aab which borders the
segment and is on the side of the joint to be shortened (Figure 31).
We replace the loop segment aa with the new segments ab and ba,
running along the other two edges of this triangle. This update is
necessarily an isotopy, since it is a motion within a single triangle
face. After this update, Algorithm 2 proceeds as usual.

At first, this update may seem unreasonable in that it would be
immediately reverted as Algorithm 2 proceeds. However, we can
argue that (at least locally) the algorithm always continues making
progress after the update. Recall that

p1+01+0+ps=a<m, 4)
because the path is not yet locally shortest, and
91+92+w=f[, (5)

because they are the corners of a triangle. These can be rearranged
to see

1tz <o (6)
Thus when Algorithm 2 proceeds by straightening the next small-
est angle, it will not undo the move by shortening the joint at
w, it will instead straighten at the other joint spanned by ¢ and
@2, constructing some new shorter curve with b as a node. In the
case of a single-segment loop which encircles a degree-1 vertex,
this update will adjust the path
to run out and back along the
vertex’s one edge, just before the a a
loop collapses to a point (see in-
set diagram).

As noted in Section 4.3, our proof of Theorem 4.2 that Algo-
rithm 2 terminates no longer applies, because this update makes the
path longer. However, we conjecture that the algorithm nonetheless
always terminates, and have always observed it to do so in our
experiments. One might be able to generalize the termination proof
by showing that subsequent iterations of Algorithm 2 necessarily
find a loop which is shorter than the initial single-segment loop.

S
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