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Abstract— The primary goal of an assist-as-needed (AAN)
controller is to maximize subjects’ active participation during
motor training tasks while allowing moderate tracking errors
to encourage human learning of a target movement. Impedance
control is typically employed by AAN controllers to create
a compliant force-field around the desired motion trajectory.
To accommodate different individuals with varying motor
abilities, most of the existing AAN controllers require extensive
manual tuning of the control parameters, resulting in a tedious
and time-consuming process. In this paper, we propose a
reinforcement learning AAN controller that can autonomously
reshape the force-field in real-time based on subjects’ training
performances. The use of action-dependent heuristic dynamic
programming enables a model-free implementation of the
proposed controller. To experimentally validate the controller,
a group of healthy individuals participated in a gait training
session wherein they were asked to learn a modified gait pattern
with the help of a powered ankle-foot orthosis. Results indicated
the potential of the proposed control strategy for robot-assisted
gait training.

Index Terms— Assist-as-needed controller, robot-assisted gait
training, reinforcement learning, wearable robotics, rehabilita-
tion robotics

I. INTRODUCTION

The introduction of compliant controllers in robotic
trainers was motivated by clinical studies on human motor
learning evidencing the importance of individuals’ active
participation in achieving desirable therapeutic outcomes
[1]. Assist-as-needed (AAN) controllers aim to provide
assistance only when the subject is unable to complete the
training task on his/her own. Conventional AAN controllers
modulate the assistive force based on an impedance control
(IC) law [2]–[4]. This force-based control strategy is
typically more compliant compared to early trajectory-
based controllers [5] and has demonstrated its efficacy
in improving motor training outcomes in several studies
[6]–[9].

The use of IC in rehabilitation robotics was first
introduced with the MIT-MANUS [10]. Later adopters
such as the Anklebot extended the IC algorithm by adding
programmable features that enabled adjustable control
gains [11]. To encourage active subject participation when
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kinematic errors are small, the error-based AAN controller
developed in [8], [9] features a width-adjustable virtual
tunnel surrounding the desired trajectory, wherein no
robotic assistance is provided. However, the “hard-coded”
control parameters implemented in the aforementioned
AAN controllers do not provide subjects with personalized
assistance levels that are tailored to their motor abilities. As
patients’ adaptability and mobility may vary significantly
from one to another [12], learning-based AAN controllers
that adapt the control law based on individuals’ training
performances are desirable.

The adaptive AAN proposed in [7] uses radial basis
functions (RBF) to learn an impairment model of the
subject’s motor capability within a given workspace, and
modulates the robotic assistance level accordingly through a
force decay term. Pehlivan et al. advanced this RBF-based
method by introducing a subject-adaptive feedback gain
modification algorithm that allows manipulation of the
force support and the admissible error bound [13]. Iterative
learning control (ILC) excels in reducing recurring errors
in repetitive tasks, and hence has been extensively used to
develop adaptive AAN controllers for gait training [3], [14],
[15] and arm reaching tasks [16].

Reinforcement learning (RL) is a reward-based machine
learning paradigm that has been utilized in various robotics
applications such as assistive exoskeletons [17] and
active prostheses [18]. Unlike conventional supervised
and unsupervised machine learning algorithms, the goal-
oriented behavior of a RL agent [19] makes it a convenient
candidate for rehabilitation applications where patients’
good performances and the associated control policies need
to be remembered and rewarded. In fact, the underlying
principle of RL echos the way human learns to interact
with the environment [20], and the reward-based feedback
can benefit the retention of learned motor skills [21]. Yet,
only a paucity of research has investigated the application
of the RL control paradigm in robot-assisted rehabilitation
[22]–[24] and none in the context of gait training.

In this paper, we propose a real-time RL-AAN controller
that is designed for robot-assisted gait training (RAGT).
The actor-critic (AC) method is employed to realize action
dependent heuristic dynamic programming (ADHDP),
thereby eliminating the need for a system model [25].
Subjects’ active participation is ascertained through
a periodically updated control objective value that
reduces the stiffness of an IC when kinematic errors
are maintained sufficiently small for a certain period.
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Actuation Platform

SAFE orthosisFig. 1. Subject walking with the SAFE orthosis

Building upon our previous work on RL-AAN control for
ankle mobilization exercises [24], this paper provides the
following contributions: 1) the extension of the RL-AAN
controller to treadmill-based gait training exercises; 2) a
new tier-based update law for the control objective value,
to achieve enhanced adaptability of the control objective to
subjects’ kinematic errors; 3) the integration of an online
gait phase estimator, along with the a phase-dependent
target trajectory, to improve robustness of the RL-AAN
controller to stride-to-stride variability; 4) a proof-of-concept
validation of the proposed control strategy through RAGT
tests with healthy individuals.

