
Dynamic Knowledge Graph based Multi-Event Forecasting
Songgaojun Deng

Stevens Institute of Technology
Hoboken, New Jersey
sdeng4@stevens.edu

Huzefa Rangwala
George Mason University

Fairfax, Virginia
rangwala@cs.gmu.edu

Yue Ning
Stevens Institute of Technology

Hoboken, New Jersey
yue.ning@stevens.edu

ABSTRACT
Modeling concurrent events of multiple types and their involved ac-
tors from open-source social sensors is an important task for many
domains such as health care, disaster relief, and financial analysis.
Forecasting events in the future can help human analysts better
understand global social dynamics and make quick and accurate
decisions. Anticipating participants or actors who may be involved
in these activities can also help stakeholders to better respond to un-
expected events. However, achieving these goals is challenging due
to several factors: (i) it is hard to filter relevant information from
large-scale input, (ii) the input data is usually high dimensional,
unstructured, and Non-IID (Non-independent and identically dis-
tributed) and (iii) associated text features are dynamic and vary
over time. Recently, graph neural networks have demonstrated
strengths in learning complex and relational data. In this paper,
we study a temporal graph learning method with heterogeneous
data fusion for predicting concurrent events of multiple types and
inferring multiple candidate actors simultaneously. In order to cap-
ture temporal information from historical data, we propose Glean,
a graph learning framework based on event knowledge graphs
to incorporate both relational and word contexts. We present a
context-aware embedding fusion module to enrich hidden features
for event actors. We conducted extensive experiments on multiple
real-world datasets and show that the proposed method is com-
petitive against various state-of-the-art methods for social event
prediction and also provides much-need interpretation capabilities.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies→ Knowledge representation and reasoning; Temporal rea-
soning.

KEYWORDS
Multi-Event Forecasting; Knowledge Graphs; Word Graphs
ACM Reference Format:
Songgaojun Deng, Huzefa Rangwala, and Yue Ning. 2020. Dynamic Knowl-
edge Graph based Multi-Event Forecasting. In Proceedings of the 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’20),
August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3394486.3403209

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403209

02/26/15
Government

Farm  
Worker

Agriculture  
Ministry Citizen

Negotiation

CriticizeAccuse

02/24/15

02/27/15

Express intent to 


release property
02/23/15

Multi-event 
forecasting

Multi-actor 
forecasting

Events

0.2

0.4

0.2
0.3

0.4

0.1

Protest

Visit

Actors

0.4

0.3
0.2

0.1

Farm 
worker

Lawyer

Event Summary: A Politician 
attacked the state government 
on various fronts such as fertilizer 
crunch and land acquisition act.

Consult

Figure 1: A motivating example of event graphs for multi-
event andmulti-actor forecasting. Nodes denote entities and
edges denote event types and timestamps.

1 INTRODUCTION
Events such as organized crime, civil unrest movements, and dis-
ease outbreaks have a major impact on society. Previous event
forecasting approaches mainly focus on predicting the occurrence
of a given event type, e.g., protest [8, 24] or event subtypes, e.g. air
pollution of CO vs. PM2.5 [11]. These methods are unable to identify
concurrent events of multiple types. Meanwhile, existing methods
neglect to predict the potential actors in an event, which is crucial
for decision making. As shown in Figure 1, the entities/actors in-
volved in social events are usually those who initiated an event or
were targeted in an event (e.g. “farm worker” plays multiple roles
in two events). Multi-event forecasting involves inferring multiple
concurrent events of different types and participants in the future
using historical input data.

Currently, events are often extracted from formal reports or
news articles and structured as temporal knowledge graphs with
additional textual features. An event graph, as shown in Figure 1,
consists of entities (as nodes) and event types (as edges), where
each edge has a timestamp indicating when the event occurred.
Each event has a synopsis describing the content of the event.
For instance, an event that occurred on Feb. 26, 2015, was Citizen
Criticizes Government. The summary of the event is “A Politician
attacked the state government on various fronts such as fertilizer
crunch and land acquisition act”. These previous events among farm
workers, the government, the agriculture ministry, and citizens
provide indicators for the prediction of “protest” events and “farm
worker” participants in the future.

Identifying related actors and past events in the prediction mod-
els provides backgrounds and clues for understanding the develop-
ment of events and their hidden factors. Prior work [8, 24, 35] in
this area has sought to identify supporting evidence in the form of
precursor documents or context graphs while forecasting future
events. However, the identified evidence in the existing work is
often difficult to understand or requires further manual inspection

https://doi.org/10.1145/3394486.3403209
https://doi.org/10.1145/3394486.3403209


when predicting multiple concurrent events of different types. Rec-
ognizing the correct set of actors and clues for each event type
is difficult given the complex connections under past events. The
task of multi-event and multi-actor forecasting presents several
challenges:

• Structured and unstructured features Event data is usually a
mixture of structured records (time, actors, types, etc.) and un-
structured textual information (e.g., the event summary shown
on an edge in Figure 1). Utilizing both forms of data for event
forecasting is important given that relational records provide key
elements of events while textual features provide enriched back-
ground information. However, few studies have performed the
fusion of heterogeneous data for concurrent event forecasting.
• Beyond link prediction: Knowledge graph completion mod-
els relational information by predicting links between entities.
However, it is difficult in practice to apply this line of research
to predict both relations (event types) and entities (actors). Most
knowledge graph completion methods only model the inherent
structure of relational data and fail to exploit global historical
data for future event predictions.
• Beyond event forecasting: Prior research on event modeling
mainly focuses on forecasting event occurrences or counts in
the future using either pre-defined features [39] or pre-trained
embeddings [24]. Graph features constructed from text data have
proven to be advantageous in deep learning methods for event
prediction [8]. However, it is difficult to automatically extract
event actors from graph-based text features.

We address the above challenges by considering two intercon-
nected sub-problems: forecasting multiple co-occurring events of
different types and inferring multiple actors in each event type.
We propose a new methodology to fuse relational (event graphs)
and semantic (text) information from heterogeneous historical data
to predict concurrent events of multiple types and multiple actors
in the future. Given this enriched information, we also provide
interpretations for the prediction results. The model is able to auto-
matically select salient actors, words, and relevant events from the
historical input data based on learned weights. Our contributions
are summarized as follows:

• We design a novel multi-event multi-actor forecasting frame-
work that (1) utilizes global event information from entities, event
types, and event descriptions, to predict concurrent events of mul-
tiple types; and (2) predicts potential participants (actors/entities)
in these events with temporal and intrinsic inference modules
based on historical events and the inherent association between
entities and event types.
• We introduce a new encoding method for integrating both dy-
namic graph data (event graphs) and text data (documents and
summaries) into graph-based relational features. We also provide
a graph sampling method to obtain specific features in history
for a given event-type, thereby eliminating the unwanted noise.
• Given the entities and event types in event graphs, we identify re-
lated words from event summaries and propose a context-aware
embedding fusion method. We incorporate an attention mecha-
nism to learn the importance of each identified word and capture
local contextual semantics.

We evaluate the proposed method with other state-of-the-art mod-
els on real-world datasets with large-scale entity sets and event type
sets.With quantitative and qualitative experiments, we demonstrate
the strengths of the proposed method in multi-type and multi-actor
event forecasting.

2 RELATEDWORK
Our study is closely related to a large body of literature on event
forecasting and knowledge graph completion.
Event Forecasting. There has been extensive research on event
forecasting with spatio-temporal correlations, including many real-
world applications such as stock market movements [2], disease
outbreaks [29], and criminal activities [34]. Most existing machine
learning methods only work on euclidean or grid-like data. For in-
stance, linear regression models use tweet frequency (and quantity)
to predict the occurrence time of future events [2]. More sophisti-
cated features (e.g., topic-related keywords [34]) and models (e.g.
multi-task learning[25, 39]) have also been investigated. Predic-
tive methods have begun to confront the complex structure of
social events and their underlying relations by considering the
temporal evolution of event-related indicators or utilizing both tem-
poral and geographical graph information [25]. Recently, Graph
Convolutional Networks (GCN) have been proposed to address
non-euclidean data in many domains such as social networks[26],
natural language processing [20] and bio-medicine [10]. A dynamic
graph convolutional network [8] was proposed to encode tempo-
ral text features into graphs for forecasting societal events and
identifying their context graphs.

