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Abstract
Random graph matching refers to recovering the underlying vertex correspondence
between two random graphs with correlated edges; a prominent example is when the
two randomgraphs are given byErdős-Rényi graphsG(n, d

n ). This can be viewed as an
average-case and noisy version of the graph isomorphism problem. Under this model,
the maximum likelihood estimator is equivalent to solving the intractable quadratic
assignment problem. This work develops an ˜O(nd2 + n2)-time algorithm which per-
fectly recovers the true vertex correspondence with high probability, provided that
the average degree is at least d = Ω(log2 n) and the two graphs differ by at most
δ = O(log−2(n)) fraction of edges. For dense graphs and sparse graphs, this can be
improved to δ = O(log−2/3(n)) and δ = O(log−2(d)) respectively, both in polyno-
mial time. The methodology is based on appropriately chosen distance statistics of
the degree profiles (empirical distribution of the degrees of neighbors). Before this
work, the best known result achieves δ = O(1) and no(1) ≤ d ≤ nc for some con-
stant c with an nO(log n)-time algorithm and δ = ˜O((d/n)4) and d = ˜Ω(n4/5) with a
polynomial-time algorithm.
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1 Introduction

Graph matching [12,32], also known as network alignment [20], aims at finding a
bijective mapping between the vertex sets of two networks so that the number of
adjacency disagreements between the two networks is minimized. It reduces to the
graph isomorphism problem in the noiseless setting where the two networks can be
matched perfectly.

The paradigm of graph matching has found numerous applications across a variety
of diverse fields, such as network privacy, computational biology, computer vision, and
natural language processing. For instance, it was convincingly demonstrated [41,42]
that hidden vertex identities in a network can nevertheless be recovered by matching
the anonymized network (such as Netflix) to a secondary network with known vertex
identities (such as the Internet Movie Database). In system biology, graph matching is
used in discovering protein functions bymatching protein-protein interaction networks
across different species [27,53]. In computer vision, using graphs to represent images,
where vertices are regions in the images and edges encode the adjacency relation-
ships between different regions, graph matching is widely applied in finding similar
images [12,50]. In natural language processing, using graphs to represent sentences,
where vertices are phrases and edges represent syntactic and semantic relationships,
graph matching is used in question answering, machine translation, and information
retrieval [24].

Given two graphs with adjacency matrices A and B, the graph matching problem
can be viewed as a special case of the quadratic assignment problem (QAP) [11,45]:
namely,

max
Π
〈A,ΠBΠ�〉, (1)

whereΠ ranges over all n×n permutation matrices, and 〈·, ·〉 denotes the matrix inner
product. QAP is NP-hard in the worst case. Moreover, approximating QAP within a
factor of 2log

1−ε (n) for ε > 0 is also NP-hard [36].
These hardness results, however, are applicable in the worst case, where the

observed networks are designed by an adversary. In contrast, the networks in many
aforementioned applications can be modeled by random graphs with latent structures;
as such, our focus is not in the worst-case instances, but rather in recovering the under-
lying vertex permutation with high probability in order to reveal the hidden structures.

1.1 Correlated Erdos-Rényi graphsmodel

Driven by applications in social networks and biology, a recent line of work [4,13–
15,17,20,28,30,33,35,46,55] initiated the statistical analysis of graph matching by
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assuming that A and B are generated randomly. The simplest such model is the fol-
lowing correlated Erdős-Rényi graph model:

Definition 1 (Correlated Erdős-Rényimodel G(n, q; s)) Given an integer n and q, s ∈
[0, 1], let A and B denote the adjacency matrix of two Erdős-Rényi random graphs
G(n, q) on the same vertex set [n]. Let π∗ : [n] → [n] denote a latent permutation.We
assume that conditional on A, for all i < j , Bπ∗(i)π∗( j) are independent and distributed
as

Bπ∗(i)π∗( j) ∼
{

Bern(s) if Ai j = 1

Bern
(

q(1−s)
1−q

)

if Ai j = 0
, (2)

where Bern(s) denotes a Bernoulli distribution with mean s.

Equivalently, the two graphs can be viewed as edge-subsampled subgraphs of a
parent Erdős-Rényi graph G ∼ G(n, p) with p = q/s. Let A be the adjacency
matrix of a graph obtained by keeping or deleting each edge of G independently with
probability s and δ � 1− s respectively. Repeat the sampling process independently
and relabel the vertices according to the latent permutation π∗ to obtain B.1 Note
that by (2), the parameter s can be viewed as a measure of the edge correlations.
Alternatively, δ = 1 − s can be interpreted as the fraction of edges in A that are
substituted in B on average.

Upon observing A and B, the goal is to exactly recover the latent vertex corre-
spondence π∗ with probability converging to 1 as n → ∞. For instance, in network
de-anonymization, the parent Erdős-Rényi graph G corresponds to the underlying
friendship network of a group of people, A corresponds to a Facebook friendship net-
work of the same group of people with known identities, and B is the Twitter network
of the same set of users with identities removed; the task is to de-anonymize the vertex
identities in the Twitter network by finding the underlyingmapping between the vertex
sets of A and B.

In the noiseless case of s = 1, graph matching under the G(n, q; 1) model reduces
to the problem of random graph isomorphism for Erdős-Rényi graph G(n, q). In this
case, a celebrated result [54] (see also [8, Chap. 9]) shows that exact recovery of
the underlying permutation is information-theoretically possible if and only if nq ≥
log n+ω(1) forq ≤ 1/2;2 in otherwords, the symmetry (i.e., the automorphismgroup)
of the graph is trivialwith highprobability.Recentwork [13,14] has extended this result
to the noisy casewhere s < 1, showing that exact recovery is information-theoretically
possible if and only if nqs ≥ log n + ω(1), under the additional assumption that
q ≤ O(log−1 n) and q(1− s)2/s ≤ O(log−3(n)).3

1 To ensure the Bernoulli parameter in (2) is well-defined, we need to assume q(1 − s) ≤ 1 − q, or
equivalently s ≥ 2 − 1/q. Similarly, to ensure the edge probability in the parent graph p = q/s ≤ 1, we
need to assume s ≥ q.
2 Throughout the paper, we use standard big O notation, e.g., for any sequences {an} and {bn}, an = Θ(bn)

(or an � bn ) if 1/c ≤ an/bn ≤ c holds for all n for some absolute constant c > 0; an = Ω(bn) and
bn = O(an) (or an � bn and bn � an ) if an/bn ≥ c. We use big ˜O notation to hide logarithmic factors.
3 Achievability and converse bounds for more general correlated Erdős-Rényi random graph models are
also available in [13,14].
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32 J. Ding et al.

From a computational perspective, in the noiseless case of s = 1, linear-time
algorithms have been found to attain the recovery threshold of nq = log n +
ω(1) [7,16]. However, in the noisy case, very little is known about the performance
guarantees of graph matching algorithms that run in polynomial time. Recently a
quasi-polynomial-time (nO(log n)) algorithm is proposed in [4] which succeeds when
nqs ∈ [no(1), n1/153] ∪ [n2/3, n1−ε

]

and s ≥ (log n)−o(1). Another recent work [17]
adapts the classical degree-matching algorithms in [3] and [8, Section 3.5] from the
noiseless case to the noisy case, and shows that it exactly recovers π∗ with high proba-
bility, provided that q � log7/5(n)/n1/5 and 1−s � q4/ log6(n). This result requires
1− s, the fraction of edges differed in the two observed graphs, to decay polynomially
in q and is thus far from being optimal.

1.2 Main results

In this work, we significantly improve the state of the art of efficient graph matching
algorithms in terms of time complexity, noise tolerance, and sparsity. In particular,
we give an ˜O(nd2 + n2)-time algorithm for exactly recovering the true permutation
π∗ with high probability under the correlated Erdős-Rényi graph model, when the
fraction of differed edges δ = 1 − s can be as large as 1/ log2(n) and the average
degree d can be as low as log2 n. Furthermore, we obtain two improved polynomial-
time algorithms that aim for dense and sparse graphs respectively. These results are
summarized as below:

Theorem 1 Consider the correlated Erdős-Rényi model G(n, q; 1 − δ) with q ≤ q0
for some sufficiently small constant q0. If

nq � log2 n and δ � 1

(log n)2
, (3)

then there exists an ˜O
(

nd2 + n2
)

-time algorithm (cf. Algorithm 1) that recovers π∗
with probability 1− O(1/n).

Furthermore,

– if

q = e−O
(

(log n)1/3
)

and δ � 1

(log n)2/3
, (4)

then there exists a polynomial-time algorithm (cf. Algorithm 2) that recovers π∗
with probability 1− O(q/ log n);

– if

log n

n
� q ≤ n−ε and δ � 1

(log(nq))2
, (5)

for some constant ε > 9/10, then there exists a polynomial-time algorithm
(cf. Algorithm 4) that recovers π∗ with probability 1− O

(

n9−10ε
)

.
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1.3 Key algorithmic ideas and techniques for analysis

Many existing matching algorithms for random graph isomorphism are signature-
based: first attach some appropriately chosen signature μi to vertex i in A and νk to
vertex k in B, then match each pair based on their similarity, or equivalently, some
distance between the signatures. For example, degree matching simply uses the vertex
degree as the signature. In addition, spectral method can be viewed as assigning the
i th entry in the leading eigenvector(s) of the matrix A (resp. B) as the signature μi

(resp. νi ). However, these signatures are highly sensitive to noise. Indeed, it can be
shown that (cf. Remark 1 in Sect. 2) for degree sorting to yield the exact matching,
the minimum spacing between the ordered degrees needs to overcome the effective
noise, which entails δ = õ(q2). For spectral methods, due to the lack of low-rank
structure and the vanishing spectral gap of Erdős-Rényi graphs, the eigenstructure is
extremely fragile. Indeed, it can be shown via perturbation bounds that even for dense
graphs, matching via top eigenvectors requires δ = O(n−c) for some constant c to
succeed, which agrees with the numerical experiments in Sect. 5. Therefore, to deal
with sparser graphs and smaller edge correlation, we need to find better signatures that
are more robust to random perturbation.

Note that in the absence of any label information, we can only compute signatures
that are permutation-invariant. The main finding of this work is that degree profiles,
that is, empirical distribution of the degrees of neighbors, can be used as a signature
which is significantly more noise-resilient than degrees or eigenvectors. Using a suit-
able distance between distributions to construct the matching (see the forthcoming
Algorithm 1), this allows us to correctly match graphs that differ by almost linear
number of edges. Specifically, for each vertex i in A, its degree profileμi is defined as
the empirical distribution of the degrees of i’s neighbors. Similarly, for each vertex k
in B, let νk denote its degree profile. Then we match vertex i to vertex k which mini-
mizes the total variation (L1-distance) between the appropriately discretized versions
of μi and νk (into polylog(n) bins). The intuitive explanation for why this works is
the following:

– if k = π∗(i), whichwe call a “true pair”, then they have a large number of common
neighbors, whose degrees, thanks to the edge correlations between A and B, are
correlated random variables, which tend to lie in the same bin. This leads to a small
distance between the degree profiles μi and νk ;

– if k �= π∗(i), whichwe call a “fake pair”, thenμi and νk are empirical distributions
consisting mainly independent samples, and their distance is typically large.

Clearly, in reality the situation is significantly more complicated due to various depen-
dencies and the possibility that fake pairs can still have a non-negligible number of
common neighbors. Furthermore, since for each vertex there exists a unique match but
manymore (n−1) potential mismatches, one needs to carefully control the total varia-
tion distance between degree profiles for true pairs and fake pairs as well as their large
deviation behavior (their distance being atypically small). Nevertheless, our analysis
rigorously justifies the above intuition and shows the distance statistic for true pairs
and fake pairs are indeed separated with high probability under the condition (3).
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34 J. Ding et al.

Ideas related to degree profiles have been used for the random graph isomorphism
problem. In particular, it is shown in [16,38] that degree neighborhood (i.e., the mul-
tiset of the degrees of neighbors of each vertex) constitutes a canonical labeling for

G(n, q) with high probability provided that q � log2 n
n . In the absence of noise, it

suffices to prove that the degree neighborhoods of different vertices are distinct with
high probability. However, how to match vertices in the noisy case and by how many
edges the two graphs can differ is far less clear. In fact, although degree neighborhood
(multiset) contains the same amount of information as degree profile (empirical dis-
tribution), for the development of our matching algorithm as well as the analysis, it
is crucial to adopt the view of degree profiles as probability measures, which enables
us to construct a greedy matching based on natural distances between probability
distributions. The main observation is that although each degree profile is centered
around the same mean (binomial distribution), the stochastic fluctuations are nearly
independent for fake pairs and correlated for true pairs. This perspective allows us to
leverage insights from empirical process theory to study the large deviation behavior
of distances between degree profiles.

For relatively dense graphs with edge probability q = exp(−O(log1/3 n)), we
further relax the condition from δ � log−2 n to δ � log−2/3 n by combining the degree
profilematchingwith vertex degrees in conjunction with the paradigm of seeded graph
matching (cf. Algorithm 2). In particular, we show that even if for some vertices the
distance statistics between degree profiles of fake pairs can be smaller than that of
the true match, with high probability this does not occur for vertices of sufficiently
high degrees. Although the matched high-degree vertices occupy only a vanishing
fraction of the vertex set, they provide enough initial “seeds” (correctly matched
pairs) to match the remaining vertices with high probability under the condition (4).
A key challenge in the analysis is to carefully control the dependency between vertex
degrees and degree profiles, and to characterize the statistical correlation among vertex
degrees. Furthermore, we provide an efficient seeded graph matching subroutine via
maximum bipartite matching, which is guaranteed to succeed with Ω(

log n
q ) seeds,

even if the seed set is chosen adversarially. A different seeded matching algorithm
was previously proposed in [4] allowing possibly incorrect seeds and assuming a
relaxed condition on the graph sparsity; however, the number of seeds needed in the
worst-case is Ω(max{ log nq , qn log n}) (see the condition in Lemma 3.21 and before
Lemma 3.26 in [4]), which cannot be afforded in the dense regime.

Note that degree profile matching is a local algorithm that uses only 2-hop neigh-
borhood information for each vertex. It turns out that for relatively sparse graphs with
edge probability q ≤ n−ε for a fixed constant ε > 9/10, we can further relax the
condition from δ � log−2(n) to δ � log−2(nq), using the 3-hop neighborhood infor-
mation. This is carried out in three steps: for each neighbor j of vertex i in A and each
neighbor j ′ of vertex k in B, we first compute the total variation distance between the
degree profiles of j and j ′ as before, and then threshold the distances to construct a
bipartite graph between the neighbors of vertex i and the neighbors of vertex k, and
finally define a similarity scoreWik as the size of the maximummatching of this bipar-
tite graph (cf. Algorithm 4). We show that these new similarity measures for true pairs
and fake pairs are separated with high probability under the condition (5). Finally,
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we mention that in the noiseless case, the algorithm of [7] that achieves the optimal
threshold for sparse graphs (with average degree polylog(n)) uses as the signature the
distance sequence of each vertex, which consists of the number of 
-hop neighbors
for 
 from 1 up to Θ(

log n
log log n ). This significantly improves the performance of degree

matching [3]. It remains open whether local algorithms that use larger neighborhood
information can further improve the graph matching performance in the noisy case.

1.4 Further related work

Convex relaxation There exists a large body of literature on convex relaxation of the
graph matching problem; for a comprehensive discussion we refer the reader to [19].
One popular approach is doubly stochastic relaxation, which entails replacing the
objective (1) by minimizing ‖AX − XB‖2F , with ‖ · ‖F standing for the Frobenius
norm, and relaxing the decision variable X from the set of permutation matrices into
its convex hull, i.e., all doubly stochastic matrices [1,21]. This leads to a quadratic
programming problem which is solvable in polynomial time but still much slower
than the degree profile algorithm. Some initial statistical analysis for the correlated
Erdős-Rényi graphmodel was carried out in [34]; however, its performance guarantees
remain far from being well-understood.

There exists a conceptual connection between the degree profile matching algo-
rithm and the doubly stochastic relaxation. In graph theory, two graphs are said to
be fractionally isomorphic if their adjacency matrices A and B satisfy AX = XB
for some doubly stochastic matrix X . A result due to Ramana, Scheinerman, and
Ullman (cf. [49, Theorem 6.5.1]) states that a necessary and sufficient condition for
fractional isomorphism is that two graphs have identical iterated degree sequences;
see [49, Sec. 6.4] for a precise definition. In particular, the first term of the iterated
degree sequence corresponds to the degree distribution of the graph (i.e. the empirical
distribution of the vertex degrees), while the second term is precisely the empirical
distribution of degree profiles. In this perspective, our algorithm can be thought as
using the leading two terms in the iterated degree sequence to construct the matching.
Thus it is to be expected that degree profile matching algorithm outperforms degree
matching but not the doubly stochastic relaxation.

