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Sensitivity properties describe how changes to the input of a program affect the output, typically by upper

bounding the distance between the outputs of two runs by a monotone function of the distance between the

corresponding inputs. When programs are probabilistic, the distance between outputs is a distance between

distributions. The Kantorovich lifting provides a general way of defining a distance between distributions

by lifting the distance of the underlying sample space; by choosing an appropriate distance on the base

space, one can recover other usual probabilistic distances, such as the Total Variation distance. We develop

a relational pre-expectation calculus to upper bound the Kantorovich distance between two executions of

a probabilistic program. We illustrate our methods by proving algorithmic stability of a machine learning

algorithm, convergence of a reinforcement learning algorithm, and fast mixing for card shuffling algorithms.

We also consider some extensions: using our calculus to show convergence of Markov chains to the uniform

distribution over states and an asynchronous extension to reason about pairs of program executions with

different control flow.
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1 INTRODUCTION

Sensitivity properties describe how much a change in a function’s input can affect the corresponding

output, where the degree of change is quantified by a distance function 𝑑𝑖𝑛 on inputs and a distance

function 𝑑𝑜𝑢𝑡 on outputs. By varying these distances, sensitivity properties appear across many

application areas, including: (i) numerical computations, where functions map from reals to reals,

and the distances on inputs and outputs are the usual distance on real numbers; (ii) numerical

queries, where functions map from a set of records to a number, and the distance between inputs

is the number of differing entries; and (iii) learning algorithms, where functions map from a
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training set to a learned model and where the distance between two training sets is the number of

differing examples, and the distance between outputs measures the difference in errors labeling

unseen examples. This paper is concerned with sensitivity properties of probabilistic programs.

Since such programs produce distributions over their output space, the corresponding notions of

sensitivity use distances over distributions. The Total Variation (TV) distance (a.k.a. statistical

distance), for example, is a widely used notion of distance that measures the maximal difference

between probabilities of the same event. One key benefit of the TV distance is that it is defined for

distributions over arbitrary spaces. However, it is often useful to consider distances inherited from

the underlying space. In this setting, the so-called Kantorovich metric gives a generic method to lift

a distance E on a ground set 𝑋 to a distance E#
on distributions over 𝑋 . The class of Kantorovich

metrics cover many notions of distance. For instance, the TV distance can be obtained by applying

the Kantorovich lifting to the discrete distance, which assigns distance 1 to any pair of distinct

points, and distance 0 to any pair of equal points.

Approach. Wedevelop a relational expectation calculus for reasoning about sensitivity of probabilistic

computations under the Kantorovich metric. Relational expectations are mappings expressing a

quantitative relation (e.g., a distance or metric) between states, and are modelled as maps of the form

State×State→ [0,∞]. The heart of our system is a relational expectation pre-expectation transformer,

which takes as input a probabilistic program 𝑐 written in a core imperative language, and a relational

expectation E between output states, and produces a relational expectation rpe(𝑐, E) between input

states. The calculus is a sound approximation of sensitivity, in the sense that running the program 𝑐

on inputs at distance smaller than rpe(𝑐, E) yields output distributions at distance smaller than E#
.

Technically, our calculus draws inspiration from early work on probabilistic dynamic logic due

to Kozen [1985] in which maps E : State→ [0,∞] serve as quantitative counterparts of Boolean
predicates 𝑃 : State → {0, 1}. McIver and Morgan [2005] later coined the term expectation—not

to be confused with expected values—for such maps E. Moreover, they developed a weakest pre-

expectation calculus for the probabilistic imperative language pGCL. Their calculus was designed

as a generalization of Dijkstra’s weakest pre-conditions that supports both probabilistic and non-

deterministic choice. The basic idea is to define an operatorwpe(𝑐, E) that transforms an expectation

E averaged over the output distribution of a program 𝑐 into an expectation evaluated over the

input state. In this way, the expectation is transformed by the effects of the probabilistic program

in a backwards fashion, much like how predicates are transformed through Dijkstra’s weakest

pre-conditions. Our pre-expectation calculus operates similarly, but—as it aims to measure distances

between distributions of outputs in terms of inputs—manipulates relational expectations instead.

We next motivate the need for relational expectations, and explain why they are challenging.

Why do we need relational pre-expectations? The classical weakest pre-expectation calculus enjoys

strong theoretical properties: in particular, it is both sound and complete (in an extensional and

intensional sense [Batz et al. 2021]) w.r.t. common program semantics (cf. Gretz et al. [2014]).

Therefore, weakest pre-expectations can—in principle—be applied to reason about bounds on

the Total Variation distance: Given a program 𝑐 , (i) take a copy 𝑐 ′ over a fresh set of program

variables—e.g. if variable 𝑥 appears in 𝑐 , substitute it by 𝑥 ′ in 𝑐 ′—and (ii) determine the weakest

pre-expectation wpe(𝑐 ; 𝑐 ′, E), where the expectation E measures the distance between variables in

𝑐 and their counterparts in 𝑐 ′.
However, this naïve approach is not practical for analyzing sensitivity: the TV distance, for

example, is defined as a maximum of a difference of probabilities over all events of the output space—

to compute the TV distance, we would need to compute the probability of every single output event.

Moreover, the above approach pushes the difficulty of reasoning about sensitivity properties into the

task of finding suitable invariants for probabilistic programs—a highly challenging task on its own. In
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particular, finding invariants may involve reasoning about probabilistic independence, which is not

readily available when using weakest pre-expectations. In fact, mathematicians have long observed

that reasoning about the TV distance or the Kantorovich metric directly from their definition is often

intractable. Rather, they rely various approximations to bound the distance between distributions.

One classical method is based on probabilistic couplings [Villani 2008], a mathematical tool for

relating two different distributions. Relational pre-expectations naturally connect with probabilistic

couplings, and capture well-established proof principles used by mathematicians for reasoning

about the TV distance.

Challenges of relational pre-expectations. Relational pre-expectations pose a number of specific

challenges compared to their unary counterpart. First, the Kantorovich distance cannot be defined

inductively on the structure of programs. More specifically, the Kantorovich distance between two

runs of 𝑐 ; 𝑐 ′ is not a simple combination of the Kantorovich distances between two runs of 𝑐 and two

runs of 𝑐 ′ (we provide a counterexample in Section 3). Instead, we define a pre-expectation calculus

r̃pe(𝑐, E) that gives a compositional upper-bound of the Kantorovich distance—this is sufficient for

proving sensitivity properties.

Second, the proof of soundness for our relational pre-expectation calculus is significantly more

involved than for the usual weakest pre-expectation calculus, and use results from optimal transport

theory. In particular, we are only able to prove soundness for discrete distributions.

Third, relational calculi are naturally better suited to reason about two executions that follow

the same control-flow. We offer useful support for reasoning about executions with different

control-flow, through a careful generalization of the rules for conditionals and loops. While our

rules do not suffice for arbitrary examples—it remains an open problem to develop relatively

complete verification approaches for relational properties of probabilistic programs—they suffice

for non-trivial examples that exhibit asynchronous behavior.

Applications. We demonstrate our technique on several applications. In our first application, we

formalize an algorithmic stability property of machine-learning algorithms. Informally, algorithmic

stability describes how much the parameters produced by a learning algorithm are affected when

one input training example is changed; this notion of probabilistic sensitivity is known to imply

generalization and prevent overfitting [Bousquet and Elisseeff 2002]. We use our calculus for

proving algorithmic stability of a commonly-used learning algorithm: stochastic gradient descent

(SGD); while this example has been verified in prior work [Barthe et al. 2018], we show how our

approach enables a substantially simpler proof.

Then, we consider a pair of applications showing convergence properties. We first formalize

convergence of a reinforcement learning algorithm [Sutton 1988], inspired by a recent analysis

by Amortila et al. [2020]. For our most challenging examples, we show convergence and rapid

mixing of several card shuffling algorithms [Aldous 1983]. We show that the TV distance between

the outputs of two probabilistic loops decreases to 0 as the number of loop iterations increases—that

is, the output distributions from any two inputs converge to the same distribution. Moreover, our

technique is precise enough to prove quantitative bounds on the rate of convergence; upper bounds

on convergence speed are key properties when analyzing algorithms that generate samples form

complex distributions, such as Markov Chain Monte Carlo.

Extensions: uniformity. Then, we show how to formalize other properties complementing our

bounds on convergence rate. Using our system, we demonstrate how to prove that a probabilistic

program generates a uniform distribution. This relies on showing that for any two final states 𝑠1, 𝑠2,

the absolute difference of the probability of finishing at 𝑠1 and the probability of 𝑠2 goes to 0 as the

number of iterations increases.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.



52:4 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

Extensions: asynchronous reasoning. Finally, we describe extensions to our calculus for asynchro-

nous reasoning, allowing us to prove relational properties when pairs of program executions have

different control flow. We demonstrate our asynchronous extensions to reason about a program

generating a binomial distribution.

Contributions and outline. After introducing preliminaries on probability theory and the Kan-

torovich distance (§ 2), we present our main contributions:

• We define a sound, compositional, relational pre-expectation calculus for determining upper-

bounds on the Kantorovich distance. We introduce convenient proof rules for sampling

commands and loops, andwe show that the core fragment of a previous probabilistic relational

Hoare logic EpRHL [Barthe et al. 2018] can be embedded into our calculus (§ 3).

• We apply our calculus to three case studies. As a warmup example, we use our calculus

to provide a clean proof of algorithmic stability of stochastic gradient descent [Hardt et al.

2016] (§ 4). Second, we formalize convergence of TD(0), an algorithm from the Reinforcement

Learning literature [Sutton 1988] (§ 5). Third, we apply our calculus to show rapid convergence

of random walks and card shuffling algorithms [Aldous 1983] (§ 6).

• As a complementary extension to the previous examples, we use our calculus to show that

the limiting distribution of a card-shuffling routine is uniform (§ 7).

• We present proof rules for reasoning about programs with asynchronous control flow (§ 8).

Finally, we survey related work (§ 9) and conclude (§ 10).

This is the proceedings version of the paper. Omitted proofs and details can be found in the full

version: https://arxiv.org/pdf/1901.06540.pdf.

2 MATHEMATICAL PRELIMINARIES

We briefly recap the foundations required for relational reasoning about sensitivity properties:

(1) probability theory, (2) probabilistic programming languages, and (3) distances on probability

distributions. A comprehensive treatment of these topics is found, e.g., in the textbooks [Ash and

Doleans-Dade 2000; McIver and Morgan 2005; Villani 2008].

2.1 Basic Probability Concepts

We will use sub-distributions to model probabilistic behavior. A sub-distribution over a countable

set 𝐴 is a function 𝜇 : 𝐴→ [0, 1] assigning a probability to each element of 𝐴. Probabilistic events

are subsets 𝐵 ⊆ 𝐴; the probability of 𝐵 is denoted 𝜇 (𝐵) and defined by 𝜇 (𝐵) = ∑
𝑏∈𝐵 𝜇 (𝑏). The

support of 𝜇 is the set of all events 𝑎 ∈ 𝐴 with 𝜇 (𝑎) > 0. Moreover, we let |𝜇 | = 𝜇 (𝐴). As usual, the
probabilities in any sub-distribution must sum up to at most 1, i.e. |𝜇 | ≤ 1. We call 𝜇 a distribution

if |𝜇 | = 1. We let Dist(𝐴) denote the set of sub-distributions over 𝐴.
Given a sub-distribution 𝜇 ∈ Dist(𝐴1 ×𝐴2) over a product set, its left and right marginals, 𝜋1 (𝜇)

and 𝜋2 (𝜇), are sub-distributions over 𝐴1 and 𝐴2, respectively, which are given by 𝜋1 (𝜇) (𝑥1) =∑
𝑥2∈𝑋 𝜇 (𝑥1, 𝑥2), and 𝜋2 (𝜇) (𝑥2) =

∑
𝑥1∈𝑋 𝜇 (𝑥1, 𝑥2) .

The Dirac distribution 𝛿 (𝑎) ∈ Dist(𝐴) is the point distribution at 𝑎 ∈ 𝐴, 𝛿 (𝑎) (𝑎′) = [𝑎 = 𝑎′],
where the right-hand-side is an Iverson-bracket which evaluates to 1 if the formula inside (in this

case, 𝑎 = 𝑎′) evaluates to true, and to 0 otherwise. If 𝑓 : 𝐴 → R∞≥0
is a function mapping into

the extended reals, we can take its expected value E𝜇 [𝑓 ] with respect to some sub-distribution

𝜇 ∈ Dist(𝐴): E𝜇 [𝑓 ] =
∑
𝑎∈𝐴 𝑓 (𝑎) · 𝜇 (𝑎). If the sum diverges, the expected value is defined to be∞.

We assume that addition and multiplication are extended in the natural way, with the convention

0 · ∞ = ∞ · 0 = 0.
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2.2 Programming Language and Semantics

We work with a standard probabilistic imperative language pWhile. This language has commands

defined by the following grammar:

𝑐 B skip | 𝑥 ← 𝑒 | 𝑥 $← 𝑑 | 𝑐; 𝑐 | if 𝑒 then 𝑐 else 𝑐 | while 𝑒 do 𝑐 .

Variables 𝑥 are drawn from an arbitrary but finite setVar of variable names. Expressions 𝑒 are largely

standard, formed from variables and basic operations (e.g., integer addition, boolean conjunction).

To handle programs with (static) arrays, we assume expressions include basic array operations for

accessing and updating. For instance, when 𝑎 is an array variable we use the following syntactic

sugar:

𝑎[𝑒] ≜ Lookup(𝑎, 𝑒) (expression) and 𝑎[𝑒] ← 𝑒 ′ ≜ 𝑎 ← Update(𝑎, 𝑒, 𝑒 ′) (command)

The random sampling command 𝑥 $← 𝑑 takes a sample from some primitive distribution 𝑑 and

stores it in 𝑥 . For simplicity, we assume that primitive distributions do not have free program

variables; it is not difficult to remove this limitation. We also assume that primitive distributions

can be interpreted as full distributions ⟦𝑑⟧ : Dist(𝐷) over some countable set 𝐷 , possibly different

for different distributions. We will often use the uniform distribution 𝑈 (𝑆) when 𝑆 is a finite,

non-empty set; for instance, for a positive integer 𝑁 we will write [𝑁 ] for the set of integers

{0, . . . , 𝑁 − 1}, so that 𝑥 $← 𝑈 ( [𝑁 ]) samples each number in [𝑁 ] with probability 1/𝑁 and stores

it in 𝑥 . The distributions can also be parameterized by some more complex expression, for instance

in 𝑥 $← [𝑦] for a program variable 𝑦.

