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Sensor Egregium—An Atomic
Force Microscope Sensor for
Continuously Variable Resonance
Amplification
Numerous nanometrology techniques concerned with probing a wide range of frequency-
dependent properties would benefit from a cantilevered sensor with tunable natural
frequencies. In this work, we propose a method to arbitrarily tune the stiffness and
natural frequencies of a microplate sensor for atomic force microscope applications,
thereby allowing resonance amplification at a broad range of frequencies. This method
is predicated on the principle of curvature-based stiffening. A macroscale experiment is
conducted to verify the feasibility of the method. Next, a microscale finite element analysis
is conducted on a proof-of-concept device. We show that both the stiffness and various
natural frequencies of the device can be controlled through applied transverse curvature.
Dynamic phenomena encountered in the method, such as eigenvalue curve veering, are dis-
cussed and methods are presented to accommodate these phenomena. We believe that this
study will facilitate the development of future curvature-based microscale sensors for
atomic force microscopy applications. [DOI: 10.1115/1.4050274]
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1 Introduction
Several atomic force microscope (AFM) contact imaging modes

measure small surface displacements at specific excitation frequen-
cies. For instance, scanning Joule expansion microscopy (SJEM) is
used to measure the local thermal expansion of a sample of interest
due to Joule (and other forms of) heating. SJEM has been used to
measure the thermal conductivity of metal thin films [1] and single-
walled carbon nanotubes [2] to enhance the performance of micro-
electronic and nanoelectronic systems. SJEM has also been used to
study the energy storage capability of various strains of Strepto-
myces bacteria, by studying oil inclusions in the microorganism,
to enhance the production of biodiesel fuels [3]. Piezoresponse
force microscopy (PFM) is used to study piezoelectric and ferro-
electric domains through the application of an oscillating electric
field [4] and surface displacement measurements. Finally, electro-
chemical strain microscopy (ESM) measures surface deformations
due to ionic flows in a material and has been used to study electro-
chemical processes in various materials [5–7] to enhance energy
generation and storage in applications such as batteries and fuel
cells.
To increase the signal to noise ratio (SNR) and improve the mea-

surement of small surface displacements, the field of contact reso-
nance (CR) spectroscopy [8–14] has garnered ever-increasing
attention in the AFM community. CR spectroscopy uses the mea-
surement of the natural frequencies of vibration of the permanently
coupled tip–sample system and resonance amplification to obtain
quantitative information about the sample. It follows naturally
that CR spectroscopy techniques would be combined with the afore-
mentioned advanced contact modes of AFM. For example, coupling

CR methods with PFM [15–17] has shown drastic measurement
enhancement due to resonance amplification. However, one
primary issue with current CR methods is that the amplification
bandwidth of the measurement is constrained to the bandwidth of
the discrete natural frequencies of the system. That is, one can
only measure frequency-dependent phenomena, with resonance
amplification, in very small frequency windows. Additionally,
changes in sample topography and material properties can alter
the locations of these natural frequencies.
One way to achieve resonance amplification at arbitrary frequen-

cies is to adjust the stiffness of the sensor in situ. Mechanical
methods for in situ stiffness adjustment include: changing the effec-
tive length of the resonating beam structure [18–20], utilizing
thermal input to impose thermal stresses [21] on the structure or
affect the temperature-dependent Young’s modulus [22], and
changing the shape of the device to adjust the stiffness. For
example, Kawai et al. [23] used a complex device geometry with
piezoelectric elements to fold a microelectromechanical system
beam, thereby changing the beam’s second area moment, effec-
tively changing the device stiffness. This device achieved a 14%
change in static stiffness between the folded and unfolded states.
We posit that a continuous plate geometry utilizing curvature

induced in-plane straining will allow in situ static and dynamic stiff-
ness adjustment across a wide range of frequencies while simulta-
neously offering increased sensor bandwidth [24]. This idea
originates from the Theorema Egregium of C. F. Gauss [25] who
showed that, under a local isometry, the Gaussian curvature of a
surface is invariant, where the Gaussian curvature is the product
of the two principal curvatures of the surface. In other words, the
initial Gaussian curvature of a surface remains the same under a
transformation that does not result in stretching or compressing of
the material. Uniaxial bending of a narrow beam undergoing
small displacement is an example of such a transformation. How-
ever, a plate undergoing biaxial bending necessarily produces
in-plane straining. This can be achieved by first applying a trans-
verse curvature to the plate and then bending the plate in an axis
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orthogonal to the applied curvature. Pini et al. [26] have shown that
the stiffness of cantilevered plates undergoing flexural bending is
significantly increased due to in-plane straining caused by an ini-
tially applied transverse curvature.
In this work, we explore the idea of a curvature-based stiffening