Most of these aforementioned models focus on the prediction
of a single type of events or do not recognize the sub-types of
events. Thus they are not flexible enough given that differentmodels
are trained for different types of events, which is computationally
expensive and cannot guarantee good performance.

Event subtypes have also been studied. A multi-task multi-class
deep learning model has been proposed for predicting the future
occurrence of subtype events [11]. Different types of events occur
simultaneously and it is necessary to model concurrent events.

However, many of the existing approaches have neglected hid-
den relational knowledge among entities. In this case, they cannot
predict the actors of events who have significant impacts on social
movements. Our proposed approach aims to predict multiple events
where each event includes elements such as actors and event type.
Events are augmented with textual descriptive summaries. This
gives us the benefit of discovering the impact of hidden connections
among entities for predicting future events and actors/entities.
Knowledge Graph Completion Although knowledge Graphs
(KGs) have been recognized in many domains, most KGs are far
from complete and are growing rapidly. Thus, KG completion (or
link prediction) has been proposed to improve KGs by filling the
missing connections.

Extensive studies have been done on modeling static, multi-
relation graph data for link prediction. These methods mainly em-
bed entities and relations into low-dimensional spaces [3, 9, 32, 36].
Among these methods, Relational Graph Convolutional Networks
(RGCN) [28] is developed to generalize the GCNmodel [16] by deal-
ing with direct, multi-relational graphs such as knowledge graphs.



Recently, CompGCN [33] has been proposed to jointly embed both
nodes and relations in a relational graph. These methods achieve
high accuracy on modeling static knowledge graphs.

There are recent attempts to incorporate temporal information
in modeling dynamic knowledge graphs where facts may evolve
over time. Know-Evolve [31] models the occurrence of a fact (edge)
as a temporal point process. Embedding-based methods have been
proposed to model temporal information, such as relation embed-
dings [12], time embedding [17], and temporal hyperplane [7].
These methods cannot generalize to unseen timestamps. Beyond
link prediction, Jin et al. studied an autoregressive architecture for
modeling temporal sequences of multi-relational graphs [14]. We
employ temporal knowledge graphs in multi-type event forecasting.
The difference between our work and temporal KG completion is
that we are predicting events (and then actors) at future times. We
formulate the problem into a multi-label classification problem. We
consider both unstructured text data (event summaries) and graph
data (event graphs) with temporal and relational information.

3 PROBLEM FORMULATION
The objective of this study is to forecast multiple co-occurring
future events along with their event types (e.g., consult, provide
aid, etc) and identification of involved key actors (e.g., politicians,
organizations, etc). We formulate the knowledge-graph-based event
forecasting task as two multi-label classification problems. We first
introduce the formulation of the problems and then describe the
necessary definitions used in our proposed method. The important
mathematical notations are in Table 1.

Problem 1. Multi-Event Forecasting.We model the probabil-
ities of a set of event types occurring at a future timestamp t based
on historical input data X1:t−1:

P
(
yt
��X1:t−1

)
. (1)

Here yt ∈ R |R | is a vector of event types and X1:t−1 can be
encoded from a set of graphs, documents, or word frequencies.

Problem 2. Multi-Actor Forecasting. In this problem, given
the relevant historical data of an event, we model the probabilities
of a set of actors (subject or object entities) being involved in a
given type of event yt :

P
(
at
��yt ,X1:t−1

)
, (2)

where at ∈ R |E | is a vector of entities. In this work, we consider
both relational information and textual event summaries as en-
hanced information in history to address these two problems. Next,
we introduce the necessary definitions used in this paper.

Definition 3.1 Temporal Event Graph. A temporal event graph
is a multi-relational, directed graph with time-stamped edges (event
types) between nodes (entities). Let E be a finite set of entities andR
be a finite set of event types. An event is defined as a time-stamped
edge (i.e., subject entity (s), event type (r ), object entity (o) and time
t ) succinctly represented by a quadruple (s, r ,o, t) or (st , rt ,ot ),
where s,o ∈ E and r ∈ R. We denote a set of events at time t as
Gt = {(s, r ,o, t)}t . Temporal event graphs are built upon a sequence
of event sets in ascending time order {G1, ...,GT }, where each time-
stamped edge has a direction pointing from the subject entity to
the object entity. The same triple (s, r ,o) may occur multiple times
in different timestamps, yielding different event quadruples. Each

Table 1: Important notations and descriptions

Notations Descriptions

E, R, V entity, event type, and vocabulary sets
Gt , Dt event and word graphs at time t
Grt , D

r
t event and word subgraphs of event type r at time t

hu , or learnable embedding of entity u and event type r
bω pre-trained word2vec embedding of word ω
Ht semantic embedding matrix of words at time t
←−
Ht ,
←−
Ot relational embedding matrices of entities and event types

at time t
H♠t , O

♠
t fused embedding matrices of entities and event types at

time t
d feature dimension

unique entity u (s or o) and unique event type r will be initialized
with an embedding vector as hu ∈ Rd , or ∈ Rd .

Definition 3.2 Temporal Word Graph. Each event is attached
with a paragraph of text or summary. We collect all the event sum-
maries at each timestamp. Formally, we denote a set of summaries
at time t as Dt = {c}t . For each timestamp t , we construct an
undirected word graphDt where each node denotes a unique word
from Dt . The edges are formed based on word co-occurrence in
the summary set Dt . Specifically, we employ point-wise mutual
information (PMI) [6] to measure the semantic relevance of two
words, that is, the edge weight. In the document set Dt , we define
an edge between word ω and word φ if PMI(ω,φ) > 0, notated as
(ω,φ) ∈ Dt , that is Dt = {(ω,φ)}t .Vt contains all words at time
t and V is the vocabulary set. Each word ω is initialized with a
pre-trained embedding vector bω ∈ Rd . Temporal word graphs are
built from a series of summary sets, sorted in ascending time order.

In the following section, we use ← over a letter to represent
relational embeddings in event graphs, − to denote semantic em-
beddings in word graphs, and ♠ to denote fused embeddings.

4 METHODOLOGY
Figure 2 provides an overview of the multi-event forecasting frame-
work that consists of three parts: (1) graph aggregation module to
obtain the relational and semantic embeddings from event and word
graphs at each historical timestamp, respectively; (2) context-aware
embedding fusion module to enhance representations of entities
and event types by blending contextual features from words; and
(3) recurrent encoder module to learn temporal global embeddings
across all historical times. For the multi-actor forecasting prob-
lem, we model node-level and edge-level representations instead of
global graph features. We propose a temporal inference module to
model dynamic temporal features. An additional intrinsic inference
module is designed to model the inherent association of entities
and event types. The pseudocode of multi-event forecasting and
multi-actor forecasting is presented in the supplemental material.

4.1 Multi-Event Forecasting
Assuming that the occurrences of events at time t depend on the
historical events that happened in the previous time window ofm
time steps, we model the probabilities of events of multiple types
P
(
yt
)
at time t using the temporal graphs of events (Gt−m:t−1) and



Member Judiciary

actcourt

α1
t α2

t

detain

legal
charge

arrest

Embedding Fusion

T-k
t t+1

CompGCN

GCN

Event 
Prediction

Actor 
Prediction

Embedding 
Fusion

T-1

Intrinsic 
Inference

Temporal 
Inference

Graph 
Sampling

T-1
Input

Recurrent 
Encoder

Recurrent 
Encoder

Members of 
Judiciary arrest, detain, 

or charge

Model at time t Prediction at TTime

…
…

←−
h t

ht

←−o t

T-1

T-1

⊕

⊕

ot

Figure 2: An overview of the proposed model. CompGCN aggregates the entity and event type embedding in
event graphs at each timestamp based on Eq. ??. GCN learns the semantic embedding in each temporal word
graph using Eq. ??. Embedding fusion is applied to entities and event types with related words in the word
graphs according to Eq. ??-??. The recurrent encoder models temporal information for final predictions. In
the multi-event forecasting task, we model the global (graph-level) temporal information for predicting the
candidate event types. For the multi-actor prediction task, we model the individual-level temporal feature of
entities and the given event type.

