


Multiple Wh-Movement is not Special: The Subregular Complexity of
Persistent Features in Minimalist Grammars

Thomas Graf

Department of Linguistics

Stony Brook University

Stony Brook, NY 11794, USA

mail@thomasgraf.net

Kalina Kostyszyn

Department of Linguistics

Stony Brook University

Stony Brook, NY 11794, USA

kalina.kostyszyn@stonybrook.edu

Abstract

Minimalist grammars have been criticized for

their inability to analyze successive cyclic

movement and multiple wh-movement in a

manner that is faithful to the Minimalist liter-

ature. Persistent features have been proposed

in the literature as a potential remedy (Stabler,

2011; Laszakovits, 2018). We show that not

all persistent features are alike. The persistent

features involved in multiple wh-movement do

not increase subregular complexity, making

this phenomenon appear very natural from the

perspective of MGs. The persistent features

in successive-cyclic movement, on the other

hand, change the subregular nature of move-

ment, favoring an alternative treatment along

the lines of Kobele (2006).

1 Introduction

Minimalist syntax assumes that movement is

feature-triggered, but in many cases a single feature

may trigger multiple movement steps. For exam-

ple, a single wh-feature on a phrase may cause it to

undergo a number of successive-cyclic movement

steps to the matrix clause, as in (1a). In (1b), a

single subject undergoes a number of raising steps,

which are sometimes analyzed as being driven by

a single feature on the subject.

(1) a. [Which car]i did Mary say [ti that John

thinks that [ti that Sue mentioned [ti
that Bill bought ti]]].

b. [The car]i seems to Mary [ti to appear

[ti to have been expected [ti to win the

race]]].

Alternatively, a single feature may cause multiple

independent phrases to move to the same position,

as in the Serbo-Croatian example of multiple wh-

movement below (cf. Bošković, 2002, p. 353).

(2) [Koi
who

kogaj
whom

[ti voli

loves

tj]]?

Minimalist grammars (MGs) are a formalization

of Minimalist syntax that aims for a high degree of

faithfulness so that common Minimalist analyses

can be easily recast in terms of MGs. But MGs

are built on the assumption that each movement

step is triggered by a pair of matching movement

features — one on the mover, one on the landing

site. By default, a single feature cannot trigger

multiple movement steps, which is at odds with the

very common analyses sketched above.

Multiple solutions have been provided in the lit-

erature. Kobele (2006, p. 84, 148) suggests that

cases like (1a) and (1b) may involve only a sin-

gle feature at the target site, with the intermediate

traces inserted as part of a single movement step

from the base position to the surface position in

the matrix clause. This way, MGs can retain their

original feature calculus while generating exactly

the kind of phrase structure trees that syntacticians

posit in their analyses (and which may be used in

post-syntactic steps, e.g. semantic interpretation

in the vein of Heim and Kratzer 1998). Stabler

(2011) and Laszakovits (2018), on the other hand,

extend MGs with persistent features which can par-

ticipate in multiple movement steps. The persistent

licensee features of Stabler (2011) handle the phe-

nomena in (1), whereas the persistent licensor fea-

tures of Laszakovits (2018) can be used to model

multiple wh-movement (although that was not the

original intent). At this point, little is known about

the formal impact of persistent features except that

persistent licensee features do not increase weak

generative capacity (Stabler, 2011).

Recent developments make this a more urgent

issue. MGs have been studied from the perspec-

tive of subregular complexity (Graf, 2018; Graf

and De Santo, 2019), which is more fine-grained

than the measures previously used in the MG lit-

erature. As a result, even minor changes in the

formalism can greatly impact subregular complex-

275

Proceedings of the Society for Computation in Linguistics (SCiL) 2021, pages 275-285.

Held on-line February 14-19, 2021



ity, which may cause the reader to wonder why

anybody would want to use such a finicky notion

of complexity.

The subregular approach to syntax has three

major advantages: First, it provides novel ways

of limiting overgeneration in a principled fashion

and thus furnishes new explanations of typological

gaps and linguistic universals, for instance why no

syntactic phenomenon seems to involve modulo

counting (Graf, 2020). Second, it also reveals sur-

prising parallels between syntax on the one side

and phonology and morphology on the other. Al-

though the weak generative capacity of phonol-

ogy and morphology (Kaplan and Kay, 1994) is

much less than that of syntax (Huybregts, 1984;

Shieber, 1985; Radzinski, 1991; Michaelis and

Kracht, 1997; Kobele, 2006), the complexity of

syntactic dependencies over trees is comparable

to that of phonological and morphological depen-

dencies over strings. The three language modules

apparently share a lot of computational machinery,

and this makes it easier to transfer empirical and

theoretical insights between them. Finally, there is

a number of efficient learning algorithms for sub-

regular string languages (Heinz et al., 2012; Jardine

and McMullin, 2017; McMullin et al., 2019), and

these algorithms are easy to lift to tree languages;

if one assumes that the input to the child learner

includes some tree structure (e.g. semantic head-

argument relations), one of the subregular learning

algorithms could perhaps be extended into a new

learning algorithm for MGs and hence a form of

Minimalist syntax. Overall, then, the subregular

approach holds a lot of promise, and by studying

the subregular complexity of syntactic proposals,

we get a deeper understanding of the empirical via-

bility of this approach. Since persistent features are

so common in Minimalist analyses, it is important

to understand their impact on subregular complex-

ity, whether all types of persistent features are the

same from this perspective, and what this entails

for theoretical syntax.