sensor for AFM applications and christen such a system as “Sensor
Egregium”—the namesake of the Theorema Egregium. The
remainder of the paper is organized as follows. In Sec. 2, a
proof-of-concept macroscale experiment is conducted to investigate
the feasibility of the principle. Next, in Sec. 3, a microscale finite
element analysis of a proof-of-concept microplate sensor, using pie-
zoelectric materials to apply curvature, is conducted. In Sec. 4, we
analyze the effect that applied transverse curvature has on the
microplate static stiffness and natural frequencies. An eigenfunction
sensitivity method is presented in order to accurately track mode
shapes of interest, and an analysis is performed to study the
performance effect that the applied curvature has on contact reso-
nance AFM measurements using the proof-of-concept sensor.
We believe this work represents the first proof-of-concept micro-
plate sensor utilizing applied transverse curvature to actively manip-
ulate the device stiffness and resonant frequencies. Additionally,
we show that complicated dynamic behaviors, such as eigenfre-
quency curve veering, are observed in this device as curvature is
applied and offer techniques to accommodate these behaviors.

2 Concept of Curvature Stiffening
Here, we investigate a new sensor geometry to sensitively detect

surface deformations at arbitrary frequencies, as schematically
depicted in Fig. 1. As explained by Pini et al. [26], biaxial
bending of thin plates generates in-plane straining which increases
the total elastic energy of the system and thus increases the effective
stiffness of the system. For a thin, homogeneous plate fixed at one
edge with applied static curvatures in the longitudinal and trans-
verse directions, Pini et al. [26] reported a relationship which
describes the relative change of the stiffness of the system Δk/k
subject to longitudinal bending:

Δk
k

= C
b4

h2
κy − νκx
( )2

(1)

where C is a constant that depends on the mode shape and geometry
of the plate, b is the width of the plate, h is the thickness of the plate,
κy is the curvature in the y-direction of the plate (width direction), κx
is the curvature in the x-direction of the plate (length direction), and

ν is Poisson’s ratio of the plate material. To derive this equation the
following assumptions have been made: (i) the deformation is sym-
metric about the y-axis, (ii) the y-direction curvature of the static and
dynamic z-displacement does not depend on the y-coordinate, and
(iii) the plate is comprised of an isotropic material. After inducing
curvature on the structure, the elastic strain energy of the system
is calculated. Utilizing Euler–Lagrange equations, and by neglect-
ing higher order terms, four differential equations can be formulated
and solved, and the solution can be used to calculate the relative
change of stiffness, and resonance frequency, leading to the deriva-
tion of Eq. (1). For further details the reader should consult Ref. [26]
and its supplementary material. From this relationship, we see that
the stiffening effect is primarily governed by the width of the plate,
relative to its thickness, and the applied transverse curvature. The
particular mode shape of vibration also controls the magnitude of
the curvature stiffening effect, as will be discussed in Sec. 4.

2.1 A Proof-of-Concept Experiment. To investigate the
effect of imposed transverse curvature on the vibration characteris-
tics of a cantilevered plate at the macroscale, we conduct experi-
ments on a prototype system comprised of a carbon steel
(AISI 1080) plate with a total length of LT = 154 mm, free length
L= 104 mm, width b= 104 mm, and thickness h= 0.254 mm as
shown in Fig. 2(a). We also assume Young’s modulus and Pois-
son’s ratio of AISI 1080 to be 200GPa and 0.3, respectively. The
term “free length” indicates the part of the plate that is free to
vibrate and not constrained by the clamp that is used to create the
fixed boundary condition. Specifically, the test plate is located
between two rigid aluminum plates, each with a thickness of
3 mm, to ensure proper cantilevered boundary conditions. This
assembly is connected to a Vibration Research VR520 shaker
which provides base excitation to the cantilever steel plate, see
Fig. 2(b). A Rigol DG1022 function generator is used to regulate
the excitation of the plate. The signal from the function generator
is amplified using a Vibration Research VR565 amplifier.
A bi-morph actuator is constructed from two Macro-Fiber Com-

posite (MFC) actuators, model M8528-P1, procured from Smart
Material Corp. and bonded to the plate at the free end. The
bi-morph actuator is controlled via an AMD2012-CE amplifier, pro-
cured from Smart Material Corp., driven by a low voltage signal
produced by a National Instrument USB-6341 DAQ card, operated
via a custom VI in LABVIEW. To induce transverse curvature in the
cantilevered plate, the bi-morph actuator uses piezoelectric strips
which operate in the d22 mode to expand in the direction of