Another approach is the semidefinite programming (SDP) relaxation for QAP [56]
which is provably tighter than the doubly stochastic relaxation (cf. [29]). However, this
entails solving an SDP in the lifted domain of n2×n2 matrices and the computational
cost becomes prohibitively high even for moderate n.
Seeded Graph Matching Another recent line of work [22,30,35,46,51,55] in graph
matching considers a relaxed version of the problem, where an initial seed set of
correctly matched vertex pairs is revealed. This is motivated by the fact that in many
practical applications, some side information on the vertex identities is available and
has been successfully utilized to match many real-world networks [41,42]. It is shown
in [55] that if nq = Θ(log n) and the number of seeds is Ω(n/(s2 log n)4/3), then a
percolation-based graph matching algorithm correctly matches all but o(n) vertices in
polynomial time with high probability. Another work [30] shows that if q < 1/6, then
with at least 24 log n/(qs2) seeds, one can match all vertices correctly in polynomial
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time with high probability. More recently, it is shown in [39] that the information-
theoretic limit nqs ≥ log n + ω(1) in terms of the graph sparsity can be attained in
polynomial time, provided that s = Θ(1) and the number of seeds is Ω(n3ε) in the
sparse graph regime (nq ≤ nε for ε < 1/6) andΩ(log n) in some dense graph regime.

1.5 Notation and organization

Denote the identity matrix by I. We let ‖X‖F denote the Frobenius norm of a matrix
X and ‖x‖2 denote the 
2 norm of a vector x . For any positive integer n, let [n] =
{1, . . . , n}. For any set T ⊂ [n], let |T | denote its cardinality and T c denote its
complement. Let δx denote the Dirac measure (point mass) at x . We say a sequence of
events En indexed by a positive integer n holds with high probability, if the probability
of En converges to 1 as n → +∞. Without further specification, all the asymptotics
are taken with respect to n→∞. All logarithms are natural and we use the convention
0 log 0 = 0. For two real numbers a and b, we use a ∨ b = max{a, b} (resp. a ∧ b =
min{a, b}) to denote the maximum (resp. minimum) between a and b. We denote
by Bern(p) the Bernoulli distribution with mean p and Binom(n, p) the Binomial
distribution with n trials and success probability p.

The rest of the paper is organized as follows: In Sect. 2, we provide a self-contained
account of the problem ofmatching twoWigner randommatrices. This part is intended
as a warm-up for Erdős-Rényi graphs and serves to explain the main intuition behind
the degree profile algorithms and the connection to empirical process theory and
small ball probability. Section 3 describes the matching algorithms for the correlated
Erdős-Rényi model and presents their theoretical guarantees. Specifically, Sect. 3.2
introduces the main algorithm for degree profile matching, with further improvements
given in Sects. 3.3 and 3.4 for dense and sparse graphs, respectively. Section 4 pro-
vides the proof of correctness, with some auxiliary lemmas deferred to Appendix
A. Appendix B contains our seeded graph matching result. Empirical evaluations of
various algorithms on both simulated and real graphs are given in Sect. 5.

2 Warm-up: matching GaussianWigner matrices

In this section we take a slight detour to consider the Gaussian version of the graph
matchingproblem,which can also be viewed as a statisticalmodel for theQAPproblem
(1) with correlated Gaussian weights. Although the proofs for correlated Erdős-Rényi
graphs do not exactly follow the same program, by studying this simpler model, we
aim to convey the main idea behind the degree profile algorithm and sketch how to
deduce the theoretical guarantees from results in empirical process theory and small
ball probability.

2.1 CorrelatedWigner model

Consider two random symmetric matrices A and B ′, whose entries {(Ai j , B ′i j ) : 1 ≤
i ≤ j ≤ n} are iid correlated standard normal pairs with correlation coefficient ρ,
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i.e., (Ai j , B ′i j )
i.i.d.∼ N (0, ( 1 ρ

ρ 1 )). In other words, A and B ′ are two correlated Wigner
matrices. Let π∗ ∈ S(n) be a permutation on [n] and Π∗ be its corresponding n × n
permutation matrix. Let B = Π∗B ′(Π∗)�. Observing the two matrices A and B, the
goal is to estimate the latent permutation π∗ correctly with high probability.

Without loss of generality, we assume ρ > 0 and let ρ = √1− σ 2 for some 0 <

σ 2 < 1, and, furthermore, Π∗ = I. Therefore, we can write B = √1− σ 2A + σ Z ,
where A and Z are two independent Wigner matrices.

2.2 Matching via empirical distributions

Next we describe a procedure for matching Wigner matrices as well as an improved
version, which serve as the precursors to Algorithms 1 and 2 for Erdős-Rényi graphs.

The main idea is to use the empirical distribution of each row as the signature,
and rely on appropriate distance between distributions to construct the matching.
Specifically, for each i , define

μi = 1

n

n
∑

j=1
δAi j

which is the empirical distribution of the i th row of A. Similarly, define

νk = 1

n

n
∑

j=1
δBkj

for the B matrix.Marginally, for any i, k, bothμi and νk are the empirical distributions
of n standard normal samples. The difference is that if i and k form a true pair, the
samples are correlated; otherwise, the samples are independent.4 Therefore, assuming
the underlying permutation is the identity, (μi , νk) behave in distribution as two n-
point empirical distributions

μ = 1

n

n
∑

j=1
δX j , ν = 1

n

n
∑

j=1
δY j (6)

according to two cases:

– For “true pairs” (i = k), the X and Y samples consist of independent correlated
pairs, namely,

(X1,Y1), . . . , (Xn,Yn)
i.i.d.∼ N

(

0,
[

1 ρ
ρ 1

])

. (7)

4 To be precise, all but two elements (namely, Aik and Bki ) are independent. This can be easily dealt
with by excluding those two from the empirical distribution, which, by the triangle inequality, changes the
distance statistic by at most 1

n .
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– For “fake pairs” (i �= k), the X and Y sample are independent, namely,

(X1, . . . , Xn,Y1, . . . ,Yn)
i.i.d.∼ N (0, 1). (8)

Therefore, although both empirical distributions have the same marginal distribution,
for true pairs the atoms are correlated and the two empirical distributions tend to be
closer than the typical distribution for fake pairs. This offers a test to distinguish true
and fake pairs.

Now we introduce our procedure. For two probability measures μ and ν, we define
their distance via the L p-distance between their cumulative distribution function
(CDF) F and G:

dp(μ, ν) � ‖F − G‖p =
(∫

R

dt |F(t)− G(t)|p
)1/p

, (9)

where p ∈ [1,∞] is some fixed constant. e.g.,

– p = 1: 1-Wasserstein distance,
– p = 2: Cramér-von Mises goodness of fit statistic,
– p = ∞: Kolmogorov-Smirnov distance;

the asymptotic performance of the algorithm turns out to not depend on p. For each
vertex i , we match it to the vertex k that minimizes the distance statistic Zik �
dp(μi , νk). Next we show that when σ ≤ c

log n for sufficiently small constant c, this
algorithm succeeds with high probability.

To this end, let us recall the central limit theorem of empirical processes (cf. [52]).
Let Fn and Gn denote the empirical CDF of Xi ’s and Yi ’s, respectively, i.e.,

Fn(t) = 1

n

n
∑

i=1
1{Xi≤t}, Gn(t) = 1

n

n
∑

i=1
1{Yi≤t}.

Let Φ denote the standard normal CDF on the real line. Then it is well-known that, as
n → ∞,

√
n(Fn − Φ) converges in distribution to a Gaussian process {Bt : t ∈ R},

with covariance function Cov(Bs, Bt ) = min{Φ(s),Φ(t)} − Φ(s)Φ(t). In fact, B is
a time change of the standard Brownian bridge, which is the limiting process if the
samples are drawn from the uniform distribution on [0, 1]. Similarly,

√
n(Gn − Φ)

converges in distribution to another Gaussian process B ′ with the same distribution as
B.

Next we analyze the behavior of true pairs. To get a sense of the order of magnitude
of the distance statistic, let us consider the special case of p = 2 for convenience, for
which direct calculation suffices. Define F(s, t) = P {X ≤ s,Y ≤ t}. Note that we

can write Y = √1− σ 2X + σ Z , where X , Z
i.i.d.∼ N (0, 1). Then
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E[‖Fn − Gn‖22] =
∫

R

E[(Fn(t)− Gn(t))
2]dt

(a)= 2

n

∫

R

(F(t)− F(t, t))dt

= 2

n

(∫ 0

−∞
(F(t)− F(t, t))dt +

∫ +∞

0
((1− F(t, t))− (1− F(t))) dt

)

(b)= 2

n
(E [max(X , Y )]− E [X ])

= 2

n
E [max(X , Y )]

(c)= 2

n

1√
π

√

1− ρ = 2

n

1√
π

√

1−
√

1− σ 2
︸ ︷︷ ︸

Θ(σ)

, (10)

where (a) is due to E[(Fn(t) − Gn(t))2] = 1
nE[(1{X≤t} − 1{Y≤t})2] = P {X ≤ t} +

P {Y ≤ t}−2P {X ≤ t,Y ≤ t}; (b) follows because E [U ] = ∫ +∞0 (1− FU (u)) du−
∫ 0
−∞ FU (u)du for any random variable U whenever at least one of the two integrals
is finite; (c) follows from directly differentiating the moment generating function of
max(X ,Y ), see e.g., [40, Eq. (9)]. In fact, one can show that for small σ , for any
1 ≤ p ≤ ∞,

‖Fn − Gn‖p = OP

(√

σ

n

)

. (11)

Indeed, by the central limit theorem for bivariate empirical processes, as n → ∞,√
n(Fn−Φ,Gn−Φ) converges in distribution to a Gaussian process (B, B ′) indexed

by R, which satisfies Cov(Bt , B ′t ) = P {X ≤ t,Y ≤ t} − P {X ≤ t}P {Y ≤ t}, and
furthermore

√
n‖Fn − Gn‖p → ‖B − B ′‖p in distribution. Since E|Bt − B ′t |2 =

2(Φ(t) − P {X ≤ t,Y ≤ t}), following the same calculation that leads to (10), we
have E[‖B − B ′‖22] = Θ(σ), which corresponds to (11) for p = 2.

Next, we turn to the behavior of fake pairs. Since B and B ′ are independent and
since B − B ′ law= √

2B, we expect
√
n‖Fn − Gn‖p → ‖B − B ′‖p (see [5, Theorem

1.1] for the precise statement). In particular, we have

‖Fn − Gn‖p = ΘP

(

1√
n

)

. (12)

Comparing (11) and (12), we see that the typical distance for true pairs is smaller than
that of fake pairs by a factor of

√
σ . However, since there are n−1 wrong matches for

a given vertex, we need to consider the large-deviation behavior of (12). Recall the
classical result from the literature of small ball probability; see [31] for an excellent
survey. Let B be some Gaussian process e.g. the Brownian bridge defined on R. Then
the probability for the process to be contained in a small ball of radius ε behaves as
(cf. [31, Sec. 4 and 6.2])
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P
{‖B‖p ≤ ε

} ≤ exp

(

−Θ

(

1

ε2

))

(13)

for some constant C . Indeed, one can show that

P

{

‖Fn − Gn‖p ≤
√

σ

n

}

≤ exp

(

−Θ

(

1

σ

))

. (14)

Setting this probability to o( 1
n2

) and applying a union bound, we conclude that the
matching algorithm succeeds with high probability if σ ≤ c

log n for sufficiently small
constant c.

2.3 Improvement with seededmatching

In this subsection we improve the previous matching algorithm with empirical distri-
butions to σ = O((log n)−1/3). To this end, we turn to the idea of seeded matching.
Given a partial permutation that gives the correct matching for a subset of vertices,
which we call seeds, one can extend it to a full matching by various methods, e.g.,
by solving a bipartite matching (see Algorithm 3). It turns out for Wigner matrices, it
suffices to obtainΩ(log n) seeds, which can be found by combining both the distance-
basedmatching and degree thresholding. The same idea applies toErdős-Rényi graphs,
except that for edge density p, the number of seeds needed is Ω(

log n
p ), a fact which

will be exploited in Sect. 4.2.
To explain the main idea, let ai = 1√

n

∑n
j=1 Ai j and bk = 1√

n

∑n
j=1 Bkj be the

standardized row sums, which are the counterparts of “degrees” for Gaussianmatrices.
Consider the set of pairs (i, k) such that both ai and bk exceed some threshold ξ .

Then for any fake pair i �= k, by independence, we have

P {ai ≥ ξ, bk ≥ ξ} = P {ai ≥ ξ}P {bk ≥ ξ} = Q(ξ)2,

where Q � 1 − Φ is the complementary CDF for the standard normal distribution.
For true pairs, since we have the representation

bi =
√

1− σ 2ai + σ zi , (15)

where ai , zi
i.i.d.∼ N (0, 1), we have

P {ai ≥ ξ, bi ≥ ξ} ≥ P

{

ai ≥ ξ√
1− σ 2

, zi ≥ 0

}

≥ 1

2
Q

(

ξ√
1− σ 2

)

≥ Q(ξ) exp(−O(σ 2ξ2)).

Now let us consider the seed set consisting of those high-degree pairs i and k whose

empirical distributions satisfy dp(μi , νk) �
√

σ
n . Thus to create enough seeds, we

need
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nQ(ξ) exp
(

−O(σ 2ξ2)
)

≥ Ω(log n), (16)

and to eliminate all fake pairs we need (in view of the small-ball estimate (14))

n2Q(ξ)2 exp
(

−Ω
(

σ−1
))

= o(1). (17)

Choosing ξ = Θ(
√
log n) and substituting it into (16), we get that Q(ξ) =

Ω
(

log n
n

)

exp(O(σ 2 log n)). Substituting this back into (17), we conclude that σ ≤
c

(log n)1/3
for some small constant c suffices.

We end this section with a few remarks:

Remark 1 (Order statistics) As described in Sect. 1.3, degree matching fails unless the
fraction of differed edges is polynomially small. Similarly, for the Gaussian model
directly sorting the degrees (row sums) in bothmatrices fails to yield the correctmatch-
ing unless σ ≤ n−c for some constant c. Indeed, sort the row sums ai ’s decreasingly
as a(1) ≥ . . . ≥ a(n) and similarly for b(1) ≥ . . . ≥ b(n). Thus, degree matching
amounts to match the vertices according to the sorted degrees. Since ai ’s are iid stan-
dard normal, it is well-known from the extreme value theory [18] that, with high
probability, the order statistics behaves approximately as a(i) ≈ Φ−1(i/n) which is

approximately
√

2 log n
i for i ≤ n/2 and −

√

2 log n
n+1−i for i ≥ n/2. In particular,

a(1) = amax ≈ √2 log n and a(n) = amin ≈ −√2 log n. Furthermore, the i th spacing
of the order statistics is approximately

√

2 log
n

i
−
√

2 log
n

i + 1
= Θ

⎛

⎝

1

i
√

log n
i

⎞

⎠ (18)

Therefore, and intuitively so, for most of the samples the spacing is as small as Θ( 1n ).

In view of (15), we can write bi = ai + Δi , where Δi = (
√
1− σ 2 − 1)ai + σ zi .

Thus degree matching succeeds if |Δi | ≤ min{|ai−1−ai |, |ai −ai+1|} for all i . Since
|zi | ≤ O(

√
log n) and |ai | ≤ O(

√
log n) for all i with high probability, this shows that

degree matching requires very small noise σ = o( 1
n
√
log n

), which is much worse than
degree profiles. Simulation shows that this condition is necessary up to logarithmic
factors.

Following the same idea in this subsection, an immediate improvement is to use
degree matching to produce enough seeds to initiate the seeded graph matching pro-
cess. Indeed, this is possible because the spacing of the first few order statistics is much
bigger and more robust to noise. More precisely, in order to produce Ω(log n) seeds,
it suffices to ensure that the minimum spacing of the first i order statistics, which is at
least ˜Ω( 1

i2
√
log n

), far exceeds the noise which is O(σ
√
log n). With i = Θ(log n), this

translates to σ = o( 1
(log n)4

), which is comparable to but still worse than the guarantee

of degree profiles of σ = O( 1
log n ) as established in Sect. 2.2. More importantly, a

fundamental limitation of degree matching is that it fails for sparse graphs, because
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the number of seeds needed is Ω(
log n
q ) where q is the edge density of the observed

graphs (cf. Lemma 18 and [30, Theorem 1]). Following the similar analysis above
for binomial distribution, for the correlated Erdős-Rényi graph model G(n, q; 1− δ),
it is well-known that (cf. [8, Theorem 3.15]) the minimum of the first i spacing of

sorted degrees is ˜Ω(
√
nq
i2

)with high probability and the degrees of a true pair differ by

at most ˜O(
√

δnq). Thus, producing Ω(
log n
q ) seeds requires the deletion probability

to be as small as δ = õ(q4). This explains the recent result of [17], which shows
that degree-matching algorithm with seeded improvement succeeds under some extra
conditions.