In this paper, we show that the subregular view

of MGs reveals a split between persistent licensor

features on the one hand and persistent licensee fea-

tures on the other. Persistent licensor features are

a simple modification of MGs that has no impact

on their subregular complexity. Persistent licensee

features, on the other hand, are both more compli-

cated and more complex. When MGs are defined

in first-order logic, adding persistent licensor fea-

tures is a matter of changing a single quantifier,

whereas persistent licensee features require much

more elaborate modifications. In addition, MGs

with persistent licensee features lose the connec-

tion between movement and TSL-2 tree grammars,

which form the subregular backbone of standard

MGs. All of this makes persistent licensee features

more complex than persistent licensor features.

We argue that these findings support two linguis-

tic claims: First, the treatment of successive-cyclic

movement in Kobele (2006) as an epiphenomenon

without dedicated feature triggers is preferable

from a subregular perspective. Additional work

should be done on whether existing syntactic anal-

yses can be easily revised to be compatible with

this approach. Second, the existence of multiple

wh-movement is unsurprising because the computa-

tional machinery that is needed for standard move-

ment in MGs already furnishes all the power that is

needed for persistent licensor features, which can

give rise to this phenomenon.

On the way towards this result, we establish sev-

eral formal milestones that we hope will be useful

for future work. We begin with a definition of

MGs in first-order logic (Sec. 2.1, Fig. 2 and 3).

In contrast to earlier definitions (Graf, 2012), ours

builds on MG dependency trees, which have seen

increased usage in work on subregular complex-

ity. Section 2.2 then enhances the basic version

of MGs with persistent features, which is much

easier for persistent licensor features than for per-

sistent licensee features. After that, we switch from

first-order logic to the much more limited class of

TSL-2 tree languages (Sec. 3). Even though sev-

eral publications have already used the concept of

TSL tree languages (Vu, 2018; Vu et al., 2019),

this paper is the first one to include the full formal

definition (Sec. 3.1, Def. 1). It is already known

that MGs in single movement normal form can be

described as the intersection of multiple TSL-2 tree

languages, and we show that this result holds also

if one adds persistent licensor features to such MGs

(Sec. 3.2). However, the behavior of persistent li-

censee features cannot be handled correctly with

TSL-2.

Due to space constraints, we unfortunately have

to presuppose familiarity with MGs and subregular

complexity. The reader may consult Stabler (2011)

for additional details on MGs, Graf (2018) for an

intuitive discussion of TSL, and Cornell and Rogers

(1998) for a primer on model-theoretic syntax.

276



2 MGs and first-order logic

2.1 Standard MGs

In MGs, all syntactic work is done by the fea-

ture calculus. Let Merge and Move be finite,

disjoint sets of Merge feature names and Move

feature names, respectively. In addition, the set

Pol := {+,−} contains two opposite polarities.

Then Feat := (Merge ∪ Move) × Pol is the set

of all possible features. We adopt the following

terminology and notation for features:

Type Pol. Name Notation

Merge + Selector feature F+

Merge − Category feature F−

Move + Licensor feature f+

Move − Licensee feature f−

Given a finite set Σ of phonetic exponents, a

Minimalist grammar (MG) over Σ is a finite subset

G of Σ × Feat+. Each member of G is called a

lexical item, and we write σ :: f1 · · · fn instead of

〈σ, f1 · · · fn〉. Each lexical item has a feature string

where

1. all negative features follow all positive fea-

tures,

2. there is exactly one category feature, and this

feature precedes all other negative features,

3. if there are any positive features, the first one

is a selector feature.

These are corollaries of the MG feature calculus.

In standard MGs, lexical items are combined

into a phrase structure tree via repeated applica-

tion of the feature checking operations Merge and

Move until the only remaining feature is C− on

the head of the assembled phrase structure tree

(Stabler, 1997; Stabler and Keenan, 2003). Rather

than defining these mechanisms directly, we follow

the two-step approach to MGs instead (Morawietz,

2003; Mönnich, 2006; Kobele et al., 2007; Graf,

2012). From this perspective, each MG is factored

into two components. One is a regular language of

abstract trees, the other is a spell-out mapping that

translates the abstract tree into the desired output

structure (e.g. a string, a phrase structure tree, or

a logical form). From this perspective, syntax is

about separating well-formed abstract trees from ill-

formed ones, and each Minimalist grammar can be

equated with its set of well-formed abstract trees.