Fig. 1 (a) Proposed AFM sensor in its unperturbed state with width b, length L, and thickness h.
(b) The natural frequencies of the unperturbed device are shown on the amplitude versus fre-
quency plot. (c) As transverse curvature is applied, the natural frequencies of the device
increase. The location of the natural frequencies of vibration of the sensor can be controlled
through applied transverse curvature. The inset of (b) and (c) represents the plate sensor
before and after the transverse curvature is applied, respectively.
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applied voltage, along the y-axis of the plate. The expansion of the
actuator structure ultimately induces a curvature on the plate, as
shown in Fig. 3. Specifically, Fig. 3(a) depicts the operation of
the actuator schematically, while Figs. 3(b) and 3(c) show the
experimental operation of the actuator. In this experiment, the actu-
ation is either unpowered or is driven at a constant input voltage of
500 V: the first case will be denoted as “Actuator OFF,” while the
second case will be denoted as “Actuator ON.”
To acquire the frequency response of the plate, two accelerome-

ters, Isotron model 27AM1-10 and Dytran model 3255A1, are used
to measure the transverse vibration of the tip and base of the plate,
respectively. These signals are used to estimate the frequency
response function (FRF) of the system between the tip acceleration
and base acceleration of the plate due to the input excitation. Data
acquisition is performed with a National Instruments USB-6341
DAQ card. For both the Actuator ON and Actuator OFF cases,
40 consecutive sweeps using an input chirp sine excitation with fre-
quencies spanning 0.1–100Hz, over a period of 10 s, are recorded.
Note that, during the sweeps, the voltage of the bi-morph actuator is
held constant. The shaker output signal amplitude is monitored to
ensure that the plate is undergoing small amplitude vibrations and
that the response of the system is linear. Data are acquired with a
custom VI in LABVIEW with a sampling frequency of 2000 Hz.
The FRF of the system is produced directly in the custom VI
with the “Dual Channel Spectral Measurement” routine block.
The FRFs obtained from each of the 40 runs are averaged and the
results, for both Actuator ON and Actuator OFF cases, are dis-
played in Fig. 4.
The peak values in the FRF reveal the locations of the natural fre-

quencies of the plate. The first prominent peak in the response, for
both the Actuator ON and Actuator OFF case, is associated with a
global cantilever-like first bending mode. We observe that the
natural frequencies blue shift from 12.2 Hz to 12.8 Hz, demonstrat-
ing an increase of approximately 4.9% in the value of the first mode
natural frequency. The error bars in the inset of Fig. 4 show ±1 stan-
dard deviation of the computed mean peak frequency values. Fre-
quency shifts in the displayed spectrum can also be observed and
ascribed to the imposed curvature from the bi-morph actuator.
Via image analysis of pictures of the bent plate, we determine
that the bi-morph actuator imposes a radius of curvature of

Fig. 2 (a) Test plate and accelerometers with MFC bi-morph actuator at the free end. The primary plate dimensions are indicated.
(b) Experimental test setup.

Fig. 3 (a) Schematic of the plate before (“Actuator OFF” case)
and after actuation (“Actuator ON” case). Bending of the MFC
actuator in the yz-plane produces the applied transverse curva-
ture of the cantilevered plate. In (b) and (c), photos of the plate
before and after actuation, respectively, with demonstration of
the identification of the imposed curvature via image analysis.
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approximately Rc= 1192 mm, which results in a nondimensional
curvature parameter of κ= b/Rc= 0.087. Despite the modest value
of the imposed curvature, the blue shift in natural frequency is sig-
nificant and establishes a macroscale proof-of-concept for the tun-
ability of AFM sensors via externally imposed curvature. In
addition to the spectral blue shift, we note differences in the ampli-
tude response of the two cases. Since the same drive is provided to
the system in both cases, we expect that the amplitudes of the
response in the Actuator ON case are to be decreased, as a conse-
quence of the increased plate stiffness as predicted by the Theorema
Egregium. This also assumes that the modal damping has remained
constant.

3 A Proposal for Atomic Force Microscopy Application
In lieu of fabricating the proposed device at the microscale, sui-

table for AFM applications, we perform a three-dimensional finite
element analysis (FEA) to study the device behavior. Here, we
assume that lead zirconate titanate (PZT) actuators are used to
control the device curvature. In the microsimulation, the main
body of the sensor is composed of silicon with a Young’s
modulus of 169GPa and Poisson’s ratio of 0.25. The length and
width of the plate have been chosen such that the aspect ratio
(length/width) is 1. This aspect ratio increases the modal density
of the system [24] and enhances the curvature stiffening effect
[26], as compared to a thin, narrow beam geometry. The geometry
chosen for the model can be found in Fig. 5 and PZT strip coeffi-
cients are reported in Table 2 in the Appendix. The PZT geometry
and placement have been chosen in an attempt to maximize the
device curvature in the desired direction while minimizing curva-
tures in competing directions.
Three-dimensional brick elements are used to mesh the silicon

plate, and three-dimensional piezoelectric brick elements are used
for the PZT strips. The edge of the plate at x= 0 is fixed such that
there is no displacement or rotation. The remaining edges of the
plate are free. The surfaces of the PZT elements normal to
the xy-plane (see Fig. 5) and in contact with the silicon plate are
given zero voltage boundary conditions. The top of the PZT ele-
ments, normal to the xy-plane, are given various input voltage
values, depending on the simulation. In the simulations performed,
sample contact is approximated by a linear spring and tip geometry
is ignored. In the simulations, we study the tip location, for an
aspect ratio 1 plate, which achieves optimal measurement sensitiv-
ity and modal density as determined by Aureli et al. [24].
This optimal location, henceforth called location A, is given by