Remark 2 (From Gaussian matrices to Erdős-Rényi graphs) To extend the matching
algorithm based on empirical distributions from Gaussian matrices to Erdős-Rényi
graphs, the main difficulty is that Bernoulli random variables are zero-one valued
and hence directly implementing the same empirical distribution matching algorithm
using adjacency matrices does not work. As mentioned in Sect. 1.3, the idea is to
use the degree profile of each vertex, that is, the empirical distribution of the degrees
of the neighbors, each of which is binomially distributed and well-approximated by
Gaussians. Indeed, the ideas in Sects. 2.2 and 2.3 lead to Algorithms 1 and 2,
respectively, for Erdős-Rényi graphs. However, the major technical difficulty is to
address the dependency in the degree profiles. In the Gaussian case, each pair of
degree profiles follows the simple dichotomy in (7)–(8), behaving as a pair of empirical
distributions of correlated (resp. independent) samples for true (resp. fake) pairs. This
is no longer the case for Erdős-Rényi graphs. For this reason, the approach for Erdős-
Rényi graphs deviates from the program for Gaussian matrices, in that the algorithms
in Sect. 4 are based on a quantized version of the total variation distance as opposed
to distances between empirical CDFs, and the analysis in Sect. 4 does not explicitly
resort to empirical process theory, although it is still guided by similar intuitions.

3 Matching algorithms for correlated Erdős-Rényi graphs

3.1 Preliminary definitions

For each vertex i , define its open neighborhood NA(i) (resp. NB(i)) in graph A
(resp. B) as the set of vertices connecting to i by an edge in A (resp. B); define
its closed neighborhood NA[i] (resp. NB[i]) in graph A (resp. B) as the union of its
open neighborhood in A (resp. B) and {i}.

Denote the degrees by

ai = |NA(i)| =
∑

j∈[n]
Ai j (19)

bi = |NB(i)| =
∑

j∈[n]
Bi j . (20)
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For each i and j , define

a(i)
j = 1√

(n − ai − 1)q(1− q)

∑


/∈NA[i]
(A
 j − q) (21)

b(i)
j =

1√
(n − bi − 1)q(1− q)

∑


/∈NB [i]
(B
 j − q), (22)

Note that a(i)
j (resp. b(i)

j ) can be viewed as the standardized version of the “outdegree”
of vertex j by excluding i’s closed neighborhood in A (resp. B).

To each vertex i in A, attach a distribution which is the empirical distribution of
the set {a(i)

j : j ∈ NA(i)}:

μi � 1

ai

∑

j∈NA(i)

δ
a(i)
j

, (23)

and the centered version (viewed as a signed measure)

μ̄i � μi − Binom(n − ai − 1, q), (24)

where Binom(k, q) denotes the standardized binomial distribution, that is, the law of
X−kq√
kq(1−q)

for X ∼ Binom(k, q). The centering in (24) is due to the fact that conditioned

on the neighborhood NA(i), each a( j)
i is distributed asBinom(n−ai−1, q)marginally.

Similarly, for B we define

νi � 1

bi

∑

j∈NB (i)

δ
b(i)
j

. (25)

and the centered version

ν̄i � νi − Binom(n − bi − 1, q). (26)

Intuitively,μi is the degree profile for the neighbors of i in A, if the summation in (21)
is over all [n]. We exclude edges within the neighborhood itself to reduce dependency
and simplify the analysis. Note that conditioned on NA(i), {a(i)

j : j ∈ NA(i)} are
iid as Binom(n − ai − 1, q); conditioned on NB(i), {b(i)

j : j ∈ NB(i)} are iid as

Binom(n − bi − 1, q).
Fix L ∈ N to be specified later. Define I1, . . . , IL as the uniform partition of

[−1/2, 1/2] such that |I
| = 1/L . For each i and k, define the following distance
statistic:

Zik �
∑


∈[L]
|μ̄i (I
)− ν̄k(I
)|. (27)
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In other words,

Zik = d(μ̄i , ν̄k) � ‖[μ̄i ]L − [ν̄k]L‖1, (28)

where [μ]L denotes the discretized version of μ according to the partition I1, . . . , IL ,
with

[μ]L(
) � μ(I
), 
 ∈ [L]. (29)

Throughout the rest of the paper, for simplicity we use the parameterization

s � 1− σ 2, δ � σ 2 (30)

to denote the sampling and deletion probability respectively, where σ corresponds to
the magnitude of the “effective noise”.

3.2 Matching via degree profiles

We present our first algorithm which matches the vertices in A to vertices in B based
on the pairwise distance statistic {Zik} in (27).

Algorithm 1 Graph matching via degree profiles
1: Input: Graphs A and B on n vertices, an integer L .
2: Output: A permutation π̂ ∈ Sn .
3: For each i, k ∈ [n], compute Zik in (27).
4: Sort {Zik : i, k ∈ [n]} and let S be the set of indices of the smallest n elements.
5: if S defines a perfect matching on [n], i.e., S = {(i, π̂(i)) : i ∈ [n]} for some permutation π̂ then
6: Output π̂ ;
7: else
8: Output error.
9: end if

The key intuition underlying Algorithm 1 is as follows:

– For true pairs k = π∗(i), we expect i and k to share many (about nqs) “common
neighbors” j , in the sense that j is i’s neighbor in A and π∗( j) is k’s neighbor
in B. For each such common neighbor j , its outdegree a(i)

j in A is statistically

correlated with the outdegree b(k)
π∗( j) in B. As a consequence, the two empirical

distributions are strongly correlated, leading to a small distance Zik .
– Forwrong pairs k �= π∗(i), we expect i and k share very few (about nq2) “common
neighbors”.Hence, the two empirical distributionsμi and νk areweakly correlated,
leading to a large distance Zik .

Remark 3 (Time complexity) Implementing Algorithm 1 entails three steps. First, we
precompute all outdegrees. Assuming the graph is represented as an adjacency list
and the list of degrees are given, for each i and each j ∈ NA(i), we have a(i)

j =
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a j − 1 − |NA(i) ∩ NA( j)|, where a j is the degree of j and |NA(i) ∩ NA( j)| is
the number of common neighbors, which can be computed in O(ai + a j ) time. Thus,
computing all outdegrees can be done in time that is

∑

i∼ j O(ai+a j ) = O(
∑

i a
2
i ) =

O(|E ||dmax|).5 Next,we compute thediscretized andcentereddegreeprofiles [μ̄i ]L for
each i in graph A and [ν̄k]L for each k in graph B. These are identified as L-dimensional
vectors (where L = polylog(n)) and can be done in ˜O(|E |) time. Finally, we compute
the distance statistic Zik in (27) for all pairs i and k and implement greedy matching
via sorting. Since Zik is the 
1-distance between two L-dimensional vectors, this step
can be computed in a total of ˜O(n2) time. In summary, the total time complexity of
Algorithm 1 is at most ˜O(|E ||dmax|+ |V |2), which, for Erdős-Rényi graphs under the
assumption of Theorem 1, reduces ˜O(n3q2 + n2).

The reason we use outdegrees instead of degrees in Algorithm 1 is a technical one,
which aims at reducing the dependency and facilitating the theoretical analysis. In
practice we can use degree profiles defined through the usual degrees and empirically
the algorithm performs equally well. In this case, the time complexity reduces to
˜O(n2).

Theorem 2 (Performance guarantee of Algorithm 1) Let s = 1− σ 2 and q ≤ q0 for
some sufficiently small positive constant q0. Assume that

σ ≤ σ0

log n
, (31)

for some sufficiently small absolute constant σ0. Set

L = L0 log n (32)

and assume that

nq ≥ C0 log
2 n (33)

for some large absolute constants L0,C0. Then with probability 1 − O(1/n), Algo-
rithm 1 outputs π̂ = π∗.

3.3 Dense graphs: combining with high-degree vertices

For relatively dense graphs, Algorithm 1 can be improved as follows. Recall the
notion of seeded graph matching previously mentioned in Sect. 2.3, where a number
of correctly matched vertices are given, known as seeds, and the goal is to match the
remaining vertices. It turns out that forG(n, q), providedm = Ω(

log n
q ) seeds, solving

a linear assignment problem (maximum bipartite matching) can successfully match
the rest of the vertices with high probability. Note that the condition σ = O((log n)−1)
in Theorem 2 ensures Algorithm 1 succeeds in one shot, in the sense that with high

5 Alternatively, outdegrees canbe computedvia the number of commonneighbors by squaring the adjacency
matrix using fast matrix multiplication.
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probability the distance statistics are below the threshold for all n true pairs and above
the threshold for all

(n
2

)

wrong pairs. Thus, we can weaken this condition so that even
if the distance statistics for most of the pairs are not correctly separated, those high-
degree vertices can provide enough seeds that allow bipartite matching to succeed.
This idea leads to the improvement to σ = O((log n)−1/3) when the edge density
q = exp(−O((log n)1/3)).

Specifically, fix some thresholds τ and ξ . Consider the collection of pairs of vertices
whose degrees are atypically high and the degree profiles are close:

S = {(i, k) : ai ≥ τ, bk ≥ τ + 1, Zik ≤ ξ}. (34)

We show that, with high probability,

1. S does not contain any fake pairs, i.e., (i, k) /∈ S for any k �= π∗(i).
2. S contain enough true pairs, i.e., |S| = Ω(

log n
q ).

Finally, we use the matched pairs in S as seeds to resolve the rest of the matching
by linear assignment; this is done in Algorithm 3. The full procedure is given in
Algorithm 2.

As for the time complexity, compared to Algorithms 1, 2 has an extra step of
computing the maximummatching on an n×n unweighted bipartite graph, which can
be done in either O(n3) time using Ford–Fulkerson algorithm [23] or O(n2.5) time
using the Hopcroft–Karp algorithm [25].

Algorithm 2 Combining degree profiles and large-degree vertices
1: Input: Graph A and B on n vertices; thresholds τ, ξ > 0.
2: Output: A permutation π̂ ∈ Sn .
3: Compute the distance statistic Zik for each i, k ∈ [n]. Let S be given in (34).
4: if S defines a matching, i.e., there exists S ⊂ [n] and an injection π0 : S → [n], such that S =
{(i, π0(i)) : i ∈ S}, then

5: Run Algorithm 3 using π0 as the seeds and output π̂ .
6: else
7: output error;
8: end if

Theorem 3 (Performance guarantee of Algorithm 2) Assume that q ≤ q0 and

σ ≤ σ0 min

{

1

(log n)1/3
,

1

log log n
q

}

, (36)

for some small absolute constants q0, σ0. Define

α �
(

α0
log n

nq

)
(1−p)s
1−q

(37)
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Algorithm 3 Seeded graph matching
1: Input: Graphs A and B on n vertices; a bijection π0 : S→ T , where S, T ⊂ [n];
2: Output: A permutation π̂ ∈ Sn .
3: For each i ∈ Sc and each k ∈ T c , define nik =

∑

j∈S Ai j Bkπ0( j).
4: Define a bipartite graph with vertex set Sc × T c and adjacency matrix H given by Hik = 1{nik≥κ} for

each i ∈ Sc and each k ∈ T c , where κ = 1
2 |S|qs. Find a maximum bipartite matching of H , i.e., a

perfect matching π̃1 between Sc and T c such that π̃1 ∈ argmaxπ w(π), where

w(π) �
∑

i∈Sc
Hiπ(i). (35)

Let π1 denote a perfect matching on [n] such that π1|S = π0 and π1|Sc = π̃1.
5: For each i, k ∈ [n], define wik =

∑n
j=1 Ai j Bkπ1( j).

6: Sort {wik : i, k ∈ [n]} and let T be the set of indices of the largest n elements.
7: if T defines a perfect matching on [n], i.e., T = {(i, π̂(i)) : i ∈ [n]} for some permutation π̂ then
8: Output π̂ ;
9: else
10: Output error;
11: end if

and

L = L0 max

{

log1/3(n), log
log n

q

}

(38)

for some large absolute constants α0, L0. Let

τ � min {0 ≤ k ≤ n : P {Binom(n − 1, q) ≥ k} ≤ α} , (39)

and

ξ = C

√

L

nq
(40)

for some absolute constant C. Assume that

nq2 ≥ C0 log
2 n (41)

for some large absolute constant C0. Then with probability 1−O
(

q
log n

)

, Algorithm 2

outputs π̂ = π∗.
We briefly explain the choice of parameters and the condition (36) on σ . According

to (39), the threshold τ is chosen to be the (1−α)-quantile of ai , so thatP {ai ≥ τ } ≈ α.
The crucial observation is the following:

– For true pairs k = π∗(i), the degrees ai and bk are both sampled from the same
vertex in the parent graph and are hence positively correlated. Indeed, we have

P {ai ≥ τ, bk ≥ τ + 1} = Ω

(

α
1−q

(1−p)s

)

, k = π∗(i). (42)
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Here the exponent 1−q
(1−p)s is slightly bigger than one:

1− q

(1− p)s
= 1+ 1− s

(1− p)s
= 1+ σ 2

(1− p)s
. (43)

– For fake pairs k �= π∗(i), the degrees ai and bk are almost independent, and indeed
we have

P {ai ≥ τ, bk ≥ τ + 1} = O
(

α2
)

, k �= π∗(i). (44)

Both (42) and (44) will be made precise in Lemma 3.
In order for Algorithm 2 to succeed, on the one hand, we need to ensure the seed

set S in Algorithm 2 contains at least Ω(
log n
q ) correctly matched pairs. Indeed, under

the condition L = O(1/σ) and the choice of ξ in (40), we will show that for any true
pair (i, k) the distance statistic Zik is below ξ with high probability. Thus, we have in
expectation:

E[|S|] (42)≥ nα
1−q

(1−p)s
(37)= α0

log n

q
,

and we will show that this holds with high probability as well.
On the other hand, we need to ensure that no fake pair is included in S with high

probability. We will show that for any wrong pair (i, k), Zik ≤ ξ with probability
at most e−Ω(L) (see Lemma 2). By the union bound, in view of (44), it suffices to
guarantee that

n2α2 exp (−Ω(L))
(37)= n2

(

α0
log n

nq

)2 (1−p)s
1−q

exp (−Ω(L))

(43)≤
(

α0
log n

q

)2

exp

(

2σ 2

1− q
log n −Ω(L)

)

= o(1). (45)

Also, recall that L = O(1/σ). Thus, the desired (45) holds provided that σ �
1

(log n)1/3
∧ 1

log log n
q

, and q is bounded away from 1, by choosing L � (log n)1/3 ∨
log log n

q .
Finally, we mention that since the seed set obtained from Algorithm 1 and degree

thresholding depends on the entire graph, the analysis of Algorithm 2 entails a worst-
case analysis of the seededmatching subroutine. This is done inLemma19 inAppendix
B, which guarantees the correctness of Algorithm 3 even for an adversarially chosen
seed set.
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3.4 Sparse graphs: matching via neighbors’degree profiles

For relatively sparse graphs, we can improve the condition from σ = O(1/ log(n)) to
σ = O(1/ log(nq)) by comparing neighbors’ degree profiles. Next we describe our
improved local algorithm, which uses the information of 3-hop neighborhoods.

We start with some basic definitions. The 
-hop neighborhood of i in graphG is the
subgraph ofG induced by the verticeswithin distance 
 from i . Let ˜NA(i) (resp. ˜NB(i))
denote the set of vertices in the 2-hop neighborhood of i in graph A (resp. B). Denote
the size of the 2-hop neighborhood of i in graph A and B by respectively

ãi = |˜NA(i)|, and ˜bi = |˜NB(i)|.

For each vertex i and each vertex 
 at distance two from i in graph A (resp. B), define
ã(i)

 (resp.˜b(i)


 ) as

ã(i)

 = 1√

(n − ãi )q(1− q)

∑

k /∈˜NA(i)

(Ak
 − q) , (46)

˜b(i)

 = 1

√

(n −˜bi )q(1− q)

∑

k /∈˜NB (i)

(Bk
 − q) , (47)

Analogous to (21) and (22), ã(i)

 (resp. ˜b(i)


 ) can also be viewed as the normalized
“outdegree” of vertex 
, this time with the closed 2-hop neighborhood of i in A
(resp. B) excluded.

To each vertex j ∈ NA(i), attach the centered empirical distribution of the set
{̃a(i)


 : 
 ∈ NA( j) \ NA[i]}:

μ̃
(i)
j � 1

|NA( j) \ NA[i]|
∑


∈NA( j)\NA[i]
δ̃
a(i)



− Binom (n − ãi , q) . (48)

Similarly, to each vertex j ∈ NB(i), attach the centered empirical distribution of the
set {˜b(i)


 : 
 ∈ NB(i) \ NB[i]}:

ν̃
(i)
j � 1

|NB( j) \ NB[i]|
∑


∈NB ( j)\NB [i]
δ
˜b(i)




− Binom
(

n −˜bi , q
)

. (49)

Analogous to (24) and (26), μ̃ j (resp. ν̃ j ) is the centered “outdegree” profile of j , this
time defined over only j’s neighbors which are at exactly distance two from i in A
(resp. B).