For MGs, these abstract trees are often equated

with MG derivation trees (Fig. 1, left), but we adopt

a specific format of dependency trees (Fig. 1, right)

as this will simplify the discussion of subregular

complexity in Sec. 3. In the dependency tree for-

mat, the daughters of a node are its arguments,

with the n-th argument corresponding to the daugh-

ter with n − 1 right siblings. For the reader’s

convenience, Fig. 1 also contains dashed move-

ment arrows to indicate how each licensee feature

is matched up with the closest available licensor

feature, which, following Graf 2012, we call its

occurrence. This illustrates how the abstract trees

provide all the necessary information to obtain the

corresponding string or phrase structure tree. The

properties of the MG feature calculus are such that

the set of abstract trees can be defined in first-order

logic and hence is (sub)regular — this holds for

derivation trees as well as dependency trees.

The first-order definition of an MG’s set of well-

formed dependency trees is given in Fig. 2 and

Fig. 3. It uses first-order logic with the standard

quantifiers and boolean connectives, as well as the

proper dominance relation ⊳+ and the sibling prece-

dence relation ≺: x ⊳+ y iff x properly dominates

y, and x ≺ y iff x is a left sibling of y. In addition,

we treat each lexical item σ :: f1 · · · fn as a unary

predicate that acts as the label of a node in the

tree. This allows us to define ancillary predicates

like seli@j(x), which are just finite disjunctions of

labels that meet the relevant condition. In combina-

tion with a standard axiomatization of finite trees

(e.g. Backofen et al. 1995), these first-order formu-

las yield exactly the set of well-formed dependency

trees for any given MG.

To the best of our knowledge, this is the first time

a first-order definition of MG dependency trees is

presented in the literature. The central intuition is

that MGs involve dependencies between features.

In the case of Merge, this is easy. First, the number

of daughters of l must match exactly the number

of selector features on l. Furthermore, the category

feature of the i-th argument of a lexical item l must

match the i-th selector feature of l. Note that the

i-th argument is the i-th daughter from the right,

and that i-th selector feature of l is not necessarily

the same as the i-th feature of l because licensor

and selector features can be interspersed (hence the

distinction between fpi and fp
@m in Fig. 2). Once

this distinction is accounted for, checking Merge re-

duces to checking a head’s selector features against

277



Move

Merge

ε :: T
+
wh

+
C

− Move

Merge

ε :: V
+
nom

+
T

− Merge

who :: D
−
nom

−
wh

− Merge

said :: C
+
D

+
V

− Merge

that :: T+
C

− Move

Merge

ε :: V
+
nom

+
T

− Merge

John :: D
−
nom

− left :: D+
V

−

CP

whoi C′

C TP

ti T′

T VP

ti V′

said CP

that TP

Johnj T′

T VP

tj left

ε :: T
+
wh

+
C

−

ε :: V
+
nom

+
T

−

said :: C
+
D

+
V

−

who :: D
−
nom

−
wh

− that :: T+
C

−

ε :: V
+
nom

+
T

−

left :: D+
V

−

John :: D
−
nom

−

nom

nom

wh

nom

nom

wh

Figure 1: MG derivation tree, phrase structure tree, and MG dependency tree, for Who said that John left (under a

simplified analysis)

the category features of its arguments (Fig. 3).

Move is more involved as it requires a switch

from dominance between nodes to dominance be-

tween features. For each licensee feature f− on a

lexical item l, a matching licensor feature f+ has

to be available on another lexical item l′ that prop-

erly dominates l. But not every licensor feature on

l′ may be available for checking. Suppose that l′

has the feature string A+f+B+g+C−, and that l

is part of the argument that is selected via B+. In

this case f+ is not available for l because the MG

feature calculus requires all features preceding B+

to have already been checked before selection via

B+ takes place. Among the licensor features of

l′, only those after B+ are available. Hence it is

not enough that l′ properly dominates l, we have

to extend dominance to features such that we can

tell which features of l′ properly dominate the rel-

evant licensee feature of l. This is the job of ◭+,

where x ◭
+
m,n y means that the m-th feature of

x properly dominates the n-th feature of y. With

this notion of feature-dominance, we can define

the matching licensor features in a recursive fash-

ion. The zero occurrence of lexical item l is the

matching selector feature on the mother of l. The

predicate occ
0@m(x, l) is read as “the m-th feature

on x is the zero occurrence of l”. If l has any li-

censee features, we then try to find a match for its

first licensee feature. This is the closest licensor

feature that properly dominates the zero occurrence

of l, and this feature is the first occurrence of l. We

continue in the same fashion for each licensee fea-

ture of l, always looking for the closest matching

licensor feature that properly dominates the pre-

vious occurrence. The occurrences of l thus are

the specific licensor features that check licensee

features of l.

Standard MGs then impose two constraints on

movement. Every licensee feature must have a

matching occurrence (Move in Fig. 3), and every

licensor feature is an occurrence for exactly one

lexical item (SMC in Fig. 3). This creates a one-

to-one matching requirement where every licensee

feature checks exactly one licensor feature, and the

other way round. Relaxing the one-to-one match-

ing requirement allows for persistent licensee and/

or licensor features. In the next section, we will see

that such a modification does not change the first-

order nature of the dependency trees. Section 3

then shows that more limited, subregular notions

of complexity do reveal a difference in complex-

ity between the standard feature calculus and the

relaxed version.

