Learning Differentially Private Mechanisms

Subhajit Roy!
Computer Science and Engineering
Indian Institute of Technology Kanpur
subhajit@iitk.ac.in

Abstract—Differential privacy is a formal, mathematical def-
inition of data privacy that has gained traction in academia,
industry, and government. The task of correctly constructing
differentially private algorithms is non-trivial, and mistakes
have been made in foundational algorithms. Currently, there is
no automated support for converting an existing, non-private
program into a differentially private version. In this paper, we
propose a technique for automatically learning an accurate and
differentially private version of a given non-private program.
We show how to solve this difficult program synthesis problem
via a combination of techniques: carefully picking representative
example inputs, reducing the problem to continuous optimization,
and mapping the results back to symbolic expressions. We
demonstrate that our approach is able to learn foundational al-
gorithms from the differential privacy literature and significantly
outperforms natural program synthesis baselines.

I. INTRODUCTION

Today, private data from individuals is commonly aggregated
in large databases maintained by companies or governmental
organizations. There is clear value in using this data to learn
information about a general population, but there are also
serious privacy concerns—seemingly innocuous data analyses
can unintentionally leak highly sensitive information about
specific individuals [[1], [2].

To address these concerns, differential privacy [3] is a
rigorous, mathematical definition of data privacy that has
attracted a flurry of interest across academia, industry, and
government. Intuitively, differential privacy defines privacy as a
kind of sensitivity property: given a program that takes a private
dataset as input, adding or removing an individual’s data should
only have a small effect on the program’s output distribution.
While differentially private programs were originally designed
by theoreticians to solve specific statistical tasks, programmers
in many areas are now looking to use differentially-private
programs for their application domain [4]], [S]].

However, applying differential privacy is far from easy.
First, to satisfy the mathematical guarantee, differentially
private programs must be carefully crafted to add probabilistic
noise at certain key points. The task of correctly constructing
differentially private algorithms is non-trivial, and mistakes
have been discovered in commonly used algorithms [6]]. Second,
although there are numerous software packages that provide
private building-blocks and methods for safely combining
components while respecting the privacy guarantee [7], [8],
existing frameworks for differential privacy are intended for

1 The work was primarily done during his visit to UW-Madison.
2 Author’s name in native alphabet: § sndl sl

Justin Hsu
Department of Computer Sciences
University of Wisconsin—Madison
justhsu@cs.wisc.edu

Aws Albarghouthi?
Department of Computer Sciences
University of Wisconsin—Madison
aws@cs.wisc.edu

writing new private programs from scratch: practitioners who
have domain-specific code developed without considering
privacy cannot automatically convert their code to differentially
private programs. Instead, programmers must reimplement their
code, manually figure out where to add random noise—while
keeping in mind that suboptimal choices may trivially achieve
privacy by adding so much noise as to ruin accuracy—and then
prove that the resulting algorithm is indeed differentially private.
For many applications, the programmer burden is simply too
high for differential privacy to be a realistic approach.

Mechanism synthesis problem. In this paper, we are inter-
ested in automatically synthesizing a differentially private pro-
gram from an existing, non-private program. More specifically,
we pose the question as follows:

Given a non-private algorithm M, can we generate
an algorithm M™ that is differentially private and
“accurate” with respect to M ?

This problem is difficult for several reasons: (1) The space
of algorithms is infinite and discrete, and it is not clear how
to search through it to find M*. Changing the amount of
noise added at some program locations may sharply change
the privacy level of the whole algorithm, while adjusting the
noise level at other program locations may have no effect on
privacy. (2) Given a candidate M™ that is not differentially
private, it may be difficult to find a counterexample; given a
counterexample, it is not obvious how to make the candidate
more private. (3) While a testing/verification tool is only
concerned with proving or disproving differential privacy,
a synthesis method has the additional goal of finding a
mechanism that adds as little noise as possible to achieve
the target privacy level.

To address these problems, we present a set of novel
contributions to synthesize pure differentially private (i.e.,
e-differentially private) mechanisms.

Our approach. First, we restrict the search space for M* to
variants of M with noise added to some selected program
expressions. These expressions can be selected by a domain
expert and provided to our algorithm as a mechanism sketch.
The question now becomes: how much noise should we add?
In general, the amount of noise may need to be a function of
the algorithm’s inputs and e, the privacy parameter.

To search the space of noise functions, we employ ideas from
inductive program synthesis [9]], [10], where candidate pro-

grams are proposed and then refined through counterexamples
generated by a testing tool; we rely on a state-of-the-art tool for
detecting violations of differential privacy, called STATDP [L1].
However, a naive search strategy runs very slowly, as the testing
tool can take a long time to discover counterexamples to privacy
for every candidate we provide. To make the search process
more efficient, we demonstrate how to set up a continuous
optimization problem that allows us to hone in on the most-
likely candidates, eliminating unlikely candidates from the
search space without calling the testing tool. Our optimization
problem also guides our search towards noise parameters such
that the privacy guarantee is tight, i.e., our synthesis procedure
aims to find programs that are e-differentially private, but not
¢’-differentially private for any smaller ¢’. This strategy ensures
that there are no obvious places where too much noise is being
added, and enables our tool to find private algorithms that have
been proposed in the privacy literature, as well as new variants.

Evaluation. We have implemented and applied our approach
to synthesize a range of e-differentially private algorithms.
Our results show that (1) our approach is able to discover
sophisticated algorithms from the literature, including the sparse
vector technique (SVT), and (2) our continuous optimization-
guided search improves performance significantly over simpler
approaches.

Contributions. We offer the following technical contributions.

« We present a sketch-based methodology to construct an
e-differentially private mechanism M* from a given non-
private program M.

¢ Our technique combines a number of novel ideas: (a)
bootstrapping the learning process with a number of
carefully selected examples, (b) solving an approximate
continuous optimization variant of the problem to guide an
enumerative program-synthesis approach, and (c) using the
privacy loss to help rank the proposed programs, treating
it as a proxy for the tightness of the privacy guarantee.

« We implement our approach in a tool called KOLAHALEI
and evaluate it on synthesizing several foundational
algorithms from the differential privacy literature, e.g., the
sparse vector technique (SVT). We compare our approach
to a series of successively stronger baseline procedures,
demonstrating the importance of our algorithmic choices.

Taken together, our work is the first to automatically synthesize
complex differentially private mechanisms.

Limitations. While there are now many known approaches for
verifying differential privacy, existing methods are too slow to
be used in our counterexample-guided synthesis loop. Hence,
our synthesis procedure leverages an efficient, counterexample
generation tool to check if candidates are not private. Note
that this tool is unsound for verification: failure to find a
counterexample does not prove differential privacy. Instead,
after our tool produces a ranked list of candidates, each
candidate must be analyzed by a sound verifier as a final check.

l“KOLAHAL” (W) is a Hindi word meaning loud noise.

Secondly, our proposal only attempts to synthesize suitable
noise expressions in mechanism sketches—our algorithm does
not look to transform the sketch. Finally, we have only
investigated our method for pure, (¢, 0)-privacy, not variants
such as (e, §)-privacy, or Rényi differential privacy. Please refer
to Section for details.

II. BACKGROUND

We begin by introducing key definitions and existing algorith-
mic tools that we will use in our synthesis procedure. Readers
interested in a more thorough presentation of differential privacy
should consult the textbook by Dwork and Roth [12]].

A. Differential privacy

Differential privacy [3] is a quantitative definition of privacy
for programs that take private information as input, and produce
a randomized answer as output.

Mechanism. A mechanism (or program) M takes as input a
database d of private information, a privacy parameter € € R+,
and potentially other inputs (e.g., queries to be answered on
the private database), then returns a noisy output of type 7.

Neighboring (or adjacent) databases. We shall assume a
relation A over pairs of databases. If (dy,ds2) € A, then we
say that d; and dy are neighboring (or adjacent) databases.
Intuitively, A relates pairs of databases that differ in a single
individual’s private data. For instance, A might relate one
database to a neighboring database where one individual’s
record has been added, removed, or modified. We assume that
this relation is provided as part of the input specification.