Graph Aggregation To learn the representations of tem-
poral event graphs and word graphs, we employ graph neural
networks (GNN), which captures the dependency of features
via message passing among adjacent nodes in a graph. Given
the heterogeneous graph structure of our data, we propose
to learn relational embeddings and semantic embeddings,
respectively.

Relational Embedding (Event Graph). In event graphs, the
edge between a pair of nodes is directed and labeled as
the event type between these two nodes, e.g., “ A attacks
B”. Relational embedding encodes the hidden influence or
actions from the historical events.
For each time t, we learn the relational embeddings of

both entities and event types by capturing directed influence
flows in Gt. The features of both entities and event types
are learned by a multi-layer graph convolution network. At
layer (l + 1), for a single node v, the embedding vector is
learned by the CompGCN model [? ], which updates the node
embedding as well as the edge embedding from relational
data:

←−
h (l+1)

v = f
( ∑

(r,u)∃(v,r,u)∈Gt

W(l)
q φ

(←−
h (l)

u ,←−o (l)
r

))
, (4)

where
←−
h

(l)
u ,←−o (l)

r denotes features in l-th layer for node u and

event type r, respectively. W
(l)
q is the weight parameter for

aggregating node and edge features in the l-th layer. φ is a
non-parametric composition operator (e.g. multiplication).
f(·) is the activation function. We update the event type
(edge) embedding vector by:

←−o (l+1)
r =W

(l)
edge

←−o (l)
r , (5)

where Wedge is a learnable transformation matrix which
projects the edges to the same embedding space as nodes. At

the first layer,
←−
h

(0)
u = hu,←−o (0)

r = or are the learnable em-
beddings of entity u and event type r. After the aggregation,
we obtain the relational embedding matrices of all entities←−
Ht ∈ R|Et|×d and event types

←−
Ot ∈ R|Rt|×d in Gt at time t.

Et ⊆ E is a set of entities that only appear in Gt and likewise
for Rt ⊆ R.

Semantic Embedding (Word Graph). In word graphs, edges
represent the semantic relevance of two connected words.
The edge weight computed from PMI is based on the co-
occurrence frequency of these two words. At each time t,
each word in the word graph Dt learns its semantic features
through all its undirected neighbors. For a single word ω in
Dt, we apply a multi-layer GCN model [? ] to update its
embedding vector:

h
(l+1)
ω = f

( ∑

(ω,ϕ)∈Dt

W(l)
g h

(l)
ϕ

)
, (6)

where h
(0)
ϕ = bϕ is the word2vec vector of ϕ at the first layer.

W
(l)
g is the weight matrix. Semantic embedding matrix

Ht ∈ R|Vt|×d of all words in Dt is obtained at time t.

Context-aware Embedding Fusion After graph aggre-
gation, entities and event types are encoded with relational
structure information. Yet, entities, event types, and words
are usually closely related. For instance, in the introduction
example, (Citizen, fight with light weapons, Police, 01/01/10)
with description “ People in the car ignored the order to stop
and opened fire at the policemen.”. The embedding of the

Figure 2: An overview of the proposed model. CompGCN aggregates the entity and event type embedding in event graphs at
each timestamp based on Eq. 4. GCN learns the semantic embedding in each temporal word graph using Eq. 6. Embedding
fusion is applied to entities and event types with related words in the word graphs according to Eq. 7-8. The recurrent encoder
models temporal information for final predictions. In the multi-event forecasting task, we model the global (graph-level)
temporal information for predicting the candidate event types. For the multi-actor prediction task, we model the individual-
level temporal feature of entities and the given event type.

words (Dt−m:t−1) at previousm steps:

P
(
yt
��Gt−m:t−1,Dt−m:t−1

)
= σ

(
Wγ gt−1

)
∈ R |R |, (3)

where gt−1 ∈ Rd is the global latent embedding at timestamp
t − 1. We compute the probabilities of different event types by
passing the latent embedding into a linear layer parameterized
by Wγ ∈ R

|R |×d followed by an element-wise sigmoid function
for our final prediction. To obtain the latent embedding gt−1, we
propose three modules, the graph aggregation, the context-aware
embedding fusion, and the recurrent encoder, to fully integrate the
features from the historical temporal graphs. Next, we introduce
these modules in detail.

Graph Aggregation To learn the representations of temporal
event graphs and word graphs, we employ graph neural networks
(GNN), which captures the dependency of features via message
passing among adjacent nodes in a graph. Given the heterogeneous
graph structure of our data, we propose to learn relational embed-
dings and semantic embeddings, respectively.

Relational Embedding (Event Graph). In event graphs, the edge
between a pair of nodes is directed and labeled as the event type be-
tween these two nodes, e.g., “A criticizes B”. Relational embedding
encodes the hidden influence or actions from the historical events.

For each time t , we learn the relational embeddings of both
entities and event types by capturing directed influence flows in
Gt . The features of both entities and event types are learned by
a multi-layer graph convolution network. At layer (l + 1), for a
single node v , the embedding vector is learned by the CompGCN
model [33], which updates the node embedding as well as the edge
embedding from relational data:

←−
h (l+1)v = f

( ∑
(r ,u)∃(v ,r ,u)∈Gt

W(l )q ϕ
(←−
h (l )u ,
←−o (l )r

) )
, (4)

where
←−
h (l )u ,
←−o (l )r denotes features in l-th layer for node u and event

type r , respectively.W(l )q is the weight parameter for aggregating

node and edge features in the l-th layer. ϕ is a non-parametric
composition operator (e.g. multiplication). f (·) is the activation
function. We update the event type (edge) embedding vector by:

←−o (l+1)r =W(l )edge
←−o (l )r , (5)

whereWedge is a learnable transformation matrix which projects
the edges to the same embedding space as nodes. At the first layer,
←−
h (0)u = hu ,←−o

(0)
r = or are the learnable embeddings of entity u

and event type r . After the aggregation, we obtain the relational
embedding matrices of all entities

←−
Ht ∈ R

|Et |×d and event types
←−
Ot ∈ R

|Rt |×d in Gt at time t . Et ⊆ E is a set of entities that only
appear in Gt and likewise for Rt ⊆ R.

Semantic Embedding (Word Graph). In word graphs, edges rep-
resent the semantic relevance of two connected words. The edge
weight computed from PMI is based on the co-occurrence frequency
of these two words. At each time t , each word in the word graph
Dt learns its semantic features through all its undirected neighbors.
For a single word ω in Dt , we apply a multi-layer GCN model [16]
to update its embedding vector:

h
(l+1)
ω = f

( ∑
(ω ,φ)∈Dt

W(l )д h
(l )
φ

)
, (6)

where h
(0)
φ = bφ is the word2vec vector of φ at the first layer. W(l )д

is the weight matrix. Semantic embedding matrix Ht ∈ R
|Vt |×d of

all words in Dt is obtained at time t .
Context-aware Embedding Fusion After graph aggregation,

entities and event types are encoded with relational structure in-
formation. Yet, entities, event types, and words are usually closely
related. For instance, in the introduction example, (Citizen, Criti-
cizes, Government, 02/26/15) with description “A Politician attacked
the state government on various fronts such as fertilizer crunch and
land acquisition act.”. The embedding of the entity Government after
aggregation only involves the relational information, e.g., involved



subjects and event types. While the word Government in the text
incorporates detailed background information of the event such
as fertilizer crunch and land acquisition act. Further integration of
this information can greatly enhance the context of events (includ-
ing entities, event types, and useful details) for downstream tasks.
We introduce a novel context-aware embedding fusion module to
enhance the information of entities and event types from words.

For each entity or event type, we identify the related words in
temporal word graphs. For instance, the entity member of the ju-
diciary (india) with related words {india, member, judiciary} and
the event type Arrest, detain, or charge with legal action with words
{arrest, detain, charge, legal, action}. A simple and straightforward
method is to combine the embedding of all related words by concate-
nation or linear transformation. Treating all words equally often
results in noise. In the above example, india and judiciary contribute
more semantic meanings to the entity phrase, and we usually care
more about the context of these words. To evaluate the importance
of related words, we propose a context-aware attention method to
implicitly integrate more useful words.