We now introduce a new distance statistic W based on aggregating the original Z
statistic in (27) over neighbors. Recall the uniform partition I1, . . . , IL of [−1/2, 1/2]
such that |I
| = 1/L . For each j ∈ NA(i) and j ′ ∈ NB(k), define the following

123



50 J. Ding et al.

distance statistic:

˜Z (ik)
j j ′ �

∑


∈[L]

∣

∣

∣μ̃
(i)
j (I
)− ν̃

(k)
j ′ (I
)

∣

∣

∣ , (50)

which is analogous to (27) except that the definition of the outdegrees are modified.
For each i, k ∈ [n], construct a bipartite graph with vertex set NA(i) × NB(k),

whose adjacency matrix Y (ik) is given by

Y (ik)
j j ′ = 1{

˜Z (ik)
j j ′ ≤η

}, j ∈ NA(i), j ′ ∈ NB(k). (51)

Here η is a threshold to be specified later. Define a similarity matrix W , where Wik is
the size of a maximum bipartite matching of Y (ik):

Wik = max
〈

Y (ik), M
〉

s.t.
∑

j

M j j ′ ≤ 1,

∑

j ′
Mj j ′ ≤ 1,

Mj j ′ ∈ {0, 1}. (52)

Finally, we match vertices in A to vertices in B greedily by sorting the similarities
Wik’s. The entire algorithm is summarized in Algorithm 4 below.

Algorithm 4 Graph matching via neighbors’ degree profiles
1: Input: Graphs A and B on n vertices, an integer L , and a threshold η > 0.
2: Output: A permutation π̂ ∈ Sn .
3: For each i, k ∈ [n], compute Wik as in (52).
4: Sort {Wik : i, k ∈ [n]} and let S be the set of indices of the largest n elements.
5: if S defines a perfect matching on [n], i.e., S = {(i, π̂(i)) : i ∈ [n]} for some permutation π̂ then
6: Output π̂ ;
7: else
8: Output error.
9: end if

The intuition behind Algorithm 4 is as follows. Even if the ˜Z distance statistics
of degree profiles are not correctly separated for all pairs, the new W statistics are
guaranteed to be well separated. Indeed, by setting

η = η0

√

L

nq
(53)

for some sufficiently small absolute constant η0, we expect that

123



Efficient random graph matching via degree profiles 51

– for true pairs k = π∗(i), i and k share many (about nqs) “common neighbors”(in
the sense that j ∈ NA(i) and π∗( j) ∈ NB(k)). Moreover, most of such common
neighbors have ˜Z distance smaller than η. As a consequence, Wik is at least nq/4
with high probability;

– for fake pairs k �= π∗(i), i and k share very few (about nq2) “common neighbors”.
Moreover, most of the fake pair of vertices j ∈ NA(i) and j ′ ∈ NB(k) have ˜Z
distance larger than η. As a consequence, when q is small, Wik is smaller than
nq/4 with high probability.

The performance guarantee of Algorithm 4 is as follows:

Theorem 4 Fix any constant ε > 9/10. Suppose

C0 log n ≤ nq ≤ n1−ε and σ ≤ σ0

log(nq)

for some sufficiently large absolute constant C0 and some sufficiently small absolute
constant σ0. Set L = L0 log(nq) and η as in (53) for some sufficiently large absolute
constant L0 and some sufficiently small absolute constant η0. Then with probability
at least 1− O

(

n9−10ε
)

, Algorithm 4 outputs π̂ = π∗.
We briefly explain the condition on the graph sparsity in Theorem 4. On the one hand,
the analysis of Algorithm 4 requires the graphs to be sufficiently sparse (nq ≤ n1−ε

for ε > 9/10), so that all 2-hop neighborhoods are tangle-free, each containing at
most one cycle. On the other hand, Theorem 4 requires the graphs cannot be too
sparse (i.e., nq � log n) so that each vertex has enough neighbors; this lower bound
is information-theoretically necessary for exact recovery [13,14].

4 Analysis

Throughout this section, without loss of generality, we assume the true permutation
π∗ is the identity.

We introduce a number of events regarding the neighborhoods NA(i) and NB(k).
Recall that ai = |NA(i)| and bk = |NB(k)| denote the degrees. Put

cik = |NA(i) ∩ NB(k)| . (54)

First, for each i ∈ [n], define the events

ΓA(i) =
{

1

2
nq ≤ ai ≤ 2nq

}

, ΓB(i) =
{

1

2
nq ≤ bi ≤ 2nq

}

, (55)

Γi i =
{

cii ≥ 1

2
nq

}

. (56)

Second, for each pair of i, k ∈ [n] with i �= k, define the event

Γik =
{√

cik ≤
√

nq2 +√2 log n

}

. (57)
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Note that ai , bi ∼ Bin(n− 1, q). Moreover, cii ∼ Bin(n− 1, qs) which is stochasti-
cally larger than Bin(n−1, 3q/4) under the assumption s = 1−σ 2 ≥ 3/4; for i �= k,
cik ∼ Bin(n − 2, q2). Thus, it follows from the binomial tail bounds (165) and (168)
that

P
{

Γ c
A(i)

}

,P
{

Γ c
B(i)

}

,P
{

Γ c
ii

} ≤ e−Ω(nq) ≤ n−3, ∀i ∈ [n], (58)

P
{

Γ c
ik

} ≤ n−3, ∀i �= k ∈ [n], (59)

where we use the assumption that nq ≥ C log n for a sufficiently large constant C .
Third, given any Δ > 0, for each pair of i, k ∈ [n], define the event

Θik �
{

|ai − bk | ≤ 4
√

nqΔ
}

. (60)

In view of the binomial tail bounds (167) and (168), we have that

P

{√
nq −√Δ ≤ √ai ≤ √nq +√Δ

}

≥ 1− 2e−Δ

and similarly for bk . Thus it follows from the union bound that

P {Θik} ≥ P

{√
nq −√Δ ≤ √ai ,

√

bk ≤ √nq +√Δ
}

≥ 1− 4e−Δ. (61)

Lastly, for each i ∈ [n], define the event

Θi =
{

max{√ai − cii ,
√

bi − cii } ≤
√

nq(1− s)+√Δ
}

. (62)

Since both ai − cii and bi − cii are distributed as Binom(n − 1, q(1− s)), it follows
from the binomial tail bound (168) and the union bound that

P {Θi } ≥ 1− 2e−Δ. (63)

4.1 Proof of Theorem 2

The proof of Theorem 2 is structured as follows:

Lemma 7

Lemma 9

Lemma 1

Lemma 8

Lemma 2Lemma 6

Theorem 2
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We start with the following results on separating the maximum distance among true
pairs maxi∈[n] Zii and the minimum distance among wrong pairs mini �=k∈[n] Zik :

Lemma 1 (True pairs) Assume that σ ≤ 1
2 , q ≤ q0 ≤ 1

8 , nq ≥ C max{log n, L2,Δ}
for some sufficiently large constant C, and

4L
√

nqΔ ≤ n. (64)

There exist absolute constants τ1, τ2 such that for each i ∈ [n],

P {Zii ≥ ξtrue | NA(i), NB(i)} 1{ΓA(i)∩ΓB (i)∩Γi i∩Θi∩Θi i } ≤ O(e−Δ/2), (65)

where

ξtrue � L

√

2β

nq
+ τ2

√

Δ

nq
+ τ2σ

√

L

nq
(66)

and

β � τ2

(

σ +
√

Δ

n
+ 1√

nq
+ e−Δ

)

+ 1

L
exp

(

−τ1 min

{

1

σ 2L2 ,
n

L2Δ
,

√
np

L

})

.

(67)

Lemma 2 (Fake pairs)Assume that σ ≤ 1
2 , q ≤ q0 for some sufficiently small constant

q0, nq ≥ C max{log n, L2,Δ}, and L ≥ L0 for some sufficiently large constant L0.
Then there exist universal constants c1, c2, c3, such that for each distinct pair i �= k
in [n],

P {Zik ≤ ξfake | NA(i), NB(k)} 1{ΓA(i)∩ΓB (k)∩Γik∩Θik } ≤ O
(

e−Δ/2
)

, (68)

where

ξfake � c1

√

L

nq
− c2

√

Δ

nq
. (69)

Note that the conclusions of Lemma 1 and 2 are stated in a conditional form con-
ditioned on the neighborhoods NA(i) and NB(k). This is for the purpose of analyzing
Algorithm 2, where we will need to apply these lemmas to high-degree vertices (see
proof of Theorem 3).

We now prove Theorem 2:

Proof It suffices to show that with probability 1− O(1/n),

min
i �=k∈[n] Zik > max

i∈[n] Zii .
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Choose

Δ =
(

c1
4max{c2, τ2}

)2

L, (70)

where c1, c2 and τ2 are the absolute constants given in Lemmas 2 and 1, respectively.
In view of the theorem assumptions σ ≤ σ0/ log n, L = L0 log n, and nq ≥

C0 log2 n, we have that β in (67) satisfies

βL ≤ τ2L0

(

σ0 + log n

√

Δ

n
+ 1√

C0
+ e−Δ log n

)

+ exp

(

−τ1 min

{

1

σ 2
0 L

2
0

,
n

L2
0Δ log2 n

,

√
C0

L0

})

≤ c21
32

,

provided that σ0L0 is sufficiently small, and n and
√
C0/L0 are sufficiently large.

Moreover, τ2σ ≤ 1/8 when σ0 is sufficiently small. Thus, in view of (66), (69), and
(70), we have

ξfake ≥ 3c1
4

√

L

nq
>

5c1
8

√

L

nq
≥ ξtrue. (71)

Also, since L = L0 log n, (64) is satisfied for sufficiently large n. Hence, all the
conditions of Lemmas 1 and 2 are fulfilled. Furthermore, for L0 sufficiently large, we
have e−Δ/2 ≤ n−3.

Applying Lemma 1 and averaging over NA(i) and NB(i) over both sides of (65),
we get that

P {{Zii ≥ ξtrue} ∩ ΓA(i) ∩ ΓB(i) ∩ Γi i ∩Θi ∩Θi i } ≤ O
(

e−Δ/2
)

.

By the union bound, we get that

P

{

max
i∈[n] Zii ≥ ξtrue

}

≤
∑

i∈[n]

(

P {{Zii ≥ ξtrue} ∩ ΓA(i) ∩ ΓB(i) ∩ Γi i ∩Θi ∩Θi i }

+ P
{

Γ c
A(i)

}+ P
{

Γ c
B(i)

}+ P
{

Γ c
ii

}+ P
{

Θc
i

}+ P
{

Θc
ii

}

)

≤ O
(

n−2
)

+ O
(

ne−Δ/2
)

≤ O
(

n−2
)

. (72)

where the second-to-the-last inequality holds due to (58), (61) and (63).
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Similarly, for i �= k, applying Lemma 2 and averaging over NA(i) and NB(k) over
both hand sides of (68), we get that

P {{Zik ≤ ξfake} ∩ ΓA(i) ∩ ΓB(k) ∩ Γik ∩Θik} ≤ O
(

e−Δ/2
)

.

By the union bound, we get that

P

{

min
i �=k∈[n] Zik ≤ ξfake

}

≤
∑

i �=k
(P {{Zik ≤ ξfake} ∩ ΓA(i) ∩ ΓB(k) ∩ Γik ∩Θik}

+P {Γ c
A(i)

}+ P
{

Γ c
B(k)

}+ P
{

Γ c
ik

}+ P
{

Θc
ik

})

≤ O
(

n2
)

×
(

e−Δ/2 + n−3
)

≤ O
(

n−1
)

, (73)

where the second-to-the-last inequality holds due to (58), (59), and (61).
Finally, combining (72) and (73), we conclude that, with probability at least 1 −

O(1/n),

min
i �=k∈[n] Zik ≥ ξfake > ξtrue ≥ max

i∈[n] Zii ,

and hence Algorithm 1 succeeds. ��

4.2 Proof of Theorem 3

The proof of Theorem 3 is structured as follows:

Lemma 3, 4, 5 Theorem 3 Lemma 1 and 2

Lemma 18

Lemma 19 Lemma 20

seeded matching
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We start with a few intermediate lemmas, whose proofs are postponed till Sect. 4.4.
Recall that α is defined in (37) as

α �
(

α0
log n

nq

)
(1−p)s
1−q

and τ is defined in (39) as

τ � min {0 ≤ k ≤ n : P {Binom(n − 1, q) ≥ k} ≤ α} .

Note that σ 2 = 1− s and p = q/s.
The first lemma bounds the correlations between the degree of vertex i in graph A

and the degree of vertex k in graph B.

Lemma 3 Suppose q ≤ 1
8 , nq → +∞, 1/(nq) ≤ α ≤ 1/4, and σ 2 log log(nq) =

o(1). Then

P {ai ≥ τ, bk ≥ τ + 1}
⎧

⎨

⎩

≥ Ω

(

α
1−q

(1−p)s

)

if i = k

≤ α2 o.w.
(74)

We also need the following two auxiliary lemmas.

Lemma 4 Suppose q ≤ 1/8, 1/(nq) ≤ α ≤ α1 for a sufficiently small constant
α1 > 0, nq ≥ C0Δ

2, and Δ ≥ C0 for a sufficiently large constant C0 > 0. Let event
Θik be given in (60) as Θik �

{|ai − bk | ≤ 4
√
nqΔ

}

. Then

P
{{ai ≥ τ, bk ≥ τ + 1} ∩Θc

ik

} ≤ O
(

α1+1{i �=k}e−Δ/2
)

. (75)

Lemma 5 Let the event Θi be defined in (62). Then

P
{{ai ≥ τ, bi ≥ τ + 1} ∩Θc

i

} ≤ 2αe−Δ/2 + 2e−Δ/(2σ 2). (76)

Proof (Proof of Theorem 3) Recall that L is given in (38) as L = L0 max
{

log1/3(n), log log n
q

}

. Choose Δ as per (70): Δ =
(

c1
4max{c2,τ2}

)2
L and set ξ =

3c1
4

√

L
nq , where c1, c2 are from Lemma 2 and τ2 are from Lemma 1. Then ξfake

in (69) satisfies ξfake � c1
√

L
nq − c2

√

Δ
nq ≥ ξ . Under the condition (36): σ ≤

σ0 min

{

1
(log n)1/3

, 1
log log n

q

}

, we have σ L ≤ σ0L0. Moreover, under the assumption

(41): nq2 ≥ C0 log2 n for some large absolute constant C0, we have nq ≥ CL2

for a sufficiently large constant C . Thus, β in (67) satisfies βL ≤ c21/32. Moreover,
τ2σ ≤ 1

4 provided that σ0 is a sufficiently small constant. Hence, ξtrue in (66) satisfies

ξtrue � L
√

2β
nq + τ2σ

√

L
nq + τ2

√

Δ
nq ≤ ξ .
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For ease of notation, for each pair of i, k ∈ [n], denote the event that Dik = {ai ≥
τ, bk ≥ τ + 1}. Then, for wrong pairs i �= k,

P {ai ≥ τ, bk ≥ τ + 1, Zik ≤ ξ}
= E

[

P {Zik ≤ ξ | NA(i), NB(k)} 1{Dik }
]

≤ E
[

P {Zik ≤ ξ | NA(i), NB(k)} 1{Dik∩ΓA(i)∩ΓB (k)∩Γik∩Θik }
]

+ P
{Dik ∩ (ΓA(i) ∩ ΓB(k) ∩ Γik ∩Θik)

c}

(a)≤ O
(

e−Δ/2
)

P {Dik ∩ ΓA(i) ∩ ΓB(k) ∩ Γik ∩Θik} + P
{Dik ∩ Γ c

A(i)
}

+ P
{Dik ∩ Γ c

B(k)
}+ P

{Dik ∩ Γ c
ik

}+ P
{Dik ∩Θc

ik

}

≤ O
(

e−Δ/2
)

P {Dik} + P
{

Γ c
A(i)

}+ P
{

Γ c
B(k)

}+ P
{

Γ c
ik

}+ P
{Dik ∩Θc

ik

}

(b)≤ O
(

α2e−Δ/2
)

+ O
(

n−3
)

,

where (a) is due to Lemma 2 and ξfake ≥ ξ ; (b) is due to Lemma 3, Lemma 4, (58),
and (59). Therefore, it follows from the union bound that

P {∃(i, k) ∈ S : i �= k} ≤
∑

i �=k
P {ai ≥ τ, bk ≥ τ + 1, Zik ≤ ξ}

≤ O
(

n2
)

α2 exp (−Δ/2)+ O
(

n−1
)

(a)≤ O

(

α0
log n

q

)2

exp

(

2σ 2

1− q
log n −Ω(L)

)

+ O
(

n−1
)

(b)= O
(

e−Ω(L)
)

+ O
(

n−1
)

,

where (a) was previously explained in (45); (b) is due to the condition (36) on σ and
the choice of L in (38).

For true pairs, let

T =
∑

i∈[n]
1{ai≥τ,bi≥τ+1,Zii≤ξ}.