II. EXPERIMENTAL SETUP

The lack of ankle dorsiflexion during swing can substan-
tially increase the risk of tripping and falling for stroke
survivors [26]. Previous research on RAGT that sought to
address this problem has proposed Virtual Model Control,
which lifts up a subject’s foot via a virtual spring during the
swing phase to increase foot clearance [4]. The gait training
task defined in this work shares a similar goal, namely, to
train a subject to walk with an enlarged foot clearance by
excercising with the Stevens Ankle-Foot Electromechanical
(SAFE) orthosis, a powered orthosis developed by our group
[27]. To this end, a subject-specific reference ankle trajectory
with exaggerated dorsiflexion angle is generated based on
each individual’s natural gait pattern (Section III-B). During
training, the RL-AAN controller is used to assist subjects to
follow the target ankle motion during the swing phase of the
gait cycle.

As shown in Fig. 1, the SAFE orthosis is a cable-driven
device that can provide active torque control over ankle
dorsiflexion and plantarflexion [27]–[29]. Two BLDC motors
(EC45, Maxon) placed on an off-board actuation platform are
used to actuate the cables. Two load-cells (LSB200, Futek)
are connected in-line with the respective cables to monitor
the applied forces and close the inner force control loop.
A quadrature encoder is mounted on top of the rotating
joint to measure the ankle joint angle. Two piezoresistive
force sensors are embedded within the insole to detect heel-
strike and toe-off events. Data acquisition and high/low
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Fig. 2. (a) Block diagram of the RL-AAN controller (shaded area in green:
IC loop; blue: AC structure; yellow: gait phase estimation) (b) for a given
τmax, the increase of d smoothens the stiffness profile, thereby resulting in
a more compliant force-field (c) natural (blue) and target (red) gait pattern
recorded from a pilot test. The green arrow indicates the increase in the
peak ankle dorsiflexion angle during swing. This was computed as 30% of
the difference between peak dorsiflexion angles in stance and swing (yellow
arrow) in the natural gait pattern.

level control are carried out by a myRIO board (National
Instrument), with the low-level torque control loop running
at 400 Hz and the high-level RL-AAN controller at 100 Hz.

III. RL-AAN FRAMEWORK

As illustrated in Fig. 2(a), the proposed RL-AAN con-
troller is in essence an IC, whose stiffness is modulated by
an AC structure. We define the IC law as

τ = τmax[1− exp(−(∆θ̃/d)2)] (1a)

∆θ̃ =

{
sign (∆θ) (|∆θ| − θdb) if |∆θ| ≥ θdb
0 if |∆θ| < θdb

(1b)

in which τmax bounds the torque output τ and ∆θ represents
the difference between the reference ankle angle θsr and the
measured angle θsm. To accommodate natural gait variation,
∆θ within a deadband of θdb = 2 deg are disregarded
when computing τ . Figure 2(b) illustrates the impact of a
varying d on the stiffness profiles. The key element that
sets the RL-AAN controller apart from conventional ICs
[8], [9] is its ability to adapt the stiffness parameter d in
real-time based on subject’s ability. This is made possible
through online evaluation of the subject’s performance and
periodical modulation of the control objective, both of which
are formulated under the RL framework via the AC method
[24].
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A. Gait Phase Estimation

In order to realize selective subtask control over the swing
phase of the gait cycle, the reference swing phase trajectory
is generated as a function of the gait phase, starting from
a subject’s natural gait pattern measured during treadmill
walking at comfortable pace, with the orthosis controlled
in transparent mode [28]. A pool of adaptive frequency
oscillators [30] is adopted as the online gait phase estimator.
It takes the measured ankle trajectory θm as the input and
compares it with the estimated angle θ̄, written as

θ̄(t) = θ0 +
M∑
i=1

αisin(φi(t)), (2)

to update the offset θ0, amplitudes αi and phases φi. M is
the number of oscillators, which was selected as 6 based on
previous work [28]. The phase of the dominant harmonic φ1
is regarded as the estimated gait phase. In addition, the phase-
alignment strategy first proposed in [31] is implemented to
ensure null phase at each heel-strike. The corrected phase φa
is computed as

φa(t) = mod [(φ1(t)− φe(t), 2π] , (3)

in which the smooth phase correction term φe is updated
based on the difference between the estimated null phase and
the actual timing of the heel-strike detected by the insole-
embedded force sensor.