x = 0.91 L and y= 0.4 b, where x= 0 is at the fixed end of the
plate and y= 0 is at the centerline of the plate as depicted in
Fig. 1(a). Here, consistent with Ref. [24], the sensitivity is
defined as the rate of change of the contact resonance frequencies
for a unit increase in the sample stiffness. The second tip location
chosen for this study, and the next optimal, is at x= 0.91 L and y
= 0 and will be referred to as location B. While in this paper we
focus on the case of a purely elastic sample, viscoelasticity of the
sample, relevant for biological applications, can be seamlessly
introduced in the problem by following Aureli and Tung [27].
The numerical experiments are conducted in two distinct phases.

In the first phase, an input voltage is applied to the PZT strips and an
analysis is performed to determine the static equilibrium configura-
tion of the device. We account for geometric nonlinearities intro-
duced by large displacements and assume small strains and linear
material elasticity. After the static input voltage is applied to the
PZT strips, we observe a transverse curvature κx, a longitudinal cur-
vature κy, and a deflection of the sensor in the z-direction. This
deflection is dependent on the sign of the transverse curvature κx,
which, in turn, is dependent on the sign of the voltage applied.
This deflection must be accounted for in real-world AFM applica-
tions. After applying a static voltage, the static stiffness kc of the
sensor is then calculated for the deformed configuration. This is
accomplished by applying a small load F, normal to the xy-plane
of the undeformed plate, at the centerline (x= L and y= 0) of the
free end of the plate. The resulting static displacement d is then mea-
sured. The static stiffness is then calculated using kc=F/d.
In the second phase of the numerical experiments, we apply an

input voltage to the PZT strips and calculate the resulting static
equilibrium configuration. We then perform a modal analysis
using this equilibrium configuration for a given range of spring stiff-
nesses (including zero stiffness) attached at the aforementioned tip
locations. These springs emulate contact with a measurement
sample that would be experienced in actual contact resonance
AFM experiments. Here, we have defined the nondimensional stiff-
ness α as α = k/k0c where k is the assigned sample stiffness (linear
spring) and k0c is the static stiffness of the undeformed plate.
Details regarding FEA convergence and chosen input voltage
ranges can be found in the Appendix. In Sec. 4, we discuss the
results of the FEA analysis.

4 Results and Discussion
4.1 Static Stiffness and Midpoint Deflection. Figure 6 shows

the calculated static stiffness of the sensor versus input voltage to
the piezoelectric strips. For a ±100 V input range, the static stiffness
of the sensor is increased over 225%, with an absolute increase of

Fig. 4 Mean FRF between the cantilever plate tip and base exci-
tation acceleration, for the Actuator ON and Actuator OFF cases.
Error bars in the inset show ±1 standard deviation of the com-
puted mean peak frequency values.

Fig. 5 Microscale device geometry used in the finite element
analysis
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1.75 N/m. Slight asymmetry can be observed in the evolution of
static stiffness for positive versus negative applied voltages. This
asymmetry was predicted by Pini et al. [26] and Eq. (1) for plates
undergoing longitudinal bending in a fixed direction. One can
observe that the change in the stiffness, defined by Eq. (1), is depen-
dent on the sign of the transverse curvature κx in the νκxκy term of
the equation. Additional stiffness asymmetry may have been intro-
duced by placement of the piezoelectric strips on a single face of the
plate.
Figure 7 shows the calculated midpoint deflection and nondimen-

sional curvature κ of the sensor versus input voltage to the piezo-
electric strips. Here, midpoint deflection measures the relative
displacement between the centerline and free edges of the plate,
as depicted in Fig. 7. A very small asymmetry can be observed in
the midpoint deflection. This may be due to the assymmetric place-
ment of the piezoelectric actuators and the nature of Eq. (1). The
nondimensional curvature κ= b/Rc has been calculated following
the approach of Ahsan and Aureli [28], assuming that the curvature
profile of the free end of the plate is circular. This assumption
creates a direct relationship between the radius of curvature and
the width of the plate given by Rcθ= b/2, where θ is the sweep
angle depicted in the lower right inset of Fig. 7. Next, the midpoint
deflection δ is related to the radius of curvature and sweep angle by
Rc(1− cos θ)= δ. Using the first relationship to re-write θ in terms
of κ and scaling by b, we obtain (1/κ)(1− cos(κ/2))= δ/b. Rewriting
the cosine function using aMaclaurin series and keeping terms up to
second order leads to the relationship κ≈ 8δ/b. The maximum non-
dimensional curvature observed in the simulations is approximately