Formally, given an entity i (query), we compute the attention
score for each related word (context) ω ∈ Wi , whereWi is the set
of words in Dt−m;t−1 that are semantically related to i:

αt ,(i ,ω) =

exp
(
Attn

(←−
h t ,(i), hω

))
exp

( ∑
φ ∈Wi Attn

(←−
h t ,(i), hφ

)) ∈ R, (7)

where Attn(·) denotes the attention mechanism (e.g., general atten-
tion [18]).

←−
h t ,(i) is the relational embedding of entity i in Gt , and

hω represents the semantic embedding of word ω inDt−m:t−1 that
related to entity i . The attention scores are used to compute a linear
combination of the semantic embeddings. We then concatenate the
relational embedding of the entity with the context-aware seman-
tic features, and obtain the fusion feature of the entity through a
non-linear transformation:

h♠t ,(i) = tanh
(
W⊺α ·

[←−
h t ,(i)︸︷︷︸
rel.

;
∑
ω ∈Wi

αt ,(i ,ω)hω︸      ︷︷      ︸
semantic

] )
∈ Rd , (8)

where Wα ∈ R
2d×d is a weight matrix, and ; is concatenation. If a

candidate word appears in multiple word graphs, we consider its
semantic embedding in the latest graph, which involves the latest
context. For instance, if the word worker appeared in both Dt−2
and Dt−1, we use the semantic embedding of the word in Dt−1.
If there are no related words for an entity, we use zero vectors
for semantic information. For event type i , we replace

←−
h t ,(i) with

←−o t ,(i) in Eq. 7-8 to get its fused embedding o♠t ,(i).

Recurrent Encoder Given a sequence of fused embeddings
of entities and event types, as well as the word embeddings, i.e.,
{H♠t−m:t−1,O

♠
t−m:t−1,Ht−m:t−1}, we employ a recurrent neural net-

work to model temporal information. To reduce the spatial size of
the feature representation and obtain salient features, we apply a
max pooling layer over the embedding of the entities, event types,
and words, respectively. A recurrent neural network is then applied
to update the global temporal embedding recurrently, to obtain the

final latent embedding gt :

gt = RNN1
( [
p
(
H♠t−1

)
; p

(
O♠t−1

)
; p

(
Ht−1

) ]
, gt−1

)
∈ Rd . (9)

where p(·) indicates the max pooling operation applied element-
wise over all nodes or edges. The latent embedding gt is then
utilized in the final prediction in Eq. 3.

4.2 Multi-Actor Forecasting
We introduce a novel method to infer actors from both temporal
historical data and the inherent correlation between entities and
event types. Here, the context is constrained given that we only
focus on entity interactions for a given event type. We first intro-
duce a graph sampling method for a given event type and then our
method for predicting multiple actors that may involve in an event.

Graph SamplingWe sample subgraphs from global temporal
event graphs using edge sampling. Formally, given an event graph
Gt at time t , we first sample the quadrupleswhere the event type is r ,
notated as SETr = {(s, r ,o)i |ri = r ∩(s, r ,o)i ∈ Gt }. We then obtain
the subject set SETs = {s |s ∈ SETr } to find the neighboring edges.
The first level neighboring edge set is SETnbrr = {(s, r ,o)|o ∈ SETs }.
The total sampled edge set is SETr ∪ SETnbrr . We can continue to
find incoming edges from the subject set to sample higher-level
neighboring edges. At time t , the event subgraph of r can be repre-
sented as Grt . Accordingly, for word graphs, we consider only the
text summaries of the events/edges sampled in the event subgraph.
The temporal word subgraph of r at time t is denoted as Dr

t . The
sampled graph provides a restricted context, focusing on one event
type r , which ensures that most of the noise is eliminated.

Based on a predicted event type yt = r in multi-event predic-
tion along with the sampled subgraphs, we model the multi-actor
forecasting problem P

(
at
��yt = r ) in the following way:

P
(
at
��yt ,Gytt−m:t−1,D

yt
t−m:t−1

)
= σ

(
z̃ + z

)
∈ R |E |, (10)

where z̃ is the temporal inference, which encodes temporal his-
torical features for each actor. z is the intrinsic inference over the
inherent correlation between entities and the given event type.
We first introduce the intrinsic inference and then the temporal
inference. We use r to represent yt = r for simplicity.

Intrinsic InferenceWe model the inherent correlation for enti-
ties and each given event type in a modified way as in RESCAL [23].
RESCAL is a method that uses a tensor factorization model to learn
the inherent structure of relational data. Given an event, a shared
bilinear layer for all entities is applied:

z = H ·Wβ · or ∈ R
|E |, (11)

where or ∈ Rd is the learnable embedding vector specified for
event type r . H ∈ R |E |×d is the embedding matrix for all entities
in the predefined entity set E, where each row (hu ) represents
the embedding of an entity (u). Wβ ∈ R

d×d is the weight matrix.
The intrinsic inference module especially helps when there is no
historical data for some entities.

Temporal Inference Actors change over time and event types
are the glue that connects different entities. We model latent em-
beddings from these subgraphs in a similar way to the multi-event
prediction problem. As the historical information of each entity



affects its future occurrence, we model the features individually for
the nodes and edges. We compute the fused embedding matrix of
entities in Grt , i.e., H

♠
t ∈ R

|Ert |×d , and the fused embedding vector
of event type r , i.e., o♠t ,(r ) ∈ R

d according to Eq. 7-8. Ert ⊆ E is the
entity set in Grt .

Then recurrent neural networks take the fused embedding as
input and learn the hidden temporal features as:

h̃t ,(i) = RNN2 (h♠t ,(i), h̃t−1,(i)) ∈ Rd , (12)

õt ,(r ) = RNN3 (o♠t ,(r ), õt−1,(r )) ∈ Rd . (13)

We model the latent embedding for each entity i using a shared
RNN2, and use H̃t to denote the entity latent embedding matrix
at time t for all entities. For a given event type r at time t , the
latent embedding learned from an RNN is denoted as õt ,(r ). We
then model the temporal features at time t by using the latent
embedding of the event type r and all entities at time t − 1:

z̃ = H̃t−1 · W̃β · õt−1,(r ) ∈ R
|E |, (14)

where W̃β ∈ R
d×d is a learnable weight matrix. Both intrinsic

embedding z and temporal embedding z̃ are then integrated in the
final prediction as shown in Eq. 10.

4.3 Learning and Inference
In our multi-label learning problems, we define an instance spaceX
and label space Y = {ei }L . ei is a decimal in [0,1.0] and

∑L
i ei = 1.

Instead of using binary values, we consider the true label set as
a distribution, which is calculated by the frequency of each label.
L ∈ N+ represents the total number of labels. Given an instance
x ∈ X with label vector y ∈ Y, we interpret yi > 0 to mean that
the label i is “relevant” to the instance x . In our problems, L is the
size of relations |R | or entities |E | in problem 1 and 2, respectively.

It is challenging to predict the most relevant labels for a given
input when the size of the output space is relatively large [27]. Espe-
cially, in the multi-actor forecasting task, the relevant label/entity
sets are very small compared to the size of entity set, e.g., 4 out of
7k labels. In problem 1, we aim to detect as many labels as possible.
Instead, for problem 2, where the true labels have high sparsity, our
goal is to find a ranking over labels given an instance. We adopt
the categorical cross-entropy loss [19, 21] which is defined as:

−
1
L

∑
i ∈L

yi log
( exp(ŷi )∑

j ∈L exp(ŷj )

)
, (15)

where ŷi is the model prediction for label i before the nonlinear
function (σ ) as in Eq. 3 and 10.