2.2 Adding persistent features to MGs

MGs’ one-to-one matching between licensee and

licensor features can be relaxed in two directions:

a single licensee feature could check multiple li-

censor features, and a single licensor feature could

check multiple licensee features. The former case

of persistent licensee features was first defined in

278



x ⊳ y
def
= x ⊳+ y ∧ ¬∃z[x ⊳+ z ∧ z ⊳+ y] (1)

∃!nx[φ(x)]
def
=















¬∃x[φ(x)] if n = 0

∃x1, . . . xn

[

∧

1≤i 6=j≤n ¬(xi ≈ xj)∧ otherwise

φ(xi) ∧ ∀y[φ(y) →
∨

1≤i≤n y ≈ xi]
]

(2)

fpi (x)
def
= fp is the i-th Move feature of polarity p (3)

Fp
i (x)

def
= Fp is the i-th Merge feature of polarity p (4)

fp
@j(x)

def
= fp is the j-th feature of x (5)

fpi@j(x)
def
= fpi (x) ∧ fp

@j(x) (6)

seli@j(x)
def
= the i-th selector feature of x is its j-th feature (7)

argn(x, y)
def
= x ⊳ y ∧ ∃!n−1z[y ≺ z] (8)

occ0@m(x, y)
def
=

∨

1≤i≤m

(

argi(x, y) ∧ seli@m(x)
)

(9)

φ(x, y,m)
def
= ∃z

[

(z ≈ y ∨ z ⊳+ y) ∧
(

∨

1≤i≤m≤∆

occ0@i(x, z)
)]

(10)

x ◭
+
m,n y

def
=











x ≈ y ∨ φ(x, y,m) if m > n

¬(x ≈ y) ∧ φ(x, y,m) if m = n

φ(x, y,m) otherwise

(11)

occn@m(x, y)
def
=

∨

f∈Move

(

f−n (y) ∧ f+
@m(x)∧

∃z
[

∨

1≤i≤∆

(

occn−1@i(z, y) ∧ x ◭
+
m,i z∧

¬∃z′
[

∨

1≤j≤∆

(

f+
@j(z

′) ∧ x ◭
+
m,j z

′ ∧ z′ ◭+
j,i z

)]

)]

)

(12)

Figure 2: Ancillary first-order predicates for defining MG dependency tree languages; ∆ is a suitable finite cutoff

point such as the length of the grammar’s longest feature string (in some cases, a lower threshold may suffice).

∀x
[

¬∃y[y ⊳ x] → C−(x)
]

(Final)

∀x
[

∧

F∈Merge
1≤i<∆

(

F+
i (x) ↔ ∃y

[

F−(y) ∧ argi(x, y)
]

)]

(Merge)

∀x
[

∧

f∈Move
1≤i<∆

(

f−i (x) → ∃y[
∨

1≤j<∆

occi@j(y, x)]
)

]

(Move)

∀x
[

∧

f∈Move
1≤m<∆

(

f+
@m(x) → ∃!1y

[

∨

1≤i<∆

occi@m(x, y)
])

]

(SMC)

Figure 3: First-order constraints on dependency trees for standard MGs

279



Stabler (2011) to model successive cyclic move-

ment, and Stabler proved that MGs with persistent

features are weakly equivalent to standard MGs.

Persistent licensor features, on the other hand, were

recently proposed in Laszakovits (2018) to handle

specific instances of Case licensing, but they are

also implicitly assumed in some Minimalist syntax

analyses of multiple wh-movement (see Gärtner

and Michaelis 2010 for an MG-treatment of multi-

ple wh-movement without persistent licensor fea-

tures). Neither persistent licensee features nor per-

sistent licensor features are lacking in syntactic

applications.

The formal implementation of persistent licen-

sor features is easier than that of persistent licensee

features, so we consider the former first. The SMC

in Fig. 3 states that every licensor feature is an oc-

currence for exactly one lexical item. If we change

this to “at least one” (by replacing ∃!1y with ∃y),

each licensor feature becomes persistent and can

serve as an occurrence for distinct lexical items.

However, the feature is not persistent in the sense

that it can check multiple licensee features on the

same lexical item. Suppose l has the feature string

A−f−f−, so that it has to undergo two instances

of f-movement. In this case, it is not enough for

the dependency tree to contain a single persistent

f+. This feature would be the first occurrence of

l, but due to how we defined ◭
+ there is no other

f+ in the dependency tree that properly dominates

the first occurrence of l, which means that l lacks

the second occurrence. Modifying the SMC thus

gives rise to a particular kind of persistent licensor

feature that still behaves like a normal licensor fea-

ture with respect to any fixed lexical item, but can

nonetheless serve as n occurrences for n distinct

licensor features.

We can also mix persistent and non-persistent

features, e.g. by defining Move features as triples

drawn from (Merge ∪ Move) × Pol × {1,∞},

where the third component encodes whether the

feature is persistent. Then the standard SMC would

hold for standard licensor features, and the relaxed

version for persistent licensor features. This is the

system defined in Fig. 4.