Privacy loss. For any pair of databases (dy,ds2) € A, privacy
parameter ¢ > 0, and event I C T', we define the privacy loss
L(M,dy,ds, €, E) to be:

P[M(dy,¢) € E] P[M(ds,¢) € E
fax (]P’[M(dg,e) € B P[M(dy,¢) € E])

Pure differential privacy. Using our definitions, e-differential
privacy (DP)—also known as pure differential privacy [3[]—is
defined as follows: M is ¢-DP iff for all (dy,ds) € A, € > 0,
and event E C T, the privacy loss is upper bounded by e:

L(M,dy,ds, e, E) < ef

Accordingly, a counterexample to ¢-DP is a tuple (dy, ds, €, F)
such that (dy,ds) € A, € > 0, and L(M,dy,ds, €, E) > €-.

B. Programming language: syntax and semantics

We will work with an imperative language with a random
sampling command, described in Fig. [l The syntax and
semantics are largely standard; readers who are more interested
in the synthesis procedure can safely skip ahead.

The syntax is summarized in Fig. [Tal Here, Var is a
countable set of program variables, and Exp is a set of program
expressions. Expressions may be boolean- or integer-valued; we
implicitly assume that all expressions are well-typed. Besides
the usual commands in an imperative language, there are two

Varzi=al|b|---

Expen=ua|true|false |[e=¢"|e<e |e>€ | e
|Ze+e|e-e|ele

Com ¢ :=skip | x < e | z + Lap(e)(¢€)

| ¢;¢ | if e then c else ¢’ | while e do ¢

(a) Language Syntax

[skip]m = unit(m)

[l

[z < e]m = unit(m[z — [e]m])

>

[z < e+ Lap(e')[m £ bind(Lerpm ([e]m), v — m[z — v])
(

bind([c]m, m” + [¢'Jm")

[e]m
[¢'Tm
[while e do c]m = lim [(if e then c else skip)"]m

[e; < Tm

2 if [e]m = true

(>

if e then c else ¢'Im
[] 2 if [e]m = false

(b) Language Semantics

Fig. 1: Programming Language

constructs that might be less familiar: skip is the do-nothing
command, and z < e + Lap(e’) draws a random sample from
the Laplace distribution with mean e and scale ¢/, and stores
the result in variable x; this commands is one of the building
blocks for differentially private algorithms. Throughout, we
will use the abbreviation:

if e then ¢ £ if e then c else skip

Our semantics for commands, summarized in Fig. [T
is also largely standard. The program state is modeled by
a memory m € Mem, where Mem is the set of maps
from variables in Var to values. We model commands c as
functions [c] : Mem — D(Mem), taking an input memory to
a distribution over output memories, where a distribution
u € D(Mem) is a map p : Mem — [0, 1] such that ;4 has
countable support (i.e., there are countably many m € Mem
such that (m) # 0) and the weights in g sum up to 1.

The formal semantics in Fig. uses two operations on
distributions. First, given a € A, the Dirac distribution
unit(a) € D(A) is defined via

{unit(a)(a’) 21

unit(a)(a’) £ 0

ca=ad

ca#a.

That is, unit is simply the point mass distribution. Second,
given ;1 € D(A) and f : A — D(B), the distribution bind
bind(u, f) € D(B) is defined via

bind(u. £)() £ 3 ju(a) - f(a)(b).
acA
Intuitively, bind sequences a distribution together with a
continuation, leading to a single distribution on outputs.

We make two brief remarks about the semantics. First,
the semantics of sampling involves the (discrete) Laplace
distribution L(z), where z € Z is the mean of the distribution
and b € R is a positive scale parameter. The distribution
Ly(2) € D(Z) is defined as followsf]

o _esplol— 1y
Lo(2)(2') = > yezexp(—|z —y[/b)

2The standard Laplace distribution has support over the real numbers; we
take the discretized version to simplify the technical development.

Intuitively, the scale parameter b controls how broadly spread
the distribution is—larger values of b lead to a more spread
out distribution. Second, the semantics of loops is well-defined
provided that the loop terminates with probability 1 on any
input. Since this property holds for all private (and non-private)
programs of interest, we will assume this throughout the paper.

C. Testing for differential privacy

At a high level, our synthesis procedure iteratively tries
different settings of the unknown noise parameters. Initial can-
didates will almost certainly fail to satisfy differential privacy.
To make progress, our procedure leverages STATDP [11]], a
counterexample generation tool for differential privacy. Given a
mechanism M and a target privacy level €3, STATDP constructs
a set of candidate counterexamples {(d;,ds, F)} that may
witness a differential privacy violation; here dy, d2 are adjacent
databases and E is a subset of outputs that is much more likely
on one database than on the other.

Since our synthesis procedure leverages more specialized
information provided by STATDP, we briefly describe how
STATDP operates. STATDP uses a set of patterns to generate
test databases (d1, ds), and a set of heuristics to construct test
events E. For each test, STATDP estimates the probabilities
p1, p2 of the output being in E starting from inputs d; and do
respectively, by repeatedly running the given mechanism. Then,
it runs a hypothesis test (Fisher’s exact test) to decide how likely
the true probabilities p; and po are to satisfy the guarantee
that the program is differential private at some fest € values in
the neighborhood of target level of privacy eg. For instance, if
€0 = 0.5, STATDP will test whether the mechanism is e-DP for
e € {0.4,0.5,0.6}. If the hypothesis test indicates that p; and
po are highly unlikely to satisfy the privacy guarantee, then
STATDP returns (dy,ds, E') as a candidate counterexample.
Along with this tuple, STATDP also reports the p-value of the
statistical test, a number in [0, 1] measuring the confidence:
a small p-value indicates that the candidate is likely to be
a true counterexample to e-differential privacy, while a large
p-value indicates that the candidate is unlikely to be a true
counterexample.

Figure 2] shows the p-values produced by a run of STATDP on
a particular 0.5-differentially private mechanism M, checking

1.0 - —

! - £ =0.2

i £ =05

i == €0 =0.9
0.81 : ;
i i
0.6 i !
[1 1
3 : :
2 i i
a 1 1
04, | |
i i
0.2 i i
i i

00l = Jd . . —i
0.0 0.2 0.4 0.6 0.8 1.0

Test e

Fig. 2: STATDP at 0.2, 0.5, and 0.9

against target privacy levels ¢y of 0.2, 0.5 and 0.9. Since
M is 0.5-differentially private, it is automatically also 0.9-
differentially private; however, M is not necessarily 0.2-
differentially private. The candidate counterexamples returned
by STATDP reflect this description. For small test €, STATDP
produces a candidate counterexample with a p-value close
to zero, meaning that the candidate is highly likely to be
a counterexample to e-DP. For large test €, STATDP still
produces a candidate counterexample but with a p-value close
to one—this indicates that the candidate is unlikely to be
a true counterexample to e-DP. Near the true privacy level
(e € [0.2,0.4]), the reported p-value is in the middle of the
range [0, 1]—STATDP is uncertain whether it has found a true
counterexample or not.

Our synthesis approach crucially relies on the p-value
reported by STATDP to judge the difficulty of the candidate
counterexamples. Difficult cases—ones where p is in the middle
of the range [0,1]—are used as examples to improve the
privacy of the synthesized mechanism. We will discuss this
heuristic further in Section [IV] but intuitively, challenging
counterexamples to a mechanism represent pairs of inputs
and sets of outputs where the privacy guarantee is nearly
tight: lowering the target privacy level ¢y would cause these
challenging counterexamples to turn into true counterexamples
to €g-privacy. As a result, challenging counterexamples witness
the fact that a particular mechanism is almost exactly eyp-private,
and not more private than desired. Mechanisms without
challenging counterexamples are likely more private than
necessary, adding more noise than is needed.

We survey other approaches for testing and verification of
differential privacy in related work (Section [VI).

ITI. OVERVIEW
A. An illustrative example

To better illustrate the goal of our algorithm, consider the
three programs in Fig. [3] The first program, Fig. [3a] takes in
a database d of private information, a list of numeric queries
g, and a numeric threshold 7', and checks if any query has
answer (ans) above the threshold (7') when evaluated on the

database. We suppose that this program is written by someone
without taking privacy into account—the program adds no
noise, and it does not satisfy differential privacy.

Our aim is to automatically convert this algorithm into a
differentially-private version. To start with, we create a sketch
of the program, Fig. [3b] where the desired privacy level € is
given as an input, and where certain assignment instructions
are marked to add noise from the Laplace distribution, a
standard numerical distribution used in differential privacy.
These program locations can be identified by a domain expert,
or they can simply be taken to be every assignment instruction.
However, selecting where to add noise is not enough—the
Laplace distribution requires a scale parameter describing the
amount of noise that is added. Setting parameters incorrectly
will lead to an program that is not e-differentially private, or a
program that adds too much noise. These unknown parameters
are indicated by boxes in Fig. 3B} note that the second location
adds a vector of independent Laplace draws with the same,
unknown scale parameter to the vector q(d).