At inference time, we utilized a sigmoid function over the class
score ŷi and a threshold of 0.5 to determine the occurrence of an
event in the multi-event prediction problem. The multi-actor fore-
casting problem is formulated similar to ranking problems. We aim
to find a ranking over the entity labels, where a higher ranking
indicates that the label has a higher probability of occurrence. For-
mally, given the event type, we compute the rank of each candidate
entity, that is, the rank of class score ŷi among {ŷi }L .

Table 2: Dataset Statistics. |c | is the average number of words
in event summaries. #s(o)/r denotes the average number of
subject (object) that interacted with one event type per day.

dataset |E | |R | |V | #events |c | #s/r #o/r

India 6,298 234 23,373 479,649 19 7.0 7.9
Russia 7,798 237 16,299 373,364 22 4.7 4.7
Nigeria 3,896 221 13,933 237,096 21 4.0 3.7
Afghanistan 3,756 218 10,468 279,859 19 4.0 4.0
Iran 7,347 229 13,008 328,266 22 4.4 4.1

4.4 Interpretability
Providing explanations for prediction results is helpful for human
analysts and decision makers. Here, we introduce the interpretabil-
ities of our approach from the perspectives of both event graphs
and semantic information.

Important historical events. In multi-event prediction, we apply
max pooling over entities, event types, and words respectively
to extract salient features at each history timestamp. For instance,
element-wise max pooling selects features in each dimension across
all entities. We select entities that partially retain their features af-
ter maximum pooling. In our temporal event graphs, each event
type/edge is encoded with an event ID which allows us to track the
unique and complete event quadruple (s, r ,o, t). We then take ad-
vantage of max pooling to select important entity, words, and event
quadruples (by event type) at each history step. The importance
scores are obtained based on the ratio of the dimensions whose
features are selected through max pooling.

Important semantic contexts. In the context-aware embedding
fusion module, we use Eq. 7 to model the attention score of a
related word for a given entity/event type. The attention score
can be further employed to quantify the importance of words in
contributing the entity/event type embedding for prediction.

5 EXPERIMENT SETUP
5.1 Datasets
The experimental evaluation was conducted on event datasets
of five countries from Integrated Conflict Early Warning System
(ICEWS) [4]. It contains political events designed to assess national
and international crisis events. These events are coded using 20
main categories and their subcategories. Each event is encoded
with geolocation, time (day, month, year), category, entity (subject,
object) and its associated text, etc. In this paper, we focus on all
categories of events and select country-level datasets from five
countries, India, Russia, Nigeria, Afghanistan and Iran. The
main event types include make public statement, appeal, express
intent to cooperate, protest, etc. All data range from Jan. 1, 2010 to
Feb. 22, 2016. Due to the lack of data from Feb. 22, 2012, to Jan. 1,
2013, we have a total of 1931 days of data. The time granularity is
one day. Data statistics are shown in Table 2.

5.2 Evaluation Metrics
To evaluate our method quantitatively, we use the followingmetrics:
• Fβ is the weighted harmonic mean of precision and recall, reach-
ing its optimal value at 1 and its worst value at 0. β > 0 is the



Table 3: Prediction results of the proposed method vs. baselines for the multi-event forecasting task over all datasets (%).

Method India Russia Nigeria Afghanistan Iran

F1 F2 Recall F1 F2 Recall F1 F2 Recall F1 F2 Recall F1 F2 Recall

DNN 52.49 54.65 56.38 53.81 58.44 62.61 53.54 60.64 67.70 55.77 61.80 68.14 57.54 61.85 66.19
MLkNN 52.33 54.27 55.77 51.38 55.29 58.62 26.92 28.10 28.97 45.43 48.10 50.35 53.86 56.68 59.01
BRkNN 50.36 53.05 56.00 47.46 51.53 56.64 42.48 47.28 52.45 49.89 54.98 61.52 48.56 52.24 56.77
MLARAM 33.68 33.93 34.10 25.67 26.27 26.71 41.78 45.56 48.80 33.84 34.66 35.26 27.46 27.71 27.88
DynGCN 41.80 42.57 43.19 52.81 56.77 60.14 46.27 54.65 54.65 50.05 53.97 57.75 54.22 56.93 59.21
T-GCN 60.73 64.14 67.20 56.36 61.86 67.66 56.06 63.88 72.19 60.04 67.82 76.93 61.65 67.35 73.77
RENET1 55.10 57.26 58.99 54.47 58.98 63.02 53.47 60.07 66.54 55.07 60.60 66.32 58.89 63.41 68.09
RENET2 58.44 61.46 64.18 55.85 60.86 65.66 56.44 64.37 72.82 60.58 68.47 77.75 61.66 67.24 73.52
Glean−fusion 65.91 70.87 75.80 58.92 65.60 73.47 58.13 66.95 77.07 62.28 71.14 82.36 63.84 70.78 79.60
Glean 66.69 71.95 77.31 58.92 65.64 73.57 58.76 68.13 79.49 62.48 71.43 82.84 64.12 71.25 80.46

% relative gain 9.8% 10.9% 15.0% 4.5% 6.1% 8.7% 4.8% 5.8% 10.1% 3.1% 4.3% 6.5% 4.0% 5.8% 9.1%

balancing factor for precision and recall. Higher β value means
higher weight of recall in the F score. β is set to 1 and 2.
• Recall evaluates the ability of a model finding all relevant cases.
• Hits@k is the percentage of ranks lower than or equal to k : the
higher, the better. It is often used in the evaluation of information
retrieval tasks [3, 28]. k is set to 1, 3, and 10 in our experiments.

We consider the weighted averaging of Fβ and Recall in multi-
event forecasting. Hits@k is adopted in multi-actor forecasting.

5.3 Comparative Methods
We compare our method with several state-of-the-art baselines.

• DNN: A simple deep neural network consisting of three dense
layers using the same loss as Eq. 15.
• MLkNN [37]: A multi-label lazy learning approach, which is de-
rived from the traditional k-Nearest Neighbor (kNN) algorithm.
• BRkNN [30]: A binary relevance multi-label classifier based on
k-Nearest Neighbors method.
• MLARAM [1]: A scalable extension to the fuzzy Adaptive Resonance
Associative Map neural network.
• DynGCN [8]: A dynamic graph model with a temporal encoded
feature module for binary event forecasting.
• T-GCN [38]: A spatiotemporal graph network that combines GCN
and GRU for traffic prediction.
• RENET [14]: A neural architecture for modeling complex event
sequences, which consists of a recurrent event encoder and a
neighborhood aggregator.
• tRGCN [28]: A variant of RGCN for node classification, which
models node-level temporal features after graph convolution of
each historical step. GRU is applied to model temporal features.
• tCompGCN [33]: CompGCN is a graph convolutional framework
which jointly embeds both nodes and relations in a graph. We
adapt this model for temporal event graphs similar to tRGCN.

The first four models use basic count features, the next two (DynGCN,
T-GCN) useword graphs, and the last three (RENET, tRGCN, tCompGCN)
use event graphs. All methods except tRGCN and tCompGCN, are
compared in multi-event forecasting. In actor prediction, we com-
pare our method with DNN and baselines that use event graphs.
Benchmarks that use count features are ignored given their poor
performance. Methods using word graphs irrespective of the re-
lational information are also ignored as actor modeling relies on

relational data. To evaluate the importance of different compo-
nents of our method, we varied our base model in different ways:
Glean−fusion removes the embedding fusion step, and Glean−temp
eliminates temporal inference in the multi-actor forecasting task.
Hyperparameter setup is introduced in the supplemental material.

6 EXPERIMENTAL RESULTS
Our evaluation includes a detailed comparison of our proposed
method with baselines described in Section 5.3 for multi-event and
multi-actor forecasting tasks.We examine the sensitivity of different
hyper-parameters (in Supplementary Material), and provide a case
study to demonstrate the discovered historical event-actor graphs
as interpretations for predicted events.