B. Target Gait Pattern

The minimum toe clearance increases with larger ankle
dorsiflexion angles [32], [33]. In this work, each participant’s
natural gait pattern is first recorded during treadmill walking
with the orthosis controlled in transparent mode [28]. The
average gait phase at which the ankle joint reaches maximum
dorsiflexion during swing is defined as φµ. The target swing
phase trajectory θsr(φa) is a combination of the subject’s
natural gait pattern θ(φa) and a Gaussian function centered
at φµ

θsr(φa) = θ(φa) +Ke−(φa−φµ)
2/(2σ2), (4)

where K defines the maximum angle to be added and σ
controls the width of the bell-shaped curve. We set K to
30% of the difference between the peak dorsiflexion angles
in stance phase and swing phase, as illustrated in Fig.
2(c). From preliminary tests, we found that this value was
sufficiently large to induce measurable changes in gait (i.e.,
above stride-to-stride variability), while not jeopardizing gait
stability. σ was set to 6 so that the added trajectory fades
to effectively zero in the stance phase. It should be noted
that this reference trajectory was selected as an example
of functionally relevant target gait pattern for healthy in-
dividuals to learn during RAGT, thereby providing proof-
of-concept validation of the RL-AAN controller (described
in the following section). However, the applicability of the
proposed RL-AAN controller is not limited to this specific
trajectory.

C. Formalization of the RL-AAN controller

We consider a Markov decision process consisting of
states, actions, reward, and a deterministic policy. A subject’s
performance is quantitatively evaluated after each gait cycle
using spatial and temporal gait metrics that form the state
vector S:

S(k) = [eφ(k), ep(k), erms(k)]T ∈ R3×1 (5)

eφ and ep indicate the phase and angle differences between
the actual and the reference gait patterns when reaching the
maximum ankle dorsiflexion in swing phase, erms indicates
the root-mean-square (RMS) error in swing phase and k is
the index representing the gait cycle. The immediate reward
r (i.e., stage cost [34]) incurred at the k-th cycle is computed
as a weighted sum of the three errors

r(k) = λ1e
2
φ(k) + λ2e

2
p(k) + λ3e

2
rms(k), (6)

in which λ1,2,3 are arbitrary weights. The associated infinite-
horizon cost with a discount factor γ is written as:

V (k) =
∞∑
i=0

γir(k + i+ 1). (7)

We set λ2 and λ3 to 1.5 and λ1 to 1 based on preliminary
tests. γ was set to 0.2 to leverage recent rewards, thereby
allowing the RL-AAN controller to promptly match the
varying control objectives.

The AC structure resembles the one described in our
previous work [24]. However, an updated actor objective
function imposes tier-based constrains on the control ob-
jectives, with the goal of better responding to a subject’s
motor behavior. Nonlinear feedforward neural networks are
used as the function approximator for the AC structure to
simultaneously learn the action-value function and update its
policy. The objective function of the critic neural network is
written as

Ec(k) =
1

2
δ2(k), (8)

in which δ(k) denotes the temporal-difference (TD) error at
cycle k:

δ(k) = r(k) + γṼ (k)− Ṽ (k − 1). (9)

By updating the weight matricies of the neural network
using gradient descent along the objective function, the critic
network iteratively approximates the infinite-horizon cost
Ṽ (k).

The action network seeks to learn an optimal policy
and reach the principle optimality of a given problem. In
gait rehabilitation, an ideal training protocol should involve
repetitive, progressive, and task-oriented training sessions
[35]. To integrate the rehabilitation objective within the
control objective, the ultimate control goal Uc of the actor
network is defined as a varying target that progressively
guides subjects towards a desired performance by supplying
assistive forces with varying stiffnesses. Since the discount
factor γ was chosen to prioritize recent performances, the
value of Uc can be thought of as the admissible error allowed
during recent movement executions and a bound to the level
of the assistive forces [13]. To this end, each new target
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Uc(k+1) is computed based on the subject’s performance in
the previous m strides. A three-tier saturation constraining
Uc within [0, ζ1,2,3] is also introduced to ensure that the
subject undergoes sufficient amount of practice at each level
of force assistance. The update law of Uc is correlated with
the subjects’ performance via the moving average of the
error-based rewards in the previous m strides, ε(k,m) =∑k
i=k−m+1 r(k)/m, according to the following law

Uc(k + 1) =

{
Uc(k) + βu if ε(k,mu

n) ≤ ηun
Uc(k)− βd if ε(k,md) > ηd

(10)

Ūc (k + 1) = max [0,min [Uc (k + 1) , ζn]] (11)

where βu and βd are positive and negative rates of change
of Uc, respectively, and η∗n sets the level of the acceptable
kinematic errors within the n-th tier.