Programs in pWhile transform states, which are finite maps 𝑠 : Var → 𝐷 ; we write State for
the set of all states. The semantics of a program 𝑐 is a map ⟦𝑐⟧ : State → Dist(State) assigning
a sub-distribution over possible outputs to each input. For example, for the random sampling

command, we define

(⟦𝑥 $← 𝑑⟧𝑠) (𝑠 ′) ≜
{
𝑑 (𝑠 ′(𝑥)) : 𝑠 (𝑦) = 𝑠 ′(𝑦) for all 𝑦 ≠ 𝑥

0 : otherwise

The semantics of the remaining language constructs is standard. As we only work with discrete

primitive distributions and states have finitely many variables, output distributions programs

always have countable support.

To express quantitative distance between pairs of states, we use relational expectations, which are

maps of type State × State→ R∞≥0
. The set Exp of all relational expectations is equipped with the

pointwise order inherited from the order on R∞≥0
, i.e., E ≤ E ′ if and only if E(𝑠1, 𝑠2) ≤ E ′(𝑠1, 𝑠2) for

all pairs (𝑠1, 𝑠2) of states. Since R∞≥0
is a complete lattice and Exp has the pointwise order, Exp is also

a complete lattice: the top and bottom elements are the constant relational expectations∞ and 0,

which send all pairs of states to∞ and 0 respectively.

For denoting specific relational expectations, we borrownotation from relational Hoare logic [Ben-

ton 2004]: we tag variables with ⟨1⟩ or ⟨2⟩ to refer to their value in the first or the second

state, respectively. For instance, [𝑥 ⟨1⟩ = 𝑥 ⟨2⟩] is a relational expectation encoding the predi-

cate 𝜆⟨𝑠1, 𝑠2⟩. [𝑠1 (𝑥) = 𝑠2 (𝑥)].

2.3 Distances Between Probability Distributions

Sensitivity properties of probabilistic programs are stated in terms of concrete notions of distances

between distributions. A standard example is the following:

Definition 2.1 (Total Variation distance). The Total Variation (TV) distance between 𝜇1, 𝜇2 ∈
Dist(𝑋 ) is defined as: TV (𝜇1, 𝜇2) ≜ 1

2

∑
𝑥 ∈𝑋

��𝜇1 (𝑥) − 𝜇2 (𝑥)
�� .
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The term “distance” (or “metric”) is justified as TV (𝜇1, 𝜇2) is symmetric, satisfies the triangle

inequality, and maps to zero if and only if 𝜇1 = 𝜇2. The normalization factor of
1

2
ensures that the

TV distance is within [0, 1]. Roughly speaking, the TV distance measures the largest difference in

probabilities of any event between two given distributions.

Note that the TV distance does not require the underlying set 𝑋 to be equipped with a metric. If

𝑋 is a metric space, we can define a more complex distance:

Definition 2.2 (Kantorovich distance). Let 𝑋 be an (extended) metric space with a distance E : 𝑋 ×
𝑋 → R∞≥0

. TheKantorovich distance is a canonical lifting of E to a function E#
: Dist(𝑋 )×Dist(𝑋 ) →

R∞≥0
that defines a metric on Dist(𝑋 ). This distance is defined as

E# (𝜇1, 𝜇2) = inf

𝜇∈Γ (𝜇1,𝜇2)
E𝜇 [E],

where Γ(𝜇1, 𝜇2) is the set of probabilistic couplings of 𝜇1, 𝜇2, given by

Γ(𝜇1, 𝜇2) = {𝜇 ∈ Dist(𝑋 × 𝑋 ) | 𝜋𝑖 (𝜇) = 𝜇𝑖 , for 𝑖 = 1, 2}.
The set Γ(𝜇1, 𝜇2) is non-empty provided |𝜇1 | = |𝜇2 |. Otherwise, Γ(𝜇1, 𝜇2) = ∅ and E# (𝜇1, 𝜇2) = ∞.
The coupling-based definition of the Kantorovich distance is more abstract than other distances

between distributions, but its generality turns out to be a strength. First, we can recover the TV

distance as a lifting of the discrete metric:

Theorem 2.3 (Total variation and Kantorovich distance). Let 𝜇1, 𝜇2 ∈ Dist(𝑋 ) such that

|𝜇1 | = |𝜇2 | = 1. If the discrete metric E : 𝑋 × 𝑋 → {0, 1} is given by E(𝑥1, 𝑥2) = [𝑥1 ≠ 𝑥2], then
TV

(
𝜇1, 𝜇2

)
= E#

(
𝜇1, 𝜇2

)
.

Another advantage of the Kantorovich distance is that it is defined as an infimum. For our goal

of proving sensitivity properties, it suffices to compute an upper bound of the distance, which

corresponds to determining E𝜇 [E] for some particular witness coupling 𝜇.

Traditionally, the definition of E#
is restricted to functions E defining a metric on 𝑋 . However,

the definition of E#
extends to arbitrary functions E; we abuse terminology and use the term

Kantorovich distance also in the more general case. For instance, we can use this more general

notion to bound the difference between the expected values of two functions on the outputs of two

program runs:

Theorem 2.4 (Absolute expected difference). Let 𝜇1, 𝜇2 ∈ Dist(𝑋 ) such that |𝜇1 | = |𝜇2 | = 1,

and let 𝑓1, 𝑓2 : 𝑋 → R∞≥0
. Let E : 𝑋 × 𝑋 → R∞≥0

be defined by E(𝑥1, 𝑥2) = |𝑓1 (𝑥1) − 𝑓2 (𝑥2) | . Then��E𝜇1
[𝑓1] − E𝜇2

[𝑓2]
�� ≤ E#

(
𝜇1, 𝜇2

)
.

Note that above, the relational expectation E need not be a metric. We can also obtain bounds on

the TV distance when lifting other base distances that assign a minimum, non-zero distance to all

pairs of distinct elements.

Theorem 2.5 (Scaled TV distance). Let 𝜇1, 𝜇2 ∈ Dist(𝑋 ) with |𝜇1 | = |𝜇2 | = 1, let E𝜌 : 𝑋 ×
𝑋 → [0, 1], and let 𝜌 ∈ R>0 be a strictly positive constant with E𝜌 (𝑥1, 𝑥2) ≥ 𝜌 · [𝑥1 ≠ 𝑥2]. Then,
TV

(
𝜇1, 𝜇2

)
≤ 1

𝜌
· E#

𝜌

(
𝜇1, 𝜇2

)
.

3 BOUNDING EXPECTED SENSITIVITY WITH RELATIONAL PRE-EXPECTATIONS

As we have seen, the Kantorovich distance encompasses many specific distances on distributions.

To reason about a general class of sensitivity properties for probabilistic programs, we aim to bound

the Kantorovich distance between two output distributions in terms of the distance between two

program inputs. In this section, we develop a relational pre-expectation operation to prove such

bounds.
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3.1 A First (Unsuccessful) Attempt: a Relational Pre-expectation for Exact Bounds

Since we want to reason about the Kantorovich distance lifting of a relational expectation E : State×
State→ R∞≥0

between output distributions of a program 𝑐 , an initial idea is to define a relational

pre-expectation operator rpe(𝑐, E) coinciding exactly with the Kantorovich distance:

rpe(𝑐, E)(𝑠1, 𝑠2) = E#
(
⟦𝑐⟧𝑠1, ⟦𝑐⟧𝑠2

)
,

and then prove bounds of the form rpe(𝑐, E𝑜𝑢𝑡 ) ≤ E𝑖𝑛 in order to bound the Kantorovich distance

between outputs by some distance between inputs. While this definition is appealing, it turns out to

be inconvenient for formal reasoning because it does not behave well under sequential composition:

the expected sequence rule rpe(𝑐 ; 𝑐 ′, E) = rpe(𝑐, rpe(𝑐 ′, E)) does not hold. Roughly, this is because
choosing local infima on each step does not necessarily amount to a global infimum. In fact, in

some cases the global infimum cannot be realized by local choices.

Example 3.1. The Bernoulli distribution 𝐵(𝑝) with bias 𝑝 returns 1 with probability 𝑝 and 0 with

probability 1−𝑝 . Consider the following programs:

𝑐 = if 𝑏 then 𝑥 $← 𝐵(1/2) else 𝑦 $← 𝐵(1/2)
𝑐 ′ = if 𝑏 then 𝑦 $← 𝐵(1/2) else 𝑥 $← 𝐵(1/2) .

Moreover, consider the relational expectation E = [𝑥 ⟨1⟩ ≠ 𝑥 ⟨2⟩∨𝑦⟨1⟩ ≠ 𝑦⟨2⟩] . If we fix 𝑏⟨1⟩ = true
and 𝑏⟨2⟩ = false throughout, then

rpe(𝑐 ′, E)(𝑠 ′
1
, 𝑠 ′

2
) = inf

Γ (⟦𝑦 $←𝐵 (1/2)⟧𝑠′
1
,⟦𝑥 $←𝐵 (1/2)⟧𝑠′

2
)
E[E] .

To compute the above relational pre-expectation, we first need to understand the possible couplings.

The two target marginal distributions are:

𝜇1 ≜ ⟦𝑦 $← 𝐵(1/2)⟧𝑠 ′
1
=

{
1

2
: 𝑥 ↦→ 𝑠 ′

1
(𝑥), 𝑦 ↦→ 0

1

2
: 𝑥 ↦→ 𝑠 ′

1
(𝑥), 𝑦 ↦→ 1

𝜇2 ≜ ⟦𝑥 $← 𝐵(1/2)⟧𝑠 ′
2
=

{
1

2
: 𝑥 ↦→ 0, 𝑦 ↦→ 𝑠 ′

2
(𝑦)

1

2
: 𝑥 ↦→ 1, 𝑦 ↦→ 𝑠 ′

2
(𝑦) .

The marginal conditions for couplings (Definition 2.2) imply that any coupling in Γ(𝜇1, 𝜇2) is of the
form

𝜇𝜌 (𝑠1, 𝑠2) = 𝜌 · [𝑠1 (𝑥) = 𝑠 ′1 (𝑥) ∧ 𝑠1 (𝑦) = 1] · [𝑠2 (𝑥) = 1 ∧ 𝑠2 (𝑦) = 𝑠 ′2 (𝑦)]
+
(

1

2
− 𝜌

)
· [𝑠1 (𝑥) = 𝑠 ′1 (𝑥) ∧ 𝑠1 (𝑦) = 1] · [𝑠2 (𝑥) = 0 ∧ 𝑠2 (𝑦) = 𝑠 ′2 (𝑦)]

+
(

1

2
− 𝜌

)
· [𝑠1 (𝑥) = 𝑠 ′1 (𝑥) ∧ 𝑠1 (𝑦) = 0] · [𝑠2 (𝑥) = 1 ∧ 𝑠2 (𝑦) = 𝑠 ′2 (𝑦)]

+ 𝜌 · [𝑠1 (𝑥) = 𝑠 ′1 (𝑥) ∧ 𝑠1 (𝑦) = 0] · [𝑠2 (𝑥) = 0 ∧ 𝑠2 (𝑦) = 𝑠 ′2 (𝑦)] .

for some 0 ≤ 𝜌 ≤ 1

2
and the previously fixed states 𝑠 ′

1
and 𝑠 ′

2
. Hence,

E𝜇𝜌 [E] = 𝜌 · [𝑠 ′1 (𝑥) ≠ 1 ∨ 𝑠 ′
2
(𝑦) ≠ 1] +

(
1

2
− 𝜌

)
[𝑠 ′

1
(𝑥) ≠ 0 ∨ 𝑠 ′

2
(𝑦) ≠ 1]

+
(

1

2
− 𝜌

)
[𝑠 ′

1
(𝑥) ≠ 1 ∨ 𝑠 ′

2
(𝑦) ≠ 0] + 𝜌 · [𝑠 ′

1
(𝑥) ≠ 0 ∨ 𝑠 ′

2
(𝑦) ≠ 0] .

Since rpe(𝑐 ′, E) takes the minimum over all couplings, i.e., the minimum over all 𝜌 ∈ [0, 1

2
], by

simple computation we get that rpe(𝑐 ′, E)(𝑠 ′
1
, 𝑠 ′

2
) = 1/2, setting 𝜌 = 1/2 if 𝑠 ′

1
(𝑥) = 𝑠 ′

2
(𝑦) and

𝜌 = 0 otherwise. Since 𝑠 ′
1
(𝑥), 𝑠 ′

2
(𝑦) are sampled from ⟦𝑐⟧𝑠1 and ⟦𝑐⟧𝑠2, for any way to couple
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r̃pe(skip, E) ≜ E

r̃pe(𝑥 ← 𝑒, E) ≜ E{𝑒 ⟨1⟩, 𝑒 ⟨2⟩/𝑥 ⟨1⟩, 𝑥 ⟨2⟩}
≜ 𝜆𝑠1𝑠2 .E(𝑠1 [𝑥 ↦→ 𝑒 ⟨1⟩], 𝑠2 [𝑥 ↦→ 𝑒 ⟨2⟩])

r̃pe(𝑥 $← 𝑑, E) ≜ 𝜆𝑠1𝑠2 . E# (⟦𝑥 $← 𝑑⟧𝑠1, ⟦𝑥 $← 𝑑⟧𝑠2) ,where E# (𝜇1, 𝜇2) ≜ inf

𝜇∈Γ (𝜇1,𝜇2)
E𝜇 [E]

r̃pe(𝑐; 𝑐 ′, E) ≜ r̃pe(𝑐, r̃pe(𝑐 ′, E))

r̃pe(if 𝑒 then 𝑐 else 𝑐 ′, E) ≜ [𝑒 ⟨1⟩∧𝑒 ⟨2⟩] · r̃pe(𝑐, E) + [¬𝑒 ⟨1⟩∧¬𝑒 ⟨2⟩] · r̃pe(𝑐 ′, E) + [𝑒 ⟨1⟩≠𝑒 ⟨2⟩] · ∞

r̃pe(while 𝑒 do 𝑐, E) ≜ lfp𝑋 .ΦE,𝑐 (𝑋 ),
where ΦE,𝑐 (𝑋 ) ≜ [𝑒 ⟨1⟩∧𝑒 ⟨2⟩] · r̃pe(𝑐, 𝑋 ) + [¬𝑒 ⟨1⟩∧¬𝑒 ⟨2⟩] · E + [𝑒 ⟨1⟩≠𝑒 ⟨2⟩] · ∞

Fig. 1. Definition of the relational pre-expectation operator r̃pe(𝑐, E).

them rpe(𝑐, rpe(𝑐 ′, E))(𝑠1, 𝑠2) = 1

2
> 0. However, ⟦𝑐; 𝑐 ′⟧𝑠1 and ⟦𝑐; 𝑐 ′⟧𝑠2 have the same marginal

distributions for (𝑥,𝑦) and thus distance 0. Therefore,

0 = rpe(𝑐; 𝑐 ′, E)(𝑠1, 𝑠2) < rpe(𝑐, rpe(𝑐 ′, E))(𝑠1, 𝑠2) = 1

2
.