To show that T = Ω(α0
log n
q ) with high probability, we compute its first and second

moment. Since Zii and the degrees ai , bi are dependent, one needs to be careful with
respect to conditioning. Note that

P {ai ≥ τ, bi ≥ τ + 1, Zii ≤ ξ}
= E

[

P {Zii ≤ ξ | NA(i), NB(i)} 1{Di i }
]

≥ E
[

P {Zii ≤ ξ | NA(i), NB(i)} 1{Di i∩ΓA(i)∩ΓB (i)∩Γi i∩Θi∩Θi i }
]

≥
(

1− O
(

e−Δ/2
))

P {Di i ∩ ΓA(i) ∩ ΓB(i) ∩ Γi i ∩Θi ∩Θi i } , (77)
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where the last inequality holds due to Lemma 1 and ξtrue ≤ ξ .
By Lemma 3,

t � P {ai ≥ τ, bi ≥ τ + 1} = P {Di i } ≥ Ω

(

α
1−q

(1−p)s

)

(37)= Ω

(

α0
log n

nq

)

. (78)

Combining Lemma 4 and Lemma 5 together with the union bound, we get that

P
{Di i ∩ (Θi ∩Θi i )

c} ≤ O
(

αe−Δ/2 + e−Δ/(2σ 2)
)

(79)

Combining the last two displayed equations yields that

P {Di i ∩ ΓA(i) ∩ ΓB(i) ∩ Γi i ∩Θi ∩Θi i }
≥ P {Di i } − P

{Di i ∩ (Θi ∩Θi i )
c}− P

{

Γ c
A(i)

}− P
{

Γ c
B(i)

}− P {Γi i }
≥ t − O

(

αe−Δ/2 + e−Δ/(2σ 2)
)

− 3n−3,

where in the last inequality we used P
{

Γ c
A(i)

}

,P
{

Γ c
B(i)

}

,P {Γi i } ≤ 1/n3 by (58).
In view of the definition of α given in (37), we get that

αe−Δ/2 =
(

α0
log n

nq

)
(1−p)s
1−q

e−Δ/2

(a)≤ α0
log n

nq
exp

(

σ 2

1− q
log n − Δ

2

)

(b)= α0
log n

nq
exp

(

σ 2

1− q
log n −Ω(L)

)

(c)= O(t)e−Ω(L),

where (a) is by (43); (b) is due to Δ = Ω(L) by our choice of Δ; (c) holds because
of (78) and the facts that σ ≤ σ0/ log1/3(n) in view of condition (36) and L ≥
L0 log1/3(n) in view of (38).

Furthermore, by our choice of Δ and the theorem assumptions, Δ/σ 2 ≥ 6 log n
by letting L0/σ

2
0 sufficiently large. Combining this fact with the last two displayed

equations, we get that

P {Di i ∩ ΓA(i) ∩ ΓB(i) ∩ Γi i ∩Θi ∩Θi i } ≥ t
(

1− O
(

e−Ω(L)
))

− 4n−3. (80)

By (77) and (80), we get that

E[T ] ≥ nt
(

1− O
(

e−Δ/2
)) (

1− O
(

e−Ω(L)
))

− O(n−2)

= nt
(

1− O
(

e−Ω(L)
))

− O(n−2), (81)
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where the last equality holds because Δ = Θ(L).
Next we estimate the second moment of T :

E[T 2] ≤
∑

i, j

P
{

ai ≥ τ, bi ≥ τ + 1, a j ≥ τ, b j ≥ τ + 1
}

= nt +
∑

i �= j

P
{

ai ≥ τ, bi ≥ τ + 1, a j ≥ τ, b j ≥ τ + 1
}

.

We will show that for i �= j ,

P
{

ai ≥ τ, bi ≥ τ + 1, a j ≥ τ, b j ≥ τ + 1
} ≤ t2

(

1+ e−Ω(L)
)

. (82)

It then follows that

E

[

T 2
]

≤ nt + n2t2
(

1+ e−Ω(L)
)

. (83)

Combining (81) and (83), we get that

var(T ) = E[T 2] − (E[T ])2 ≤ O
(

n2t2e−Ω(L) + nt
)

and hence by Chebyshev’s inequality,

P

{

T ≥ 1

2
nt

}

≤ var(T )

(E [T ]− nt/2)2
= O

(

e−Ω(L) + 1

nt

)

= O

(

e−Ω(L) + q

log n

)

= O

(

q

log n

)

,

where the last two equalities holds because nt = Ω(log n/q) and L ≥ L0 log
log n
q in

view of (38). Therefore, the set S defines a partial matching with |S| = T ≥ nt/2
with probability 1 − O(q/ log n). Finally, the success of Algorithm 2 follows from
applying the seeded graph matching result Lemma 18 given in Appendix B.

It remains to prove (82). Fix i �= j . Recall that Di i is the event that ai ≥ τ and
bi ≥ τ + 1. Also, let gi denote the degree of vertex i in the parent graph. Abusing
notation slightly, we let k denote the realization of gi in the remainder of the proof.
Then

P
{Di i ∩D j j

} =
∑

k,k′
P
{

gi = k, g j = k′
}

P {Di i | gi = k}P {D j j | g j = k′
}

and

P
{

gi = k, g j = k′
} =p · P {Binom(n − 2, p) = k − 1}P {Binom(n − 2, p) = k′ − 1

}

+ (1− p)P {Binom(n − 2, p) = k}P {Binom(n − 2, p) = k′
}

.
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For ease of notation, we write ck � P {Binom(n − 2, p) = k}. Then

P
{

gi = k, g j = k′
}− P {gi = k}P {g j = k′

}

= pck−1ck′−1 + (1− p)ckck′ − (pck−1 + (1− p)ck)
(

pck′−1 + (1− p)ck′
)

= p(1− p) (ck−1 − ck)
(

ck′−1 − ck′
)

.

By definition,

ck−1 − ck
ck−1

=
(

1− (n − k − 1)p

k(1− p)

)

= k − (n − 1)p

k(1− p)

and

ck−1 − ck
ck

=
(

k(1− p)

(n − k − 1)p
− 1

)

= k − (n − 1)p

(n − k − 1)p
.

We let

η �
√
3 log(np)√

np

and I � [(1− η)(n − 1)p, (1+ η)(n − 1)p]. Then for all k ∈ I , we have

|ck−1 − ck |
min{ck−1, ck} ≤

η

min{(1− η)(1− p), 1− (1+ η)p} ≤
2η

1− η
,

where the last equality holds due to p ≤ 1/2. Thus, for all k, k′ ∈ I , we have

P
{

gi = k, g j = k′
} ≤

(

1+ 4η2

(1− η)2

)

P {gi = k}P {g j = k′
}

.

Moreover, by Chernoff’s bound given in (165),

P {gi /∈ I } ≤ 2 exp
(

−η2np/3
)

= 2 exp
(

− log2(np)
)

.

Therefore,

P
{Di i ∩D j j

}

≤ P {gi /∈ I } + P
{

g j /∈ I
}+

∑

k,k′∈I
P
{

gi = k, g j = k′
}

P
{Di i | gi = k′

}

P
{D j j | g j = k′

}

≤ 4 exp
(

− log2(np)
)

+
(

1+ 4η2

(1− η)2

)
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×
∑

k,k′
P {gi = k}P {g j = k′

}

P
{Di i | gi = k′

}

P
{D j j | g j = k′

}

= 4 exp
(

− log2(np)
)

+
(

1+ 4η2

(1− η)2

)

P {Di i }P
{D j j

} =
(

1+ e−Ω(L)
)

t2,

where the last equality holds due to P {Di i } = t = Ω(log(n)/(nq)) and η2 +
1
t2
exp
(− log2(np)

) = exp(−Ω(L)) under the assumptions of Theorem 3.

4.3 Proof of Lemma 1 and Lemma 2

Note that for both the case of i = k and i �= k, the empirical distribution μi and νk
will both involve correlated samples arising from common neighbors. So we start by
decomposing the empirical distribution according to the common neighbors. Fix i, k.
Recall that cik = |NA(i) ∩ NB(k)|. Then

μi = cik
ai

⎛

⎝

1

cik

∑

j∈NA(i)∩NB (k)

δ
a(i)
j

⎞

⎠+
(

1− cik
ai

)

⎛

⎝

1

ai − cik

∑

j∈NA(i)\NB (k)

δ
a(i)
j

⎞

⎠ ,

(84)

νk = cik
bk

⎛

⎝

1

cik

∑

j∈NA(i)∩NB (k)

δ
b(k)
j

⎞

⎠+
(

1− cik
bk

)

⎛

⎝

1

bk − cik

∑

j∈NB (k)\NA(i)

δ
b(k)
j

⎞

⎠ .

(85)

As a consequence, the centered empirical distribution can be rewritten as

μ̄i = ρP + (1− ρ)P ′ (86)

ν̄k = ρ′Q + (1− ρ′)Q′ (87)

where

ρ � cik
ai

, ρ′ � cik
bk

and

P � 1

cik

∑

j∈NA(i)∩NB (k)

δ
a(i)
j
− ν, P ′ � 1

ai − cik

∑

j∈NA(i)\NB (k)

δ
a(i)
j
− ν,

Q � 1

cik

∑

j∈NA(i)∩NB (k)

δ
b(k)
j
− ν′, Q′ � 1

bk − cik

∑

j∈NB (k)\NA(i)

δ
b(k)
j
− ν′,

and ν = Binom(n − ai − 1, q) and ν′ = Binom(n − bk − 1, q). Note that if cik = 0,
we set P = Q = Bin(n − 1, q) by default.

The following lemmas are the key ingredients of the proof:
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Lemma 6 (Independent two samples) Let X1, . . . , Xm and Y1, . . . ,Ym′ be two inde-
pendent sequence of real-valued random variables, where Xi ’s are independently
distributed as νi and Yi ’s are independently distributed as ν′i . Assume that for some
m0,

κ1 ≤ m

m0
,
m′

m0
≤ κ2

for some absolute constants κ1, κ2 > 0.
Suppose the partition I1, . . . , IL is chosen so that there exists a set J0 ⊂ [m] with

|J0| ≥ m/4 such that for all i ∈ J0 and for all 
 ∈ [L],
c1
L
≤ νi (I
) ≤ c2

L
(88)

for some absolute constants c1, c2 ∈ (0, 1].
Given any two distributions ν and ν′ on the real line, define π = 1

m

∑m
i=1 δXi − ν

and π ′ = 1
m′
∑m′

i=1 δYi − ν′. Assume that m0 ≥ CL and L ≥ L0 for some sufficiently
large constants C, L0. Then for any Δ > 0,

d(π, π ′) ≥ α1

√

L

m0
− α2

√

Δ

m0
(89)

with probability at least 1− e−Δ, where d is the pseudo-distance defined in (28) with
respect to the partition I1, . . . , IL , and α1, α2 are absolute constants.

Lemma 7 (Correlated two samples) Let (X1,Y1), . . . , (Xm,Ym) be iid so that Xi ∼ ν

and Yi ∼ ν′. Let π = 1
m

∑m
i=1 δXi − ν and π ′ = 1

m

∑m
i=1 δYi − ν′. Assume that for

any 
 ∈ [L],

P {X1 ∈ I
,Y1 /∈ I
} + P {X1 /∈ I
,Y1 ∈ I
} ≤ β. (90)

Then for any Δ > 0,

d(π, π ′) ≤ L

√

β

m
+ c3

√

Δ

m
(91)

with probability at least 1 − e−Δ, where β is defined in (67) and c3 is an absolute
constant.

Remark 4 In Lemma 6, the samples Xi ’s and Yi ’s need not be identically distributed,
and ν and ν′ can be arbitrary so that π and π ′ need not be centered (which is the case
when we apply Lemma 6 for proving Lemmas 2 and 17). This is because Lemma 6
aims to lower bound the distance and centering tends to make the distance smaller.
However, in Lemma 7which bounds the distance from above, the samples are required
to be iid and the empirical distributions must be correctly centered.
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Lemma 8 (Concentration of total variation) Let X1, . . . , Xm be drawn independently
from a discrete distribution ν supported on k elements. Then the empirical distribution
νm = 1

m

∑m
i=1 δXi satisfies that for any Δ > 0,

P

{

‖ν − νm‖1 ≥
√

k

m
+
√

Δ

m

}

≤ e−Δ/2.

In order to apply Lemma 7, we need to quantify the correlation and upper bound
the probability β in (90). This is given by the following (elementary but extremely
tedious) lemma:

Lemma 9 Assume that σ ≤ 1/2, q ≤ 1
8 , nq ≥ C max{L2,Δ}, and (64) holds, i.e.,

4L
√
nqΔ ≤ n. Then for any j ∈ NA(i) ∩ NB(i) and any interval I ⊂ [−1/2, 1/2]

with |I | = 1/L,

(

P

{

a(i)
j ∈ I , b(i)

j /∈ I
∣

∣

∣ NA(i), NB(i)
}

+ P

{

a(i)
j /∈ I , b(i)

j ∈ I
∣

∣

∣ NA(i), NB(i)
})

1{ΓA(i)∩ΓB (i)∩Γi i∩Θi∩Θi i }

� σ +
√

Δ

n
+ 1√

nq
+ 1

L
exp

(

−Ω

(

min

{

1

σ 2L2 ,
n

L2Δ
,

√
np

L

}))

+ e−Δ.

(92)

Remark 5 Note that for the right hand side of (92) to be much smaller than 1/L , it
suffices to have L � min{1/σ,

√
n/Δ,

√
nq} and Δ� log L .

4.3.1 Proof of Lemma 1

Proof (Proof of Lemma 1) Fix i ∈ [n]. Throughout the proof, we condition on the
neighborhoods NA(i) and NB(i) such that ΓA(i) ∩ ΓB(i) ∩ Γi i ∩Θi ∩Θi i holds.

Recall the pseudo-distance d defined in (28), namely,

d(μ, ν) = ‖[μ]L − [ν]L‖1 (93)

where [μ]L is the discretized version of μ, defined in (29), according to the uniform
partition I1, . . . , IL of [−1/2, 1/2] such that |I
| = 1/L . Using the decomposition
in (86)–(87) and the triangle inequality for the total variation distance, we have

Zii = d
(

ρP + (1− ρ)P ′, ρQ + (1− ρ′)Q′ + (ρ′ − ρ)Q
)

≤ d(P, Q)
︸ ︷︷ ︸

(I)

+ (1− ρ)‖[P ′]L‖1 + (1− ρ′)‖[Q′]L‖1
︸ ︷︷ ︸

(II)

+ |ρ − ρ′|
︸ ︷︷ ︸

(III)

, (94)

where ρ = cii
ai

and ρ′ = cii
bi
.
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For (I), in view of the assumption (64): 4L
√
nqΔ ≤ n, Lemma 9 yields that for

any j ∈ NA(i) ∩ NB(i) and any interval I ⊂ [−1/2, 1/2] with |I | = 1/L ,

P

{

a(i)
j ∈ I , b(i)

j /∈ I
∣

∣

∣NA(i), NB(i)
}

+ P

{

a(i)
j /∈ I , b(i)

j ∈ I
∣

∣

∣NA(i), NB(i)
}

≤ β � O(σ )+ O

(
√

Δ

n
+ e−Δ

)

+ 1

L
exp

(

−Ω

(

min

{

1

σ 2L2 ,
n

L2Δ
,

√
np

L

}))

.

We apply Lemma 7 with {X j }mj=1 given by {a(i)
j } j∈NA(i)∩NB (i), {Y j }mj=1 given by

{b(i)
j } j∈NA(i)∩NB (i), and m = cii = |NA(i) ∩ NB(i)|. Recall that a(i)

j is a function of

{A j
}
∈Nc
A[i] and b

(i)
j ′ is a function of {Bj ′
′ }
′∈Nc

B [i]. For any j �= j ′ ∈ NA(i)∩NB(i),

it holds that { j, 
} �= { j ′, 
′}. Hence, (a(i)
j , b(i)

j )’s are independently and identically
distributed across different j ∈ NA(i) ∩ NB(i). Therefore, Lemma 7 yields that with
probability at least 1− e−Δ,

d(P, Q) ≤ L

√

β

cii
+ c3

√

Δ

cii
≤ L

√

2β

nq
+ c3

√

2Δ

nq
, (95)

where c3 > 0 is some absolute constant given in Lemma 7, and the last inequality
holds due to cii ≥ nq/2 by (56).