Then, our algorithm searches for a symbolic expression for
each of the boxed locations so that the resulting program is
e-differentially private. One of the possible solutions from our
algorithm is shown in Fig. Note that our procedure sets the
scale parameter of the last location 73 to L, indicating that this
location does not need any noise. The completed program—
generated by our approach—is known as the Above Threshold
algorithm in the differential privacy literature [12]]. Along with
this version, our algorithm also finds other differentially private
variants; e.g., a version where the first two noise locations add
noise with scale 3/e.

This example shows some of the challenges in converting
non-private programs to private versions. First, the target noise
parameters are not just constants: they are often symbolic
expressions. For instance, the parameters for aboveT depend
on the symbolic privacy parameter €, and in general, parameters
can depend on other arguments (e.g., the size of an input list).
Second, not all locations need noise. For example, a different
way of completing aboveT would also add noise at the last
location, when assigning ans. While this version would also
satisfy e-differential privacy, it is inferior to the version in
Fig. [3c| since it adds noise unnecessarily.

B. The Mechanism-Synthesis problem

We formalize the overall problem as a synthesis problem.

Mechanism sketch. A mechanism sketch M*® is an incomplete
program with holes at certain program locations; these holes
represent unknown noise parameters that must be synthesized
in order to produce a differentially private program. The sketch
also specifies (i) the name of the input variable holding the
private input, (ii) an adjacency relation on private inputs, and
(iii) the names of non-private, auxiliary inputs, which we call
arguments. For aboveT, for example, the private input is d,
while the list of queries (q) and the threshold (7") appear as
the arguments. Pairs of databases d,d’ where q(d) and g(d’)
differ by at most 1 in each coordinate are adjacent.

aboveT(d,q,T) :

aboveT*(d,q,T\¢) :

i 1; i1
done + false: done <+ false;
t T; ’ t < T+ Lap([n1]);
a < q(d); a < q(d) + Lap([n2]);
while i < |g| A —~done do : while i < |g| A ~done do :
if a; >t then if a; >t then
done <+ true; done < true;
141+ 1; 141+ 1;
if done if done
ans <t — 1; ans 1 — 1;
else else
ans < 0; ans < 0;
out < ans; out < ans + Lap();
return out; return out;

(a) Original program

(b) Input: Sketch program

aboveT*(d, q, T,e) :

14 1;

done + false;

t < T+ Lap(2/e);
—

a < q(d) + Lap(4/e);

while i < |g| A ~done do :

if a; >t then
done + true;
11+ 1;
if done
ans <1 — 1;
else
ans < 0;

out < ans + Lap(L);
return out;

(c) Output: Private program

Fig. 3: From a non-private sketch to a private program.

To complete the mechanism, we need to replace each hole
with a well-typed expression constructed from the program
inputs. We will use 7 to denote a vector of expressions, and M™
to denote the completion of sketch M*® with the expressions
in 7). Recall Fig. [3b] for an example of a sketch, where 7 is a
vector of length 3.

Given a sketch M®, there are infinitely many ways of
completing the sketch. To make this problem more tractable,
we restrict the space of expressions using a finite grammar G
whose elements we can enumerate.

A proxy for accuracy. Even after restricting the possible
expressions, there are often many possible solutions giving
e-DP mechanisms; for instance, it is usually quite easy to
construct a e-DP mechanism by selecting an enormous noise
parameter at every location. However, a solution that adds
too much noise is less accurate and less useful. Since directly
estimating a concrete mechanism’s accuracy is challenging—
for instance, it is often not clear how accuracy should be
defined, and inputs that lead to inaccurate results may be hard
to find—we will use privacy loss as a proxy for accuracy.
Intuitively, we want to find a mechanism with a privacy loss
that is exactly equal to e‘—such a mechanism satisfies e-DP
tightly, in the sense that it adds just enough noise to satisfy
differential privacy for the target level of e. Mechanisms with
privacy loss below e satisfy ¢/-DP for € < ¢, a stronger
guarantee that requires adding more noise.

We will say that an e-DP mechanism M dominates M’,
denoted M’ C M, iff for all pairs of databases (d1,ds) € A,
privacy parameters €, and events F, we have

e€ = L(M, d17d2,€7E) > L(M’,d1,d2,6,E).

Note that C is a partial order, as some mechanisms are
incomparable. We are now ready to define our mechanism
synthesis problem.

Definition 3.1 (Problem statement): Given a sketch M®,
an optimal solution to the synthesis problem is a vector of
expressions 7 such that given any privacy parameter ¢ > 0,
the completed mechanism M7 is

1) e-differentially private, and
2) a maximal mechanism per the ordering C.

The first point ensures that the mechanism is differentially
private, while the second point ensures that we cannot lower
the amount of noise while still meeting the target differential
privacy guarantee. While it is not feasible to certify that the
second condition holds, the ordering helps guide our search
towards more accurate private mechanisms.

IV. MECHANISM SYNTHESIS ALGORITHM

In this section, we present our technique for synthesizing
optimal mechanisms. A simplistic strategy to synthesizing the
mechanism would be to leverage an enumerative synthesis
strategy that proposes expressions from a grammar G, and
uses a verifier to accept or reject solutions. However, there are
several interrelated challenges:

Challenge 1: Infinitely many inputs and output events.
Even with a finite grammar G, finding an optimal solution
M™ requires showing that it is differentially private and
more accurate than (or incomparable to) all other mechanisms
M™ that are differentially private. This is challenging due to
the universal quantifier over neighboring databases, privacy
parameter, and events. We solve this challenge by approximating
the universal quantifier with a finite number of carefully chosen
neighboring databases, program arguments, and events.

Challenge 2: Expensive search over noise expression. Even
if we have fixed an input, checking every possible expression
to see if it satisfies e-DP on those inputs is an expensive
hypothesis testing process. To reduce the cost, we adopt a

two-phase approach: we first approximate the search problem
using a fast continuous optimization procedure where we solve
for constant instantiations of the noise values, then search for
symbolic expressions that are close to these constants.

Challenge 3: Achieving privacy while limiting noise. For a
given program sketch and a given level of e, there are many
possible ways of adding noise so that the program is e-DP;
for instance, privacy can usually be ensured by adding a large
amount of noise at every location. However, adding too much
noise reduces the accuracy of the algorithm. To guide our
search towards better private algorithms, our optimization
objective takes the tightness of the privacy guarantee and the
sparsity of the noise parameters into account.

A. High-level mechanism synthesis algorithm

Our high-level algorithm proceeds in three steps, as shown
in Figure [] First, we fix all of the mechanism’s inputs ()
besides the private database to concrete values using fixParams;
these initial arguments can be drawn from a fixed set of default
values, or supplied by the user. The resulting sketch (M ®) has
only one input—the private database—but it still has holes for
unknown noise expressions. Since we are searching for target
expressions that are formed from the mechanism’s non-private
inputs, concretizing these inputs means that we can search
for concrete instantiations—real numbers—for each hole. This
transforms the more challenging expression search problem
into a simpler (but still challenging) numerical search problem.

Next, we generate a set of challenging examples for ~(M?*)
using selectExamples, such that ensuring e-differential privacy
for these examples is likely to ensure e-differential privacy for
all inputs. An example is a pair of neighboring databases and
an output event. These challenging examples are generated by
repeatedly concretizing the program holes with real numbers,
and searching for counterexamples Ez for (M*®) to e-DP on
STATDP. Then, for the challenging examples, our algorithm
searches for a setting of hole completions so that ¢-DP holds
with the smallest loss to accuracy. To do so, we construct an
optimization problem over possible concrete values of the noise
expressions that aims to make the least-private example in Fx
as tight as possible. By approximately solving this optimization
problem (in the procedure getNoiseRegion), we can extract
a region (RR) of possible noise values ensuring e-differential
privacy on the given examples.