In contrast to persistent licensor features, per-

sistent licensee features require a relaxed notion

of occurrence. A few concrete examples illustrate

best how this ought to work. Suppose that the lex-

ical item l has the feature string A−f−∞g−∞, where

both licensee features are persistent. The licensee

feature g−∞ on l could check every g+ that prop-

erly dominates the second occurrence of l. The

feature f−∞ on l is more limited, though. We do

not want l to undergo any more f-movement after

it has started g-moving, so the persistent f−∞ on l

should only be allowed to check instances of f+

that properly dominate the first occurrence of l and

are properly dominated by the second occurrence

of l. But this, too, must be restricted further. Sup-

pose that f+ is the i-th occurrence of some other

lexical item l′. Unless f+ is persistent, it must not

be checked by f− on l′ and the persistent f−∞ on

l. Instead, this occurrence of l′ should also act as

an upper boundary, just like the g-occurrence of l.

Intuitively, then, a persistent licensee feature f−∞ of

l can keep checking instances of f+ after its occur-

rence until we reach I) the next occurrence of l, or

II) an occurrence of some f− on some other lexical

item.

This system is captured in first-order logic by

defining the notion of extended occurrence ecc
such that every licensor feature must be an occur-

rence or an extended occurrence of some lexical

item (exactly one if the licensor feature is not per-

sistent, at least one otherwise). Even though the

constraints in Fig. 4 are still fairly simple, the pred-

icate ecc hides a very convoluted reasoning mecha-

nism. This is indicative of the complicated nature

of persistent licensee features relative to persistent

licensor features, which will become even more ap-

parent in the next section on TSL and movement.

3 Persistent features are (not) TSL

Subregular phonology has focused a lot on the class

of tier-based strictly k-local (TSL-k) string lan-

guages (Heinz et al., 2011; De Santo and Graf,

2019; Lambert and Rogers, 2020), and while this

class has also been extended to trees recently, no

fully rigorous definition has been provided so far.

We do so here for TSL-2 tree languages and dis-

cuss how this notion relates to movement in MGs

(Sec. 3.1), after which we add persistent features

into the mix (Sec. 3.2).

3.1 The TSL-nature of standard MGs

Standard MGs cannot be captured in terms of TSL,

they have to be converted into single movement

normal form (SMNF) first. An MG is in SMNF iff

every lexical item has at most one licensee feature

and at most one licensor feature. Graf et al. (2016)

show how this is done, and that it has no effect on

280



∞@m(x)
def
= the m-th feature of x is persistent (13)

eccn@m(x, y)
def
=

∨

f∈Move
1≤i<∆

(

f+
@m(x) ∧ f−n@i(y) ∧∞@i(y)∧

∃z
[

∨

1≤j<∆

(

occn@j(z, y) ∧ x ◭
+
m,j z∧

¬∃z′, y′
[

∨

1≤k,u<∆

(

(

occn+1@u(z
′, y) ∨ (occk@u(z

′, y′) ∧ f+
@u(z

′))
)

∧

x ◭
+
m,u z′ ∧ z′ ◭+

u,j z
)])]

)

(14)

∀x
[

∧

f∈Move
1≤m<∆

(

f+
@m(x) ∧ ¬∞@m(x) → ∃!1y

[

∨

1≤i<∆

occi@m(x, y) ∨ ecci@m(x, y)
])

]

(non-persistent licensor SMC)

∀x
[

∧

f∈Move
1≤m<∆

(

f+
@m(x) ∧∞@m(x) → ∃y

[

∨

1≤i<∆

occi@m(x, y) ∨ ecci@m(x, y)
])

]

(persistent licensor SMC)

Figure 4: First-order constraints on dependency trees for MGs with standard and persistent features

MGs’ weak or strong generative capacity (modulo

the presence/absence of unpronounced material).

The set of well-formed dependency trees of a stan-

dard MG in SMNF is tier-based strictly local (TSL)

in a specific sense.

Definition 1 (TSL-2 over trees). Given some al-

phabet Σ, a tree tier alphabet is some fixed subset

T of Σ. For every tree t over Σ and node n in t

with label l, T (n) is true iff l ∈ T . We define the

tier mother-of relation ⊳T as follows:

x ⊳T y
def
= T (x) ∧ T (y) ∧ x ⊳+ y∧

¬∃z[T (z) ∧ x ⊳+ z ∧ z ⊳+ y]

In addition, the tier sibling precedence relation ≺T

is given by:

x ≺T y
def
= ∃z[z ⊳T x ∧ z ⊳T y] ∧ ∃z, z′[

(z ≈ x∨ z ⊳+ x)∧ (z′ ≈ y ∨ z′ ⊳+ y)∧ z ≺ z′]

Then T (t), T -tier projected from t, consists of all

nodes in t with a label in T , ordered by ⊳T and

≺T . In addition, if a node n has no mother on

T (t), then it is considered a ⊳T -daughter of the tier

root marker ⋊. If n has no ⊳T -daughter, then it is

considered a ⊳T -mother of the bottom marker ⋉.