6.1 Results of Multi-Event Forecasting
Table 3 presents comparison results of the multi-event forecasting
tasks. Ourmethod outperforms baselines across all datasets in terms
of F-score and recall. We provide the relative performance gain of
our method to the best baseline model. The improvement on the In-
dian dataset is the most significant. Models using the count feature
(history event count) have the worst performance, showing that
simple historical features are less effective effective in multi-event
prediction. For models using word graphs, DynGCN performs poorly
on all datasets, which indicates that the method fails on multi-label
classification tasks. T-GCN utilizes word graphs and produces better
performance than previous baselines, which indicates that the se-
mantic information of word graphs can be helpful for multi-event
prediction. For models that using event graphs, RENET1 directly
predicts the events, while RENET2 follows the logic in the original
paper by first predicting the subject and then events. RENETmodels
achieve good performance in all datasets, which shows that the use
of relational information in event graphs can improve prediction
performance. Comparing variants of our method, we observe that
the removal of the embedding fusion step results in performance
degradation in four out of five datasets. The results suggest that
embedding fusion plays a key role in performance enhancement.

6.2 Results of Multi-Actor Forecasting
In multi-actor forecasting, we aim to predict potential actors related
to a given event. As shown in Table 4, our method and its vari-
ants achieve better overall performance than the baselines across



Table 4: Performance results of the proposed method vs. baselines for the multi-actor forecasting task over all datasets (%).

Method India Russia Nigeria Afghanistan Iran

H @ 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10

DNN 2.09 11.01 33.87 1.46 9.72 36.40 5.10 17.06 43.35 8.55 17.42 35.32 10.71 19.48 26.50
RENET3 8.87 21.57 39.85 16.52 22.31 40.21 4.02 11.53 26.95 7.28 18.65 37.44 12.81 18.36 37.44
tRGCN 9.74 22.74 41.04 18.83 30.79 44.62 6.73 15.17 31.69 9.58 24.14 49.17 12.93 22.26 34.98
tCompGCN 9.62 21.91 40.53 18.27 30.20 44.79 6.50 14.95 31.06 9.64 23.67 49.04 12.79 21.43 34.88
Glean−temp 13.39 24.50 43.68 18.24 31.15 43.27 6.16 14.41 26.98 9.21 22.27 47.03 11.01 17.96 29.87
Glean−fusion 13.95 27.03 45.73 20.25 34.64 48.10 7.63 18.06 35.84 12.28 29.82 56.89 14.27 24.41 39.74
Glean 14.01 27.17 45.73 20.49 34.36 48.10 7.66 18.03 35.85 12.29 30.04 56.74 14.31 24.27 39.75

% relative gain 4.6% 10.9% 4.7% 8.8% 11.2% 7.4% 13.8% 5.9% - 27.5% 24.4% 15.7% 10.7% 9.7% 6.2%

Citizen Police

Ministry Activist

Police

Activist

Citizen

Business

Accuse 

Re
je

ct
 

10/13/15 

10
/0

9/
15

 

10
/7

/1
5

Criticize or denounce 

Arrest, detain, or charge with legal

Express intent to negotiate 

Consult 

Use tactics of violent  
repression

Protest violently

10/14/15

10
/1

2/
15

10/12/15

10/09/15

10/10/15

10/12/15

Pr
ot

es
t v

iol
en

tly

10/11/15

Use
 ta

cti
cs

 of
 


vio
len

t r
ep

res
sio

n 

Protest violently

A number of media persons 
were injured in the lathicharge 
here when seers and activists 
of VHP clashed with the police.

Subgraphs

Event type

Employee
Protester

Protest violently, riot 10/14/15

Activist
Citizen

…

0.0917 0.0077
0.0828 0.0075
0.0705 0.0069
0.0243 0.0041

Intrinsic  Temporal

Children0.0004 0.0011
… …

Entity ranking

0.01

0.08

0.03

0.03

0.01

0.02 0.04
0.03

0.01

Figure 3: An example of predicted multiple events with ac-
tors in India. The blue part is from the sampled subgraph.
Red is the predicted result.

all datasets. DNN uses historical counts of entities, which did not
achieve good performance in all datasets except Nigeria(H@10). For
baseline models, RENET3 models the global information (pooling
is applied) for predicting actors, which also considers relational
embedding. tRGCN and tCompGCN utilize relational information and
both involve node-level temporal information for predicting the
actors. These models that consider only relational features perform
worse than our approach. It proves the importance of considering
enriched relational features and better design of feature learning.
For the ablation study of our method, we can observe that the
removal of temporal inference degrades model performance, indi-
cating that historical data is beneficial for predicting actors. The
model that removes the embedding fusion achieves comparable per-
formance. One possible reason is that after graph sampling, word
subgraphs may not contain enough semantic information, making
the fused embedding unhelpful. It also demonstrates the importance
of relational information in predicting event participants.

6.3 Case Study
In this section, we showcase the interpretability of our method
based on multi-event and multi-actor prediction tasks.

Identifying important historical events. We select a test instance
from the India dataset. In this example, we successfully predicted
multiple events on Oct. 14, 2015 using the temporal event and word
graphs from one past week. Given one predicted event type and
sampled subgraphs, we then predicted the subjects that may be
involved in this event. In Figure 3, the event graph on the left is the

vladimir

putin

press

negoti

express
intent

russia

member

parliament

Member of Parliament (Russia)

Vladimir Putin

Express intent to meet or negotiate

conflict

Engage in diplomatic cooperation

Make an appeal or request

Use unconventional violence

Criticize or denounce

Express intent to meet or negotiate

Basic Sankey Diagram

word entity event type multi-event prediction

0.24

0.33

0.40

0.20

0.49

0.12
0.19

0.47

0.53

Figure 4: An example of feature flows in the multi-event
forecasting task.

extracted important historical events (quadruples) with importance
scores based on Section 4.4. We can observe Activist and Police
had clashes on Oct. 7 and 9. Then on Oct. 11, a group of Citizens
got involved in an event of Arrest, detain, or charge with legal by
Police with a relatively high weight of 0.08. On Oct. 12, there are
events suggesting connections between Citizen and Activist. The
ongoing conflict among Activist, Citizen and Police is observed. In
the prediction, our model correctly predicted Protest violently and
Used tactics of violent repression on the top right. The extracted
history event graph provides strong evidence for the prediction.

For multi-actor prediction, the approach predicted the poten-
tial subjects that may be involved in the event, and the sampled
subgraphs are served as the input feature. We show the actor pre-
diction results on the bottom right, including the intrinsic and
temporal scores and the entity ranking. The top four entities are
all involved in the event. We can observe that Activist, Citizen, and
event type Protest violently form two correct subject actor predic-
tions, as shown by the dotted line in the upper right. The intrinsic
and temporal scores are obtained by normalizing z and z̃ respec-
tively using softmax. Note that Activist and Citizen achieve high
intrinsic scores in this instance. This is reasonable since they par-
ticipated in previous events. The temporal scores of the correctly
predicted entities achieve relatively high scores, which is mainly
based on historical events. An entity Children shows very low in-
trinsic and temporal scores since it is unrelated to the event.



Identify Semantic Contexts and Feature Flows. For a given entity
or relation, we selectively fuse the embeddings of related words
in the corresponding temporal word graph. The word embedding
involves the context information after the graph aggregation. At-
tention scores are then calculated for each related word to select
important features. Based on a test instance from the Russia dataset,
we provide a feature flow diagram in Figure 4 to show how the em-
bedding fusion works. For the entityMember of Parliament (Russia),
we obtain the highest score 0.4 from parliament, and for relation
Express intent to meet or negotiate, word negoti(ate) has the highest
attention. For those words whose features have not yet been fused,
e.g., conflict, they also serve as an additional semantic indicator
for event prediction. Note that the words are stemmed and related
words are defined by whether they are included in the entity.

7 CONCLUSION AND FUTUREWORK
Predicting concurrent events of different types and inferring in-
volved actors are important tasks for decision-makers and policy an-
alysts. We present a novel dynamic knowledge graph based model
with context-aware embedding fusion to handle heterogeneous
graph data. We demonstrated the effective prediction performance
as well as the interpretability of the proposed model on large-scale
and real-world datasets. Future work will consider modeling unseen
and rare event types or entities and dynamically expanding actor
and event type sets when new data arrives. Another important di-
rection is to model the hidden relationship between event subjects
and objects to infer a complete fact.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers and
NVIDIA Corporation with the donation of the Titan V GPU. This
work is supported in part by the US National Science Foundation
under grant IIS-1948432. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] Fernando Benites and Elena Sapozhnikova. 2015. Haram: a hierarchical aram

neural network for large-scale text classification. In ICDMW. IEEE, 847–854.
[2] Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011. Twitter mood predicts the

stock market. Journal of computational science 2, 1 (2011), 1–8.
[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In NIPS. 2787–2795.