Finally, we employ an enumerative synthesis loop (findExpr)
to generalize the concrete instantiations of the noise parameters
into a ranked list of candidate completions 71, . . . , n,—Vvectors
of symbolic expressions—that give e-differentially private
mechanisms for the arguments ~ as well as other arguments +’.
Expressions whose concrete values on 7 do not belong to the
region R can be pruned immediately, without testing differential
privacy. This allows us to focus the expensive task of testing
differential privacy to a few selected symbolic expressions
whose concretizations lie in this noise region R.

We now describe each step in detail. We will use the program
aboveT from Section [III] as our running example; Fig.

synth(M*,G) :
v « fixParams(M*®)
Ez < selectExamples(y(M*))
R < getNoiseRegion(y(M?*), Ex)
m,..., Ny < findExpr(M®, G, R, Ex)

Fig. 4: High-level algorithm synth

shows a possible sketch, and Fig. [3c| shows a completion of
the program satisfying differential privacy.

B. Fixing arguments and selecting examples

Differentially-private mechanisms often take inputs besides
the private database; we call such auxiliary inputs arguments.
We first fix all arguments to be some initial values 7, so that
the only input of the sketch y(M*®) is the private database.
We assume that sketches take the target level of privacy e as
a parameter, so «y also fixes this variable to some concrete
number (¢). (Our tool, described in Section [V} actually uses
multiple settings of « that helps when synthesizing symbolic
expressions; for simplicity, we will present our core algorithm
using a single setting of +.)

There are several reasonable ways to choose . If representa-
tive inputs are available—perhaps from the original, non-private
program—these inputs are natural choices for . Otherwise,
we can leverage tools capable of producing counterexamples to
differential privacy; these tools produce settings for all inputs to
the program, including the non-private arguments. For instance,
the STATDP tool [11]] uses a combination of symbolic execution
and statistical testing to find counterexample inputs.

Next, we find a set of examples to bootstrap our synthesis
algorithm. More precisely, an example is a tuple (dy, ds, E)
consisting of a pair of neighboring databases and a set of
outputs (an event). Intuitively, we use the examples to quickly
screen out choices for the noise scales that don’t lead to
differentially-private programs—if M is differentially private,
it must have similar probabilities of producing an output in F
from inputs d; and ds; this local property can be quickly
checked without running the whole testing tool. However,
not all examples are equally useful. Mechanisms may need
only a low level of noise to satisfy the privacy condition
at easier examples, but may need higher levels of noise to
satisfy the privacy condition at more difficult examples. Since
the differential privacy property quantifies over all pairs of
adjacent databases, we need to find challenging examples that
maximizes the privacy loss.

To discover such examples, we leverage STATDP to generate
pairs of databases and output events. Since STATDP requires a
complete mechanism as input, rather than just a sketch, we first
complete v(M*®) by filling holes with concrete noise values
(i.e., real numbers). To search the space of noise, a naive
grid search over the space of noise values will generate many
values of ¢, but calling STATDP for each c is expensive. Thus
instead of performing a full grid search for noise values in
each dimension, we choose a set Dir of predefined directions

and perform a line search along each direction. The directions
are essentially chosen to contain a basis of the noise space,
and hence, together, are likely to create a good representation
of the space. For example, with n = 2 noise locations, we
choose the vectors as {(1,1), (1,0),(0,1)}.

Finally, we apply STATDP on the completed sketch to check
if the mechanism is +(e)-differentially private. If the tester
judges the mechanism to not be differentially private, it returns
a counterexample and a p-value, indicating the degree of
confidence that the counterexample is a true counterexample.
If the p-value of the discovered counterexample is in the zone
of confusion, Conf C [0,1]—indicating that the tool had a
hard time proving or disproving privacy—then we consider the
counterexample to be challenging and we keep it. Summing
up, the set selectExamples(M*®) is defined as:

{{d1,da, E) | ({d1, d2, E), p) = test(y(M®),7(e)),
p € Conf, c € Dir}

Running example: Above Threshold. The sketch aboveT®
from Fig. has three arguments (non-private inputs): the
queries g, the threshold 7', and the target privacy level €. One
possible setting of the arguments is:

y={a~ (q1,---,¢5), T+ 2,¢ = 0.5}

where we abbreviate the queries ¢, . . . , ¢5. For this setting, our
tool identifies several challenging counterexamples (d;,ds, E),
including (r,¢,{3}) and (s, t,{3}), where:

Q1(r)a .. '7Q5(T) = 070703();0
Q1(S)a' .- aq5(8) = 2727()’0)0
@),q5(t) =1,1,1,1,1.

C. Reducing to a continuous optimization problem

After identifying a set of challenging examples Ex, we try to
find a concrete instantiation ¢ of v(M€) that (1) is differentially
private at every example in Ez, and (2) maximizes the privacy
loss while remaining e-DP; this second criteria biases the
search towards noise parameters that achieve a tight privacy
guarantee. Note that this task is in line with our problem
statement (Definition [3.1)), except that, (a) we work with a
finite set of examples rather than all pairs of neighboring
databases and output events, and (b) we complete M*® with
concrete numbers, not symbolic expressions.

To find a concrete noise value ¢, we set up the following
optimization problem:

argmin
c

L(~v(M®),dy, d E)) —er©
<<d1_’;§1’%>><em (Y(M€),dy,ds,~(e),)) e

This optimization objective looks for a concrete completion ¢
that makes the privacy loss of the worst example in Ez as
close as possible to the target privacy loss €7(¢). Intuitively,
taking the objective function to be the absolute difference
between the target privacy level and the privacy loss at the
challenging examples induced by a particular noise vector c
penalizes concrete noise values c that add too much noise

or too little noise. If the privacy loss at ¢ is above e7(¢)
then the concretized mechanism should be rejected since it
fails to satisfy ~(e)-privacy. If the privacy losss at ¢ is below
67(6), then the concretized mechanism satisfies a differential
privacy guarantee that is stronger than the target guarantee of
~(€)-privacy; this is not preferred as it adds more noise than
necessary, typically leading to a less accurate mechanism.

To bias the search towards solutions that add noise at fewer
locations, we also regularize the objective with the L (sparsity)
norm of ¢; recall that this norm counts the number of non-zero
entries. The final optimization function is as follows:

argmin
[+

+ Allello

a L(v(M¢€), E)) —e©
(<dh$5§€m (y(M€), dy, da,~(e),)) e

where A € R is a regularization parameter.

Unfortunately, the optimization problem is not easy to
solve—the objective is not convex or differentiable, and the
loss function is expensive to evaluate even approximately,
as it involves computing the probability of invocations of
mechanisms returning certain events.

To approximately solve this optimization problem, we em-
ploy an evolutionary algorithm called differential evolution [13]].
The algorithm maintains a set of candidate solutions, referred
to as a population. In each iteration, every candidate in the
current population is moved around using a simple randomized
heuristic; the candidate’s new position is retained if it reduces
the objective function (referred to as the fitness function). As a
result, the population tends to stabilize in the low loss regions.
As the algorithm does not require any other information about
the fitness function except its value at a given candidate, it
can be used for noisy problems that are not differentiable,
and not even continuous. Though differential evolution does
not guarantee convergence to the optimal, it is useful when
we are interested in estimating a “near optimal" region of
solutions—captured by the final population.

After multiple rounds of evolutionary refinement, the can-
didate noise vectors tends to stabilize, providing us with a
set of instantiations that minimize the objective; we call these
candidates the noise region R.

Computing the objective efficiently. Each round in the
evolutionary search requires computing the objective for each
candidate noise vector ¢; in the population—the objective
depends on the probabilities of output events v(M < (d)) € E,
where (M (d)) is the sketch M*® with concrete noise
scales c¢;, applied to the input arguments from -y and database d.
The main new difficulty in our setting, compared to work on
prior testing/verification of differential privacy [14], [11], [15l,
[16], is that the noise scales are not fixed in advance: the search
considers a population of mechanisms with concrete different
noise scales, and the scale parameters are repeatedly adjusted
as the optimization unfolds.

Since computing the fitness function is the primary bottleneck
for an evolutionary algorithm, it is crucial to efficiently compute
the probabilities of output events for different mechanisms.
While there are existing symbolic methods for computing
probabilities exactly, these methods are too slow for our purpose.

loss

1.2
1.0

0.8
loss 0.6

0.4
0.2
0.0

25 5.0 7.5 10.012.515.0 17.5 20.0
scalel

Fig. 5: Optimization objective for v(aboveT®)

Instead, a natural idea is to estimate output probabilities by re-
peated sampling. This is more efficient than exact computation,
but there are still difficulties: estimating probabilities separately
for each candidate c; introduces a large overhead when this
procedure is employed on large populations across many
optimization steps, and stochastic variations across sampling
steps due to random sampling introduce more instability into
the optimization procedure, leading to slower convergence.