Fortunately, we generally do not need to compute the exact Kantorovich distance to prove sensi-

tivity properties: an upper bound suffices. Since the Kantorovich distance is an infimum over all

couplings, we can establish upper bounds by exhibiting a specific coupling—of course, the tightness

of these upper bounds will depend on the particular coupling we chose. Crucially, couplings can be

constructed compositionally: a coupling for a sequential composition 𝑐 ; 𝑐 ′ can be obtained by com-

bining a coupling for 𝑐 with a coupling for 𝑐 ′. We leverage this observation into our compositional

relational pre-expectation calculus, which provides upper bounds on the Kantorovich distance.

3.2 Compositional Upper Bounds by Relational Pre-expectation

To facilitate compositional reasoning, we define an upper bound r̃pe(𝑐, E) of the Kantorovich

distance E with respect to program 𝑐 . Technically, r̃pe(𝑐, E) is a relational pre-expectation calculus

defined by induction on the structure of 𝑐 , similarly to the calculus by Morgan et al. [1996]. The

rules of our calculus are shown in Figure 1. We take the indicator expectation [P] to be 1 if P is

true, otherwise 0, and we define addition and multiplication on expectations pointwise. The cases

of skipping, assignments and sequential composition are straightforward and apply the backwards

semantics of commands. The relational pre-expectation of sampling is expressed directly in terms

of the Kantorovich distance, i.e., an infimum is taken over the set of all couplings, which is not

always possible in practice. We give more details on this problem in Section 3.3. The relational

pre-expectation for conditionals assumes the two runs are synchronized. If not, [𝑒 ⟨1⟩ ≠ 𝑒 ⟨2⟩] = 1

and the distance is (trivially) upper bounded by ∞, since the branches may not terminate with

the same probability, so the set of couplings may be empty. Finally, in the case of while loops,

we take the least fixed point of the characteristic functional ΦE,𝑐 of the loop. It is not hard to

show that ΦE,𝑐 (−) : Exp → Exp is monotonic, so by the Knaster-Tarski theorem the least fixed

point exists. As in the previous case, the relational pre-expectation returns∞ when runs are not

synchronized, i.e., only one loop guard is true. However, if the loop does not termine on both sides

with probability one, the least fixed point becomes zero, i.e., we measure no distance between two

diverging programs. Computing the exact least fixed point is usually not possible. We present an

invariant-based approximation rule in Section 3.3.

Remark (Synchronous vs. asynchronous control flow). In contrast to the Kantorovich distance

operator rpe(𝑐, E), our compositional relational pre-expectation operator r̃pe(𝑐, E) only gives
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useful (i.e., finite) bounds when the control flows in the two executions of 𝑐 can be synchronized.

For deterministic guards, this means that pairs of related executions always take the same branches;

for randomized guards, this means that we can relate the random samplings so that pairs of related

executions always take the same branches. In Section 8, we will extend our calculus to give more

useful bounds when reasoning asynchronously.

Remark (Tightness of bounds). It is also complicated to estimate the exact loss between r̃pe(𝑐, E)
and rpe(𝑐, E), since lower bounds on rpe(𝑐, E) are not given by a witness coupling. Nonetheless,

in our setting this limitation is not exclusive to our technique—in the statistical literature, lower

bounds for stochastic processes are in general hard to compute and so the exact distance is often

not known.

We now study the metatheory of our calculus. The main result is that our calculus is sound: it

correctly upper bounds the Kantorovich distance.

Theorem 3.2 (Soundness of r̃pe). Let 𝑐 be a pWhile program and E ∈ Exp be a relational

expectation. Then rpe(𝑐, E) ≤ r̃pe(𝑐, E), i.e., if r̃pe(𝑐, E)(𝑠1, 𝑠2) < ∞ for 𝑠1, 𝑠2 ∈ State then
E𝜇𝑠

1
,𝑠

2

[E] ≤ r̃pe(𝑐, E)(𝑠1, 𝑠2) for some coupling 𝜇𝑠1,𝑠2
∈ Γ(⟦𝑐⟧𝑠1, ⟦𝑐⟧𝑠2) .

Proof Sketch. By induction on 𝑐 . Note that the theorem requires to show existence of a coupling

that is below the r̃pe. The most challenging cases are the ones for sampling and loops. The case

for sampling follows from the following lemma, which is adapted from the theory of optimal

transport [Villani 2008]:

Lemma 3.3. Let 𝜇1, 𝜇2 ∈ Dist(State) be two sub-distributions of countable support with the same

weight, and let E : State×State→ R∞≥0
be a relational expectation. There exists a coupling 𝜇 ∈ Γ(𝜇1, 𝜇2)

realizing the minimum Kantorovich distance:

E𝜇 [E] = inf

𝜇∈Γ (𝜇1,𝜇2)
E𝜇 [E] = E# (𝜇1, 𝜇2) .

The case for loops is challenging for another reason: it is not clear how to show that the pre-

expectation operator is continuous in its second argument (but see Theorem 3.4). Instead, our proof

relies on extracting a convergent sequence of couplings. Consider the following loop approximants:

𝑐0 ≜ while tt do skip

𝑐𝑖+1 ≜ if 𝑒 then 𝑐; 𝑐𝑖 else skip

Each approximant executes at most 𝑖 iterations of the loop; the zero-th approximant returns the

zero distribution and does not execute any iterations of the loop body. We then define a sequence

of pre-expectations corresponding to the approximants:

E0 ≜ r̃pe(𝑐0, E) = 0

E𝑖+1 ≜ r̃pe(𝑐𝑖+1, E) = [𝑒 ⟨1⟩ ∧ 𝑒 ⟨2⟩] · r̃pe(𝑐, E𝑖 ) + [¬𝑒 ⟨1⟩ ∧ ¬𝑒 ⟨2⟩] · E + [𝑒 ⟨1⟩ ≠ 𝑒 ⟨2⟩] · ∞
It is not hard to see that also E𝑖 = Φ𝑖E,𝑐 (0), but we cannot apply Kleene’s fixpoint theorem to show

that lim𝑖→∞ Φ𝑖E,𝑐 (0) = lfp𝑋 .ΦE,𝑐 (𝑋 ), since we do not know if ΦE,𝑐 is continuous. With this in mind,

the bulk of the proof consists in showing: (i) For every 𝑖 , Φ𝑖E,𝑐 (0) ≤ lfp𝑋 .ΦE,𝑐 (𝑋 ) (ii) There exists a
sequence of couplings 𝜇𝑖,𝑠1,𝑠2

∈ Γ(⟦𝑐𝑖⟧𝑠1, ⟦𝑐𝑖⟧𝑠2) such that

E𝜇𝑖,𝑠
1
,𝑠

2

[E] ≤ E𝑖 (𝑠1, 𝑠2) = r̃pe(𝑐𝑖 , E) .
(iii) From the sequence 𝜇𝑖,𝑠1,𝑠2

we can extract a subsequence 𝜇 ′𝑖,𝑠1,𝑠2

that converges monotonically

to a coupling 𝜇̃𝑠1,𝑠2
∈ Γ(⟦while 𝑒 do 𝑐⟧𝑠1, ⟦while 𝑒 do 𝑐⟧𝑠2) satisfying
E(𝑠′

1
,𝑠′

2
)∼𝜇̃𝑠

1
,𝑠

2

[E(𝑠 ′
1
, 𝑠 ′

2
)] ≤ r̃pe(while 𝑒 do 𝑐, E)(𝑠1, 𝑠2).
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E ≤ E ′

r̃pe(𝑐, E) ≤ r̃pe(𝑐, E ′)
Mono

𝐹𝑉 (E ′) ∩𝑀𝑉 (𝑐) = ∅
r̃pe(𝑐, E + E ′) ≤ r̃pe(𝑐, E) + E ′

Const

r̃pe(𝑐, E) + r̃pe(𝑐, E ′) ≤ r̃pe(𝑐, E + E ′)
SupAdd

𝑓 : R≥0 → R≥0 linear, with 𝑓 (∞) ≜ ∞
r̃pe(𝑐, 𝑓 ◦ E) = 𝑓 ◦ r̃pe(𝑐, E)

Scale

𝑀 : State × State→ Γ(⟦𝑑⟧, ⟦𝑑⟧)
r̃pe(𝑥 $← 𝑑, E) ≤ E(𝑣1,𝑣2)∼𝑀 (−,−) [E{𝑣1, 𝑣2/𝑥 ⟨1⟩, 𝑥 ⟨2⟩}]

Samp

𝑓 : State × State→ (𝐷 → 𝐷) bijection

r̃pe(𝑥 $← 𝑈 (𝐷), E) ≤ 1

|𝐷 |
∑
𝑣∈𝐷
E{𝑣, 𝑓 (−,−)(𝑣)/𝑥 ⟨1⟩, 𝑥 ⟨2⟩}

Unif

[𝑒 ⟨1⟩ ∧ 𝑒 ⟨2⟩] · r̃pe(𝑐,I) + [¬𝑒 ⟨1⟩ ∧ ¬𝑒 ⟨2⟩] · E + [𝑒 ⟨1⟩ ≠ 𝑒 ⟨2⟩] · ∞ ≤ I
r̃pe(while 𝑒 do 𝑐, E) ≤ I

Inv

Fig. 2. Properties of relational pre-expectation operator r̃pe(𝑐, E).

□

It is natural to wonder whether our relational pre-expectation operator is continuous—this property

is not needed for soundness, but it does hold for similar pre-expectation calculi. While we do not

know whether continuity holds for all programs, it does hold for programs that sample from finite

distributions. Note that such programs can still produce distributions with infinite support by

sampling in a loop.

Theorem 3.4 (Continuity of r̃pe). Let 𝑐 be a pWhile program where all primitive distributions

have finite support, and let E𝑛 ∈ Exp for 𝑛 ∈ N be a monotonically increasing chain of relational

expectations converging pointwise to E ∈ Exp. Then,
r̃pe(𝑐, E) = sup

𝑛∈N
r̃pe(𝑐, E𝑛).

Proof Sketch. By induction on the structure of 𝑐 . The most challenging case is for sampling

instructions, where the proof depends on the following continuity property for the Kantorovich

distance that we establish for distributions with finite support:

Lemma 3.5. Let 𝜇1, 𝜇2 ∈ Dist(State) be two distributions with finite support, and let E𝑛 : State ×
State→ R∞≥0

be a monotonically increasing chain of relational expectations converging pointwise to

E : State × State→ R∞≥0
. Then:

inf

𝜇∈Γ (𝜇1,𝜇2)
E𝜇 [E] = inf

𝜇∈Γ (𝜇1,𝜇2)
E𝜇 [ lim

𝑛→∞
E𝑛] = lim

𝑛→∞
inf

𝜇∈Γ (𝜇1,𝜇2)
E𝜇 [E𝑛] .

The proof of this lemma is involved, and extending it to more general distributions is out of

scope. We defer the details to the full version. □

3.3 Reasoning with Relational Pre-expectations

The definition of r̃pe in Fig. 1 is sufficient to prove relational properties of probabilistic programs in

theory, but there are some practical obstacles.

• Comparing different relational pre-expectations for the same program: using the definition

to compute each relational pre-expectation separately is tedious.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.



A Pre-expectation Calculus for Probabilistic Sensitivity 52:11

• Computing the relational pre-expectation for random sampling: it requires computing a

minimum over all couplings.

• Computing the relational pre-expectation for loops: it is often not possible to compute the

least fixed point in closed form.

To make our operator easier to use, we introduce a collection of auxiliary properties in Fig. 2. We

briefly describe the rules below.

Basic properties. The first four rules are basic properties of relational pre-expectations. Rule

Mono states that the r̃pe transformer is monotone, and Const intuitively states that the relational

pre-expectation of E is E if 𝑐 doesn’t modify E; the rule is carefully stated to behave correctly

when r̃pe(𝑐, E) is infinite.
The next two rules encode linearity-like properties of relational pre-expectations. SupAdd states

that the property is super-additive: the relational pre-expectation of a sum can be greater than the

sum of the relational pre-expectations. Intuitively, this is because r̃pe(𝑐, E) involves an infimum

for random sampling, and the infimum of a sum at least as large as the sum of the infima. Scale

states that the relational pre-expectation is preserved by scaling. The requirement that the scaling

function satisfies 𝑓 (∞) = ∞ is needed for correctly handling scaling by 0: r̃pe(𝑐, E) may be infinite,

even if E is identically zero.

As expected, these rules are sound.

Theorem 3.6 (Soundness of basic rules). Mono, Const, SupAdd, and Scale are sound.