Based on pilot tests, we set βu = 1, βd = 2. The first
tier evaluates the smallest amount of strides (mu

1 = 5)
while accepting the largest kinematic errors (ηu1 = 30) and
saturates the stiffness at a relatively high level (ζ1 = 10),
suitable when the subject is struggling to follow the reference
trajectory and necessitates large assistance from the robot.
As the subject learns the target trajectory and the kinematic
errors are reduced for a longer period (i.e., mu

2 = 10
strides), the second tier comes into effect and reduces both
the acceptable errors (ηu2 = 20) and the assistance saturation
level (ζ2 = 20). Further, the third tier has the longest
evaluation window (mu

3 = 30), the smallest acceptable errors
(ηu3 = 10) and the minimum assistance saturation level (ζ3 =
30). The third tier is expected to engage when the subject
has learned the target motion and can therefore perform the
task consistently well with little to no assistance. Conversely,
when the subject exhibits markedly large kinematic errors
(ηd = 30) in the most recent md = 5 strides, the control
objective Uc is promptly reduced by βd to yield greater
assistance. Since each value of ζn represents a tolerance
range that an optimized policy needs to ultimately stay
within, the tier-based formulation of ζn essentially defines
a set of tolerable error regions that bound the update of the
policy [36].

In order to direct Ṽ (k) towards the desired Ūc(k), the
actor network objective function is formulated as

Ea(k) =
1

2
(Ṽ (k)− Ūc(k))2. (12)

Since the actor output d̃ is intrinsically bounded within (0, 1)
by the sigmoid activation function of the neural network, it
is scaled up as

d = ρd̃ (13)

before being used in (1). We chose τmax = 5 Nm and ρ =
20 based on preliminary tests, so that desired robot torque
1(a) can be modulated from effectively zero to a sufficiently
large value to guide the subject’s ankle joint.

IV. EXPERIMENTS

A total of N = 8 healthy subjects (all males, 26.13±2.10
years) participated in treadmill-walking tests to evaluate the
RL-AAN controller. Participants were selected such that their

right foot and shank could comfortably fit in the SAFE
orthosis. The study was approved by Stevens Institutional
Review Board and all participants provided informed consent
prior to testing.

Each subject went through three walking conditions, which
included one 3-min baseline trial (B), followed by three 5-
min training trials (T) and a 3-min post evaluation trial (P).
The treadmill was paced at 1 m/s across all trials. A 30-
second ramp-up period was added before each trial to allow
the treadmill speed, the subject’s walking pattern, and the
online gait phase estimator to reach steady state.

The SAFE orthosis was controlled in transparent mode in
trials B and P to allow subjects to walk freely [28]. The
RL-AAN controller was switched on during the T trials
to provide subjects with the assistive forces needed for the
intended training. The target swing phase trajectory used for
the T trials was computed using (4), based on each subject’s
average ankle trajectory measured during the last minute of
trial B.

To compare the immediate training effects on subjects’
ankle motion, we analyzed the ankle trajectories recorded
during the last minute of the B and P trials. Heel-strike
events detected by the piezoresistive force sensor were used
to split the continuous trajectories into gait cycles. Three
metrics, namely eφ, ep and erms, were computed at each
gait cycle, and average values of the three metrics were
determined for each subject. Separate Wilcoxon rank-sum
tests were performed on each metric, to check for significant
(α = 0.05) differences between the B and P trials. All data
analysis was accomplished using custom scripts developed
in MATLAB (MathWorks).

V. RESULTS

The changes in S, Ūc, and d recorded from a representative
subject over the course of a T trial are illustrated in Fig. 3.
The overall trend in the subject’s performance, as evaluated
by spatiotemporal errors, was well-captured by Ūc. Small
errors led to progressively larger Ūc values, which in turn
generated a more compliant IC (i.e., larger d) to encourage
subject’s active participation. Conversely, large errors drove
Ūc to smaller values, resulting in a stiffer IC (i.e., smaller
d). The tier-based saturation ζn prevented Ūc from ever-
increasing, thereby avoiding abrupt IC stiffness changes and
allowing subjects to experience a smooth stiffness modula-
tion across movement repetitions.