To speed up this process, we take advantage of the struc-
ture of the objective. For every example (d;,ds, F) € Ex,
computing the privacy loss L for a candidate mechanism M
amounts to computing the probability of £ on d;, computing
the probability of E' on do, and then taking the ratio of the
probabilities. Both of these steps can be optimized:

« Computing the probability of an output event. Instead of
drawing random samples separately for every mechanism
in the population, we can preselect a single set of random
samples for each sampling statement in the program, and
reuse these samples—across all candidates and over all
optimization steps—to estimate the probability of the output
event E. This leads to a significant reduction in the sampling
time. Of course, since a specific noise value may have
different probabilities under the different candidates, we
must weight each trial differently for each candidate when
estimating each probability of E.

In more detail, suppose the sketch M*® has n holes. We
draw m uniform vectors v; € R’} of non-negative real
numbers representing the results of the sampling statements
in M*. Then, each probability of [y(M¢(d)) € E] can be
estimated by counting how many runs of y(M?®)(d) with
noise v; produce an output in £, weighted by the probability
of drawing v; from the Laplace distribution with noise
scale c;; this probability can be computed analytically and
efficiently, without sampling. The latter step is essentially an

application of Monte Carlo integration; to reduce variance
further, our implementation performs importance sampling
using a fixed Laplace (or Exponential) distribution as the
proposal distribution.

« Computing the privacy loss at an output event. After
computing the probability of E on inputs d; and da, we
must take the ratio of these probabilities to compute the
privacy loss, and then take a maximum over all examples.
To further reduce the number of samples required, we can
estimate the probability on d; and ds using the same set
of samples; this correlated sampling method was previously
used by [14].

Running example: Above Threshold. To give a better idea
of the optimization problem for our running example, Fig. [3]
shows the objective (sans regularization) as we plug in different
concrete noise values for the holes in aboveT®, with arguments
fixed to . To make the space easier to visualize, the plot only
varies noise for the first two locations while 73 is set to L. The
plot shows that there isn’t a single noise setting that minimizes
the objective; rather, there is a broad region where the objective
is approximately minimized (visualized in the contour map in
dark blue).

D. Enumerative synthesis

To complete synthesis, we want to produce symbolic
expressions that lead to noise close to the noise region R;
these completions should work for various settings of the
mechanism arguments, not just «. Our procedure to search
for an expression, denoted findExpr in Fig.] inspired by
the classical synthesize-check loop from the formal-methods
literature, enumerates all expressions 77 in the grammar G.
However, it only considers expressions where the concrete
values y(n) are in a neighborhood of the noise region R,
denoted Nbhd(R) (defined on the L; distance of instantiations

1.2
— ox]1

ex2
1.01

privacy loss
o o
o o

=}
IS
L

0.2

0.0 1

25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
noise (scale)

(a) Privacy loss for different examples

1.0

=g ex1
ex2

0.8

0.6 1

f(d1,d2,E)

0.4

0.21

0.0 T T T T T T T
0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0

noise (scale)

(b) f(di,d2, E) at y(e) = 0.5; the green shade captures the
region where this algorithm is 0.5-differentially private

Fig. 6: Comparing the implication of the choice of examples

NoisyMax®(d, q, €) :
m,v < L, 1;
a < q(d);
forie{1...]ql}
b+ a;+ Lap();
ifb>v
m,v < 1,b;
return(m);

Fig. 7: NoisyMax1: Sketch program

in R). This pruning step is the key to efficient synthesis
(see Section [Y] for a more thorough evaluation). Formally,
we generate the following set of candidate expressions:

cand = {n | n € G, v(n) € Nbhd(R)}

In general, this set contains multiple candidate expressions.
To narrow down this list, we augment Er with additional test
examples Iz, ,—varying the arguments y—and then rank the
candidates according to (1) how many examples in Ez, they
violate (fewer is better), (2) their privacy loss on examples
in Ex, (higher is better), and (3) the magnitude of noise
injected (smaller is better). Note that we may accept expressions
that violate some small number of examples, since there is
probabilistic noise involved when checking whether an example
is violated. Finally, we call the testing tool on the mechanisms
from the top few completions in cand, and output a ranked list
of passing mechanisms (following the same ranking as above)
as candidate solutions to the mechanism synthesis problem.

Importance of selecting challenging examples. A key aspect
of our approach is selecting “challenging” examples. To
better understand why certain examples may be easier or
more difficult than others, let us consider the Noisy Max
mechanism (Fig. [7): it returns the index of an approximately

maximum query while preserving privacy by perturbing every
query by Laplace distributed noise. It is known that this
mechanism achieves e-differential privacy when the noise scale
7 is taken to be 2/¢ [12].

Figure [6a] plots the privacy loss (vertical axis) of this
mechanism for different concrete values of 7 (horizontal axis)
for two different examples (dy,ds, E), ex; : (111,022,1)
and exs : (111,022,2). The plot shows that ex; is a more
challenging example: it incurs a higher privacy loss than exo
for all values of 7; so any expression synthesized to satisfy
ex; will also satisfy exs. Conversely, symbolic expressions
synthesized to ensure differential privacy at exs may not be
capable of ensuring differential privacy at ex;. When deciding
which examples to use, our synthesis procedure should seek to
keep examples like ex;, and discard examples like exzo—the
former example is more useful than the latter example.

However, given two examples, it is not easy to tell which (if
either) example is more challenging. The objective of our
optimization function can be viewed as a rough heuristic,
preferring more useful examples. To see this, consider the
following function that captures the behavior of our objective
function on a given example (dy, ds, E):

fldy, dy, E)(e) = [log(L(y(M?), d1, d2,7(€), E)) — (€]

That is, for a provided example (d;,ds, E), f(d1,d2, E) is a
function that maps c to the value of the objective function
when the arguments to the noise distribution is ¢. Roughly
speaking, this function measures how closely the mechanism
satisfies +y(e)-differential privacy at the given example: noise
scales ¢ where the mechanism M€ satisfies a much weaker
or a much stronger guarantee have larger objective, and the
optimization process avoids these noise vectors ¢. While we do
not have a rigorous proof that examples with lower objective
are more useful, we found this to be the case empirically.
For an example of this heuristic in action, the plot in Fig. [6b]
at y(e) = 0.5 shows that the objective function is lower at

Histogram®(d, g, ¢) :

hist < q(d); .
ans < hist + Lap();
return ans;

Fig. 8: Histogram: Sketch program

ex1 than at exy for all noise scales where the mechanism
does satisfy differential privacy. However, this plot also shows
that the example ex; is not the most challenging example
possible. To see why this is so, recall that Noisy Max achieves
e-differential privacy when the scale parameter on the noisy
distribution is 2/e, e.g., for ¢ = 0.5, the noise scale should
be 4. Thus, an example where the privacy guarantee is tight
should achieve e-differential privacy only when the noise
scale is 4. The (blue) curve for ex; in Figure [6b] achieves a
minimum around noise scale 17 ~ 3, so achieving e-differential
privacy at example ex; requires less noise than is required for
achieving e-differential privacy for the whole mechanism (i.e.,
at all examples). While ex; is not optimal in this sense, this
example was sufficiently good to guide our implementation to
a successful synthesis of the optimal symbolic expression of
the noise parameter; we will describe our implementation in
more detail in Section [Vl

Running example: Above Threshold. On this example, we
use a grammar of expressions of the following form:

] x g x TH x (1/e)) o L

where each unknown [—] ranges over non-negative integers,
and | represents no noise added. In general, our expression
grammar combines powers of basic numeric expressions
involving inputs of the target sketch.

For the sketch aboveT®, our tool produces expression vectors
(2/e,4/¢, L) and (3/¢,3/¢, L) as candidate solutions. The first
setting recovers the textbook version of the Above Threshold
algorithm [12]), while the latter gives a new variant that is also
differentially private. The privacy proof for the second variant
follows by adjusting parameters in existing privacy proofs of
Above Threshold (e.g., [L7]).

V. EXPERIMENTS

We developed KOLAHAL, an implementation of our synthesis
procedure. Our implementation is written in the Julia program-
ming language [18]], and uses the BlackBoxOptim package [19]
for optimization.