[4] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James
Starz, and Michael Ward. 2015. ICEWS Coded Event Data.

[5] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In EMNLP. Association for Computational Linguistics, 1724–1734.

[6] KennethWard Church and Patrick Hanks. 1990. Word Association Norms, Mutual
Information, and Lexicography. Comput. Linguist. 16, 1 (March 1990), 22–29.

[7] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. 2018. Hyte:
Hyperplane-based temporally aware knowledge graph embedding. In EMNLP.
2001–2011.

[8] Songgaojun Deng, Huzefa Rangwala, and Yue Ning. 2019. Learning Dynamic
Context Graphs for Predicting Social Events. In KDD. ACM, 1007–1016.

[9] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2d knowledge graph embeddings. In AAAI.

[10] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein Interface
Prediction Using Graph Convolutional Networks. In NIPS (NIPS’17). Curran
Associates Inc., Red Hook, NY, USA, 6533–6542.

[11] Yuyang Gao, Liang Zhao, Lingfei Wu, Yanfang Ye, Hui Xiong, and Chaowei Yang.
2019. Incomplete Label Multi-Task Deep Learning for Spatio-Temporal Event
Subtype Forecasting. In AAAI, Vol. 33. 3638–3646.

[12] Alberto García-Durán, Sebastijan Dumančić, and Mathias Niepert. 2018. Learning
sequence encoders for temporal knowledge graph completion. arXiv preprint
arXiv:1809.03202 (2018).

[13] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In AISTATS. 249–256.

[14] Woojeong Jin, Changlin Zhang, Pedro Szekely, and Xiang Ren. 2019. Recurrent
event network for reasoning over temporal knowledge graphs. arXiv preprint
arXiv:1904.05530 (2019).

[15] D Kinga and J Ba Adam. 2015. A method for stochastic optimization. In ICLR,
Vol. 5.

[16] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[17] Julien Leblay and Melisachew Wudage Chekol. 2018. Deriving validity time
in knowledge graph. In WWW. International World Wide Web Conferences
Steering Committee, 1771–1776.

[18] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[19] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar
Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. 2018. Explor-
ing the limits of weakly supervised pretraining. In ECCV. 181–196.

[20] Diego Marcheggiani and Ivan Titov. 2017. Encoding Sentences with Graph
Convolutional Networks for Semantic Role Labeling. In EMNLP. Association for
Computational Linguistics, 1506–1515.

[21] Aditya K Menon, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. 2019.
Multilabel reductions: what is my loss optimising?. In NIPS. 10599–10610.

[22] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In ICML. 807–814.

[23] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way
model for collective learning on multi-relational data.. In ICML, Vol. 11. 809–816.

[24] Yue Ning, Sathappan Muthiah, Huzefa Rangwala, and Naren Ramakrishnan. 2016.
Modeling precursors for event forecasting via nested multi-instance learning. In
KDD. ACM, 1095–1104.

[25] Yue Ning, Rongrong Tao, Chandan K Reddy, Huzefa Rangwala, James C Starz,
and Naren Ramakrishnan. 2018. STAPLE: Spatio-Temporal Precursor Learning
for Event Forecasting. In SIAM. SIAM, 99–107.

[26] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang.
2018. DeepInf: Modeling influence locality in large social networks. In KDD.

[27] Sashank J Reddi, Satyen Kale, Felix Yu, Dan Holtmann-Rice, Jiecao Chen, and
Sanjiv Kumar. 2018. Stochastic negative mining for learning with large output
spaces. arXiv preprint arXiv:1810.07076 (2018).

[28] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In ESWC. Springer, 593–607.

[29] Alessio Signorini, Alberto Maria Segre, and Philip M Polgreen. 2011. The use of
Twitter to track levels of disease activity and public concern in the US during
the influenza A H1N1 pandemic. PloS one 6, 5 (2011), e19467.

[30] Eleftherios Spyromitros, Grigorios Tsoumakas, and Ioannis Vlahavas. 2008. An
empirical study of lazy multilabel classification algorithms. In Hellenic conference
on artificial intelligence. Springer, 401–406.

[31] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-evolve:
Deep temporal reasoning for dynamic knowledge graphs. In ICML. JMLR. org,
3462–3471.

[32] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In ICML. 2071–
2080.

[33] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2019.
Composition-basedmulti-relational graph convolutional networks. arXiv preprint
arXiv:1911.03082 (2019).

[34] Xiaofeng Wang, Matthew S Gerber, and Donald E Brown. 2012. Automatic crime
prediction using events extracted from twitter posts. In International conference on
social computing, behavioral-cultural modeling, and prediction. Springer, 231–238.

[35] Jianshu Weng and Bu-Sung Lee. 2011. Event detection in twitter. ICWSM 11
(2011), 401–408.

[36] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

[37] Min-Ling Zhang and Zhi-Hua Zhou. 2007. ML-KNN: A lazy learning approach
to multi-label learning. Pattern recognition 40, 7 (2007), 2038–2048.

[38] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2019. T-gcn: A temporal graph convolutional network for traffic
prediction. IEEE Transactions on Intelligent Transportation Systems (2019).

[39] Liang Zhao, Qian Sun, Jieping Ye, Feng Chen, Chang-Tien Lu, and Naren Ramakr-
ishnan. 2015. Multi-task learning for spatio-temporal event forecasting. In KDD.
ACM, 1503–1512.



Supplemental Material
A PSEUDOCODE
We present the training steps of the proposed models in the Algo-
rithms 1 and 2.

Algorithm 1: Multi-event forecasting algorithm
Input: Temporal event graphs {G1, ...,GT }, temporal word

graphs {D1, ...,DT }, pre-trained word embeddings,
initial model parameters Θ.

Output: A trained multi-event classifier
f : (Gt−m:t−1;Dt−m:t−1) → P(ŷt )

1 while stopping criterion not met do
2 Sample a minibatch of k examples
3 for τ ← t −m to t − 1 do
4

←−
Hτ ,
←−
Oτ ← aggregate event graph Gτ

5 Hτ ← aggregate word graph Dτ
6 {H♠t−m:t−1,O

♠
t−m:t−1} ← apply embedding fusion

7 gt−1 ← apply recurrent encoder
8 Compute P(ŷt ) based on Eq. 3
9 Compute loss based on Eq. 15 and update Θ

Algorithm 2: Multi-actor forecasting algorithm
Input: Temporal event subgraphs {Gr1 , ...,G

r
T }, temporal

word subgraphs {Dr
1 , ...,D

r
T }, pre-trained word

embeddings, initial model parameters Θ.
Output: A trained multi-event classifier

f : (Grt−m:t−1;D
r
t−m:t−1) → P(ât |r )

1 while stopping criterion not met do
2 Sample a minibatch of k examples
3 z← compute intrinsic inference
4 z̃← compute temporal inference
5 Compute P(ât |r ) based on Eq. 10
6 Compute loss based on Eq. 15 and update Θ

B PARAMETER SETTING
We pre-train a 100-dimensional word2vec embedding for each word
in the vocabulary using all text data in each country. We split the
data into training, validation, and test sets in chronological order
at a ratio of 80%-10%-10% for each dataset. We preprocess text data
and keep only the stemmed words for constructing the word graph.