An SL-2 function S maps members of Σ ∪ {⋊}
into the powerset of (Σ ∪ {⋉})∗. A tier-based

ε :: V
+
nom

+
T

−

who :: D
−
nom

−
wh

−
ε :: V

+
nom

+
T

−

John :: D
−
nom

−

Figure 5: nom-tier of the MG dependency tree in

Fig. 1; the root marker ⋊ and the bottom markers ⋉

are omitted.

strictly 2-local tree grammar over X-strings (TSL-

2[X]) is a triple G := 〈Σ, T, S〉 such that every set

in the range of S is a string language belonging to

class X . The tree language L(G) generated by G

contains tree t over Σ iff it holds for every node n

of T (t) with label l (including ⋊) that n’s string of

⊳T -daughters is a member of S(l). y

As a concrete example, the dependency tree in

Fig. 1 would yield the tier in Fig. 5 if T contains all

and only those lexical items that carry an instance

of nom− or nom+.

The dependency trees of standard MGs in SMNF

are the intersection of multiple TSL tree languages

(cf. Graf, 2018). One tier is needed to enforce the

constraints (Final) and (Merge). This tier is trivial

in the sense that it is identical to the original tree.

Definition 2 (Merge language). Let M be some

MG. We define a TSL-2[TSL] grammar G :=

281



〈M,M,S〉, where S is given by two cases. The

image of ⋊ under S is the set of all lexical items in

M whose category feature is C−. For each lexical

item l ∈ M such that l contains exactly n selector

features F+
1 · · ·F+

n , S(l) is the set of all strings

w over M of length n such that it holds for all

1 ≤ i ≤ n that the i-th symbol in w−1 (the reverse

of w) has category feature F−
i . We call L(G) the

Merge language of G (denoted MergeG). y

In addition, each movement feature, e.g. wh or

nom, also defines its own TSL tree language (as-

suming the MG is in SMNF).

Definition 3 (Move language). Let M be some

MG in SMNF. For each f ∈ Move, we define a

TSL-2[TSL-2] grammar Gf := 〈M,Tf , Sf 〉. We

use f− as shorthand for any l ∈ M that carries f−,

and ¬f− for any l ∈ M ∪ {⋊,⋉} that does not

carry f−. Then the SL-2 function Sf is given by

two cases:

Sf (l) :=

{

(¬f−)∗f−(¬f−)∗ if l carries f+,

(¬f−)∗ otherwise.

We call L(Gf ) the f -Move language of G (denoted

Move
f
G). The Move language of G (MoveG) is the

intersection of all Move
f
G for f ∈ Move . y

Each Move
f
G ensures that every lexical item carry-

ing f+ has exactly one daughter carrying f−, and

every lexical item carrying f− has a mother carry-

ing f+. Hence MoveG ensures a strict one-to-one

matching between all licensor and licensee fea-

tures.

Theorem 1. For every MG G in SMNF, the inter-

section of MergeG and MoveG contains all and

only those trees that are models of all four con-

straints in Fig. 3.

Due to space constraints, we do not give a formal

proof of this result here. The reader is referred to

Graf (2018) for the general intuition.

3.2 Adding persistence is easy/impossible

When we modified the first-order definition of

MGs, we saw that persistent licensor features are

easier to add than persistent licensee features. The

former only require weakening “exactly one” to

“at least one”, whereas the latter involve the fairly

complex notion of extended occurrences. The same

split arises under the TSL view of MGs (in SMNF),

and it is in fact even more pronounced. Whereas

persistent licensor features are easy to add, persis-

tent licensee features are impossible to capture with

TSL-2[TSL] (or any TSL-2[X], in fact).

As before, we consider persistent licensor fea-

tures first. All we have to do is to amend Sf (n)
in Def. 3 with a third case: if n carries persistent

f+∞, then Sf (n) :=
(

(¬f−)∗f−(¬f−)∗
)+

. This en-

sures that every persistent f+ has at least one mover

among its daughters on the tier, but possibly more.

In other words, the persistent f+ can check any

number of f− from distinct lexical items, but it

must check at least one.

Note that (¬f−)∗f−(¬f−)∗ and
(

(¬f−)∗f−(¬f−)∗
)+

are both TSL-2 string

languages, so there is no discernible complexity

difference between standard licensor features and

persistent licensor features. In terms of subregular

complexity, there is no reason to exclude persistent

licensor features from MGs — the computational

machinery that is needed for standard MGs in

SMNF already provides everything that is needed

to handle persistent licensor features.

Persistent licensee features, on the other hand,

cannot be defined in tree TSL-2 at all. Consider the

four example tiers below, where ∞ is persistent f−

and ¬∞ is non-persistent f−:

f+

∞

f+

¬∞

f+

f+

∞

f+

f+

¬∞

The first three tiers should be well-formed as each

f+ is an occurrence or extended occurrence — that

is to say, each f+ gets checked. The fourth tier, on

the other hand, should be ill-formed because the

higher f+ cannot checked once the non-persistent

f− has been checked by the lower f+. But there

is no TSL-2 tree language that includes the first

three tiers while excluding the latter. In order for

the latter to be illicit, one of the following must be

ruled out: f+ as the daughter string of ⋊, f+ as the

daughter string of f+, or ¬∞ as the daughter string

of f+. Ruling out one of those options would nec-

essarily render one of the well-formed tiers illicit.