Benchmark examples.

We used our tool to synthesize nine mechanisms from
the differential privacy literature. We briefly describe our
benchmarks here. We chose this set of benchmarks because they
represent foundational algorithms and have been previously
considered in the formal verification and testing literature [11],
(14], (150, (201, (170
Sum One of the simplest benchmarks, Sum (Fig. [9) computes

the sum of a private list of numbers. To ensure privacy,

each list element is perturbed by noise drawn from a
Laplace distribution.

Histogram Given a input database, Histogram (Fig. [8) com-
putes a histogram of frequency counts of number of
elements in predefined buckets. It ensures privacy by
adding noise from a Laplace distribution to each of the
frequency counts.

Above Threshold The benchmark AboveTl (Fig. is a
sketch of the AboveThreshold algorithm [[12]]. This pro-
gram takes a numeric threshold and a list of numeric
queries, and returns the index of the first query whose
answer is (approximately) above the threshold. We also
consider a variant AboveT?2 (Fig. @]), where the sketch
has more noise locations than required.

Sparse Vector Technique The benchmark SVT (Fig.[I3) is a
sketch of the Sparse Vector Technique, an algorithm that
has been rediscovered numerous times in the differential
privacy literature [12]]. The variant of SVT that we use [21]]
returns a vector to indicate which of the queries are
above/below a noisy threshold; the mechanism halts after
it outputs N above noisy threshold (T) responses.

Noisy Max The benchmark NoisyMax1 (Fig.[7)) is a sketch
of the Report-Noisy-Argmax algorithm from the dif-
ferential privacy literature [12]], which takes a list of
numeric queries and releases the index of the query
with (approximately) the highest answer. The sketch for
NoisyMax2 (Fig.[I0) has more locations than required, and
we also consider a variant ExpNoisyMax (Fig. [TT)) where
the sketch specifies noise drawn from the Exponential
distribution instead of the Laplace distribution.

SmartSum The benchmark SmartSum (Fig. [I4) implements
the two-level counter mechanism for computing all run-
ning sums of a sequence [22], [23]; roughly speaking, it
chunks the sequence into blocks and adds noise to each
block. The algorithm requires addition of noise at two
program locations.

Comparison with simpler procedures. Our synthesis method

involves quite a few moving parts. To demonstrate the

importance of each phase in our algorithm, we evaluate

KOLAHAL against four simpler baselines. In order of increasing

sophistication:

naive The naive baseline applies a brute-force strategy: it
enumerates all expressions at all program locations,
queries the tester STATDP [11] as an oracle to accept or
reject each choice of expressions, and then finally ranks
all combinations of expressions. This baseline is perhaps
the simplest synthesis method.

unlim This baseline improves upon brute-force enumeration by
including an unbounded counterexample cache to memoize
“good” counterexamples that have been able to cause viola-
tions for past instances. The idea behind this baseline is the
hypothesis that a few “good” counterexamples can cause
violations for most of the candidates being enumerated,
so there is no need to find fresh counterexamples for
every candidate. The cache is sorted by (1) utility (the

Sum®(d, g,¢€) :

a < q(d);
s+ 0;
forie{1...]q|}:

s+ s+a;+ Lap();
return s;

Fig. 9: Sum: Sketch program

Fig.

AboveT1*(d,q,T\¢) :
1+ 1
done < false;
t+ T+ Lap();

a « q(d) + Lap((n2]);
while i < |g| A —done do
if a; >t then
done < true;
i1+ 1;
if done then
ans <1 —1;
else
ans < 0;
return ans;

NoisyMax2°(d, g, ¢) :
m,v < L, 1;
a < q(d);
forie{1...]q|}:

b+ a; + Lap();

if b>v
m,v < 1i,b;
ans < m + Lap();
return ans;

10: NoisyMax2: Sketch program

SVT*(d, g, N, T,) :
out < [|51+ 1;

count < 0;

t+ T+ Lap();

a < q(d);

while ¢ < |q| :
gans = a; + Lap();
if gans > t;

append(out, T);
count < count + 1;
if count > N then
break;

else
append(out, 1);

141+ 1;

return out;

ExpNoisyMax®(d, q, €) :
m,v <+ L, 1;
a < q(d);
forie{1...]q|}:

b+ a; + Exp();

if b>wv
m,v < 1i,b;
ans +— m + Exp();
return ans;

Fig. 11: ExpNoisyMax: Sketch program

SmartSum*®(d, q, M, ¢) :

n <+ 0;7 < 1;

next < 0; sum < 0;

a < q(d);

r[];

while 7 < |q| :
SUM 4 sum + a;;
if 2 mod M =0 then

n < n+ sum + Lap();

sum < 0;
next < n;
else

next < next + a; + Lap();
prepend(r, next);
141+ 1;

Fig. 12: AboveT1: Sketch program

Fig. 13: SVT: Sketch program

number of expression vectors that created a violation
for this counterexample), and (2) recency (how new the
counterexample is). Candidate mechanisms are evaluated,
in order, on the examples in the counterexample cache
before spawning the expensive tester STATDP to discover
a new counterexample; if STATDP can produce a new
counterexample, it is added to the cache.

lim When the counterexample cache grows too large, the unlim
baseline wastes time searching through the cache on “bad”
counterexamples at the tail end of the cache. In this
optimized version, we limit the counterexample cache
to the top-5 counterexamples (we empirically found this
size to be a good setting).

noopt This version operates similarly to KOLAHAL but
it does not use optimization to find a region R of
noise values: all expressions that satisfy the grammar
of expressions (G) are ranked according to the heuris-
tics described in Section [V-D] and the top-k ranked
expressions (k=5x #locations) are sent for verification.
Compared to the other baselines, this version includes
the initialization phase of KOLAHAL where challenging
examples are selected, and it uses a top-5 limited coun-
terexample cache.

We ran our experiments on a cluster with 4 worker threads,
provisioning for 4 cores and 8 GB memory for each task.
Table |I] shows our comparisons with the baseline: the second

return r;

Fig. 14: SmartSum: Sketch program

column (#locs) shows the number of locations in the sketch
where noise can be added. The blank cells in the experimental
results (Table |I) correspond to jobs that did not complete on
the cluster over two days.

We briefly comment on the performance of the baseline
solutions. The naive baseline performs reasonably well for
mechanisms that require noise at a few locations with simple
noise expressions (like Histogram and Sum); however, it
struggles when the number of locations and the complexity of
the expressions increase.

The baselines with the counterexample cache (/im and unlim)
have improved performance in some cases (e.g., NoisyMaxl).
For the simpler cases (Sum and Histogram), it seems that the
baseline loses too much time in warming up the cache. However,
for a slightly more involved benchmark (NoisyMaxI), the cache
pays off. Also, in general, limiting the cache size (lim) seems
to be a better configuration than an unlimited cache (unlim).
The behavior of AboveT is a bit surprising: it fails to complete
for unlim, which it understandable, but draws similar runtimes
for both naive and lim; it seems that the overhead of using the
cache cancels out its gains.

The performance of the noopt baseline is a significant
improvement over the previous baselines: it synthesizes most
of the mechanisms in reasonable time and solves many more
benchmarks, especially, the more involved ones. This shows
the importance of identifying “good” counterexamples.

TABLE I: KOLAHAL versus baselines (time rounded to the nearest minute)

Mechanism KOLAHAL (time in minutes and rank) Baselines (time in minutes)
benchmark #locs init opti enum verify total rank naive unlim lim noopt
Histogram 1 4 1 <1 15 20 1 55 98 74 60
Sum 1 3 <1 <1 10 15 1 55 69 68 52
NoisyMax1 1 9 1 1 20 32 1 84 63 61 54
NoisyMax2 2 14 2 6 48 72 1 - - - -
ExpNoisyMax 2 32 1 7 50 90 1 - - - 217
SmartSum 2 31 6 12 42 91 4 - - - 289
SVT 2 18 2 4 18 44 1 - - - 128
AboveT1 2 13 2 6 38 60 1 1582 - 1647 115
AboveT2 3 24 7 41 54 126 2 - - - -

Finally, KOLAHAL, by including the optimization phase,
is 2x to 20x faster than noopt. Furthermore, it solves a couple
of benchmarks that noopt could not complete. This shows
the value of the optimization phase, especially for involved
mechanisms with more noise locations.