Proof. Proof sketch By induction on the program 𝑐; we defer details to the full verison. □

Bounding the pre-expectation for sampling. Using the Kantorovich distance for defining the

relational pre-expectation of a sampling command 𝑥 $← 𝑑 is theoretically clean, but inconvenient

in practice for two reasons. First, the set of couplings Γ(⟦𝑥 $← 𝑑⟧𝑠1, ⟦𝑥 $← 𝑑⟧𝑠2) over which the

infimum is computed is a set of distributions over pairs of states. Given denotations of primitive

distributions ⟦𝑑⟧ ∈ Dist(𝐷), it would be more convenient to reason about the set Γ(⟦𝑑⟧, ⟦𝑑⟧)—this
is a set of distributions over pairs of sampled values 𝐷 × 𝐷 , rather than pairs of memories. Second,

computing the infimum is often difficult, and moreover unnecessary for establishing upper bounds.

Corresponding to the Samp rule, the following result states that we can actually upper bound

this Kantorovich distance by picking any coupling of the primitive distribution with itself; we call

such a function𝑀 : State × State→ Γ(⟦𝑑⟧, ⟦𝑑⟧) a coupling function (on 𝑑).

Proposition 3.7. Let 𝑑 be a primitive distribution, and let𝑀 be a coupling function on 𝑑 . For any

relational expectation E ∈ Exp, we have:

r̃pe(𝑥 $← 𝑑, E) ≤ E(𝑣1,𝑣2)∼𝑀 (−,−) [E{𝑣1, 𝑣2/𝑥 ⟨1⟩, 𝑥 ⟨2⟩}] .

We can reuse common couplings of primitive distributions across different proofs. For example,

let 𝐷 be a finite, non-empty set and let 𝑓 : State× State→ (𝐷 → 𝐷) map pairs of program states to

bijections on 𝐷 . Then the bijection coupling 𝑀𝑓 , the coupling function on the uniform distribution

𝑈 (𝐷) is defined by

𝑓 (𝑠1, 𝑠2) (𝑥1, 𝑥2) =
{

1/|𝐷 | : 𝑓 (𝑠1, 𝑠2) (𝑥1) = 𝑥2

0 : otherwise

,
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where 𝑥1 and 𝑥2 are elements in 𝐷 . Specialized to this case, Proposition 3.7 gives the rule Unif:

r̃pe(𝑥 $← 𝑈 (𝐷), E) ≤ r̃pe(𝑥 $← 𝑑, E) ≤ E(𝑣1,𝑣2)∼𝑀𝑓 (−,−) [E{𝑣1, 𝑣2/𝑥 ⟨1⟩, 𝑥 ⟨2⟩}]
≤ E𝑣∼⟦𝑈 (𝐷)⟧ [E{𝑣, 𝑓 (−,−)(𝑣)/𝑥 ⟨1⟩, 𝑥 ⟨2⟩}]

=
1

|𝐷 |
∑
𝑣∈𝐷
E{𝑣, 𝑓 (−,−)(𝑣)/𝑥 ⟨1⟩, 𝑥 ⟨2⟩} .

Different coupling functions can give upper bounds of different strengths—selecting appropriate

couplings to show the target property is the key part of reasoning by couplings. This technique is

well-known to probability theory, where it is called the coupling method [Aldous 1983].

Bounding the pre-expectation for loops. As in the case of sampling, it may not always be desirable

or possible to compute the fixed point for loops. Instead, we can upper bound the relational

pre-expectation by a relational expectation I, called an invariant—intuitively, if the relational

pre-expectation of I with respect to the loop body is at most I, then the relational pre-expectation

of the loop is also at most I. Formally, this reasoning is captured by Inv and the following theorem:

Theorem 3.8. Let I ∈ Exp be a relational expectation. If

[𝑒 ⟨1⟩ ∧ 𝑒 ⟨2⟩] · r̃pe(𝑐,I) + [¬𝑒 ⟨1⟩ ∧ ¬𝑒 ⟨2⟩] · E + [𝑒 ⟨1⟩ ≠ 𝑒 ⟨2⟩] · ∞ ≤ I,

then r̃pe(while 𝑒 do 𝑐, E) ≤ I.

Proof. Let Φ be the characteristic functional of the loop, as defined for the relational pre-

expectation. The hypothesis impliesΦ(I) ≤ I, soI is a prefixed point ofΦ. By Park induction [Park
1969], the least fixed point r̃pe(while 𝑒 do 𝑐, E) is less than or equal to I. □

3.4 Embedding EpRHL

Expectation Probabilistic Relational Hoare Logic (EpRHL) is a quantitative extension of pRHL [Barthe
et al. 2018]. Judgments of EpRHL are of the form: {𝑃 ; E} 𝑐1 ∼𝑓 𝑐2 {𝑄 ; E ′} where 𝑃,𝑄 are boolean-

valued assertions, E, E ′ are relational expectations, 𝑓 is an affine function of the form 𝑎𝑥 +𝑏, where
𝑎, 𝑏 ∈ R≥0, and 𝑐1 and 𝑐2 are pWhile programs. This judgment states that for every pair of input

states 𝑠1, 𝑠2 satisfying the pre-condition 𝑃 , there is a coupling 𝜇 of ⟦𝑐1⟧(𝑠1), ⟦𝑐2⟧(𝑠2) whose support
lies within the post-condition 𝑄 , and moreover E𝜇 [E ′] ≤ 𝑓 (E(𝑠1, 𝑠2)). We can embed the core

inference rules of EpRHL in our proof system.

Theorem 3.9 (Embedding EpRHL). Let ⊢ {𝑃 ; E} 𝑐 ∼𝑓 𝑐 {𝑄 ; E ′} be a valid EpRHL judgmentwith

finite E and E ′. Then:
r̃pe(𝑐, E ′ + [¬𝑄] · ∞) ≤ 𝑓 (E) + [¬𝑃] · ∞.

Furthermore, this inequality can be derived using just the definition of r̃pe(𝑐, E) for skip, assignment,

sequence, and conditionals in Figure 1, and the auxiliary proof rules in Figure 2.

Intuitively, the bound on the relational pre-expectation captures the validity of the original

EpRHL judgment. For any pair of states (𝑠1, 𝑠2), if (𝑠1, 𝑠2) does not satisfy 𝑃 , then the right-hand side

is infinite and the bound trivially holds. If (𝑠1, 𝑠2) satisfies 𝑃 , then the right-hand side is finite (since

E is finite) and the relational pre-expectation is finite. This implies that 𝑄 must be satisfied almost

surely in the coupling and r̃pe(𝑐, E ′) ≤ 𝑓 (E). This last inequality recovers the EpRHL judgment’s

bound on the output distance in terms of the input distance. Furthermore, the embedding shows that

the bound is derivable in our calculus without computing infimums over couplings for sampling, or

computing least fixed points for loops.
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sgd(𝑆)
𝑤 ← 𝑤0;

𝑡 ← 0;

while 𝑡 < 𝑇 do
𝑠 $← [𝑆];
𝑔← ∇ℓ (𝑠,−)(𝑤);
𝑤 ← 𝑤 − 𝛼𝑡 · 𝑔;

𝑡 ← 𝑡 + 1;

(a) Stochastic Gradient Descent (SGD)

TD0(𝑉 )
𝑛 ← 0;

while 𝑛 < 𝑁 do
𝑖 ← 0;

while 𝑖 < |S| do
𝑎 $← 𝜋 (𝑖); 𝑟 $← R(𝑖, 𝑎); 𝑗 $← P(𝑖, 𝑎);
𝑊 [𝑖] ← (1 − 𝛼) ·𝑉 [𝑖] + 𝛼 · (𝑟 + 𝛾 ·𝑉 [ 𝑗]);
𝑖 ← 𝑖 + 1

𝑉 ←𝑊 ;𝑛 ← 𝑛 + 1;

(b) TD(0) learning algorithm

Fig. 3. Example programs: Stability and convergence

4 WARMUP EXAMPLE: STABILITY OF SGD

To demonstrate our relational pre-expectation operator, we analyze the stability of Stochastic

Gradient Descent (SGD) as our warmup example. SGD is a core tool in modern machine learning;

variants of SGD are commonly used in practice for training neural networks. Its stability was

first established in Hardt et al. [2016], and it was later formalized in a relational program logic

EpRHL [Barthe et al. 2018]. While the EpRHL proof involves complex proof rules, our calculus can

establish the same property with significantly cleaner reasoning.

4.1 Background

Let 𝑍 be a space of labeled examples, e.g., images annotated with their main subject. A learning algo-

rithm𝐴 : 𝑆 → R𝑑 takes a set 𝑆 ∈ 𝑍𝑛 of examples as input and produces (“learns”) parameters 𝑤 ∈ R𝑑
as output. The algorithm is tailored to a given loss function ℓ : 𝑍 → R𝑑 → [0, 1], which describes

how well an example is labeled by some parameters. The goal is to find parameters that have low

loss on examples.

In machine learning, uniform stability is a useful property for learning algorithms. In a nutshell,

a randomized learning algorithm𝐴 is 𝜖-uniformly stable if for all pairs 𝑆, 𝑆 ′ of training sets differing
in exactly one example, and for all examples 𝑧 ∈ 𝑍 , the expected losses of 𝑧 are close:

|E𝐴(𝑆) [ℓ (𝑧)] − E𝐴(𝑆′) [ℓ (𝑧)] | ≤ 𝜖 .

Stable learning algorithms generalize: their performance on new, unseen examples is similar to

their performance on the training set [Bousquet and Elisseeff 2002]. In particular, stability controls

how much a learning algorithm can overfit the training set.

4.2 Verifying Stability for Stochastic Gradient Descent

We consider the program sgd in Figure 3a. The gradient ∇ is a higher-order function
1
with type

∇ : (R𝑑 → [0, 1]) → (R𝑑 → R𝑑 ); we assume that it is well-defined and given. In SGD, the true

gradient of a function is approximated by a gradient 𝑔 at a single sample 𝑠 . The step sizes 𝛼𝑡 (with

𝑡 ∈ N) are a sequence of real numbers that control (together with the local gradient 𝑔) how to adjust

the parameters in each iteration of SGD. Following Hardt et al. [2016], we make the following

assumptions:

1
This makes our states non-discrete, but the distributions over them will still have discrete support, since they are generated

by a composition of discrete samplings.
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(1) The loss function ℓ is convex and 𝐿-Lipschitz in its second argument, i.e., |ℓ (𝑧,𝑤) −ℓ (𝑧,𝑤 ′) | ≤
𝐿 · ∥𝑤 −𝑤 ′∥ for all parameters𝑤,𝑤 ′ ∈ R𝑑 .

(2) The gradient ∇ℓ (𝑧,−) : R𝑑 → R𝑑 is 𝛽-Lipschitz for every 𝑧 ∈ 𝑍 .
(3) The step sizes satisfy 0 ≤ 𝛼𝑡 ≤ 2/𝛽 .

To show uniform stability, for any two training sets 𝑆 ⟨1⟩, 𝑆 ⟨2⟩ differing in one element and every

example 𝑧 ∈ 𝑍 , our proof obligation is

|Esgd(𝑆 ⟨1⟩) [ℓ (𝑧)] − Esgd(𝑆 ⟨2⟩) [ℓ (𝑧)] | ≤ 𝛾𝐿 where 𝛾 ≜
2𝐿

𝑛

𝑇−1∑
𝑡=0

𝛼𝑡 .

Rather than working with the loss function directly, we will first bound the pre-expectation of the

distance ∥𝑤 ⟨1⟩ −𝑤 ⟨2⟩∥ and then use the 𝐿-Lipschitz property of ℓ to conclude uniform stability. As

usual, the main part of the proof is bounding the pre-expectation of the loop. We use the following

loop invariant:

I ≜ [𝑡 ⟨1⟩ ≠ 𝑡 ⟨2⟩] · ∞ + [𝑡 ⟨1⟩ = 𝑡 ⟨2⟩] · ©­«∥𝑤 ⟨1⟩ −𝑤 ⟨2⟩∥ + 2𝐿

𝑛

𝑇−1∑
𝑗=𝑡 ⟨1⟩

𝛼 𝑗
ª®¬ .