κ= 0.5, whereas the maximum nondimensional curvature observed
in the proof-of-concept experiment was κ= 0.087, that is, approxi-
mately 17% of the total curvature applied in the simulations.
To verify the numerical simulations, a macroscale simulation is

conducted using the geometry and material properties of the exper-
imental proof-of-concept device. The length, width, and thickness
of the macroscale plate are 104mm, 104mm, and 0.254mm,
respectively. The PZT strip has a length of 104mm, a width of
10.4mm, and a thickness of 0.764mm. For simplicity, the PZT
material and PZT placement are identical to the microscale simula-
tion. A voltage of 660V is applied to produce the same radius of
static curvature found in the experiment, that is, 1192mm. A
natural frequency shift of approximately 5.2% (12.33–12.97Hz)
is found between the uncurved and curved configurations of the
simulated device. The macroscale experiment showed a natural fre-
quency shift of 4.7% (12.2–12.8Hz). Minor differences in the
uncurved natural frequencies of the experimental and simulation
device are observed, most likely due to the PZT placement used
in the simulation and minor differences in the simulated and
actual material and geometric properties of the device.

4.2 Eigenfrequencies, Curve Veering, and Stiffness
Sensitivity. In this section, we study how the natural frequencies
of the sensor system vary with increasing applied curvature estab-
lished via the voltage applied across the PZT strips. Robust tracking
of the system’s natural frequencies is necessary for proper sensor
implementation. The sensor should be able to selectively tune its
resonance amplification bandwidth, or dynamic stiffnesses, to the
desired operating regimes.
The natural frequencies of the plate system are calculated via

modal analysis. Figure 8 shows the system’s natural frequencies
as a function of the applied voltage. Each natural frequency has a
unique mode shape associated with it and these shapes dictate the
overall effect that the applied static curvature has on the dynamic
stiffness. It is clear from Fig. 8 that each mode responds differently
to the statically applied curvature. As seen from Fig. 8, all of the
modes are affected by the induced curvature to some extent. The
degree of change in the natural frequency for each mode depends
on the mode shape the structure is operated at, and has been calcu-
lated through FEA. Some modes show a large change in their
natural frequencies, while other exhibit very little change. By
exploiting this idea, unaffected modes could be used as references
for the undeformed configuration measurement data, whereas the
affected modes could be used for resonance amplification or
dynamic stiffness tuning purposes.
An additional complication arises as the device stiffness is

increased, whereby the natural frequencies and mode shapes of

Fig. 6 Calculated static bending stiffness of the sensor versus
voltage applied. The stiffness of the device is increased over
225% with an absolute increase of 1.75 N/m.

Fig. 7 Calculated midpoint deflection δ and nondimensional
curvature κ of the sensor versus applied voltage. The deforma-
tion of the sensor in the inset pictures has been exaggerated
for explanatory purposes.

Fig. 8 Calculated natural frequencies of the sensor for various
input voltages (applied curvatures). Complicated crossing and
veering behavior of the natural frequencies can be observed
throughout.
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the system interact with each other when in close frequency proxim-
ity. As the natural frequency loci approach one another in frequency
space, they can either cross or veer. Natural frequency crossing
[29,30] is a phenomenon that takes place when the trajectories of
natural frequency loci intersect while one or more system parame-
ters are varied. During natural frequency crossing, the mode
shapes of each natural frequency remain unchanged. On the other
hand, natural frequency veering [31–40] is a phenomenon where
two natural frequencies approach one another and abruptly
change trajectories without crossing or intersecting. Each natural
frequency then follows the trajectory previously taken by the
other before the veering event. The mode shapes change violently
as they continuously veer. This behavior has been described by
Leissa [37]—“figuratively speaking, a dragonfly one instant, a but-
terfly the next, and something indescribable in between.” Natural
frequency curve veering, initially regarded as an anomaly occurring
as a result of numerical discretization of continuous systems, has
been proven to be a real phenomenon via perturbation methods
for both discrete and continuous systems [40,41].
In order to study the effect that curvature-based stiffening has on

the natural frequencies and mode shapes of the plate system, we
must first be able to track mode shapes of interest through
veering or crossing events in a robust way. In this paper, we
adapt the method of “eigenfunction sensitivity” used by Huang
et al. [42] to robustly track natural frequencies and mode shapes
of interest. We define the eigenfunction sensitivity between the
rth and sth mode Srs as the inner product:

Srs = |ϕ̂T
r ϕ̂

0
s | (2)

where ϕ̂0
s is a column vector representing the sth normalized mode

shape of the unperturbed flat plate, ϕ̂r is a column vector represent-
ing the rth normalized mode shape of the plate at a voltage of inter-
est, and vertical bars denote absolute value. Since no analytical
approach is available to predict the mode shapes for the proposed
plates, the ϕ vectors are, as customary, the eigenvectors of the
numerical modal analysis problem solved in the FEA. The mode

shape normalization has been defined as ϕ̂0
s =

ϕ0
s

||ϕ0
s ||

and ϕ̂r =
ϕr

||ϕr ||,
where || • | is the vector L2 norm. The value of Srs varies
between 0 and 1, so that for Srs values of 1, the compared modes
look identical, while for Srs values of 0, the mode shapes are orthog-
onal. When comparing mode shapes that cross, the eigenfunction
sensitivity will display a jump discontinuity. For veering modes,
the Srs will change in a continuous fashion throughout the veering
region [42].
Figure 9(a) depicts a representative region of interest where

crossing and veering behavior is observed. Here, ϕ3, ϕ4, and ϕ5

represent an ordered set of calculated mode shapes/natural frequen-
cies. Nonphysical kinks can be observed in the natural frequency as
a function of the voltage plot in Fig. 9(a) for ϕ3 as the negative
voltage applied to the plate increases. Clearly, ϕ3 and ϕ4 cross
near −70V and again near −80V. Figure 9(b) elucidates this cross-
ing behavior. As we calculate the eigenfunction sensitivity of ϕ3

with its unperturbed state ϕ0
3, given by S33, we see two jump discon-

tinuities near −70V and −80V. The eigenfunction sensitivity drops
to zero between −70V and −80V, indicating that ϕ3 is orthogonal
to its unperturbed shape in this domain. This is a result of modal
crossing. The complementary behavior can be observed in S34.
Veering behavior can also be observed in Fig. 9(a) between

two modes. ϕ5 can be observed to sharply change trajectories
near −75V. The eigenmode sensitivity S53 gradually changes in
the veering region. Note that S35 would be equivalent to S53 if no
extraneous modes crossed and the veering existed in isolation.
The complementary behavior can be seen in S33 and S34, accounting
for the aforementioned mode crossing.
Starting from the zero voltage case, we calculate the eigenmode

sensitivity of a mode of interest with its unperturbed state and the
eigenmode sensitivity of the unperturbed mode of interest and any
nearby frequencies for which a crossing or veering is suspected

(the complementary eigenmode sensitivity may be used if crossings
exist). In Fig. 9(c), we track the second bending mode of vibration
with in-phase bending behavior, named “Bending 2a.” At each suc-
cessive increase in voltage, our tracking algorithm assigns the iden-
tifier “Bending 2a” to the frequency value that has the highest
eigenmode sensitivity in relation to the unperturbed bending mode
2a and has a monotonically increasing frequency value. That is,
modal frequencies should not decrease as the sensor stiffness is
increased. However, the curve veering phenomenon could decrease
the frequency of an eigenmode as the participating modes exchange
their place in the frequency domain. In Fig. 9, we see that, after
veering, flapping mode 1 swaps places with bending mode 2a, and

Fig. 9 (a) Behavior of natural frequency for three numerically
ordered modes versus applied voltage (applied curvature)
showing crossing and veering. (b) Eigenfunction sensitivity Srs
used to discriminate between modal crossing and modal
veering. (c) Robustly “tracked” mode shapes. Bending mode
2a and flapping mode 1 have effectively swapped positions
after veering, whereas bending mode 2b has remained on its
original trajectory. Inset pictures depict the eigenmodes of vibra-
tion at the locations indicated.
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Fig. 10 Corrected natural frequencies of the sensor for various
input voltages (applied curvatures). Veering regions are indi-
cated with gray ovals. Note the broken y-axis to enhance the con-
trast of mode 1.

Table 1 Calculated natural frequencies versus applied PZT
voltage for bending mode 1, bending mode 2a, and bending
mode 3

Voltage (V) B1 (kHz) B2a (kHz) B3 (kHz)

−100 14.81 332.91 832.41
−75 14.06 286.46 722.34
−50 13.04 233.22 571.38
−25 11.39 150.61 393.29
0 8.90 78.19 291.55
25 11.08 150.35 386.66
50 12.38 232.60 476.73
75 13.43 276.32 704.31
100 14.28 358.55 783.64

Fig. 11 Natural frequencies and natural frequency stiffness sensitivities versus sample stiffness for various PZT voltages
for tip location A. Inset images depict the eigenmodes of vibration at 0V. The spring location is indicated by the black dot in
the inset images.
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thus the frequency of flappingmode 1 decreases. Additionally, when
the eigenfunction sensitivities of two veering modes r and s, relative
to mode s (or equivalently r), are comparable, that is |Sss− Srs|≤ 0.1,
the tracking algorithm does not attempt to discriminate between
modes. These regions are denoted as “veering regions”
Figure 9(c) shows the robustly tracked mode shapes using the

eigenfunction sensitivity technique. The inset figures in Fig. 9(c)
depict the out-of-plane displacements of the mode shape associated
with the indicated curves. For all inset mode shape pictures, the
left side of the picture represents the fixed boundary side. As seen
in Fig. 9(a), the natural frequency locus of ϕ5 varies continuously
and does not intersect the neighboring natural frequency loci
curves. However, the modal behavior of ϕ5 drastically changes
after veering as observed in the modal insets of Fig. 9(c). In order
to successfully operate the proposed curvature stiffening sensor,
veering and crossing regions must be successfully identified, and