Overall, the above experiment shows that selecting challeng-
ing counterexamples and identifying a noise region for the
search for expressions are crucial to the success of KOLAHAL.

Time spent in different phases. KOLAHAL spends most of
its time in the tester STATDP, either in search of representative
counterexamples (init) or in the final verification (verify). The
optimization phase (opti) and enumerative synthesis (enum)
are reasonably fast. The optimization phase owes its speed to
our technique of approximating the probability estimates using
importance sampling and the heuristic of reusing noise samples
across candidates. The total time (fotal) is the end-to-end time
taken by KOLAHAL, including time for logging.

Ranking of mechanisms. For almost all benchmarks, the
noise setting corresponding to the textbook versions of these
mechanisms is discovered by our tool and ranked high. Recall
that we run a continuous optimization to prepare an preliminary
ranking of the candidates, and the top ranked examples are
passed to STATDP for a more rigorous test for the final ranking.
For each of Sum, Histogram and NoisyMax1, the textbook
mechanism is ranked among the top two candidates even after
the preliminary ranking, which, then, emerges as the topmost
candidate after the final ranking. This behavior does not change
for NoisyMax2 where we add an additional noise location in
the sketch, showing that our method can ignore irrelevant noise
locations—when sketches are obtained by annotating existing,
non-private code, many of the possible noise locations may
be unnecessary for privacy. Our tool performed similarly for
ExpNoisyMax, which not only contains an additional noise
location but also uses an Exponential noise distribution instead
of the Laplace distribution, showing that our method can be
applied to sketches with noise distributions besides Laplace.
For AboveTl, the top two solutions that emerged are
(2/€,4/¢€) and (3/¢,3/¢). The former is the classic version of
the algorithm [12], while the latter is a new variant identified

by KOLAHAL. The proof of privacy of the new variant follows
the proof for the standard variant (see, e.g., [17]). In fact, the
existing privacy proof applies to exactly these two variants, and
no other variants. This benchmark shows that our tool is able
to automatically discover new versions of well-known private
algorithms.

For SVT, the standard version of the mechanism was not the
topmost in the preliminary ranking, though it was high enough
to be selected for the final phase, where it was identified it as
the topmost candidate.

The only benchmark in which our tool had difficulty was
SmartSum, where the ideal solution ended up being ranked
fourth in the final ranking. While the expected noise expressions
are (2/e,2/¢), our procedure proposed the mechanism with
noise scale (1/¢,2/¢) as the top ranking candidate because
STATDP could not find counterexamples against the mech-
anism with (1/€,2/¢€), even though this mechanism is not
e-differentially private. Thus, STATDP did not generate high-
quality examples (in selectExamples) to direct the search
away from the incorrect expression and towards the correct
expressions. In most of our benchmarks, however, we found
that STATDP performed quite well.

VI. RELATED WORK

Program synthesis. Program synthesis is an active area of
research; we summarize the most related directions here.
Closest to our work is the recent paper [24] that develops
a technique relying on user-defined examples to synthesize
private programs in a strongly-typed functional language.
However, this approach can only synthesize simple mechanisms
where the privacy analysis follows from standard composition
theorems; even if provided with an infinite number of examples,
their system is not be able to synthesize mechanisms like
NoisyMax, SVT, AboveT, and SmartSum. Our synthesis
technique is also radically different: rather than using a type-
directed approach, we perform a reduction to continuous
optimization.

In terms of synthesizing randomized algorithms generally,
most work has focused on programs where all inputs are

known; in that setting, the target specification for the synthesis
problem is simpler—there is no need to quantify over all inputs,
unlike the universal quantification over pairs of databases in our
setting [25], [26]. Our general approach of using a small number
of examples to guide the search appears in various forms of
counterexample-guided inductive synthesis techniques [26]

Finding counterexamples to DP. There have been a few
proposals for finding violations to differential privacy. As
mentioned, our approach builds heavily on STATDP [11], a
counterexample generation tool for differential privacy using
statistical tests.

A different approach, DP-Finder [14], reduces the search for
counterexamples to an optimization problem by approximating
the mechanism by a differential surrogate function, thereby
allowing the use of numerical optimization methods. The
solution of the optimization on the surrogate function is a
candidate counterexample. An exact solver (eg. PSI [27]),
or an approximate, sampling-based estimator is then used to
check if the candidate is a true counterexample on the actual
mechanism. In spirit, our use of presampling is similar to
derandomization of candidates in DP-Finder. Our approach also
relies on an optimization problem but instead of transforming
the optimization space via a surrogate function, we first
concretize the mechanism to transfer the search over symbolic
expressions to a search over real vectors, and then use a black-
box optimizer that does not require gradients.

CHECKDP [28]] combines verification and falsification of
differential privacy. Unlike STATDP, CHECKDP relies on
symbolic, rather than statistical methods to prove privacy and
generate counterexamples. As a result, counterexamples do not
come with a p-value or measure of tightness, a measure that
is crucial to our example-selection process. It would be very
interesting to see if the counterexamples and more powerful
analysis afforded by CHECKDP could be used to drive a
synthesis approach, like ours.

Verifying DP. Differential privacy has been a prime target
for formal verification ever since it was introduced by Dwork
et al. [3]], due to its compelling motivation, rigorous founda-
tions, and clean composition properties. There are too many
verification approaches to survey here, applying techniques
like runtime verification, various kinds of type systems, and
program logics. Unlike our approach, all of these approaches
assume that the mechanism to be verified is fully specified. The
most advanced examples considered in our benchmarks (e.g.,
NoisyMax, AboveT, SVT) have only recently been verified [17],
[15]; they have also been tricky for human experts to design
correctly [6]. LightDP [16] proposes a language for verifying
privacy-preserving mechanisms and dependent type system
for annotations to synthesize proofs of differential privacy. It
constructs proofs by randomness alignment via an alignment
function that “aligns" the noise on the executions corresponding
to the adjacent databases. ShadowDP [20] attempts to construct
a randomness alignment by instrumenting shadow executions to
transform a probabilistic program to a program where privacy

costs appear explicitly. This allows the transformed program
to be verified by off-the-shelf verification tools.

VII. DISCUSSION

We propose the first technique for automatically synthesizing
complex differential privacy mechanisms (like NoisyMax, SVT,
AboveT, and SmartSum) from sketches. Our approach does
have certain limitations which opens up opportunities for
interesting future work.

Perhaps the primary limitation of KOLAHAL is its depen-
dence on STATDP for challenging counterexamples; developing
techniques to generate high-quality, “worst-case” counterexam-
ples would likely improve the synthesis procedure.

In the absence of a fast and robust verifier for differential
privacy, we used a testing tool as a stand-in for a verification
oracle. We assume that the failure to reject the null hypothesis
(at a = 0.05) is an indication that the algorithm is DP
at the provided privacy budget. This is a clear limitation of
our choice of using a tester as a verifier, given that testers
and verifiers answer complimentary questions: while a verifier
ensures soundness (that a verification instance that is claimed to
be verified is indeed so), a tester, on the other hand, guarantees
completeness (any counterexample generated does indicate a
violation). Nevertheless, we found it to be a good choice in
practice. Once the candidates are ranked by KOLAHAL, an
existing differential privacy verifier can then be used as the final
step to prove that the synthesized program is private; besides
the new variant of Above Threshold, the target mechanisms
in our examples have all been certified by existing automatic
verifiers [15], [16].

Our algorithm requires, as inputs, a sketch of a mechanism
with noise expressions as holes and a finite grammar G for
noise expressions. The algorithm is not capable of performing
any syntactic transformations over the input sketch. It will fail
to find a solution if no such noise expressions exist for the
provided sketch within the provided grammar.

All our benchmarks were run with the same heuristics
and the same setting of the hyperparameters (see Appendix);
however, synthesizing more mechanisms would give a better
assessment of the generality of these heuristics. Finally, it
would be interesting to consider other forms of privacy, e.g.,
(e,0)-DP and Rényi differential privacy [29], [30].

Acknowledgements. The first author is grateful to the United
States-India Educational Foundation for their support. This
work is partially supported by the NSF (CNS-2023222, CCF-
1943130, CCF-1652140), and grants from Facebook.