By the loop rule (Theorem 3.8), it suffices to show the following invariant condition:

[𝑒 ⟨1⟩ ∧ 𝑒 ⟨2⟩] · r̃pe(bd,I) + [¬𝑒 ⟨1⟩ ∧ ¬𝑒 ⟨2⟩] · ∥𝑤 ⟨1⟩ −𝑤 ⟨2⟩∥ + [𝑒 ⟨1⟩ ≠ 𝑒 ⟨2⟩] · ∞ ≤ I . (1)

The main case corresponds to the first term, where both loop guards 𝑒 ⟨1⟩ and 𝑒 ⟨2⟩ are true. To
bound the pre-expectation r̃pe(bd,I), we consider r̃pe(bd,I) = r̃pe(𝑠 $← 𝑈 (𝑆),I ′) where

I ′ ≜ [𝑡 ⟨1⟩+1 ≠ 𝑡 ⟨2⟩+1] · ∞ + [𝑡 ⟨1⟩+1 = 𝑡 ⟨2⟩+1] · 𝑃, with

𝑃 ≜
2𝐿

𝑛

𝑇−1∑
𝑗=𝑡 ⟨1⟩+1

𝛼 𝑗 +




 (𝑤 ⟨1⟩ − 𝛼𝑡 ⟨1⟩∇ℓ (𝑠 ⟨1⟩,−)(𝑤 ⟨1⟩))−(𝑤 ⟨2⟩ − 𝛼𝑡 ⟨2⟩∇ℓ (𝑠 ⟨2⟩,−)(𝑤 ⟨2⟩))





 .
To handle the random sampling command, we apply the sampling rule (Proposition 3.7) with the

coupling function𝑀 for the two uniform distributions [𝑆 ⟨1⟩] and [𝑆 ⟨2⟩] induced by the bijection

𝑓 : 𝑆 ⟨1⟩ → 𝑆 ⟨2⟩ mapping the differing example in 𝑆 ⟨1⟩ to its counterpart in 𝑆 ⟨2⟩, and fixing all

other examples. We then have r̃pe(𝑠 $← 𝑈 (𝑆),I ′) ≤ I ′′, where

I ′′ ≜ [𝑡 ⟨1⟩+1 ≠ 𝑡 ⟨2⟩+1] · ∞ + [𝑡 ⟨1⟩+1 = 𝑡 ⟨2⟩+1] · 𝑃 ′, with

𝑃 ′ =
2𝐿

𝑛

𝑇−1∑
𝑗=𝑡 ⟨1⟩+1

𝛼 𝑗 +
1

𝑛

𝑛−1∑
𝑠∈𝑆 ⟨1⟩





 (𝑤 ⟨1⟩ − 𝛼𝑡 ⟨1⟩∇ℓ (𝑠,−)(𝑤 ⟨1⟩))
−(𝑤 ⟨2⟩ − 𝛼𝑡 ⟨2⟩∇ℓ (𝑓 (𝑠),−)(𝑤 ⟨2⟩))






We focus on the terms of the last sum. Using the 𝐿-Lipschitz property of ℓ , when 𝑠 is the differing

example, we can bound the absolute difference by ∥𝑤 ⟨1⟩−𝑤 ⟨2⟩∥+2𝛼𝑡 ⟨1⟩𝐿. When 𝑠 is not the differing

example, we have 𝑠 ⟨1⟩ = 𝑠 ⟨2⟩. By the 𝛽-Lipschitz property of ∇ℓ , convexity, and 0 ≤ 𝛼𝑡 ≤ 2/𝛽 , we
can bound each of the terms by ∥𝑤 ⟨1⟩ −𝑤 ⟨2⟩∥. Combining the two cases gives

r̃pe(bd,I) ≤ ©­«∥𝑤 ⟨1⟩ −𝑤 ⟨2⟩∥ + 2𝐿

𝑛

𝑇−1∑
𝑗=𝑡 ⟨1⟩

𝛼 𝑗
ª®¬

for all input states with 𝑡 ⟨1⟩ = 𝑡 ⟨2⟩ and 𝑒 ⟨1⟩ ∧ 𝑒 ⟨2⟩. This establishes (1). Theorem 3.8 gives

r̃pe(while 𝑒 do bd, ∥𝑤 ⟨1⟩ −𝑤 ⟨2⟩∥) ≤ I .
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Finally, taking the pre-expectations of both sides with respect to the initial assignments yields

r̃pe(sgd(𝑆), ∥𝑤 ⟨1⟩ −𝑤 ⟨2⟩∥) ≤ 2𝐿

𝑛

𝑇−1∑
𝑗=0

𝛼 𝑗 = 𝛾,

when 𝑆 ⟨1⟩ and 𝑆 ⟨2⟩ differ in exactly one training example. Since ℓ is 𝐿-Lipschitz, we conclude

r̃pe(sgd(𝑆), |ℓ (𝑧,𝑤)⟨1⟩ − ℓ (𝑧,𝑤)⟨2⟩|) ≤ 𝛾𝐿 ,
for any example 𝑧 ∈ 𝑍 . By Theorem 2.4, the expected losses are at most 𝛾𝐿 apart:

|Esgd(𝑆 ⟨1⟩) [ℓ (𝑧)] − Esgd(𝑆 ⟨2⟩) [ℓ (𝑧)] | ≤ 𝛾𝐿 ,
and so SGD satisfies 𝛾𝐿-uniform stability.

Remark. This stability bound for SGD was previously verified in the program logic EpRHL [Barthe

et al. 2018], using a complex rule for sequential composition (SeqCase) that required bounding the

probability of selecting two differing examples. Our proof using r̃pe is much simpler, involving just

compositional reasoning for sequencing and a loop invariant.

Remark. While our calculus was designed for probabilistic programs, it is also a useful tool for

proving relational properties of deterministic programs. In the full version, we show how to prove

a sensitivity bound for projected gradient descent, a deterministic version of SGD.

5 EXAMPLE: CONVERGENCE OF REINFORCEMENT LEARNING ALGORITHMS

In the previous section, the stability guarantee weakens as the program progresses: starting from

two initially-equal parameter settings, the learned parameters may drift apart as SGD runs for more

iterations. In the following two sections, we will apply our technique to prove a different style of

guarantee: probabilistic convergence of two outputs, starting from two different inputs. Our first

example shows convergence for a classical algorithm from Reinforcement Learning (RL) [Sutton

1988], guided by a novel analysis by Amortila et al. [2020].

5.1 Background

In the standard reinforcement learning setting, an agent (i.e., the learning algorithm) repeatedly

interacts with the environment, a Markov Decision Process (MDP) with state space S. At each
step, the agent chooses an action from a set A. The MDP draws a numeric reward according to a

function R : S × A → Dist( [0, 𝑅]), and transitions to a new random state drawn from a transition

function P : S × A → Dist(S). The current state of the process is known to the learner—imagine

the current position of a chessboard—but the exact reward and transition functions (R,P) are not
known. Given black-box access to R and S, the goal of the learner is to find a policy map 𝜋 : S → A
that maximizes the learner’s expected reward when interacting with the unknown MDP over an

infinite time horizon; estimated rewards in the future are reduced by a discount factor 𝛾 ∈ [0, 1)
for each step into the future.

For many approaches to learning the optimal policy, an important requirement is estimating the

value function𝑉 : S → [0, 𝑅] of the MDP, i.e., the expected reward at each state if the agent were to

repeatedly act according to some given policy 𝜋 . Temporal difference (TD) learning is one approach

to estimating the value function [Sutton 1988]. In brief, a TD learner maintains an estimate of

𝑉 and loops through states in S. At each state 𝑠 , the learner selects an action 𝑎 ∼ 𝜋 (𝑠), draws a
reward 𝑟 ∼ R(𝑠, 𝑎), and draws a transition 𝑠 ′ ∼ P(𝑠, 𝑎). Then, the estimate 𝑉 (𝑠) is updated by

incorporating the observed reward 𝑟 and the estimated value 𝑉 (𝑠 ′) of the new state.

Figure 3b shows one basic example of TD learning, known as TD(0). We assume that the program

takes only one argument 𝑉 , the initial estimate of the value function. All other parameters are
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assumed to be fixed: the current policy 𝜋 , the reward and transition functions R and P, the discount
factor 𝛾 , the step size 𝛼 ∈ (0, 1)—higher 𝛼 allows 𝑉 to evolve faster–and the number of iterations

𝑁 .

5.2 Verifying Convergence for TD0
Since the true value function is not known, the initial estimate 𝑉 is chosen with little information.

A natural question is: does the algorithm converge to the same distribution no matter how 𝑉 is

initialized? If so, how fast does convergence happen, as a function of the number of iterations 𝑁 ?

To answer these questions, we will verify that TD0 is contractive on 𝑉 . More specifically, we will

show the quantitative bound

r̃pe(TD0(𝑉 ), ∥𝑉 ⟨1⟩ −𝑉 ⟨2⟩∥∞) ≤ 𝑘𝑁 · ∥𝑉 ⟨1⟩ −𝑉 ⟨2⟩∥∞, (2)

where 𝑘 ≜ (1−𝛼 +𝛼𝛾) < 1. Before we describe the verification, we unpack the guarantee. First, the

∞-norms are defined by ∥𝑉 ⟨1⟩ −𝑉 ⟨2⟩∥∞ ≜ max𝑖< |S | |𝑉 ⟨1⟩[𝑖] −𝑉 ⟨2⟩[𝑖] |. By Theorem 3.2, Eq. (2)

implies that for any inputs𝑉1 and𝑉2, there exists a coupling 𝜇 of the output distributions 𝜇1 and 𝜇2

from TD0(𝑉 ⟨1⟩) and TD0(𝑉 ⟨2⟩), such that:

𝑘𝑁 · ∥𝑉1 −𝑉2∥∞ ≥ E(𝑠1,𝑠2)∼𝜇 [∥𝑠1 (𝑉 ) − 𝑠2 (𝑉 )∥∞]
≥ max

𝑖< |S |
E(𝑠1,𝑠2)∼𝜇 [| 𝑠1 (𝑉 [𝑖]) − 𝑠2 (𝑉 [𝑖]) |]

≥ max

𝑖< |S |

��E(𝑠1,𝑠2)∼𝜇 [𝑠1 (𝑉 [𝑖]) − 𝑠2 (𝑉 [𝑖])]
��

= max

𝑖< |S |

��E𝑠1∼𝜇1
[𝑠1 (𝑉 [𝑖])] − E𝑠2∼𝜇2

[𝑠2 (𝑉 [𝑖])]
��

(by Theorem 2.4)

In words, the right-hand side of the final line is the maximum difference between the average

estimates of𝑉 [𝑖] in the two outputs, taking the maximum over all indices 𝑖 . Since 𝑘 < 1, both sides

tend to zero exponentially quickly from any pair of starting states 𝑉1 and 𝑉2.

Inner loop. We start by analyzing the inner loop𝑤𝑖𝑛 . We first show that

r̃pe(𝑤𝑖𝑛, ∥𝑊 ⟨1⟩ −𝑊 ⟨2⟩∥∞) ≤ I𝑖𝑛
for the invariant I𝑖𝑛 :

I𝑖𝑛 ≜ [𝑖⟨1⟩ ≠ 𝑖⟨2⟩] · ∞
+ [𝑖⟨1⟩ = 𝑖⟨2⟩] ·max

𝑙< |𝑆 |
( [𝑙 < 𝑖⟨1⟩] · |𝑊 ⟨1⟩[𝑙] −𝑊 ⟨2⟩[𝑙] | + [𝑖⟨1⟩ ≤ 𝑙] · 𝑘 · ∥𝑉 ⟨1⟩ −𝑉 ⟨2⟩∥∞).

Let 𝑐𝑖𝑛 be the body, and 𝑐𝑠𝑎𝑚𝑝 be the three sampling statements. Applying Inv, it suffices to show:

[𝑖⟨1⟩ < |S|∧𝑖⟨2⟩ < |S|]·r̃pe(𝑐𝑖𝑛,I𝑖𝑛)+[𝑖⟨1⟩ ≥ |S|∧𝑖⟨2⟩ ≥ |S|]·∥𝑊 ⟨1⟩−𝑊 ⟨2⟩∥∞+[𝑖⟨1⟩ ≠ 𝑖⟨2⟩]·∞ ≤ I𝑖𝑛
The main case is bounding r̃pe(𝑐𝑖𝑛,I𝑖𝑛); the other cases are simpler. We describe the overall idea

here, deferring details to the full version. To bound the relational pre-expectation for the three

sampling instructions, we apply the sampling rule Samp. Since the relational pre-expectation

is computed in reverse order, we must choose a coupling for sampling 𝑗 first, then choose a

coupling for sampling 𝑟 , and then finally choose a coupling for sampling 𝑎. We aim to take the

identity coupling in each case, ensuring 𝑗 ⟨1⟩ = 𝑗 ⟨2⟩, 𝑟 ⟨1⟩ = 𝑟 ⟨2⟩, and 𝑎⟨1⟩ = 𝑎⟨2⟩, but there is
a small problem: we can only take the identity coupling when samples are taken from the same

distributions, i.e., R(𝑖⟨1⟩, 𝑎⟨1⟩) = R(𝑖⟨2⟩, 𝑎⟨2⟩). The invariant assumes 𝑖⟨1⟩ = 𝑖⟨2⟩, but we can only

ensure 𝑎⟨1⟩ = 𝑎⟨2⟩ after we have specified the couplings for 𝑗 and 𝑟 . Accordingly, our coupling

functions for Samp will be of the following form: if 𝑎⟨1⟩ = 𝑎⟨2⟩ then we take the identity coupling,

otherwise we take the trivial (independent) coupling.
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Outer loop. We now turn to the analysis of the outer loop. Consider the invariant:

I𝑜𝑢𝑡 ≜ [𝑛⟨1⟩ ≠ 𝑛⟨2⟩] · ∞ + [𝑛⟨1⟩ = 𝑛⟨2⟩] · 𝑘 (𝑁 ⊖𝑛 ⟨1⟩) ∥𝑉 ⟨1⟩ −𝑉 ⟨2⟩∥∞ ,

where 𝑁 ⊖ 𝑛 denotes max(𝑁−𝑛, 0). We compute:

r̃pe(𝑖 ← 0;𝑤𝑖𝑛 ;𝑉 ←𝑊 ;𝑛 ← 𝑛 + 1,I𝑜𝑢𝑡 )
= r̃pe(𝑖 ← 0;𝑤𝑖𝑛, [𝑛⟨1⟩ ≠ 𝑛⟨2⟩] · ∞ + [𝑛⟨1⟩ = 𝑛⟨2⟩] · 𝑘 (𝑁 ⊖(𝑛 ⟨1⟩+1)) ∥𝑊 ⟨1⟩ −𝑊 ⟨2⟩∥∞)
≤ r̃pe(𝑖 ← 0, [𝑛⟨1⟩ ≠ 𝑛⟨2⟩] · ∞ + [𝑛⟨1⟩ = 𝑛⟨2⟩] · 𝑘 (𝑁 ⊖(𝑛 ⟨1⟩+1)) · I𝑖𝑛)
≤ [𝑛⟨1⟩ ≠ 𝑛⟨2⟩] · ∞ + [𝑛⟨1⟩ = 𝑛⟨2⟩] · 𝑘 · 𝑘 (𝑁 ⊖(𝑛 ⟨1⟩+1)) ∥𝑉 ⟨1⟩ −𝑉 ⟨2⟩∥∞ = I𝑜𝑢𝑡

where the last step holds because I𝑖𝑛 = 𝑘 · ∥𝑉 ⟨1⟩ −𝑉 ⟨2⟩∥∞ when 𝑖 = 0. This establishes the outer

invariant. Computing the pre-expectation of the first initialization, we conclude:

r̃pe(TD0(𝑉 ), ∥𝑉 ⟨1⟩ −𝑉 ⟨2⟩∥∞) ≤ 𝑘𝑁 · ∥𝑉 ⟨1⟩ −𝑉 ⟨2⟩∥∞ .