Due to the small discount factor selected (γ = 0.2), the
AC networks tend to learn the desired policy in a “myopic”
manner, prioritizing the subjects’ recent performances over
the estimated long-term rewards, thus allowing the actor
network to rapidly adapt to Ūc. As a consequence, the
resulting trend of d, shown in Fig. 3(b), follows the dynamics
of Ūc, yet with a small lag. This lag was likely caused
by the additional time the AC networks needed to update
the weights in order to compute an appropriate stiffness d
that was capable of altering the assistance level to reflect
the changing objective Ūc. The varying d is indicative of
a continuously adapting control stiffness that tailors the
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Fig. 3. (a) Error metrics, Ūc, and (b) d over the course of a T trial (a
moving average with a 5-step window size was applied to eφ, ep and erms)

force-field to subjects’ abilities. It is important to note that,
since d does not directly determine the amount of assistance
provided to the subjects but rather modulates the shape of
the underlying force-field, the critical causal relationship
between effort and error in the process of motor learning
is preserved by the proposed RL-AAN controller.

Figure 4(a) illustrates the stride-by-stride and average
values of ep obtained from a representative subject across
all walking conditions. It can be noticed that, despite the
variance exhibited in the first training trial (T1), this subject
was able to progressively reduce ep in T2 and T3, suggesting
that the subject was able to successfully adapt to the RL-
AAN controller across the training sessions. The trend of
ep during the post-training trial P (when the orthosis was
controlled in transparent mode), suggests a rather good
retention of the target movement. Figure 4(b) shows the
group averages of the three performance metrics in the pre-
and post-training, along with their standard errors. Significant
differences were found in ep and erms, indicating that the
subjects were able to benefit from the proposed RL-AAN
controller and modify their gait patterns towards the target
motion immediately after training. No substantial changes
were found on eφ, which is an expected outcome given that
the target gait pattern was designed to maintain the same
peak dorsiflexion timing as in the natural gait. The slight
increase in eφ after training was accompanied by larger inter-
subject variability, suggesting that some subjects adapted to
the target gait pattern by slightly advancing the timing of the
peak dorsiflexion angle while others reached that peak with
some lag.

VI. DISCUSSION AND CONCLUSION

This paper introduced the first RL-AAN controller for
robot-assisted gait training and its proof-of-concept valida-
tion. The proposed model-free controller is capable of mod-
ulating the stiffness of the assistive force field of a powered
orthosis on the fly based on the wearer’s performance in
previous gait cycles. The RL-AAN controller builds upon

(a)

*

*

(b)
Fig. 4. (a) Stride-by-stride (blue dots) and average (yellow lines) ep
for a representative subject across different walking conditions, RL-AAN
controller was turned on during T1,2,3 (b) comparison of training effects
with respect to the three error metrics analyzed. Asterisk indicates p < 0.05,
error bars show ±1 standard error, darker/lighter shade indicate baseline (B)
and post-test (P ) performance, respectively.

our previous work on robot-assisted ankle mobilization [24],
but embeds a three-tier update law for the control goal and an
online phase estimator, which enable improved adaptability
of the level of assistance and robustness to stride-to-stride
adjustments in cadence.

The proposed RL-AAN controller is promising for the
following reasons. First, the use of the ADHDP allowed
the RL-AAN to be implemented without prior knowledge
of a system model, thereby presenting a distinct advantage
over model-based AAN controllers [37]. Second, the vast
expressive power of nonlinear neural networks allows the
algorithm to be easily scaled up to comprehend complex
relationships between between robot control decisions and
subjects’ motor behaviors, thereby providing an appealing
alternative solution to RBF-based algorithms [7], [13] that
are prone to the “curse of dimensionality” [19]. ILC-based
controllers have been extensively used in RAGT because of
their ability to deal with cyclic tasks. Yet, in the context of
AAN controllers for robotic trainers, their reliance on sim-
plistic assumptions about the human motor learning dynam-
ics makes them less robust to cope with different levels of
subjects’ abilities [3]. This issue is alleviated by the proposed
RL-AAN controller, since the human performances are not
only being continuously evaluated online, but also inherently
embedded in the RL algorithm that directly influences the
control decisions.

While promising, the results obtained from this study are
still preliminary. For instance,the adaptation of the force-filed
was limited to the stride level in the current setup. Future
study will seek to extend the granularity of the adaptation
law to enable phase-dependent modulation of the control
stiffness, in order to meet the wearer’s potentially varying
needs among different gait phases. In addition, the longi-
tudinal effects of the RL-AAN controller relative to more
conventional AAN strategies will need to be appropriately
analyzed with multi-session studies on healthy individuals
and patients with neurological disorders affecting gait.

The motion task studied in this paper involved a well-
defined spatial perturbation to the natural walking patterns
of healthy individuals. Thus, even though results suggested
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that the inclusion of the temporal error in the value function
does not benefit training outcomes, this may not be the case
for hemiparetic patients, whose gait often shows abnormal
spatial and temporal features [38].
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