For (II), applying Lemma 8with k = L implies that ‖[P ′]L‖1 ≤
√

L
ai−cii +

√

Δ
ai−cii

and ‖[Q′]L‖1 ≤
√

L
bi−cii +

√

Δ
bi−cii , eachwith probability at least 1−e−Δ/2. Therefore,

by the union bound, with probability at least 1− 2e−Δ/2,

(1− ρ)‖[P ′]L‖1 + (1− ρ′)‖[Q′]L‖1
≤ 1

ai

(√
L +√Δ

)√
ai − cii + 1

bi

(√
L +√Δ

)
√

bi − cii

≤ 4

nq

(√
L +√Δ

)

(
√

nqσ 2 +√Δ

)

, (96)

where the last inequality holds due to ai , bi ≥ nq/2 and
√
ai − cii ,

√
bi − cii ≤

√

nqσ 2 +√Δ on the event (55) and (62), respectively.
Finally, for (III),

|ρ − ρ′| = cii |ai − bi |
aibi

≤ |ai − bi |
ai

≤ 8

√

Δ

nq
, (97)

where the last inequality holds due to |ai − bi | ≤ 4
√
nqΔ by (60).
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Fig. 1 Conditioned on the edge set EA(J , J ′) and EB (J , J ′), the outdegrees are independent

Combining (94)with (95), (96), (97),weget thatwith probability at least 1−3e−Δ/2,

Zii ≤ L

√

2β

nq
+ c3

√

2Δ

nq
+ 4

nq

(√
L +√Δ

)

(
√

nqσ 2 +√Δ

)

+ 8

√

Δ

nq

≤ L

√

2β

nq
+ τ2σ

√

L

nq
+ τ2

√

Δ

nq

for some absolute constant τ2 > 0, where the last inequality holds due to the assump-
tion that nq ≥ C max{L2,Δ} for some sufficiently large constant C . Thus we arrive
at the desired (65). ��

4.3.2 Proof of Lemma 2

Proof (Proof of Lemma 2) Fix i �= k. We proceed as in the proof of Lemma 1 and
condition on the neighborhoods NA(i) and NB(k) such that ΓA(i)∩ΓB(k)∩Γik ∩Θik

holds.
By the triangle inequality for the total variation distance, we have

Zik = d
(

ρP + (1− ρ)P ′, ρQ + (1− ρ)Q′ + (ρ − ρ′)(Q′ − Q)
)

≥ (1− ρ)d(P ′, Q′)
︸ ︷︷ ︸

(I)

− ρd(P, Q)
︸ ︷︷ ︸

(II)

− 2|ρ − ρ′|
︸ ︷︷ ︸

(III)

. (98)

where ρ = cik
ai

and ρ′ = cik
bk
.

For (I), note that ai , bk ≥ nq/2 by (55), and cik ≤ nq/4 for all i �= k by (57) and
the assumptions that nq ≥ C log n and q ≤ q0. Thus

ρ, ρ′ ≤ 1/2. (99)

Let

J = NA(i)\NB(k), J ′ = NB(k)\NA(i).
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To analyze d(P ′, Q′), we aim to apply Lemma 6 with m = |J |, m′ = |J ′|, m0 = nq,
{X j }mj=1 given by {a(i)

j } j∈J , and {Y j }m′j=1 given by {b(k)
j } j∈J ′ . However, Lemma 6 is

not directly applicable because the outdegrees are not independent due to the edges
between nodes in J and J ′ (cf. Fig. 1). Indeed, note that a(i)

j ’s are independent across

j , and b(k)
j ′ ’s are independent across j ′, but a(i)

j and b(k)
j ′ are dependent, because A j j ′

contributes to the outdegree a(i)
j , Bj j ′ contributes to the outdegree b(k)

j ′ , and A j j ′ are
correlated with Bj j ′ . To deal with this dependency issue, define EA(J , J ′) as the set of
edges between vertices in J and vertices in J ′ in A and let eA(J , J ′) = |EA(J , J ′)|.
Similarly, define EB(J , J ′) and eB(J , J ′). Conditioned on the edge sets EA(J , J ′)
and EB(J , J ′), the outdegrees {a(i)

j : j ∈ J } and {b(k)
j ′ : j ′ ∈ J ′} are mutually

independent (althoughnot identically distributed as binomials). Indeed, let
 = |J\{k}|
and 
′ = |J ′\{i}|. Then

a(i)
j = 1√

(n − ai − 1)q(1− q)

[

eA
(

j, Nc
A[i]\J ′

)− (n − ai − 1− 
′)q

+eA
(

j, J ′\{i})− 
′q
]

and

b(k)
j ′ =

1√
(n − bk − 1)q(1− q)

[

eB
(

j ′, Nc
B[k]\J

)− (n − bk − 1− 
)q

+eB
(

j ′, J\{k})− 
q
]

Note that {eA
(

j, Nc
A[i]\J ′

)} j∈J are independent from {eB
(

j ′, Nc
B[k]\J

)} j ′∈J .
For each j ∈ J\{k}, define the indicator random variable

X ( j) = 1{|eA( j,J ′\{i})−
′q|≤√nq(1−q)/2}.

Let

J0 = { j ∈ J\{k} : X ( j) = 1} (100)

Define the event

H � {|J0| ≥ m/4} .

Note that for each j ∈ J\{k}, eA
(

j, J ′\{i}) ∼ Binom(
′, q). Hence, by Chebyshev’s
inequality,

P {X ( j) = 1} ≥ 1− 2
′

n
≥ 1/2,

where the last inequality holds because 
′ ≤ 2nq on the event ΓB(k) and q ≤ 1/8.
Moreover, eA

(

j, J ′\{i}) are independent across j ∈ J\{k}. Hence,∑ j∈J XA( j) is
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stochastically lower bounded by Binom(m−1, 1/2). It follows from the binomial tail
bound (165) that

P {H} = P {|J0| ≥ m/4} ≥ 1− e−m/32.

We first condition on (EA(J , J ′), EB(J , J ′)) such that the event H holds and then
apply Lemma 6. In view of (99), m ≥ ai/2 and m′ ≥ bk/2 and thus

1

4
≤ m

m0
,
m′

m0
≤ 2.

Moreover, nq ≥ CL and L ≥ L0 by assumption. It remains to check the condition
(88) in Lemma 6.

Let I denote any subinterval of [−1/2, 1/2] with length 1/L . Let

u j = 1
√

(n − ai − 1− 
′)q(1− q)

[

eA
(

j, Nc
A[i]\J ′

)− (n − ai − 1− 
′)q
]

and

v j = 1√
(n − ai − 1)q(1− q)

[

eA
(

j, J ′\{i})− 
′q
]

.

Let

α j =
√

n − ai − 1− 
′
n − ai − 1

.

Then a(i)
j = α j u j + v j . It follows that

P

{

a(i)
j ∈ I

}

= P

{

u j ∈ I − v j

α j

}

.

Nextwefix j ∈ J0.Note that on eventΓA(i)∩ΓB(k), ai , 
′ ≤ 2nq. By the assumptions
q ≤ 1/8 and n ≥ 4,

1 ≥ α j ≥
√

n − 4nq − 1

n − 2nq − 1
≥
√

1

2
,

and, by the definition of J0,

|v j | ≤
√
nq(1− q)/2√

(n − 2nq − 1)q(1− q)
≤ 1.
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Hence, (I − v j )/α j ⊂ [−3, 3]. It follows that

1√
2πL

e−1/18 ≤ P

{

N (0, 1) ∈ I − v j

α j

}

≤ 1√
πL

.

Note that u j ∼ Binom(n−ai−1−
′, q). By the Berry-Esseen theorem [47, Theorem
5.5], we have

1√
2πL

e−1/18 − O(1)√
nq(1− q)

≤ P

{

u j ∈ I − v j

α j

}

≤ 1√
πL

+ O(1)√
nq(1− q)

.

In view of the assumption nq ≥ CL2 for a sufficiently large constant C , we have for
all j ∈ J0 and all 
 ∈ [L],

c1
L
≤ P

{

a(i)
j ∈ I

}

≤ c2
L

.

for two absolute constants c1, c2 ∈ [0, 1]. Finally, recall that we have conditioned
on E(J , J ′) such that event H holds. Hence, |J0| ≥ m/4. Thus, condition (88) in
Lemma 6 is satisfied.

In conclusions, the assumptions of Lemma 6 are all satisfied. Then it follows from
Lemma 6 that

P

{

d(P ′, Q′) ≥ α1

√

L

nq
− α2

√

Δ

nq

∣

∣

∣

∣

EA(J , J ′), EB(J , J ′)
}

≥ (1− e−Δ
)

1H,

(101)

where α1 and α2 are absolute constants given in Lemma 6. Taking the expectation of
(EA(J , J ′), EB(J , J ′)) over the both hand sides of the last display, we get that

P

{

d(P ′, Q′) ≥ α1

√

L

nq
− α2

√

Δ

nq

}

≥ (1− e−Δ
)

P {H}

≥ (1− e−Δ
)

(

1− e−m/32
)

≥ 1− 2e−Δ,

(102)

where the last inequality holds due to m ≥ nq/4 ≥ CΔ/4 for a sufficiently large
constant C .

For (II), Lemma 8 implies that ‖[P]L‖1 ≤
√

L
cik
+
√

Δ
cik

holds with probability

at least 1− e−Δ/2; similarly for ‖[Q]L‖1. Thus, by the triangle inequality and union
bound, with probability at least 1− 2e−Δ/2,

d(P, Q) ≤ ‖[P]L‖1 + ‖[Q]L‖1 ≤ 2

√

L

cik
+ 2

√

Δ

cik
.
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Therefore,

ρ · d(P, Q) ≤ cik
ai

(

2

√

L

cik
+ 2

√

Δ

cik

)

≤ 4

nq

(√
L +√Δ

)

(
√

nq2 +√2 log n

)

(103)

where the last inequality holds due to ai ≥ 1
2nq and

√
cik ≤

√

nq2 +√2 log n on the
event (55) and (57) respectively.

For (III),

|ρ − ρ′| = cik |ai − bk |
aibk

≤ |ai − bk |
ai

≤ 8

√

Δ

nq
, (104)

where the last inequality holds due to (60).
Combining (98) with (99)–(104), we have that with probability at least 1−3e−Δ/2,

Zik ≥ α1

2

√

L

nq
− α2

√

Δ

nq
− 4

nq

(√
L +√Δ

)

(
√

nq2 +√2 log n

)

− 8

√

Δ

nq

≥ c1

√

L

nq
− c2

√

Δ

nq
,

for some absolute constants c1, c2 > 0, where the last inequality holds by the assump-
tions that q ≤ q0 and nq ≥ C log n for some sufficiently small constant q0 and
sufficiently large constant C . ��

4.3.3 Proof of Lemma 6, 7, 8, and 9

Proof (Proof of Lemma 6) Recall from (28) that

d(π, π ′) =
∑


∈[L]
|π(I
)− π ′(I
)|.

We first show that it suffices to establish

Ed(π, π ′) ≥ c0

√

L

m0
. (105)

To prove the concentration inequality (89), note that d(π, π ′), as a function of the
independent random variables (X1, . . . , Xm,Y1, . . . ,Ym′), satisfies the bounded dif-
ference property. Indeed, let

d(π, π ′) = f (X1, . . . , Xm,Y1, . . . ,Ym′)
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for some function f . Then for any i and any xi , x ′i , we have, for some 
, 
′ ∈ [L],

| f (x1, . . . , xi , . . . , xm, y1, . . . , ym′)− f (x1, . . . , x
′
i , . . . , xm, y1, . . . , ym′)|

≤
∣

∣

∣

∣

|π(I
)+ 1

m
− π ′(I
)| + |π(I
′)− 1

m
− π ′(I
′)|

−|π(I
)− π ′(I
)| − |π(I
′)− π ′(I
′)|
∣

∣

≤ 2

m
. (106)

Thus, f satisfies the bounded difference property with parameter 2
m∧m′ . By McDi-

armid’s inequality, we have

P

{

d(π, π ′) ≤ Ed(π, π ′)− c1

√

Δ

m0

}

≤ e−Δ,

where c1 depends only on κ1 and κ2.
It remains to show (105). For any 
 ∈ [L],

E
[∣

∣π(I
)− π ′(I
)
∣

∣

] =E
⎡

⎣

∣

∣

∣

∣

∣

∣

1

m

m
∑

i=1
1{Xi∈I
} −

1

m′
m′
∑

i=1
1{Yi∈I
} − ν (I
)+ ν′ (I
)

∣

∣

∣

∣

∣

∣

⎤

⎦

≥ 1

m
inf
x∈RE

⎡

⎣

∣

∣

∣

∣

∣

∣

∑

i∈J0
1{Xi∈I
} − x

∣

∣

∣

∣

∣

∣

⎤

⎦ , (107)

where the last inequality holds because Xi ’s and Yi ’s are independent.
For i ∈ J0, define αi � P {Xi ∈ I
} and α � 1/L . It follows from assumption (88)

that c1α ≤ αi ≤ c2α for two absolute constants c1, c2 ∈ (0, 1]. Therefore, we can

write 1{Xi∈I
} = Wi Zi , where Zi
i.i.d.∼ Bern(α) and Wi ’s are independently distributed

as Bern(ηi ) where c1 ≤ ηi ≤ c2. Let T = {i ∈ J0 : Wi = 1}. Then for any x ∈ R,
conditional on T ,

E

⎡

⎣

∣

∣

∣

∣

∣

∣

∑

i∈J0
1{Xi∈I
} − x

∣

∣

∣

∣

∣

∣

| T
⎤

⎦ = E

[∣

∣

∣

∣

∣

∑

i∈T
Zi − x

∣

∣

∣

∣

∣

]

≥ E [|Binom(|T |, α)− x0|] ,

(108)

where x0 is the median of Binom(|T |, α), which satisfies |x0 − |T |α| ≤ 1 [26]. Using
the estimate for the mean absolute deviation of binomial distribution (e.g. [6, Theorem
1]), we have

E [|Binom(|T |, α)− |T |α|] ≥
√|T |α(1− α)√

2
,

1

|T | ≤ α ≤ 1− 1

|T | .
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By assumption, L ≥ L0 for some large constant L0. Thus if |T | ≥ 16L , then |T |α(1−
α) ≥ 8. Hence, by triangle inequality,

E [|Binom(|T |, α)− x0|] ≥
(√|T |α(1− α)√

2
− 1

)

1{|T |≥16L} ≥
√|T |α(1− α)

2
√
2

1{|T |≥16L}

Therefore, combining the last displayed equationwith (108),we get that for any x ∈ R,

E

⎡

⎣

∣

∣

∣

∣

∣

∣

∑

i∈J0
1{Xi∈I
} − x

∣

∣

∣

∣

∣

∣

| T
⎤

⎦ ≥
√|T |α(1− α)

2
√
2

1{|T |≥16L}.

Taking expectation over T and then infimum over x ∈ R on both hand sides of the
last displayed equation yields that

inf
x∈RE

⎡

⎣

∣

∣

∣

∣

∣

∣

∑

i∈J0
1{Xi∈I
} − x

∣

∣

∣

∣

∣

∣

⎤

⎦ ≥
√

α(1− α)

2
√
2

E

[

√|T |1{|T |≥16L}
]

It remains to bound E
[√|T |1{|T |≥16L}

]

from the below. By assumption, it holds that
|J0| ≥ m/4. Further, recall that Wi ’s are independently distributed as Bern(ηi ) where
c1 ≤ ηi ≤ c2. Hence |T | is stochastically lower bounded by U ∼ Binom(m/4, c1)
and thus

E

[

√|T |1{|T |≥16L}
]

≥ E

[√
U1{U≥16L}

]

= E

[√
U
]

− E

[√
U1{U<16L}

]

.

Note that for any y > 0,
√
y ≥ 1+ (y − 1)/2− (y − 1)2/2. Plugging y = U/E [U ]

and taking expectation, we get that

E

[√
U
]

≥ √E [U ]

(

1− var(U )

2 (E [U ])2

)

= √mc1/4− 1− c1
2
√
mc1/4

.

Moreover,

E

[√
U1{U<16L}

]

≤ 4
√
LP {U < 16L} ≤ 4

√
Le−Ω(m),

where the last inequality follows from the Chernoff bound (165) and the fact that
m ≥ κ1m0 ≥ κ1CL for some large constant C . Combining the last four displays, we
have that

inf
x∈RE

⎡

⎣

∣

∣

∣

∣

∣

∣

∑

i∈J0
1{Xi∈I
} − x

∣

∣

∣

∣

∣

∣

⎤

⎦ ≥ c3

√

m

L
,
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for some absolute constant c3. Combining the last display with (107), we get that

E
[∣

∣π(I
)− π ′(I
)
∣

∣

] ≥ c3

√

1

mL
.

Summing over 
 ∈ [L] and noting that m ≥ κ1m0 yields (105). ��
Proof (Proof of Lemma 7) Similar to the proof of Lemma 6, observe that d(π, π ′)
is a function of the independent randomness (X1,Y1), . . . , (Xm,Ym) satisfying the
bounded difference property with parameter 4

m . Thus, by McDiarmid’s inequality, to
show (91), it suffices to show

Ed(π, π ′) ≤ L

√

β

m
. (109)

Note that

E
[

d(π, π ′)
] =

L
∑


=1
E
[∣

∣π(I
)− π ′(I
)
∣

∣

]

and

π(I
)− π ′(I
) = 1

m

m
∑

i=1

[(

1{Xi∈I
} − 1{Yi∈I
}
)− (P {Xi ∈ I
} − P {Yi ∈ I
})

]

.