experimental procedures to compensate for these phenomena must
be developed.
Figure 10 shows the tracked mode shapes of the first three

bending modes of vibration for the system. Following the eigen-
function sensitivity method put forward in this paper, it should be
possible to experimentally track eigenmodes of interest in real-
world AFM applications using systems equipped with scanning
lasers [43]. In this way, arbitrary tuning of resonance amplification
and dynamic stiffness will be experimentally possible.
Examining Fig. 10, we see that bending mode 1 displays a

maximum frequency change of approximately 67%, bending mode
2a displays a maximum frequency change of approximately 350%,
and bending mode 3 displays a maximum frequency change of
approximately 185% for the voltage range tested. Table 1 shows
the calculated natural frequency changes for the first three bending
modes as a function of applied PZT voltage. The range of frequency

Fig. 12 Natural frequencies and natural frequency stiffness sensitivities versus sample stiffness for various PZT voltages for tip
location B. Inset images depict the eigenmodes of vibration at 0 V. The spring location is indicated by the black dot in the inset
images.
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shifts observed in the simulations are promising and indicate the fea-
sibility of the proposed sensor.
In order to use the proposed sensor in the context of contact reso-

nance atomic force microscopy (CR-AFM), we study the effect of
natural frequency change and natural frequency stiffness sensitivity
d f/dα as a function of sample stiffness and applied voltage. For this
study, we have selected two “optimal tip” locations as defined by
Aureli et al. [24]. These two tip positions roughly correspond to
the distal end of the cantilevered plate at the center and the
edge and are given explicitly in the preceding text ( location A at
x= 0.91 L, y= 0.4 b and location B at x= 0.91 L and y= 0).
Sample stiffness is represented by a single linear spring in
the z-direction. The natural frequency and natural frequency sensi-
tivity have been calculated for nondimensional stiffness ranges of
α = 10−2 to α= 106, where α = k/k0c , k is the assigned sample stiff-
ness and k0c is the static stiffness of the undeformed plate.
Figures 11 and 12 show the natural frequencies and natural fre-

quency stiffness sensitivity versus sample stiffness for three
applied PZT voltages (0, 50V, and 100V) for three bending
modes of the system at the optimal sensor tip locations. It is clear
from the natural frequency data in panels (a)–(c) that the applied
voltage (sensor curvature) can be used to effectively tune the
natural frequency of the device across a wide range of frequencies
and sample stiffnesses. This effect can be used to selectively tune
the sensor to achieve resonance amplification at desired frequencies,
for a given sample stiffness. Additionally, we see that the effective
stiffness detection range, for each bending mode, can be increased
with applied curvature. For example, in Fig. 12(a) we see that, for
bending mode 1 at 0 V, the stiffness detection limit is approximately
at α= 200. Above this nondimensional stiffness, the device fre-
quency shows no further increase with increasing stiffness.
However, at applied curvatures using PZT voltages of 50 V and
100V, the stiffness detection range is extended well above α= 1000.
We also see from Figs. 11 and 12 that the optimal sensing tip

location A does indeed have increased sensitivity as compared to
location B, as defined by the metric in Aureli et al. [24], for the
0 V case. However, as the voltage is increased, the optimal tip loca-
tion is expected to change position. In future studies, we would like
to explore the evolution of optimal tip location for a given device
curvature. Additionally, as seen in Fig. 11(c), it is possible for the
tip location to coincide with a nodal vibration line and reduce
the stiffness sensitivity to zero. This is observed in the 100 V actu-
ation case for bending mode 3 at tip location A. The 50 V actuation
case for bending mode 2a at tip location B appears to be near a nodal
line and displays a sensitivity near zero.
Finally, as the sensor stiffness is increased, the overall stiffness sen-

sitivity df/dα of each bending mode decreases with respect to its less
stiff, unperturbed counterpart. This is expected, and it is predicted by a
simple one-dimensional lumped-parameter model. Let the natural

vibration frequency be given by f =
1
2π

�����
keff
meff

√
, where keff and meff

are the effective stiffness and mass of the lumped-parameter model.
Then, the frequency sensitivity with respect to stiffness is given by
df
dkeff

=
1
4π

�����
1

meff

√ ����
1
keff

√
. As the effective stiffness or mass of the

system increases, the frequency sensitivity to stiffness decreases.
Real-world implementation of this sensor may require an updated

technique to measure the system response. The traditional optical
lever technique used in AFM may be sufficient, so long as the
light scattering effect due to the induced curvature is not too
great. Additionally, a calibration must be performed to quantify
the resulting parasitic displacement that results from applying a
static curvature. Extracting a sensing signal from the actuating
material may also be used to measure the system’s response.