6 EXAMPLE: RANDOMWALKS AND CARD SHUFFLES

In this section, we verify more challenging examples of probabilistic convergence from the theory

of Markov chains, formalizing arguments by Aldous [1983] in his seminal work introducing the

coupling method. Our use of relational pre-expectations is similar in spirit to the previous section,

but there are two key differences: (1) we aim to prove convergence under Total Variation (TV)

distance, which is the standard notion of distance in this field, and (2) our arguments will require

selecting more complex couplings, instead of just the identity coupling.

6.1 Preliminaries: Card Shuffling and Markov Chain Mixing

For instance, consider the uniform distribution over all permutations of a deck of playing cards.

To sample from this distribution—i.e., perform a perfect shuffle—we can implement a card shuffle

algorithm that executes a sequence of simple randomized steps (e.g., swapping pairs of cards) and

hope that after some number of steps, we will produce a shuffle that is close to uniform.

Abstracting a bit, card shuffling algorithms are a representative example of random walks for

approximating complex distributions. This is a technique with a long history, combining elements

of probability theory with statistical physics; and it is the basis of many heuristic algorithms used

today, e.g., Markov Chain Monte Carlo (MCMC). From a theoretical perspective, the central question

is: how fast do these processes converge to their target distribution? How many steps do we need to

get within 𝜖 distance of the uniform distribution on shuffles?

Random walks and card shuffling algorithms are classical examples of Markov chains. A fi-

nite, discrete-time Markov chain is defined by a finite state space Σ and a transition function

𝑃 : Σ → Dist(Σ). Given an initial state 𝜎 , the associated Markov process {𝑋𝜎
𝑘
}𝑘∈N is a sequence

of distributions such that 𝑋𝜎
0
= 𝛿 (𝜎) and 𝑋𝜎

𝑘+1 (𝜏
′) = ∑

𝜏 𝑋
𝜎
𝑘
(𝜏) · 𝑃 (𝜏, 𝜏 ′). For example, the state

space Σ could be the set of all permutations of a deck of cards, and the transition function 𝜏 could

describe randomly splitting the deck and interleaving the halves.

Consider the TV distance 𝑣 (𝑘) between two state distributions after running 𝑘 steps from two

states 𝜎, 𝜏 , i.e., 𝑣 (𝑘) ≜ max𝜎,𝜏 𝑇𝑉 (𝑋𝜎𝑘 , 𝑋
𝜏
𝑘
) . If 𝑣 (𝑘) tends to 0, then there exists a unique stationary

distribution 𝜂 such that 𝜂 (𝜎) · 𝑃 (𝜎, 𝜎 ′) = 𝜂 (𝜎 ′); typically, 𝜂 will be the target distribution we are

trying to sample from. Furthermore, 𝑣 (𝑘) provides an upper bound on the distance between the

state distribution after 𝑘 steps to the stationary distribution 𝜂:

max

𝜎
𝑇𝑉 (𝑋𝜎𝑡 , 𝜂) ≤ 𝑣 (𝑘) .
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While it is usually not possible to derive 𝑣 (𝑘) exactly, we can upper-bound 𝑣 (𝑘) by constructing

couplings of (𝑋𝜎𝑡 , 𝑋𝜏𝑡 ) and applying Theorems 2.3 and 2.5. In this way, we can prove bounds on the

number of steps needed to get within some distance of the target distribution.

6.2 Warmup: Hypercube Walk

We start off with a simple random process for sampling 𝑁 uniformly random bits, which serves as

a toy version of the more complex random walks we will see later. Our position is a string of 𝑁

bits (which can be regarded as a vertex of an 𝑁 -dimensional hypercube). On every iteration of the

walk we uniformly sample from {0, . . . , 𝑁 }. Note that there are 𝑁 + 1 possible draws, but only 𝑁

coordinates: if we sample 0, then we do not move, otherwise we reverse the sampled coordinate 𝑖 in

the current position. We will show that starting from any two positions, the process mixes rapidly,

i.e. starting from any position we will quickly reach the uniform distribution over positions.

Let 𝑒 (𝑖) = (0, . . . , 1, . . . , 0) ∈ {0, 1}𝑁 be the position where all coordinates are set to zero except

for coordinate 𝑖 , which is set to one. We also write ⊕ for xor applied coordinate-wise. We can model

𝐾 steps of the random walk with the following simple pWhile program:

hWalk(pos, 𝑁 , 𝐾)
𝑘 ← 0;

while 𝑘 < 𝐾 do
𝑖 $← 𝑈 ( [𝑁+1]);
if 𝑖 ≠ 0 then pos← pos ⊕ 𝑒 (𝑖);
𝑘 ← 𝑘 + 1

Consider two program runs, started at pos⟨1⟩ and pos⟨2⟩ respectively. Let 𝑑𝐻 be normalized Ham-

ming distance between the two positions:

𝑑𝐻 ≜
1

𝑁

𝑁∑
𝑖=1

[pos⟨1⟩[𝑖] ≠ pos⟨2⟩[𝑖]] .

That is,𝑑𝐻 equals the fraction of coordinates where pos⟨1⟩ and pos⟨2⟩ differ. Let𝐶 (pos⟨1⟩, pos⟨2⟩) ⊆
[𝑁 ] be the set of differing coordinates. We specify a coupling on 𝑈 ( [𝑁+1]) by giving a bijection

on [𝑁+1]. There are three cases:
(1) 𝑑𝐻 ≥ 2/𝑁 : Let 𝐶 (pos⟨1⟩, pos⟨2⟩) = {𝑖0, . . . , 𝑖𝑚−1}. Take the bijection that behaves like the

identity on [𝑁+1] \𝐶 (pos⟨1⟩, pos⟨2⟩) and that, for all 0 ≤ 𝑛 ≤ 𝑚, maps 𝑖𝑛 to 𝑖𝑛+1, where we
set 𝑖𝑚 = 𝑖0.

(2) 𝑑𝐻 = 1/𝑁 : Take the bijection exchanging the differing coordinate and 0.

(3) 𝑑𝐻 = 0: Take the identity bijection.

The coupling captures the following intuition. When 𝑑𝐻 ≥ 2/𝑁 , the distance decreases by 2/𝑁
if we select a differing coordinate; otherwise, it remains unchanged. Likewise when 𝑑𝐻 = 1/𝑁 , if

we select the differing coordinate or 0, then the distance decreases by 1/𝑁 (to 0); otherwise, the

distance remains unchanged.

We can analyze the program hWalk using our relational pre-expectation calculus. Let the target

relational expectation be 𝑑𝐻 . The main step in the reasoning is to select a relational invariant for

the loop. We define:

I ≜ [𝑘 ⟨1⟩ ≠ 𝑘 ⟨2⟩] · ∞ + [𝑘 ⟨1⟩ = 𝑘 ⟨2⟩] · 𝑑𝐻 ·
(
𝑁 − 1

𝑁 + 1

)𝐾⊖𝑘 ⟨1⟩
.
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rTop(deck, 𝑁 , 𝐾)
𝑘 ← 0;

while 𝑘 < 𝐾 do
𝑝 $← 𝑈 ( [𝑁 ]);
deck ← shiftR(deck, 𝑝);
𝑘 ← 𝑘 + 1;

rTrans(deck, 𝑁 , 𝐾)
𝑘 ← 0;

while 𝑘 < 𝐾 do
𝑝 $← 𝑈 ( [𝑁 ]);𝑝 ′ $← 𝑈 ( [𝑁 ]);
𝑐 ← deck[𝑝]; 𝑐 ′← deck[𝑝 ′];
deck[𝑝] ← 𝑐 ′; deck[𝑝 ′] ← 𝑐;

𝑘 ← 𝑘 + 1;

riffle(𝑑𝑒𝑐𝑘, 𝑁 , 𝐾)
𝑘 ← 0;

while 𝑘 < 𝐾 do
𝑏 $← 𝑈 ({0, 1}𝑁 );
𝑡𝑜𝑝 ← 𝑑𝑒𝑐𝑘 ( ¯𝑏);
𝑏𝑜𝑡 ← 𝑑𝑒𝑐𝑘 (𝑏);
𝑑𝑒𝑐𝑘 ← cat(𝑡𝑜𝑝, 𝑏𝑜𝑡);
𝑘 ← 𝑘 + 1;

Fig. 4. Shuffling algorithms

Then, we can verify for the loop while 𝑘 < 𝐾 do 𝑏𝑑 of program hWalk that

[(𝑘 ⟨1⟩ < 𝐾 ⟨1⟩) ∧ (𝑘 ⟨2⟩ < 𝐾 ⟨2⟩)] · r̃pe(bd,I)
+ [(𝑘 ⟨1⟩ ≥ 𝐾 ⟨1⟩) ∧ (𝑘 ⟨2⟩ ≥ 𝐾 ⟨2⟩)] · 𝑑𝐻
+ [(𝑘 ⟨1⟩ < 𝐾 ⟨1⟩) ≠ (𝑘 ⟨2⟩ < 𝐾 ⟨2⟩)] · ∞ ≤ I,

and conclude by the loop rule (Theorem 3.8):

r̃pe(while 𝑘 < 𝐾 do bd, 𝑑𝐻 ) ≤ I .
The main step here is showing that

[(𝑘 ⟨1⟩ < 𝐾 ⟨1⟩) ∧ (𝑘 ⟨2⟩ < 𝐾 ⟨2⟩)] · r̃pe(bd,I) ≤ [(𝑘 ⟨1⟩ < 𝐾 ⟨1⟩) ∧ (𝑘 ⟨2⟩ < 𝐾 ⟨2⟩)] · I ,
where we use the fact that the coupling described above makes 𝑑𝐻 decrease.

Pushing the invariant past the initialization instruction 𝑘 ← 0 yields:

r̃pe(hWalk(pos, 𝑁 , 𝐾), 𝑑𝐻 ) ≤ r̃pe(𝑘 ← 0,I) =
(
𝑁 − 1

𝑁 + 1

)𝐾
.

Since the distance 𝑑𝐻 takes distance at least 1/𝑁 on pairs of distinct positions, by Theorem 2.5 the

TV distance between the distributions over positions satisfies

𝑣 (𝐾, 𝑁 ) = max

𝑝1,𝑝2∈{0,1}𝑁
𝑇𝑉 (⟦hWalk⟧(𝑝1, 𝑁 , 𝐾), ⟦hWalk⟧(𝑝2, 𝑁 , 𝐾)) ≤ 𝑁

(
1 − 2

𝑁+1

)𝐾
.

Plugging in specific values gives concrete bounds between the two output distributions. Let 𝜌 > 1.

To achieve a bound of 𝑂 (1/𝜌) on the right hand side, we need to take 𝐾 ≥ (1/2)𝑁 log(𝑁𝜌). The
inequality above also gives useful asymptotic information; if we set 𝜌 = 𝑁 , and take 𝐾 ≥ 𝑁 log𝑁 ,

the right-hand side is asymptotically bounded by 𝑂 (1/𝑁 ) for large 𝑁 . We can show that this

converges to the uniform distribution over vectors. We provide more details in Section 7. In

summary, we have shown the following:

Theorem 6.1. Let 𝐾 = 𝑁 log𝑁 . For any initial position pos,

𝑇𝑉

(
hWalk(pos, 𝑁 , 𝐾),𝑈 ({0, 1})𝑁 )

)
∈ O(1/𝑁 ) .

6.3 Random-to-Top Shuffle

For our shuffling examples, we will need some notation. We view a permutation 𝑑𝑒𝑐𝑘 as a map from

positions in 𝑝 ∈ [𝑁 ] to names of cards in 𝑐 ∈ 𝐶 , and often take 𝐶 to be [𝑁 ]. We let 𝑑𝑒𝑐𝑘 [𝑝] denote
the card at position 𝑝 , while 𝑑𝑒𝑐𝑘−1 (𝑐) denotes the position corresponding to card 𝑐 . Summation

over an empty set of indices is treated as zero, while the product over an empty set of indices is

treated as one. We outline the arguments here.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 52. Publication date: January 2021.



52:20 A. Aguirre, G. Barthe, J. Hsu, B. L. Kaminski, J.-P. Katoen, and C. Matheja

For our first card shuffling algorithm we consider the random-to-top shuffle. In each iteration, it

selects a random position in the deck and moves the card at that position to the top.
2
We model

this shuffle with program rTop in Figure 4. For a given input deck of size 𝑁 , the program repeats 𝐾

times the process of selecting a random card and moving it to the top. The operation shiftR(deck, 𝑗)
takes the block deck[0], . . . , deck[ 𝑗] and cycles it one position to the right (thus moving deck[ 𝑗] to
the top), leaving the rest of the deck intact.

We are interested in bounding the distance between the stationary distribution—which in this

case is the uniform distribution—and the output distribution after 𝐾 iterations. We will start with

two decks of size 𝑁 that are both permutations of [𝑁 ]. As in the hypercube example, we bound

the relational pre-expectation of the normalized Hamming distance:

𝑑𝐻 ≜
1

𝑁

𝑁−1∑
𝑖=0

[deck⟨1⟩[𝑖] ≠ deck⟨2⟩[𝑖]] .

Note that 𝑑𝐻 takes distance at least 1/𝑁 on pairs of distinct permutations. If we can show that the

relational pre-expectation of 𝑑𝐻 is not too big, then we can apply Theorem 2.5 to conclude that the

final distributions over permutations have a close TV distance. It will be convenient to work with

an auxiliary distance:

𝑑𝑀 ≜ (1/𝑁 ) ·
(
𝑁 −max

𝑖
(∀𝑗 < 𝑖 .deck⟨1⟩[ 𝑗] = deck⟨2⟩[ 𝑗])

)
.

The idea is that the coupling chooses identical cards on both decks and moves them to the top. This

will form a block of matched cards on the top of both decks. Intuitively, 𝑑𝑀 measures the fraction

of the deck that is not part of this top block. The target distance 𝑑𝐻 is upper-bounded by 𝑑𝑀 , since

𝑑𝑀 counts all cards outside the first block as different. Bounds on 𝑑𝐻 follow from bounds on 𝑑𝑀 . To

bound the relational pre-expectation of 𝑑𝑀 , we take the invariant:

I ≜ [𝑘 ⟨1⟩ ≠ 𝑘 ⟨2⟩] · ∞ + [𝑘 ⟨1⟩ = 𝑘 ⟨2⟩] · 𝑑𝑀 ·
(
𝑁 − 1

𝑁

)𝐾⊖𝑘 ⟨1⟩
.