REFERENCES

[1] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in IEEE Symposium on Security and Privacy
(S&P), Oakland, California, 2008, pp. 111-125. [Online]. Available:
https://doi.org/10.1109/SP.2008.33

[2] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov,
““You might also like:” privacy risks of collaborative filtering,” in IEEE
Symposium on Security and Privacy (S&P), Berkeley, California, 2011,
pp. 231-246. [Online]. Available: https://doi.org/10.1109/SP.2011.40

https://doi.org/10.1109/SP.2008.33
https://doi.org/10.1109/SP.2011.40

[3]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

C. Dwork, F. McSherry, K. Nissim, and A. D. Smith, “Calibrating noise
to sensitivity in private data analysis,” in IJACR Theory of Cryptography
Conference (TCC), New York, New York, ser. Lecture Notes in Computer
Science, vol. 3876. Springer-Verlag, 2006, pp. 265-284.

U. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized
aggregatable privacy-preserving ordinal response,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), Scottsdale,
Arizona, 2014, pp. 1054-1067.

N. Johnson, J. P. Near, and D. Song, “Towards practical differential
privacy for SQL queries,” Proceedings of the VLDB Endowment, vol. 11,
no. 5, pp. 526-539, 2018.

M. Lyu, D. Su, and N. Li, “Understanding the Sparse Vector Technique
for differential privacy,” Proceedings of the VLDB Endowment, vol. 10,
no. 6, pp. 637-648, 2017, appeared at the International Conference on
Very Large Data Bases (VLDB), Munich, Germany. [Online]. Available:
https://arxiv.org/abs/1603.01699

F. D. McSherry, “Privacy integrated queries: an extensible platform
for privacy-preserving data analysis,” in ACM SIGMOD International
Conference on Management of Data (SIGMOD), Providence, Rhode
Island, 2009, pp. 19-30.

I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel, “Airavat:
Security and privacy for MapReduce,” in USENIX Symposium on
Networked Systems Design and Implementation (NSDI), San Jose,
California, vol. 10, 2010, pp. 297-312.

A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” in International Conference
on Architectural Support for Programming Langauages and Operating
Systems (ASPLOS), San Jose, California, 2006, pp. 404—415.

R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A.
Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, Syntax-
guided synthesis. 1EEE, 2013.

Z.Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer, “Detecting violations
of differential privacy,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), Toronto, Ontario, 2018, pp. 475-489.
C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 34, pp. 211-407, 2014. [Online]. Available: https:
//dx.doi.org/10.1561/0400000042

K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization (Natural Computing Series).
Berlin, Heidelberg: Springer-Verlag, 2005.

B. Bichsel, T. Gehr, D. Drachsler-Cohen, P. Tsankov, and M. Vechev, “DP-
finder: Finding differential privacy violations by sampling and optimiza-
tion,” in ACM SIGSAC Conference on Computer and Communications
Security (CCS), Toronto, Ontario, 2018, pp. 508-524.

A. Albarghouthi and J. Hsu, “Synthesizing coupling proofs of differential
privacy,” Proceedings of the ACM on Programming Languages, vol. 2,
no. POPL, pp. 1-30, 2018.

D. Zhang and D. Kifer, “LightDP: Towards automating differential
privacy proofs,” in ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), Paris, France, 2017, pp. 888-901.
[Online]. Available: https://arxiv.org/abs/1607.08228

G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P.-Y. Strub, “Proving
differential privacy via probabilistic couplings,” in IEEE Symposium on
Logic in Computer Science (LICS), New York, New York. IEEE, 2016,
pp. 1-10.

“The Julia Language,” https://julialang.org|

“Blackboxoptim.jl,” https://github.com/robertfeldt/BlackBoxOptim.jl.

Y. Wang, Z. Ding, G. Wang, D. Kifer, and D. Zhang, “Proving differential
privacy with shadow execution,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Phoenix,
Arizona, 2019, pp. 655-669.

M. Lyu, D. Su, and N. Li, “Understanding the sparse vector technique for
differential privacy,” Proc. VLDB Endow., vol. 10, no. 6, pp. 637-648, Feb.
2017. [Online]. Available: https://doi.org/10.14778/3055330.3055331
T.-H. H. Chan, E. Shi, and D. Song, ‘“Private and continual release of
statistics,” ACM Transactions on Information and System Security, vol. 14,
no. 3, p. 26, 2011. [Online]. Available: https://eprint.iacr.org/2010/076.pdf
C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, “Differential
privacy under continual observation,” in ACM SIGACT Symposium on
Theory of Computing (STOC), Cambridge, Massachusetts, 2010, pp.
715-724. [Online]. Available: https://www.mit.edu/~rothblum/papers/
continalobs.pdf]

[24]

[25]

[26]

(271

[28]

[29]

[30]

C. Smith and A. Albarghouthi, “Synthesizing differentially private
programs,” Proceedings of the ACM on Programming Languages, vol. 3,
no. ICFP, pp. 1-29, 2019.

A. Albarghouthi, L. D’ Antoni, and S. Drews, “Repairing decision-making
programs under uncertainty,” in International Conference on Computer
Aided Verification (CAV), Heidelberg, Germany. Springer, 2017, pp.
181-200.

S. Chaudhuri, M. Clochard, and A. Solar-Lezama, “Bridging Boolean and
quantitative synthesis using smoothed proof search,” in ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
San Diego, California, 2014, pp. 207-220.

T. Gehr, S. Misailovic, and M. Vechev, “PSI: Exact symbolic inference
for probabilistic programs,” in International Conference on Computer
Aided Verification (CAV), Toronto, Ontario. Cham: Springer International
Publishing, 2016, pp. 62-83.

Y. Wang, Z. Ding, D. Kifer, and D. Zhang, “CheckDP: An automated
and integrated approach for proving differential privacy or finding
precise counterexamples,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2020.

M. Bun and T. Steinke, “Concentrated differential privacy: Simplifications,
extensions, and lower bounds,” in IACR Theory of Cryptography
Conference (TCC), Beijing, China, ser. Lecture Notes in Computer
Science, vol. 9985. Springer-Verlag, 2016, pp. 635-658.

I. Mironov, “Rényi differential privacy,” in IEEE Computer Security
Foundations Symposium (CSF), Santa Barbara, California, 2017, pp.
263-275. [Online]. Available: https://arxiv.org/abs/1702.07476

APPENDIX

We use the following setting of hyperparameters for all the
mechanisms we evaluated (i.e. we did not tune them separately for
each case). The hyperparameters were selected via a set of preliminary
experiments on a few mechanisms. These values continued to hold
well as our benchmark set was expanded with more mechanisms.
Nevertheless, a more exhaustive study can be done to evaluate the
generality of this setting.

Selecting Examples

— We pick the zone of confusion on p-values € [0.05,0.9].

Region Selection

— For importance sampling, we use a distribution of the same
family (Laplace or Exponential) as provided in the sketch and
a scale of 4.0;

— We use A = 1 for the regularization parameter in the objective
function in the optimization phase i.e. we weigh each of the
objective function and the simplicity of the expression equally.

Differential Evolution

— We ran our optimizer for (500x#locations) steps, where
#locations refers to the number of noise locations specified
in the sketch;

— The size of the population was set to 50.

Enumerative Synthesis

— Our enumeration of expressions is over:
-4 x|q° P x 1/ or L

(noise expressions must be directly proportional to g and
inversely proportional to €);

— We define the neighborhood (Nbhd) of the region R as
all instantiations lying within an L1 distance of 3 from
instantiations in R;

— From the set of ranked expression vectors emitted by the
enumerative synthesis phase, we select the top-(5x#locations)
for rigorous verification.

https://arxiv.org/abs/1603.01699
https://dx.doi.org/10.1561/0400000042
https://dx.doi.org/10.1561/0400000042
https://arxiv.org/abs/1607.08228
https://julialang.org
https://github.com/robertfeldt/BlackBoxOptim.jl
https://doi.org/10.14778/3055330.3055331
https://eprint.iacr.org/2010/076.pdf
https://www.mit.edu/~rothblum/papers/continalobs.pdf
https://www.mit.edu/~rothblum/papers/continalobs.pdf
https://arxiv.org/abs/1702.07476

	Introduction
	Background
	Differential privacy
	Programming language: syntax and semantics
	Testing for differential privacy

	Overview
	An illustrative example
	The Mechanism-Synthesis problem

	Mechanism Synthesis Algorithm
	High-level mechanism synthesis algorithm
	Fixing arguments and selecting examples
	Reducing to a continuous optimization problem
	Enumerative synthesis

	Experiments
	Related Work
	Discussion
	References
	Appendix