For each i ,

1{Xi∈I
} − 1{Yi∈I
} =

⎧

⎪

⎨

⎪

⎩

1 w.p. P {Xi ∈ I
,Yi /∈ I
}
−1 w.p. P {Xi /∈ I
,Yi ∈ I
}
0 o.w.

Hence,

E
[∣

∣π(I
)− π ′(I
)
∣

∣

]

≤
√

E
[

(π(I
)− π ′(I
))2
]

= 1

m

√

√

√

√

√E

⎡

⎣

(

m
∑

i=1

(

1{Xi∈I
} − 1{Yi∈I
} − P {Xi ∈ I
} + P {Yi ∈ I
}
)

)2
⎤

⎦

= 1

m

√

√

√

√

m
∑

i=1
E

[

(

1{Xi∈I
} − 1{Yi∈I
} − P {Xi ∈ I
} + P {Yi ∈ I
}
)2
]

= 1√
m

√

P {X1 ∈ I
, Y1 /∈ I
} + P {X1 /∈ I
, Y1 ∈ I
} − (P {X1 ∈ I
, Y1 /∈ I
} − P {X1 /∈ I
, Y1 ∈ I
})2

≤ 1√
m

√

P {X1 ∈ I
, Y1 /∈ I
} + P {X1 /∈ I
, Y1 ∈ I
} ≤
√

β

m
.

Summing over 
 ∈ [L] gives the desired (109). ��
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Proof (Proof of Lemma 8) Let ν be supported on the set {a1, . . . , ak}with νi = ν({ai }).
Then by Cauchy-Schwarz inequality,

E‖ν − ν̂‖1 = 1

m

k
∑

i=1
E

∣

∣

∣

∣

∣

∣

m
∑

j=1

(

1{X j=ai} − νi

)

∣

∣

∣

∣

∣

∣

≤ 1

m

k
∑

i=1

√

√

√

√

√E

⎛

⎝

m
∑

j=1

(

1{X j=ai} − νi

)

⎞

⎠

2

= 1

m

k
∑

i=1

√

mνi (1− νi ) ≤
k
∑

i=1

√

νi

m
≤
√

k

m
,

where the last inequality follows from Jensen’s inequality. Note that (X1, . . . , Xm) �→
‖ν− ν̂‖1 satisfies the bounded difference property with parameter 2

m . Thus, by McDi-
armid’s inequality, we have

P

{

‖ν − ν̂‖1 ≥
√

L

m
+
√

Δ

m

}

≤ e
− 2Δ/m

m(2/m)2 = e−Δ/2.

��
Proof (Proof of Lemma 9) Let us suppress i and j , and abbreviate a(i)

j and b(i)
j as a and

b. Throughout the proof, we condition on NA[i] = S and NB[i] = T such that event
ΓA(i) ∩ ΓB(i) ∩ Γi i ∩Θi ∩Θi i holds, and aim to show that

P {a ∈ I , b /∈ I }

� σ +
√

Δ

n
+ 1√

nq
+ 1

L
exp

(

−Ω

(

min

{

1

σ 2L2 ,
n

L2Δ
,

√
np

L

}))

+ e−Δ.

(110)

The second probability in (92) follows from the same bound.
Define

ζ = √(n − |S|)q(1− q) and η = √(n − |T |)q(1− q). (111)

Recall that on the event Θ ,

|S ∪ T | ≤ |S| + |T | ≤ 4nq ≤ n/2, (112)

where the last inequality holds due to q ≤ 1/8. Hence,

√
nq/2 ≤ ζ, η ≤ √nq. (113)
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Then we can rewrite a and b as

a = 1

ζ

∑

k /∈S
(αkgk − q), (114)

b = 1

η

∑

k /∈T
(βkgk − q), (115)

where gk’s are iid as Bern(p) and αk, βk’s are iid as Bern(s). Recall that σ 2 = 1− s
and p = q/s.

Define

E = {k /∈ S : αk = 1} and F = {k /∈ T : βk = 1}.

Then we can decompose a and b as

a = 1

ζ
(c + x) and b = 1

η
(c + y) ,

where

c =
∑

k∈E∩F
(gk − p)

x =
∑

k∈E\F
(gk − p)+ p|E | − (n − |S|)q and

y =
∑

k∈F\E
(gk − p)+ p|F | − (n − |T |)q. (116)

Conditional on {E, F}, c, x, y are mutually independent.
We pause to give some intuition behind the remaining argument. Loosely speaking,

the quantity c captures the correlation between the outdegrees a and b, while x and
y correspond to the fluctuations. A key step of the proof is to relate the event {a ∈
I , b /∈ I } to the event that c belongs to an interval of length roughly |x− y|. We further
show that |x− y| is typically O(

√
npσ). Coupled with the anti-concentration of c (the

maximum probability mass of which is at most O(1/
√
np)), this shows that c belongs

to an interval of length |x − y| with probability at most O(σ ), giving rise to the first
(main) term in the upper bound (110). The complication comes from the fact that we
also need to control the large deviation behavior of |x − y|, the mismatches between
the normalization factors ζ and η, as well as the atypical behavior of E, F .

Returning to the main proof, note that

E ∩ F = {k ∈ Sc ∩ T c : αk = βk = 1}
E\F = {k ∈ Sc\T c : αk = 1} ∪ {k ∈ Sc ∩ T c : αk = 1, βk = 0}
F\E = {k ∈ T c\Sc : βk = 1} ∪ {k ∈ Sc ∩ T c : αk = 0, βk = 1}.
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Therefore,

|E ∩ F | ∼ Bin
(

|Sc ∩ T c|, s2
)

|E\F | ∼ Bin
(|Sc\T c|, s)+ Bin

(|Sc ∩ T c|, s(1− s)
)

|F\E | ∼ Bin
(|T c\Sc|, s)+ Bin

(|Sc ∩ T c|, s(1− s)
)

.

Recall that on event ΓA(i) ∩ ΓB(i) ∩Θi ,

|Sc ∩ T c| = n − |S ∪ T | ≥ n/2

|Sc\T c| = |T \S| ≤
(
√

n(1− s)+√Δ
)2

|T c\Sc| = |S\T | ≤
(
√

n(1− s)+√Δ
)2

.

Define

τ1 =
(
√

n(1− s)+ 2
√

Δ
)2 +

(
√

n(1− s)+√Δ
)2

and τ2 =
(
√

ns2/2−√Δ

)2

and the event

E = {|E ∩ F | ≥ τ2} ∩ {|E\F | ≤ τ1} ∩ {|F\E | ≤ τ1}.

Then by binomial tail bounds (167) and (168), we have P {Ec} ≤ e−Δ + 4e−2Δ ≤
5e−Δ. Moreover, we have that

τ1 ≤ 4n(1− s)+ 10Δ. (117)

Also, in view of the assumption σ ≤ 1/2 so that s ≥ 3/4, we have that

τ2 ≥
(

3

4

√

n/2−√Δ

)2

≥ n/4, (118)

where the last inequality holds for sufficiently large n due to nq ≥ CΔ.
Note that

P {a ∈ I , b /∈ I }
= EE,F [P {a ∈ I , b /∈ I | E, F}]
= EE,F [P {a ∈ I , b /∈ I | E, F} 1E ]+ EE,F [P {a ∈ I , b /∈ I | E, F} 1Ec ]

≤ EE,F [P {a ∈ I , b /∈ I | E, F} 1E ]+ P
{Ec}

≤ EE,F [P {a ∈ I , b /∈ I | E, F} 1E ]+ 5e−Δ. (119)
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Hence, it remains to bound EE,F [P {a ∈ I , b /∈ I | E, F} 1E ]. Note that

P {a ∈ I , b /∈ I | E, F} 1E = P {c ∈ ζ I − x, c /∈ ηI − y | E, F} 1E
= Ex,y [P {c ∈ (ζ I − x)\(ηI − y) | E, F, x, y} 1E ]

Next consider the following two cases by assuming I = [l, r ] with −1/2 ≤ l ≤
r ≤ 1/2.

– Case 1: Either ζr − x ≤ ηl − y or ηr − y ≤ ζ l − x . In this case, we have
(ζ I − x) ∩ (ηI − y) = ∅. Thus, we have

P {c ∈ (ζ I − x)\(ηI − y) | S, T , E, F, x, y}
(a)

� 1√
τ2 p

(

ζ

L
+ 1

)

� 1

L
,

where (a) holds because the maximum probability mass of c isΘ(1/
√|E ∩ F |p),

and the number of integral points in ζ I − x is at most ζ/L + 1; the last inequality
holds because τ2 ≥ n/4 in view of (118), ζ ≤ √

nq in view of (113), and
nq ≥ CL2 for a sufficiently large constant C .

– Case 2: ζr − x ≥ ηl − y and ηr − y ≥ ζ l − x . In this case, we have (ζ I − x) ∩
(ηI − y) �= ∅. Moreover,

(ζ I − x)\(ηI − y) ⊂ [ζ l − x, ηl − y] ∪ [ηr − y, ζr − x] .

Hence,

|(ζ I − x)\(ηI − y)| ≤ |x − y + (η − ζ )l| + |y − x + (ζ − η)r |
≤ 2|x − y| + |η − ζ |,

where the last inequality follows from the triangle inequality and the assumption
that −1/2 ≤ l ≤ r ≤ 1/2. Thus,

P {c ∈ (ζ I − x)\(ηI − y) | S, T , E, F, x, y} � 1√
np

(2|x − y| + |η − ζ | + 1) ,

where the last step holds because the maximum probability mass of c is
Θ(1/

√|E ∩ F |p), |E ∩ F | ≥ τ2 ≥ n/4 in view of (118), and the number of
integral points in (ζ I − x)\(ηI − y) is at most 2|x − y| + |η − ζ | + 1.

Combining the above two cases, we get that

P {c ∈ (ζ I − x)\(ηI − y)|E, F, x, y} 1E
�
(

1√
np

(|x − y| + |η − ζ | + 1)

+ 1

L
1{x−y∈[ζr−ηl,+∞)∪(−∞,ζ l−ηr ]}

)

1E .
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Taking expectation of x, y over both hand sides of the last displayed equation, we get
that

P {a ∈ I , b /∈ I |E, F} 1E �
(

1√
np

(E [|x − y| | E, F]+ |η − ζ | + 1)

+ 1

L
P {x − y ∈ [ζr − ηl,+∞) ∪ (−∞, ζ l − ηr ] | E, F}

)

1E .

Further taking expectation of E, F over both hand sides of the last displayed equation,
we get that

EE,F [P {a ∈ I , b /∈ I |E, F} 1E ] (120)

� 1√
np

EE,F [E [|x − y| | E, F] 1E ] (121)

+ |η − ζ | + 1√
np

(122)

+ 1

L
EE,F [P {x − y ∈ [ζr − ηl,+∞) ∪ (−∞, ζ l − ηr ] | E, F} 1E ] . (123)

Next we upper bound the three terms (121), (122), and (123) separately.
Upper bound (121):

E [|x | | E, F] 1E ≤ E

⎡

⎣

∑

k∈E\F
(gk − p) | E, F

⎤

⎦ 1E + |p|E | − (n − |S|)q|

≤ √|E\F |p(1− p)1E +
∣

∣

∣

∣

p|E | − (n − |S|)q
∣

∣

∣

∣

≤ √τ1 p(1− p)+
∣

∣

∣

∣

p|E | − (n − |S|)q
∣

∣

∣

∣

�
√

np(1− s)+√pΔ+ p

∣

∣

∣

∣

|E | − (n − |S|)s
∣

∣

∣

∣

,

where the last inequality holds due to τ1 � n(1− s)+Δ in (117). It follows that

EE,F [E [|x | | E, F] 1E ] �
√

np(1− s)+√pΔ+ p
√

(n − |S|)s(1− s)

�
√

np(1− s)+√pΔ,

where the first inequality uses the fact that |E | ∼ Binom(n − |S|, s) and hence

E
[∣

∣|E | − (n − |S|)s∣∣] ≤
√

E
[

(|E | − (n − |S|)s)2] = √
(n − |S|)s(1− s). Simi-

larly,

EE,F [E [|y| | E, F] 1E ] �
√

np(1− s)+√pΔ.
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Therefore, by triangle inequality,

EE,F [E [|x − y| | E, F] 1E ] �
√

np(1− s)+√pΔ. (124)

Upper bound (122): In view of definitions of ζ and η in (111),

|η − ζ | = √q(1− q)

∣

∣

∣

√

n − |S| −√n − |T |
∣

∣

∣

≤ √q
||T | − |S||√

n − |S| + √(n − |T |)
� q

√
Δ, (125)

where the last inequality holds because on event ΓA(i)∩ ΓB(i)∩Θi i , |S ∪ T | ≤ n/2
and ||T | − |S|| ≤ 4

√
nqΔ.

Upper bound (123): It follows from the last displayed equation that

∣

∣

∣

∣

η

ζ
− 1

∣

∣

∣

∣

≤ ||T \S| − |S\T ||
2 (n − |S ∪ T |) ≤

4
√
nqΔ

n
≤ 1

L
,

where the last inequality holds by the assumption (64), i.e, 4L
√
nqΔ ≤ n. As a

consequence,

ζr − ηl = ζ(r − l)+ (ζ − η)l ≥ ζ

(

1

L
− 1

2

∣

∣

∣

∣

η

ζ
− 1

∣

∣

∣

∣

)

= ζ

2L
.

Similarly, ηr − ζ l ≥ ζ
2L . Therefore,

P

{

x − y ∈ [ζr − ηl,+∞) ∪ (−∞, ζ l − ηr ]
∣

∣

∣

∣

E, F

}

≤ P

{

|x | ≥ ζ

4L

∣

∣

∣

∣

E, F

}

+ P

{

|y| ≥ ζ

4L
| E, F

}

. (126)

Recall the definition of x in (116),

P

{

|x | ≥ ζ

4L

∣

∣

∣

∣

E, F

}

1E ≤ P

⎧

⎨

⎩

∑

k∈E\F
(gk − p) ≥ ζ

8L

∣

∣

∣

∣

E, F

⎫

⎬

⎭

1E + 1{|p|E |−(n−|S|)q≥ζ/(8L)}.
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By Bernstein’s inequality,

P

⎧

⎨

⎩

∑

k∈E\F
(gk − p) ≥ ζ

8L

∣

∣

∣

∣

E, F

⎫

⎬

⎭

1E ≤ exp

(

−Ω

(

min

{

ζ 2

|E\F |L2 p
,

ζ

L

}))

1E

≤ exp

(

−Ω

(

min

{

n

(n(1− s)+Δ) L2 ,

√
np

L

}))

,

where the last inequality holds because ζ ≥ √nq/2 in (113), s ≥ 3/4, and |E\F | ≤
τ1 � n(1− s)+Δ on the event E in view of (117). By Bernstein’s inequality again,

P {|p|E | − (n − |S|)q ≥ ζ/(8L)} ≤ exp

(

−Ω

(

min

{

ζ 2

n(1− s)L2 p2
,

ζ

Lp

}))

≤ exp

(

−Ω

(

min

{

1

(1− s)L2 p
,

√
n

L
√
p

}))

,

where the last inequality holds because ζ ≥ √nq/2 in (113) and s ≥ 3/4. Combining
the last three displayed equations yields that

EE,F

[

P

{

|x | ≥ ζ

4L

∣

∣

∣

∣

E, F

}

1E

]

≤ exp

(

−Ω

(

min

{

1

σ 2L2 ,
n

L2Δ
,

√
np

L

}))

,

where we used σ 2 = 1− s. Similarly,

EE,F

[

P

{

|y| ≥ ζ

4L

∣

∣

∣

∣

E, F

}

1E

]

≤ exp

(

−Ω

(

min

{

1

σ 2L2 ,
n

L2Δ
,

√
np

L

}))

.

Combining the last two displayed equation with (126), we get that

EE,F [P {x − y ∈ [ζr − ηl,+∞) ∪ (−∞, ζ l − ηr ] | E, F} 1E ]
≤ exp

(

−Ω

(

min

{

1

σ 2L2 ,
n

L2Δ
,

√
np

L

}))

. (127)

Assembling (119), (120), (124), (125), and (127), we arrive at the desired bound
(110):

EE,F [P {a ∈ I , b /∈ I |E, F} 1E ]

� σ +
√

Δ

n
+ 1√

nq
+ 1

L
exp

(

−Ω

(

min

{

1

σ 2L2 ,
n

L2Δ
,

√
np

L

}))

+ e−Δ.

��
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4.4 Proof of Lemma 3, 4, and 5

To prove Lemma 3 and Lemma 4, we need a few auxiliary lemmas.
First, we need the following tight Gaussian approximation results for the binomial

distributions [57, Theorem 1]: Let D(p||q) � p log p
q + (1− p) log 1−p

1−q denote the
Kullback-Leibler divergence between Bern(p) and Bern(q).