For hyper-parameter setting, the history step (day)m is set to
7. The feature dimension d is 100. The composition operator ϕ in
Eq. 4 is the element-wise multiplication. The activation function f
in Eq. 4 and 6 is ReLU [22]. General attention is used in the context-
aware embedding fusion module. For temporal event subgraphs,
we sample the first-level neighboring edges for the given event
type. We employ 1-layer GRU [5] as our recurrent encoder, where
the size of hidden states is 100. For graph aggregators, we consider
two hidden layers in both CompGCN and GCN. Unlike the link

prediction task in knowledge graph, we ignore inversed edges and
only consider the original edges. In actor prediction, the subject and
object that interact with the event are considered as two samples,
which are trained with different parameters in the output layer.
Due to the huge amount of data, we randomly select 50 event
types and predict the participants of each event type per day. All
parameters, including the embedding of all entities and event types,
are initialized with Glorot initialization [13] and trained using the
Adam [15] optimizer with learning rate 1e-3, weight decay 1e-5, and
dropout rate 0.5. The batch size varies for each dataset due to the
different size of the input files. The best models are selected by early
stopping when the validation hamming loss does not decrease for
3 consecutive epochs. Hamming loss computes the fraction of the
wrong labels to the total number of labels. All experimental results
are the average of 5 randomized trials. All code is implemented
using Python 3.7.4 and Pytorch 1.0.1 with CUDA 9.2.

Experimental Settings for Baselines For model tRGCN and
tCompGCN, we use RGCN or CompGCN to aggregate relational
features of entities in the event graph at each timestamp. Then we
use a GRU to model node temporal features similar to Eq. 12. A
shared linear layer is applied to the final hidden state of each entity
for individual predictions. The loss function is the same as ours.

C RECURRENT ENCODER
We employ the RNN model as the recurrent encoder to model the
sequential information of the relational and semantic information
at each timestamp as in Eq. 9, 12 and 13. Specifically, we use Gated
Recurrent Units [5]. For Eq. 9, given a single layer GRU, the detailed
steps are defined as:

xt =
[
p
(
H♠t

)
; p

(
O♠t

)
; p

(
Ht

) ]
rt = σ (Wr · [gt−1; xt ])

zt = σ (Wz · [gt−1; xt ])

h̃t = tanh(W · [rt ⊙ gt−1; xt ])

gt = (1 − zt ) ⊙ gt−1 + zt ⊙ h̃t ,

where xt , gt are the input and latent embedding (GRU hidden state)
at time t . rt , zt , h̃t are the reset, update, and new gates, respectively.
σ (·) is the sigmoid function and ⊙ is the Hadamard product.

D EVALUATION METRICS
We now describe the evaluation metrics used for assessing the
quality of the models. We use weighted average metrics to evaluate
multi-event prediction tasks. The weighted precision, recall, and
Fβ are defined as follows:

Precision =
1
L

∑
i ∈L

wi ·
TPi

TPi + FPi
,

Recall =
1
L

∑
i ∈L

wi ·
TPi

TPi + FNi
,

Fβ =
1
L

∑
i ∈L

wi ·
(1 + β2) · Precisioni · Recalli
(β2 · Precisioni ) + Recalli

,

where wi =
ni
N is the sample weight for label i . ni is the number

of samples of label i among all samples N . TPi , FPi , FNi are true



positive rate, false positive rate, and false negative rate for label i ,
respectively. Precision is provided just to better explain Fβ .

For measuring the quality of the ranking in the multi-actor fore-
casting task, we employ the Hits@k metrics. Since we predict a
ranking for all candidate entities, the calculations defined is slightly
different than usual, as shown below:

Hits@k =
1∑

j ∈N |Tj |

∑
j ∈N

∑
q∈Tj

I [rankq ≤ k],

where Tj represents the true label set for sample j and |Tj | is the
number of true labels. I [C] is 1 iff the condition C is true, and 0
otherwise. rankq is the rank of q in predicting the subject or object
given the relation. We calculate the average metric of predicting
the subject and object in the multi-actor prediction.

E COMPUTATIONAL COMPLEXITY
Here we analyze the time complexity of the graph aggregation and
embedding fusion steps. Assume that the word graph and the event
graph have the same size of nodes and edges, and |V | and |E | are
the numbers of nodes and edges respectively. The temporal event
and word graphs are sparse, so the graph aggregation can work
efficiently by using batching and sparse matrix operation. Given
that we use a two-layer GCN and the filter dimension for both layers
is d , the time complexity of word graph aggregation is O(2m |E |d2)
where m is the length of history. Using a two-layer CompGCN,
event graph aggregation costsO(2m |E |d2 + 2m |E |d). The total time
complexity of the graph aggregation is O(m |E |d2). The embedding
fusion module fuses the entity/event type embedding and word
embedding of interest by the attention mechanism. Given the dot-
product attention, the matrix-vector multiplication for one entity is
the product of a 1×d vector multiplied by ad×nmatrix, resulting in
anO(nd) complexity where n is the maximum sequence length, that
is, the maximum number of related words for an entity/event type.
Then applying softmax and linear combination requires O(n + d).
Therefore, the attention for an entity takesO(nd). When computing
the fused embeddings of all entities and relationships, the time
complexity is O

(
(|V | + |E |)nd

)
. Both the graph aggregation and

embedding fusion can run efficiently through batching.

F SENSITIVITY ANALYSIS
In this section, we study the parameter sensitivity of the proposed
method. We report the performance changes of our method on the
Afghanistan dataset in the multi-event prediction task.

Embedding Dimension We investigate how the embedding
feature dimension affects model performance by changing the di-
mension d . Figure 5a shows that when the dimension is greater
than 100, the model can obtain better performance. This indicates
that including more features can improve prediction performance.
When d is larger (d = 150), the prediction results only have slight
increases.

Layers of Graph AggregatorsWe examine the number of lay-
ers in the graph aggregators, e.g., GCN for aggregating the word
graphs and CompGCN for aggregating the event graphs. The num-
ber of layers in the aggregator means the depth to which the

2030 50 70 100 150
Embedding dimension

50

60

70

80

90

M
et

ric
 v

al
ue

 (%
)

F1 F2 Recall

(a) Embedding dimension

F1 F2 Recall
# layers of graph aggregators

60

65

70

75

80

85

M
et

ric
 v

al
ue

 (%
)

1-layer GCN
1-layer COMPGCN
2-layers of both

(b) # layers of graph aggregators

1 2 3 5 7 10 14
Length of history

60

70

80

90

M
et

ric
 v

al
ue

 (%
)

F1 F2 Recall

(a) Length of history

F1 F2 Recall
Attention mechanism

60

65

70

75

80

85

M
et

ric
 v

al
ue

 (%
)

dot-product
additive
general

(b) Attention mechanism

Figure 6: Sensitivity analysis.

node reaches. Figure 5b shows the performances according to dif-
ferent numbers of layers of both GCN and CompGCN. We no-
ticed that using 2-layer GCN can improve performance, which
shows the effectiveness of aggregating semantic information. 1-
layer CompGCN has comparable performance compared to 2-layer
CompGCN, which illustrates the advantages of CompGCN in ag-
gregating relational information.

Length of History The recurrent encoder takes the sequence
of history data up tom steps. Figure 6a shows the performances
with varying lengths of histories. When the historical data length
is around 7, the model performance reaches the best. When the
length becomes longer, the performance decreases slightly, which
may due to the amount of historical information that the model
can handle is saturated. Note that when the length of the history is
relatively short (m = 2), our model still get very impressive results.
It shows that including semantic information from temporal word
graphs can enhance the predictive power of the model.

AttentionMechanismsWe test different attentionmechanisms
in the embedding fusion step. The dot-product, additive, and gen-
eral attention mechanisms are considered. We can observe that
different mechanisms show comparable performance in Figure 6b,
which indicates that our model is insensitive to different attention
mechanisms.


	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 METHODOLOGY
	4.1 Multi-Event Forecasting
	4.2 Multi-Actor Forecasting
	4.3 Learning and Inference
	4.4 Interpretability

	5 Experiment Setup
	5.1 Datasets
	5.2 Evaluation Metrics
	5.3 Comparative Methods

	6 EXPERIMENTAL Results
	6.1 Results of Multi-Event Forecasting
	6.2 Results of Multi-Actor Forecasting
	6.3 Case Study

	7 CONCLUSION AND FUTURE WORK
	Acknowledgments
	References
	A Pseudocode
	B Parameter Setting
	C Recurrent Encoder
	D Evaluation Metrics
	E Computational Complexity
	F Sensitivity Analysis