5 Conclusions
In this work, we have presented the idea of curvature-based

resonance and stiffness adjustment for AFM applications. A

proof-of-concept macroscale experiment is first presented, followed
by a finite element analysis of the microscale sensor. We observe
that applied transverse curvature is an effective method to change
the static stiffness and natural frequencies of a microplate sensor.
Additionally, an eigenfunction sensitivity method is presented to
effectively track the mode shapes of the system as the system stiff-
ness is increased and natural frequency curve veering and curve
crossing are encountered. The characterization of some frequency-
dependent materials using CR-AFM may be challenging due to the
limitation of the sensitivity of the AFM probe used to investigate the
material. A tunable sensor probe, that has the capability to be opti-
mized according to the sample, could improve the accuracy of the
estimation of nanomechanical properties. A frequency-tunable
sensor also has numerous potential applications in the field of nano-
metrology. We believe this work represents a fundamental and nec-
essary step toward the creation of a real-world curvature
stiffening-based microsensor.

Acknowledgment
This material is based in part upon work supported by the

National Science Foundation under grant CMMI-1660448 (to
RCT) and grant CMMI-1847513 (to MA). The authors would
like to thank Navid Forootan for his help with the experiments.

Conflict of Interest
There are no conflicts of interest.

Appendix
Finite Element Analysis Convergence. Mesh convergence is

determined by examining the following three parameters: (i) the
first eigenfrequency of the system, (ii) the static tip displacement
of the sensor due to plate curvature, and (iii) the static tip displace-
ment due to an applied normal load. Mesh convergence is consid-
ered to be achieved when each of these parameters changes less
than 0.25% after doubling the number of elements for two consec-
utive reductions when applying a 100 V input voltage. The number
of mesh subdivisions was converged at 50, 11, and 7 for length,
width, and thickness plate subdivisions, respectively. The piezo-
electric strip achieved convergence at 5 subdivisions along its
length, 11 width subdivisions, and 7 thickness subdivisions.
Meshing is performed using ADINA software [44], with 27 nodes
per element and mapped or rule-based meshing. Mesh convergence
is achieved at 3850 solid elements for the plate and 385 solid ele-
ments for each piezoelectric strip.

Lead Zirconate Titanate Coefficients. The stress and strain
response of the lead zirconate titanate (PZT) material extensively
depends on its piezoelectric and dielectric properties. These proper-
ties are dependent on factors such as manufacturing techniques,
grain size, film thickness and orientation, operating temperature,
operating time, operating voltage, and the dimensions and geometry

Table 2 PZT strip coefficients and material properties.
Subscripts represent the material coordinate system, where 1=
x, 2= y, 3= z, 4= xy, 5= xz, and 6= yz

Stress
coefficient
(N/Vm)

Strain
coefficient
(m/V)

Young’s
modulus
(GPa)

Poisson’s
ratio (–)

Shear
modulus
(GPa)

e13 −7.21 d13 −1.85E-10 E1 61 ν12 0.35 G12 22.6
e23 −7.21 d23 −1.85E-10 E2 61 ν13 0.38 G13 21.1
e33 15.12 d33 3.87E-10 E3 53.2 ν23 0.38 G23 21.1
e51 12.33 d51 5.84E-10
e62 12.33 d62 5.84E-10
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of the material [45–48]. It is challenging to predict the PZT material
properties (i.e. piezoelectric stress and strain coefficients) without
proper experimental study. In this work, we have used values for
bulk PZT materials, although PZT thin films (thickness <10 μm)
may have properties that differ from bulk values. The piezoelectric
stress and strain coefficients change nonlinearly as the transition
occurs from a PZT thick film to a thin film. In most cases, a dedi-
cated experimental setup is required to ensure the fidelity of the
specific piezoelectric coefficients. Guo et al. [45] introduced a cal-
ibration factor to compare the impact of theoretical piezoelectric
strain coefficients on the basis of substrate materials, boundary con-
ditions, specimen size, thickness ratio, and specimen thickness with
the experimental values. The largest deviation (250% increase) in
the calibration factor found was due to the change in the thickness
ratio (where the substrate thickness to PZT thickness ratio was
1:0.0029). The impact of the other parameters was not significant
(less than 7%). For the FEA study in this work, the silicon substrate
to PZT thickness ratio is 1:3 so that the calibration factor/deviation
of the strain coefficient from the experimental values becomes
insignificant, and the bulk property values of PZT can be used
during the simulation.
The maximum applicable bias voltage applied to the PZT thin

films is another area of study that depends on the dielectric break-
down strength of the material. Ko et al. [49] reported improved
dielectric breakdown strength of PZT films by decreasing the pro-
portion of excess oxide layers. These oxide layers are responsible
for increasing the leakage current, which leads to a drop in dielectric
breakdown strength of the PZT material. Ko et al. achieved dielec-
tric breakdown strengths of 300 kV/cm to about 1MV/cm. For the
FEA simulations performed in this work, the dielectric breakdown
strength is assumed to be 333 kV/cm. This enables a PZT input
voltage range of −100V to +100V across the 3 μm thick PZT
strips.
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