We can check that it satisfies the inequality

[𝑘 ⟨1⟩ < 𝐾∧𝑘 ⟨2⟩ < 𝐾] ·r̃pe(bd,I)+[𝑘 ⟨1⟩ ≥ 𝐾∧𝑘 ⟨2⟩ ≥ 𝐾] ·𝑑𝐻+[(𝑘 ⟨1⟩ < 𝐾) ≠ (𝑘 ⟨2⟩ < 𝐾)] ·∞ ≤ I,
where bd is the loop body. The main case is to show the inequality for the first term when both

loop guards are true: we need to bound the relational pre-expectation of I with respect to bd. We

can bound

r̃pe(bd,I) ≤ 𝑑𝑀 ·
(
𝑁 − 1

𝑁

)𝐾⊖𝑘 ⟨1⟩
,

by applying the sampling rule (Proposition 3.7) with the coupling function𝑀 that selects the same

card in both decks:

𝑀 (𝑠1, 𝑠2) (𝑝1, 𝑝2) ≜
{

1/𝑁 : ⟦deck⟧𝑠1 [𝑝1] = ⟦deck⟧𝑠2 [𝑝2]
0 : otherwise.

The idea is that if we pick two cards in the first matched block, which happens with probability

(1−𝑑𝑀 ), then the distance will remain the same. Otherwise, we will create at least one newmatched

pair in the first block and the distance will decrease by 1/𝑁 . Hence, we can apply the loop rule

(Theorem 3.8) to conclude:

r̃pe(while 𝑘 < 𝐾 do bd, 𝑑𝐻 ) ≤ I .
2
This algorithm is the time-reversed version of the top-to-random shuffle, where the top card is moved to a random position.

It is known that a Markov chain’s convergence behavior is equivalent to that of its reversed process [Aldous 1983].
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Computing the relational pre-expectation of I with respect to the first instruction, we have

r̃pe(rTop(deck, 𝑁 , 𝐾), 𝑑𝐻 ) ≤
(
𝑁 − 1

𝑁

)𝐾
,

noting that the distance 𝑑𝑀 between the initial decks is at most 1. Since 𝑑𝐻 assigns pairs of distinct

decks a distance at least 1/𝑁 , Theorem 2.5 implies that the TV distance between the distributions

over decks satisfies:

𝑣 (𝐾, 𝑁 ) = max

𝑑1,𝑑2∈[𝑁 ]
𝑇𝑉 (⟦rTop⟧(𝑑1, 𝑁 , 𝐾), ⟦rTop⟧(𝑑2, 𝑁 , 𝐾)) ≤ 𝑁

(
𝑁 − 1

𝑁

)𝐾
.

For example, if we choose 𝐾 to be 𝑁 log(𝑁𝜌), then the distance between permutation distributions

is bounded by 𝑂 (1/𝜌) for large 𝑁 and 𝜌 > 1. By setting 𝜌 = 𝑁 , we have shown the following:

Theorem 6.2. Let 𝐾 = 2𝑁 log𝑁 , and Perm( [𝑁 ]) be the set of permutations over 𝑁 . For any initial

permutation of deck,

𝑇𝑉 (rTop (deck, 𝑁 , 𝐾),𝑈 (Perm( [𝑁 ]))) ∈ O(1/𝑁 ).

6.4 Random Transpositions Shuffle

Our next shuffle (rTrans in Figure 4) repeatedly selects two positions uniformly at random and

swaps the cards, allowing for the possibility of swapping a card with itself. As before, let 𝑑𝐻 be

the normalized Hamming distance between the two decks. We aim to bound r̃pe(rTrans, 𝑑𝐻 ). As
before, the key of the proof is finding an invariant for the loop. We take:

I ≜ [𝑘 ⟨1⟩ ≠ 𝑘 ⟨2⟩] · ∞ + [𝑘 ⟨1⟩ = 𝑘 ⟨2⟩] · 𝑑𝐻 ·
(
1 − 1

𝑁 2

)𝐾⊖𝑘 ⟨1⟩
There are two samplings in the loop body, so we need to provide two couplings. For the first

sampling 𝑝 , we use the identity coupling. For the second sampling 𝑝 ′, we couple using the bijection
induced by the two decks deck⟨1⟩ and deck⟨2⟩, i.e., the coupling matches every position 𝑝 ′⟨1⟩ with
the unique position 𝑝 ′⟨2⟩ such that deck[𝑝 ′]⟨1⟩ = deck[𝑝 ′]⟨2⟩. There are three cases: (1) if cards at
𝑝 ⟨1⟩, 𝑝 ⟨2⟩ are already matched, 𝑑𝐻 remains unchanged; (2) if positions 𝑝 ′⟨1⟩, 𝑝 ′⟨2⟩ are equal, 𝑑𝐻
remains unchanged; otherwise (3) 𝑑𝐻 decreases by 1. This is enough to show that the invariant

decreases. We can conclude:

r̃pe(rTrans(deck, 𝑁 , 𝐾), 𝑑𝐻 ) ≤
(
1 − 1

𝑁 2

)𝐾
using the fact that 𝑑𝐻 between the inputs is at most 1. Since 𝑑𝐻 takes value of at least 1/𝑁 for pairs

of distinct decks, by Theorem 2.5

𝑣 (𝐾, 𝑁 ) = max

𝑑1,𝑑2∈[𝑁 ]
𝑇𝑉 (⟦rTrans⟧(𝑑1,𝑁 ,𝐾), ⟦rTrans⟧(𝑑2,𝑁 ,𝐾)) ≤ 𝑁

(
1− 1

𝑁 2

)𝐾
,

so the distance between the deck distribution and the uniform distribution decreases as 𝐾 increases.

If we take 𝐾 ≥ 𝑁 2
log(𝑁𝜌), then the right-hand side is bounded asymptotically by 𝑂 (1/𝜌) for

large 𝑁 . By setting 𝜌 = 𝑁 , we conclude:

Theorem 6.3. Let𝐾 = 2𝑁 2
log𝑁 , and Perm( [𝑁 ]) be the set of permutations over 𝑁 . For any initial

permutation of deck,

𝑇𝑉 (rTrans(deck, 𝑁 , 𝐾),𝑈 (Perm( [𝑁 ]))) ∈ O(1/𝑁 ).
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Remark. Aldous’ [Aldous 1983] bound is slightly sharper: the TV distance between output dis-

tributions is bounded by 𝑂 (1/𝑁 ) asymptotically already for 𝐾 ≥ 𝐶𝑁 2
for some constant 𝐶 . This

discrepancy appears because our proofs are carried out compositionally, while Aldous uses a global

analysis. However, it is possible that a clever choice of coupling or loop invariant could let us match

Aldous’ bound.

6.5 Uniform Riffle Shuffle

In this example we will analyze the uniform riffle shuffle, which is a more realistic model of

how cards are shuffled by humans. The shuffle begins by dividing the deck in approximately two

halves, and then merges the two halves in an approximately alternating manner. The reversed

process, program riffle on Figure 4 which we analyze, takes a deck, samples a uniform random

bit for each card, and then places all cards labeled with 0 on top of the deck without altering their

relative order. After repeating this process 𝑘 times, for every card 𝑖 we have sampled a string of bits

(𝑏𝑖,0, . . . , 𝑏𝑖,𝑘−1), and card 𝑖 is on top of card 𝑗 if, for some𝑚,𝑏𝑖,𝑘 = 𝑏 𝑗,𝑘 , 𝑏𝑖,𝑘−1 = 𝑏 𝑗,𝑘−1, . . . , 𝑏𝑖,𝑚 = 𝑏 𝑗,𝑚
and 𝑏𝑖,𝑚−1 < 𝑏 𝑗,𝑚−1.

The vector 𝑏 holds 𝑁 bits, indexed by position;
¯𝑏 negates each entry. We use shorthands for

partitioning: 𝑑𝑒𝑐𝑘 (𝑏) and 𝑑𝑒𝑐𝑘 ( ¯𝑏) represent the sub-permutations from taking all positions where

𝑏 is 0 and 1, respectively. Finally, cat concatenates two permutations.

We will take the coupling that always samples the same bit for the same card on both sides:

𝑏 (𝑑𝑒𝑐𝑘−1 (𝑐))⟨1⟩ = 𝑏 (𝑑𝑒𝑐𝑘−1 (𝑐))⟨2⟩ for every 𝑐 ∈ 𝐶 . It is not hard to see that this coupling will

eventually make the decks match. However, choosing an appropriate distance takes more care,

since the Hamming distance may not always decrease under this coupling.

We define instead a semidistance (i.e., a function that satisfies all the distance axioms except for

the triangle inequality) 𝑑𝐵 in terms of a few concepts from the theory of permutations. We omit the

fine details, which can be found in the full version. Assume we have a permutation 𝜋 : [𝑁 ] → [𝑁 ]
such that, for all 𝑛 ∈ [𝑁 ], deck1 [𝑛] = deck2 [𝜋 (𝑛)]. We define a block decomposition of 𝜋 to be a

partition of the positions 𝐵1, . . . , 𝐵 𝑗 such that each block is contiguous, and 𝜋 acts as a permutation

on each 𝐵𝑖 . A block decomposition is minimal if no block can be further decomposed; it is not hard

to show that a minimal block decomposition must be unique. When deck1, deck2 are permutations

(denoted perm(𝑑𝑒𝑐𝑘 ⟨1⟩, 𝑑𝑒𝑐𝑘 ⟨2⟩)), there exists a unique 𝜋 as above, and we write 𝐵𝐷 (deck1, deck2)
for the block decomposition induced by two decks deck1 and deck2. We define now:

𝑑𝐵 (deck1, deck2) ≜
1

𝑁 2

∑
𝑐∈𝐶
( |𝐵𝐷 (deck1, deck2) (𝑐) | − 1).

where |𝐵𝐷 (deck1, deck2) (𝑐) | is the size of the block containing card 𝑐 in deck1 and deck2; both

positions must be in the same block. It is not hard to see that |𝐵𝐷 (deck1, deck2) (𝑐) | = 0 implies that

𝑐 is at the same position in deck1 and deck2, (but the reverse implication may not hold) and that if

𝑑𝐵 is 0, then the decks are equal. Now, we turn to the loop. Let Φ be the boolean assertion

Φ ≜ perm(𝑑𝑒𝑐𝑘 ⟨1⟩, 𝑑𝑒𝑐𝑘 ⟨2⟩) ∧ 𝑘 ⟨1⟩ = 𝑘 ⟨2⟩ ∧ (𝑏 ◦ 𝑑𝑒𝑐𝑘−1)⟨1⟩ = (𝑏 ◦ 𝑑𝑒𝑐𝑘−1)⟨2⟩

By taking the following invariant expectation:

I = [¬Φ] · ∞ + [Φ] · 𝑑𝐵 · (1/2) (𝐾−𝑘 ⟨1⟩)+

we can conclude

r̃pe(riffle(𝑑𝑒𝑐𝑘, 𝑁 , 𝐾), 𝑑𝐵) ≤ [¬Φ] + [Φ] · 𝑑𝐵 · (1/2)𝐾 ≤ [¬Φ] + [Φ] · (1/2)𝐾
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since the initial 𝑑𝐵 is at most 1. Given that 𝑑𝐵 assigns different decks a distance of at least 1/𝑁 2
, by

Theorem 2.5

𝑣 (𝐾, 𝑁 ) = max

𝑑1,𝑑2∈[𝑁 ]
𝑇𝑉 (⟦riffle⟧(𝑑1, 𝑁 , 𝐾), ⟦riffle⟧(𝑑2, 𝑁 , 𝐾)) ≤ 𝑁 2

(
1

2

)𝐾
,

so the distributions converge to one another and to the uniform distribution exponentially quick.

If we take 𝐾 ≥ log
2
(𝑁 2𝜌), 𝑣 (𝐾) is asymptotically bounded by 𝑂 (1/𝜌) for large 𝑁 . When setting

𝜌 = 𝑁 , we establish the following guarantee.

Theorem 6.4. Let 𝐾 = 3 log𝑁 , and Perm( [𝑁 ]) be the set of permutations over 𝑁 . For any initial

permutation of deck,

𝑇𝑉 (riffle(deck, 𝑁 , 𝐾),Unif{Perm( [𝑁 ])}) ∈ O(1/𝑁 ).

7 EXTENSIONS: PROVING UNIFORMITY

In Section 6, we showed that theMarkov chains correspond to each example converge to a stationary

distribution, but we did not shown that this distribution is the uniform distribution over states—if

we had made an error in the implementation, the probabilistic program may converge to the wrong

distribution. We can use our relational pre-expectation calculus along with Theorem 2.4 to show

that the limit distribution is indeed uniform.

We illustrate the technique for the random-to-top shuffle, but the idea is applicable to all our

examples. Consider any two permutations of the deck 𝑅1, 𝑅2, and the unary expectations

𝑆1 (deck) ≜ [deck = 𝑅1] and 𝑆2 (deck) ≜ [deck = 𝑅2] .

To show that the shuffle converges to uniform, we need to show that the expected values of 𝑆1 and

𝑆2 converge to the same value. Recall that Theorem 2.4 states that for any initial states 𝑠1, 𝑠2,��E⟦rTop⟧𝑠1
[𝑆1] − E⟦rTop⟧𝑠2

[𝑆2]
�� ≤ |𝑆1 − 𝑆2 |#

(
⟦rTop⟧𝑠1, ⟦rTop⟧𝑠2

)
so it suffices to show that the right hand side converges to zero.