This argument is a tree analogue of the fact that

TSL string languages must have tier languages that

are suffix substitution closed (De Santo and Graf,

2019).

In order to avoid the issue, we need a more pow-

erful notion of TSL where the function S deter-

mines the set of licit daughter configurations for a

282



node n based on the whole tier context of n, rather

than just the label of n. In the specific case at

hand, S(n) must be sensitive to the label of the tier

mother of n, too: if an f+ has an f+ mother, its

daughter string cannot contain a non-persistent f−,

while persistent f− or no f− at all would both be

fine (the latter case allows for unbounded recursion,

but as long as f+ cannot be the tier mother of ⋉ we

are guaranteed to encounter a persistent f− eventu-

ally). There are many different ways this could be

formalized, yielding vastly different classes of tree

languages, and we see no reason to pick a particular

option at this point. The important point is that the

standard notion of TSL tree languages that suffices

for movement in SMNF MGs is also enough for

persistent licensor features, but not for persistent

licensee features.

There is one interesting caveat, though: In

an MG where all licensee features are persistent,

movement is again TSL-2. In this case, the only

constraints on nodes carrying f+ is that their string

of daughters must not contain more than one f−

carrier and the string must not be ⋉. For persistent

licensor features, the first half of the constraint can

also be dropped, leaving us with the simple require-

ment that their string of tier daughters must not be

⋉. This indirectly ensures that the leafs of a move-

ment tier must still be lexical items carrying f−. In

a certain sense, then, the problem with persistent

licensee features is not so much the persistence as

such, but that the availability of persistent as well

as non-persistent licensee features introduces an

ambiguity that cannot be resolved by considering

only a node and its string of tier daughters. One can

either provide a sufficiently large context for dis-

ambiguation, or avoid the ambiguity by allowing

for only one type of licensee feature.

As far as we can tell, many syntactic analyses are

incompatible with MGs where all licensee features

are persistent, so we maintain our original claim

that persistent licensee features pose a qualitatively

different, more complex challenge than persistent

licensor features.

4 Conclusion

We have given a rigorous first-order definition of

MGs with persistent features, and based on this

we have argued that not all persistent features are

alike. There is a complexity difference between

persistent licensor features on the one hand and

persistent licensee features on the other. Persistent

licensor features are unremarkable from the subreg-

ular perspective of TSL. This shows that MGs can

be expanded to handle phenomena such as multiple

wh-movement while preserving the core properties

of their abstract tree languages. Persistent licensee

features, on the other hand, introduce additional

complexity, which favors the approach of Kobele

(2006), where successive cyclic movement is not

feature triggered and is instead a by-product of the

spell-out mapping from the abstract trees to phrase

structure trees.

This paper has focused on the impact of persis-

tent features on the abstract tree language, leaving

open how they affect the spell-out mapping. If

two lexical items of l and l′ share the same occur-

rence, then it is not clear how the subtrees of l and

l′ should be linearized with respect to each other.

The feature calculus no longer provides all the nec-

essary information. However, the MG dependency

tree might. For instance, the linearization could

reflect the lexicographic order of l and l′ in the

dependency tree, or it might be based on morpho-

logical cases (e.g. nominative preceding accusative,

which precedes dative). These options are easily

defined in first-order logic, which entails that they

all preserve the weak generative capacity of MGs.

But it is unclear which option is the empirically

correct choice. Since subregular tree transductions

are still severely understudied, it is unclear how

these different options might change the subregu-

lar complexity of the mapping, and more work is

needed in this area.

Acknowledgments

The work reported in this paper was supported

by the National Science Foundation under Grant

No. BCS-1845344. We thank the participants of

Stony Brook’s Mathematical Linguistics Reading

Group, where the issue with persistent licensee fea-

tures was first discussed. We also thank anonymous

reviewers for their comments, which prompted sev-

eral additions to this paper.

283



References

Rolf Backofen, James Rogers, and K. Vijay-Shanker.
1995. A first-order axiomatization of the theory of
finite trees. Journal of Logic, Language and Infor-
mation, 4:5–39.

Želko Bošković. 2002. On multiple wh-fronting. Lin-
guistic Inquiry, 33:351–383.

Thomas Cornell and James Rogers. 1998. Model the-
oretic syntax. In The Glot International State of
the Article Book, volume 1 of Studies in Generative
Grammar 48, pages 101–125. Mouton de Gruyter.

Aniello De Santo and Thomas Graf. 2019. Struc-
ture sensitive tier projection: Applications and for-
mal properties. In Formal Grammar, pages 35–50,
Berlin, Heidelberg. Springer.