Computing the relational pre-expectation of |𝑆1−𝑆2 | directly is difficult, sowe define an alternative

distance. We can see 𝑅1 and 𝑅2 as defining a relation (actually, a permutation 𝜋 over [𝑁 ]) of pairs
(𝑅1 [𝑖], 𝑅2 [𝑖]) of cards that are at the same positions. We let 𝑑 be the distance defined by:

𝑑 (deck⟨1⟩, deck⟨2⟩) ≜
𝑁−1∑
𝑖=0

[(deck⟨1⟩[𝑖], deck⟨2⟩[𝑖]) ∉ 𝜋] .

We can show that |𝑆1 (deck⟨1⟩) − 𝑆2 (deck⟨2⟩) | ≤ 𝑑 (deck⟨1⟩, deck⟨2⟩), since 𝑑 takes non-negative

integer values, and whenever 𝑑 = 0, then 𝑆1 and 𝑆2 can only be true simultaneously. So it suffices

to show that the right-hand side converges to zero. This bound can also be established by our

relational pre-expectation calculus in much the same way as in our proof for the random-to-top

shuffle, but we use a different coupling. After sampling 𝑝 ⟨1⟩ on the first execution we just need to

pick the 𝑝 ⟨2⟩ on the second such that (deck⟨1⟩[𝑝 ⟨1⟩], deck⟨2⟩[𝑝 ⟨2⟩]) ∈ 𝜋 . This makes 𝑑 decrease

any time a new match is formed, and once a match is formed and moved to the top, it is never

undone. By starting from the same permutation deck⟨1⟩ = deck⟨2⟩, this analysis shows that the
rate of convergence—this time to the uniform distribution—is the same as in our previous analysis

of random-to-top: 𝑑 converges to 0 at rate (1 − 1/𝑁 )𝐾 .
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8 EXTENSIONS: RULES FOR ASYNCHRONOUS REASONING

Our relational pre-expectation operator r̃pe(𝑐, E) can often derive useful upper bounds on the

Kantorovich distance rpe(𝑐, E), but it gives a trivial bound of infinity when the program 𝑐 can take

different branches on the two inputs. In this section, we develop techniques to give more useful

bounds in the asynchronous case.

8.1 Asynchronous Rules for Bounding the Kantorovich Distance

Our asynchronous bounds will use one-sided relational operators wpe⟨1⟩(𝑐, E) (resp. wpe⟨2⟩(𝑐, E))
that transform relational expectations by considering that the variables labeled with ⟨2⟩ (resp.
labeled with ⟨1⟩) remain unchanged and then computing the unary weakest pre-expectation

wpe(𝑐, E) as defined in Figure 5 (note in particular that wpe⟨1⟩(𝑥 ← 𝑒, E) replaces only the

variable labeled with ⟨1⟩). We use the following soundness lemma for the left version of the

operator, the one for the right version being analogous.

wpe(skip, E) ≜ E
wpe(𝑥 ← 𝑒, E) ≜ E{𝑒/𝑥}
wpe(𝑥 $← 𝑑, E) ≜ 𝜆𝑠.E𝑣∼𝑑 [E{𝑣/𝑥}]

wpe(𝑐; 𝑐 ′, E) ≜ wpe(𝑐, wpe(𝑐 ′, E))
wpe(if 𝑒 then 𝑐 else 𝑐 ′, E) ≜ [𝑒] · wpe(𝑐, E) + [¬𝑒] · wpe(𝑐 ′, E)

wpe(while 𝑒 do 𝑐, E) ≜ lfp𝑋 .[𝑒] · wpe(𝑐, 𝑋 ) + [¬𝑒] · E

wpe⟨1⟩(skip, E) ≜ E
wpe⟨1⟩(𝑥 ← 𝑒, E) ≜ E{𝑒 ⟨1⟩/𝑥 ⟨1⟩}
wpe⟨1⟩(𝑥 $← 𝑑, E) ≜ 𝜆𝑠.E𝑣∼𝑑 [E{𝑣/𝑥 ⟨1⟩}]

wpe⟨1⟩(𝑐; 𝑐 ′, E) ≜ wpe⟨1⟩(𝑐, wpe⟨1⟩(𝑐 ′, E))
wpe⟨1⟩(if 𝑒 then 𝑐 else 𝑐 ′, E) ≜ [𝑒 ⟨1⟩] · wpe⟨1⟩(𝑐, E) + [¬𝑒 ⟨1⟩] · wpe⟨1⟩(𝑐 ′, E)

wpe⟨1⟩(while 𝑒 do 𝑐, E) ≜ lfp𝑋 .[𝑒 ⟨1⟩] · wpe⟨1⟩(𝑐, 𝑋 ) + [¬𝑒 ⟨1⟩] · E

Fig. 5. Definition of the weakest pre-expectation operator wpe(𝑐, E) and the one-sided operator wpe⟨1⟩(𝑐, E)

Lemma 8.1. Let 𝑐 be a pWhile program that is almost surely terminating, i.e., wpe(𝑐, 1) = 1. Then,

for all 𝑠1, 𝑠2, E𝑠′
1
∼⟦𝑐⟧𝑠1

[E(𝑠 ′
1
, 𝑠2)] ≤ wpe⟨1⟩(𝑐, E)(𝑠1, 𝑠2).

Now we can present our asynchronous rules for conditionals and loops:

Theorem 8.2. Let 𝑐 be a program that is almost surely terminating. Then:

• For conditionals with empty else branch, we can show:

rpe(if 𝑒 then 𝑐, E) ≤ [𝑒 ⟨1⟩ ∧ 𝑒 ⟨2⟩] · r̃pe(𝑐, E) + [𝑒 ⟨1⟩ ∧ ¬𝑒 ⟨2⟩] · wpe⟨1⟩(𝑐, E)
+ [¬𝑒 ⟨1⟩ ∧ 𝑒 ⟨2⟩] · wpe⟨2⟩(𝑐, E) + [¬𝑒 ⟨1⟩ ∧ ¬𝑒 ⟨2⟩] · E

• Let while 𝑒 do 𝑐 be an almost surely terminating loop, 𝜌𝑖 (𝑠) be the probability that the loop

does not terminate after executing the body at most 𝑖 times starting from state 𝑠 , and:

𝑀𝑖 (E, 𝑠1, 𝑠2) = max{E(𝑡1, 𝑡2) | 𝑡1 ∈ supp(⟦𝑐𝑖⟧𝑠1), 𝑡2 ∈ supp(⟦𝑐𝑖⟧𝑠2)}
where 𝑐𝑖 is the first 𝑖 iterations of the loop. If 𝜌𝑖 and𝑀𝑖 satisfy:

lim

𝑖→∞
(𝜌𝑖 (𝑠1) + 𝜌𝑖 (𝑠2)) ·𝑀𝑖 (E, 𝑠1, 𝑠2) = 0
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for any two states (𝑠1, 𝑠2), and if I is an invariant satisfying

[𝑒 ⟨1⟩ ∧ 𝑒 ⟨2⟩] · r̃pe(𝑐,I) + [𝑒 ⟨1⟩ ∧ ¬𝑒 ⟨2⟩] · wpe⟨1⟩(𝑐, I)
+ [¬𝑒 ⟨1⟩ ∧ 𝑒 ⟨2⟩] · wpe⟨2⟩(𝑐, I) + [¬𝑒 ⟨1⟩ ∧ ¬𝑒 ⟨2⟩] · E ≤ I ,

then rpe(while 𝑒 do 𝑐, E) ≤ I.

Proof Sketch. The soundness of the conditional rule follows a similar argument as soundness

for the definition of r̃pe for conditionals, using Lemma 8.1 for the asynchronous cases. The soundness

of the loop rule is more intricate, but it follows the same strategy as in Theorem 3.8: we define a

loop characteristic function based on the conditional rule (now asynchronous), show that the least

fixed-point lies above rpe—this step relies on the boundedness side-condition—and finally show

that the invariant rule implies that I is a pre-fixed-point, so it must be above the fixed point. □

8.2 Example: Bounding the Distance between Binomial Distributions

Consider the following program, which simulates a binomial distribution:

binom(𝑁 )
𝑛 ← 0;

𝑘 ← 0;

while 𝑛 < 𝑁 do
𝑏 $← Bern(𝑝);
if 𝑏 then 𝑘 ← 𝑘 + 1;

𝑛 ← 𝑛 + 1;

We treat 𝑝 ∈ [0, 1] as a fixed constant. We will compare the distribution on the output 𝑘 starting

from two inputs. Since the loops will run for different numbers of iterations if 𝑁 ⟨1⟩ ≠ 𝑁 ⟨2⟩, we
will employ our asynchronous rule. We take the following invariant:

I ≜ | 𝑘 ⟨1⟩ − 𝑘 ⟨2⟩ + 𝑝 · (𝑁 ⟨1⟩ ⊖ 𝑛⟨1⟩) − 𝑝 · (𝑁 ⟨2⟩ ⊖ 𝑛⟨2⟩) | ,

We will show the following invariant bound:

[(𝑛 <)⟨1⟩ ∧ (𝑛 < 𝑁 )⟨2⟩] · r̃pe(𝑐,I) + [(𝑛 < 𝑁 )⟨1⟩ ∧ (𝑛 ≥ 𝑁 )⟨2⟩] · wpe⟨1⟩(𝑐, I)
+ [(𝑛 ≥ 𝑁 )⟨1⟩ ∧ (𝑛 < 𝑁 )⟨2⟩] · wpe⟨2⟩(𝑐, I) + [(𝑛 ≥ 𝑁 )⟨1⟩ ∧ (𝑛 ≥ 𝑁 )⟨2⟩] · E ≤ I .

In the synchronous case, we can establish the invariant by applying Samp with the identity coupling;

the inner conditional can also be analyzed synchronously. In the asynchronous case, computing

the unary weakest pre-expectation establishes the invariant. Thus, the asynchronous loop rule

(Theorem 8.2) gives:

rpe(𝑤, | 𝑘 ⟨1⟩ − 𝑘 ⟨2⟩ |) ≤ I

where𝑤 is the loop. Applying the assignment rule, we have the bound:

rpe(binom(𝑁 ), | 𝑘 ⟨1⟩ − 𝑘 ⟨2⟩ |) ≤ 𝑝 · | 𝑁 ⟨1⟩ − 𝑁 ⟨2⟩ |.

The side-condition of Theorem 2.4 holds, since for any initial state 𝑠 , the loop terminates in at most

𝑠 (𝑁 ) iterations. Thus, by Theorem 2.4, this bound implies that the expected values of the output 𝑘

differ by at most 𝑝 · |𝑁 ⟨1⟩ − 𝑁 ⟨2⟩| across the two runs.
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9 RELATEDWORK

Proving expected sensitivity of probabilistic programs. We have shown that the quantitative logic

EpRHL [Barthe et al. 2018] can be embedded into the framework of this paper (cf. Section 3.4), so

we focus on other work. Wang et al. [2020] propose an alternative method based on martingales for

proving the expected sensitivity of probabilistic programs. Their technique focuses on computing

the expected sensitivity when the (expected) number of iterations for a loop may be different

across two related executions (i.e., loops may be asynchronous); this is similar to our asynchronous

rules from Section 8. However, Wang et al. [2020] also frame their target property in a slightly

weaker way, showing that programs are Lipschitz continuous for some finite Lipschitz constant.

In contrast, our method establishes bounds on this constant, which is an important aspect in

many applications (e.g., it determines the rate of convergence for Markov chains). We are also able

to handle the broader class of expected sensitivity properties arising from Kantorovich metrics,

subsuming the notion considered by Wang et al. [2020] where the output distance is the absolute

difference between two expected values.

Formal reasoning for probabilistic programs. Logics for probabilistic programs has been an active

research area since the 1980s. Seminal work by Kozen [1985] defines a probabilistic propositional

dynamic logic for reasoning about probabilistic programs, using real-valued functions rather

than boolean assertions. Morgan et al. [1996] define a weakest pre-expectation calculus for a

programming language with (demonic) non-determinism and probabilities. Extensions of this

calculus with recursion, conditioning and signed expectations have been considered [Kaminski and

Katoen 2017; Olmedo et al. 2018, 2016]. Kaminski et al. [2016] define a similar calculus for bounding

expected run-times of probabilistic programs. These works do not prove relational properties of

programs, and are unsuitable for verifying sensitivity.

Continuity in programs and process calculi. Formal reasoning about the continuity of deterministic

programs has received some attention. Chaudhuri et al. [2010, 2012] were the first to give a sound,

compositional framework for verifying that a program is continuous. Reed and Pierce [2010] gave

a type system that can verify Lipschitz continuity of functional programs (see also [Azevedo de

Amorim et al. 2014, 2017; Gaboardi et al. 2013; Winograd-Cort et al. 2017]). Recently, Huang et al.

[2018] proposed the tool PSense which can perform sensitivity analysis of probabilistic programs.

Their technique relies on symbolic computation using the symbolic verifier PSI and Mathematica,

and supports, e.g., the Total Variation distance and the expectation distance. PSense cannot reason,

however, about general Kantorovich distances, or unbounded loops.

Finally, in the process-algebra setting, compositional reasoning about metrics has received some

attention. Gebler et al. [2016] used uniform continuity to reason about the distance between recur-

sive processes in a compositional way, while Gebler and Tini [2018] recently defined specification

formats that can check uniform continuity syntactically. syntactic manner. A more general frame-

work for reasoning about metrics has been given by Bacci et al. [2018], who presented an algebraic

axiomatization of Markov processes in quantitative equational logic. Their framework supports

reasoning about various metrics, including the Kantorovich metric.

10 CONCLUSION

We defined a pre-expectation calculus to compute upper bounds for Kantorovich metrics, and

applied it to prove convergence of reinforcement learning and card shuffling algorithms, algorithmic

stability of SGD, and uniformity of limit distributions. Our calculus provides theoretical foundations

for reasoning about quantitative relational properties of probabilistic programs.
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There are several natural directions for future work. One possible extension is to lift the re-

quirement that programs terminate with equal probability on pairs of executions, possibly by

leveraging alternative notions of the Kantorovich metric that accommodate distributions of dif-

ferent weight [Piccoli and Rossi 2016]. Other directions include developing a relational version

of quantitative separation logic [Batz et al. 2019], and use it for proving relational properties of

probabilistic heap-manipulating programs.
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