Hans-Martin Gärtner and Jens Michaelis. 2010. On the
treatment of multiple-wh-interrogatives in Minimal-
ist grammars. In Thomas Hanneforth and Gisbert
Fanselow, editors, Language and Logos, pages 339–
366. Akademie Verlag, Berlin.

Thomas Graf. 2012. Locality and the complexity of
Minimalist derivation tree languages. In Formal
Grammar 2010/2011, volume 7395 of Lecture Notes
in Computer Science, pages 208–227, Heidelberg.
Springer.

Thomas Graf. 2018. Why movement comes for free
once you have adjunction. In Proceedings of CLS
53, pages 117–136.

Thomas Graf. 2020. Curbing feature coding: Strictly
local feature assignment. In Proceedings of the So-
ciety for Computation in Linguistics (SCiL) 2020,
pages 362–371.

Thomas Graf, Alëna Aksënova, and Aniello De Santo.
2016. A single movement normal form for Minimal-
ist grammars. In Formal Grammar: 20th and 21st
International Conferences, FG 2015, Barcelona,
Spain, August 2015, Revised Selected Papers. FG
2016, Bozen, Italy, August 2016, pages 200–215,
Berlin, Heidelberg. Springer.

Thomas Graf and Aniello De Santo. 2019. Sensing tree
automata as a model of syntactic dependencies. In
Proceedings of the 16th Meeting on the Mathematics
of Language, pages 12–26, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Irene Heim and Angelika Kratzer. 1998. Semantics in
Generative Grammar. Blackwell, Oxford.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing. 2012.
Learning in the limit with lattice-structured hypothe-
sis spaces. Theoretical Computer Science, 457:111–
127.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints in phonol-
ogy. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics,
pages 58–64.

M. A. C. Huybregts. 1984. The weak adequacy of
context-free phrase structure grammar. In Ger J.
de Haan, Mieke Trommelen, and Wim Zonneveld,
editors, Van Periferie naar Kern, pages 81–99. Foris,
Dordrecht.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of tier-based strictly k-local languages. In
Proceedings of Language and Automata Theory and
Applications, Lecture Notes in Computer Science,
pages 64–76, Berlin. Springer.

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Computa-
tional Linguistics, 20(3):331–378.

Gregory M. Kobele. 2006. Generating Copies: An In-
vestigation into Structural Identity in Language and
Grammar. Ph.D. thesis, UCLA.

Gregory M. Kobele, Christian Retoré, and Sylvain Sal-
vati. 2007. An automata-theoretic approach to Min-
imalism. In Model Theoretic Syntax at 10, pages
71–80.

Dakotah Lambert and James Rogers. 2020. Tier-based
strictly local stringsets: Perspectives from model
and automata theory. In Proceedings of the Society
for Computation and Linguistics, volume 3.

Sabine Laszakovits. 2018. Case theory in Minimal-
ist grammars. In Proceedings of Formal Grammar
2018, pages 37–61, Berlin. Springer.

Kevin McMullin, Alëna Aksënova, and Aniello
De Santo. 2019. Learning phonotactic restrictions
on multiple tiers. In Proceedings of the Society for
Computation in Linguistics (SCiL) 2019, pages 377–
378.

Jens Michaelis and Marcus Kracht. 1997. Semilin-
earity as a syntactic invariant. In Logical Aspects
of Computational Linguistics, volume 1328 of Lec-
ture Notes in Artifical Intelligence, pages 329–345.
Springer.

Uwe Mönnich. 2006. Grammar morphisms. Ms. Uni-
versity of Tübingen.

Frank Morawietz. 2003. Two-Step Approaches to Nat-
ural Language Formalisms. Walter de Gruyter,
Berlin.

Daniel Radzinski. 1991. Chinese number names, tree
adjoining languages, and mild context sensitivity.
Computational Linguistics, 17:277–300.

Stuart M. Shieber. 1985. Evidence against the context-
freeness of natural language. Linguistics and Philos-
ophy, 8(3):333–345.

Edward P. Stabler. 1997. Derivational Minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, volume 1328 of Lecture Notes
in Computer Science, pages 68–95. Springer, Berlin.

284



Edward P. Stabler. 2011. Computational perspectives
on Minimalism. In Cedric Boeckx, editor, Oxford
Handbook of Linguistic Minimalism, pages 617–643.
Oxford University Press, Oxford.

Edward P. Stabler and Edward Keenan. 2003. Struc-
tural similarity within and among languages. Theo-
retical Computer Science, 293:345–363.

Mai Ha Vu. 2018. Towards a formal description of NPI-
licensing patterns. In Proceedings of the Society for
Computation in Linguistics (SCiL) 2018, volume 1,
pages 154–163. Article 17.

Mai Ha Vu, Nazila Shafiei, and Thomas Graf. 2019.
Case assignment in TSL syntax: A case study. In
Proceedings of the Society for Computation in Lin-
guistics (SCiL) 2019, pages 267–276.

285


	Multiple Wh-Movement is not Special: The Subregular Complexity of Persistent Features in Minimalist Grammars
	Recommended Citation

	Multiple Wh-Movement is not Special: The Subregular Complexity of Persistent Features in Minimalist Grammars