Lemma 10 Assume that k ≥ nq + 1. Then

h(k) ≤ P {Binom(n, q) ≥ k} ≤ h(k − 1). (128)

where

h(k) � Q

(
√

2nD

(

k

n

∥

∥

∥q

)

)

,

and Q(t) = ∫∞t 1√
2π

e−x2/2dx is the standard normal tail probability.

Also, we need the following bounds on the Kullback-Leibler divergence:

Lemma 11 It holds that

D(x‖q) ≥ (x − q)2

2x(1− q)
∀ 0 < q ≤ x ≤ 1, (129)

D(x‖q) ≤ (x − q)2

2q(1− q)
∀ 0 < q ≤ x ≤ 1/2. (130)

Proof Note that

d

dx
D(x‖q) = x(1− q)

q(1− x)
,

d2

dx
D(x‖q) = 1

x(1− x)
,

d3

dx3
D(x‖q) = 1

(1− x)2
− 1

x2
,

The second-order Taylor expansion of D(x‖q) at x = q gives (129) and the third-order
Taylor expansion at x = q gives (130). ��

Finally, we need the following inequalities relating Q(tr) to Q(t)r
2
. Note that if

we use the approximation Q(t) ≈ e−t2/2, these two quantities are equal. The lemma
below makes this approximation precise:

Lemma 12 For any t > 0 and r > 0, we have

tr

1+ (tr)2
tr

2
(√

2π
)r2−1 ≤ Q(tr)

Q(t)r2
≤
(√

2π
1+ t2

t

)r2−1
t2 + 1

r t2
.
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Proof For the lower bound, using x
1+x2 ϕ(x) ≤ Q(x) ≤ 1

x ϕ(x), where ϕ(x) =
e−x2/2/

√
2π , we have

Q(tr) ≥ tr

1+ (tr)2
ϕ(tr)

and

(Q(t))r
2 ≤ 1

tr2
ϕ(t)r

2

Combining the last two displayed equations, we get that

Q(tr)

Q(t)r2
≥ tr

1+ (tr)2
tr

2 ϕ(tr)

ϕ(t)r2
= tr

1+ (tr)2
tr

2
(√

2π
)r2−1

.

The upper bound follows similarly from combining Q(tr) ≤ 1
tr ϕ(tr) and Q(t) ≥

t
1+t2 ϕ(t). ��

Now we are ready to prove Lemma 3. Recall that τ � min{0 ≤ k ≤ n :
P {Binom(n − 1, q) ≥ k} ≤ α} as defined in (39).

Proof (Proof of Lemma 3) We first prove (74) for i �= k. Let b′k =
∑

j �=i B jk . Then ai
and b′k are independent. Since b′k ≤ bk ≤ b′k + 1, it follows that

P {ai ≥ τ, bk ≥ τ + 1} ≤ P
{

ai ≥ τ, b′k ≥ τ
}

≤ P {ai ≥ τ }P {b′k ≥ τ
}

≤ P {ai ≥ τ }P {bk ≥ τ }
= (P {Binom(n − 1, q) ≥ τ })2 ≤ α2. (131)

Next we prove (74) for i = k. For notational convenience, we abbreviate ai and
bi as a and b, respectively. Let g denote the degree of vertex i in the parent graph.
Abusing notation slightly, we let k denote the realization of g in the remainder of the
proof. Then

P {a ≥ τ, b ≥ τ + 1} =
∑

k≥0
P {a ≥ τ, b ≥ τ + 1, g = k}

=
∑

k≥0
P {g = k}P {a ≥ τ | g = k}P {b ≥ τ + 1 | g = k} .

(132)

Let

k0 =
⌈

τ + 2

s

⌉

.
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Since conditional on g = k, a ∼ Binom(k, s) and b ∼ Binom(k, s). It follows that
for all k ≥ k0,

P {a ≥ τ | g = k} ≥ P {b ≥ τ + 1 | g = k} ≥ P {Binom(k, s) ≥ ks − 1} ≥ 1

2
,

(133)

where the last inequality holds because the median of Binom(k, s) is at least ks − 1.
Combining (132) and (133) yields that

P {a ≥ τ, b ≥ τ + 1} ≥ 1

4
P {g ≥ k0} = 1

4
P {Binom(n − 1, p) ≥ k0} , (134)

where the last equality holds due to g ∼ Binom(n − 1, p) with p = q/s.

It remains to prove thatP {Binom(n − 1, p) ≥ k0} ≥ Ω

(

α
1−q

(1−p)s

)

. By assumption,

α ≤ 1/4 and hence by the Berry-Esseen theorem, τ ≥ (n−1)q+2 for all n sufficiently
large. Thus k0 ≥ (τ + 2)/s ≥ np + 1. It follows from Lemma 10 that

P {Binom(n − 1, p) ≥ k0} ≥ Q
(

√

2(n − 1)D(k0/(n − 1)‖p)
)

. (135)

To proceed, we need to bound D(k0/(n − 1)‖p) from the above. We claim that

0 ≤ τ − (n − 1)q +√(n − 1)q(1− q)Q−1(α) ≤ (1− q)
(

Q−1(α)
)2 + 2, (136)

where Q−1 denote the inverse function of Q function. We defer the proof of (136) to
the end.

Note that Q(x) ≤ e−x2/2 for x ≥ 0. Hence,

Q−1(α) ≤
√

2 log
1

α
≤ √2 log(nq),

where the last inequality follows due to the assumption α ≥ 1/(nq). Thus it follows
from (136) that k0 ≤ (τ +3)/s ≤ (n−1)/2 for sufficiently large n . Hence, by (130),

√

2(n − 1)D(k0/(n − 1)‖p) ≤ k0 − (n − 1)p√
(n − 1)p(1− p)

≤ Q−1(α)
√

(n − 1)q(1− q)+ (1− q)
(

Q−1(α)
)2 + 5

s
√

(n − 1)p(1− p)
,

where the last inequality holds due to k0s ≤ τ + 3 and (136).
Applying the lower bound in Lemma 12 with

t � Q−1(α), r �
√

(n − 1)q(1− q)+ (1− q)t + 5/t

s
√

(n − 1)p(1− p)
,
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we get that

Q
(

√

2(n − 1)D(k0/(n − 1)‖p)
)

≥ tr

1+ (tr)2
tr

2
(√

2π
)r2−1

Q(t)r
2
.

Note that Q(t) = Q(Q−1(α)) = α. Moreover, in view of Ω(1) ≤ t ≤ √2 log(nq),
we have

r =
√

1− q

s(1− p)
+ O

(√

log nq

nq

)

.

Recall from (43) that 1−q
(1−p)s = 1+ 1−s

(1−p)s = 1+ σ 2

(1−p)s . Therefore, we get that

tr
2−1 ≤

(

√

2 log nq
)r2−1 = exp

((

σ 2

s(1− p)
+ O

(√

log nq

nq

))

(

log
√

2 log nq
)

)

= 1− o(1),

where the last inequality holds because by assumptions, σ 2 log log(nq) = o(1) and
nq →∞. Moreover,

αr2 = α
1−q

s(1−p)+O
(√

log nq
nq

)

≥ α
1−q

s(1−p) exp

(

−O

(√

log nq

nq
log(nq)

))

= (1− o(1))α
1−q

s(1−p) ,

where the inequality holds by the assumption α ≥ 1/(nq), and the last equality holds
due to nq →∞. Therefore, we get that

Q
(

√

2(n − 1)D(k0/(n − 1)‖p)
)

≥ (1− o(1)) α
1−q

(1−p)s . (137)

Combining (134), (135), and (137) yields that

P {a ≥ τ, b ≥ τ + 1} ≥ Ω

(

α
1−q

(1−p)s

)

,

proving (74) for i = j .
Finally, we verify the claim (136). By the definition of τ and Lemma 10, we have

that

Q
(

√

2(n − 1)D(τ/(n − 1)‖q)
)

≤ P {Binom(n − 1, q) ≥ τ }
≤ α

< P {Binom(n − 1, q) ≥ τ − 1}
≤ Q

(

√

2(n − 1)D((τ − 2)/(n − 1)‖q)
)

.
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Thus,

√

2(n − 1)D((τ − 2)/(n − 1)‖q) ≤ Q−1(α) ≤ √2(n − 1)D(τ/(n − 1)‖q) .

(138)

In view of (129), 2D(x‖q) ≤ t for t ≥ 0 implies

x2 − (2q + t(1− q)) x + q2 ≤ 0,

which further implies

x ≤ 2q + t(1− q)+√4q(1− q)t + t2(1− q)2

2
≤ q +√q(1− q)t + t(1− q),

where the last inequality holds due to
√
x + y ≤ √x+√y. Therefore, it follows from

the lower inequality in (138) that

τ − 2

n − 1
≤ q +√q(1− q)

Q−1(α)√
n − 1

+ (1− q)

n − 1

(

Q−1(α)
)2

.

Since q ≤ 1/8 by assumption and Q−1(α) ≤ √2 log(nq), it follows that for suffi-
ciently large n, τ/(n − 1) ≤ 1/2. Thus, combining the upper inequality in (138) with
(130) gives that

τ ≥ (n − 1)q +√(n − 1)q(1− q)Q−1(α).

Combining the last two displayed equations yields the desired (136). ��
Proof (Proof of Lemma 4) Recall that Θik =

{|ai − bk | ≤ 4
√
nqΔ

}

. Thus,

{ai ≥ τ, bk ≥ τ + 1} ∩Θc
ik

⊂
{

ai ≥ τ, bk ≥ τ + 4
√

nqΔ
}

∪
{

ai ≥ τ + 4
√

nqΔ+ 1, bk ≥ τ + 1
}

⊂
{

ai ≥ τ, bk ≥ τ + 4
√

nqΔ
}

∪
{

ai ≥ τ + 4
√

nqΔ, bk ≥ τ
}

.

Hence, by the union bound and the symmetry between ai and bk , it suffices to prove

P

{

ai ≥ τ, bk ≥ τ + 4
√

nqΔ
}

≤ O
(

α1+1{i �=k}e−Δ/2
)

.

If i �= k, analogous to the proof of (131), we have that

P

{

ai ≥ τ, bk ≥ τ + 4
√

nqΔ
}

≤ P {ai ≥ τ }P
{

bk ≥ τ + 4
√

nqΔ− 1
}

≤ αP
{

bk ≥ τ + 4
√

nqΔ− 1
}

.
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If i = k, then we have that

P

{

ai ≥ τ, bk ≥ τ + 4
√

nqΔ
}

≤ P

{

bk ≥ τ + 4
√

nqΔ− 1
}

.

Hence, for both cases, it reduces to proving

P

{

bk ≥ τ + 4
√

nqΔ− 1
}

≤ O
(

αe−Δ/2
)

. (139)

In view of Lemma 10, we have that

P

{

bk ≥ τ + 4
√

nqΔ− 1
}

≤ Q

⎛

⎝

√

2(n − 1)D

(

τ + 4
√
nqΔ− 2

n − 1
‖q
)

⎞

⎠ .

In view of (136), we have τ ≥ (n − 1)q + ωt, where ω �
√

(n − 1)q(1− q) and
t � Q−1(α). Let η � 4

√
nqΔ− 2. Thus,

√

2(n − 1)D

(

τ + η

n − 1
‖q
)

≥
√

2(n − 1)D

(

q + ωt + η

n − 1
‖q
)

≥ ωt + η√
((n − 1)q + ωt + η) (1− q)

≥ ωt + η
√

ω2 + ωt + η
,

where the second inequality follows from (129). Combining the last two displayed
equations gives

P

{

bk ≥ τ + 4
√

nqΔ− 1
}

≤ Q

(

ωt + η
√

ω2 + ωt + η

)

= Q(tr), (140)

where

r � ω + η/t
√

ω2 + ωt + η
.

By the assumption nq ≥ C0Δ
2, Δ ≥ C0, and t ≤ √2 log(nq), we have η ≤ ω2/2,

η ≥ 4t2, η2 ≥ 4ωt3, and t ≤ ω/2. Thus, we get that

r2 ≥ ω2 + η2/t2

ω2 + ωt + η
= 1+ η2/t2 − ωt − η

ω2 + ωt + η
≥ 1+ η2

4ω2t2
. (141)
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In view of the upper bound in Lemma 12, we have

Q(tr) ≤
(√

2π
1+ t2

t

)r2−1
t2 + 1

r t2
Q(t)r

2 ≤ tc1(r
2−1)αr2 , (142)

for a constant c1 > 0, where the last inequality holds because r > 1 by (141) and
t = Q−1(α) ≥ Q−1(α1) under the assumptionα ≤ α1 for a sufficiently small constant
α1.

Note that

r ≤ 1+ η

ωt
≤ 1+ c2

t

√
Δ

for a constant c2 > 0. Therefore,

tc1(r
2−1) ≤ tc1(2c2

√
Δ/t+c22Δ/t2) ≤ eΔ/2, (143)

where the last inequality holds because t ≥ Q−1(α1) for sufficiently small constant
α1.

Finally, it remains to bound αr2 . Using (141), we have

αr2 ≤ α exp

(

− η2

4ω2t2
log

1

α

)

≤ α exp

(

− η2

8ω2

)

≤ α exp(−Δ), (144)

where the second inequality holds due to t2 ≤ 2 log 1
α
and the last inequality holds

because η2 ≥ 8ω2Δ.
In conclusion, by combining (140), (142), (143), and (144), we get the desired

(139). ��
Proof (Proof of Lemma 5) Recall that

Θi =
{

max{√ai − cii ,
√

bi − cii } ≤
√

nq(1− s)+√Δ
}

.

Thus,

{ai ≥ τ, bi ≥ τ + 1} ∩Θc
i

⊂
{

ai ≥ τ,
√
ai − cii >

√

nq(1− s)+√Δ
}

∪
{

bi ≥ τ,
√

bi − cii >
√

nq(1− s)+√Δ
}

.

Hence, by the union bound and the symmetry between ai and bi , it suffices to prove

P

{

ai ≥ τ,
√
ai − cii >

√

nq(1− s)+√Δ
}

≤ αe−Δ/2 + e−Δ/(2σ 2).
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Define

τ =
(

√
nq +

√

Δ

4(1− s)

)2

.

Then

{

ai ≥ τ,
√
ai − cii >

√

nq(1− s)+√Δ
}

⊂
{

τ ≤ ai ≤ τ ,
√
ai − cii >

√

nq(1− s)+√Δ
}

∪ {ai ≥ τ }

and hence

P

{

ai ≥ τ,
√
ai − cii >

√

nq(1− s)+√Δ
}

≤ P

{

τ ≤ ai ≤ τ ,
√
ai − cii >

√

nq(1− s)+√Δ
}

+ P {ai ≥ τ } .

Since conditional on ai = k, ai − cii ∼ Binom(k, 1− s), it follows that

P

{

τ ≤ ai ≤ τ ,
√
ai − cii >

√

nq(1− s)+√Δ
}

=
∑

τ≤k≤τ

P {ai = k}P
{
√

Binom(k, 1− s) >
√

nq(1− s)+√Δ
}

≤ P {τ ≤ ai ≤ τ }P
{
√

Binom(τ , 1− s) >
√

nq(1− s)+√Δ
}

≤ α exp

(

−2
(

√

nq(1− s)+√Δ−√τ(1− s)
)2
)

= αe−Δ/2,

where the last inequality holds because of the definition of τ in (39) and the binomial
tail bound (168). Moreover, since ai ∼ Binom(n−1, q), it follows from the binomial
tail bound (168) that

P {ai ≥ τ } ≤ exp

(

−2
(√

τ −√(n − 1)q
)2
)

≤ e−
Δ

2(1−s) = e−Δ/(2σ 2).

Combining the last three displayed equation completes the proof. ��

4.5 Proof of Theorem 4

The following classical result about Erdős-Rényi graphs (cf. [9, Lemma 30]) gives
an upper bound on the probability that the 2-hop neighborhood of a given vertex i in
G ∼ G(n, p) is tangle-free, i.e., containing at most one cycle. This result will be used
to control the dependency among outdegrees in analyzing the W similarity defined in
(52).
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Lemma 13 Consider graph G ∼ G(n, p) with np ≥ C log n for a large constant C.
Let H denote the event that all 2-hop neighborhoods in G are tangle-free. Then

P {H} ≥ 1− n(2np)8 p2 − n−1.

In particular, when C log n ≤ np ≤ n1−ε for ε > 9/10, P {H} ≥ 1− O
(

n9−10ε
)

.

Proof Let Hi denote the event that the 2-hop neighborhood of the vertex i in G is
tangle-free and let H = ∩i∈[n]Hi . Let 
 = 2 throughout the proof. Consider the
classical graph branching process to explore the vertices in the 
-hop neighborhood of
i . See, e.g., [2, Section 11.5] for a reference. Such a branching process discovers a set
of edges which form a spanning tree of the 
-hop neighborhood of i . Then the 
-hop
neighborhood of i is tangle-free, provided that the number of edges undiscovered by
the branching process is at most one.

Let m denote the size of the 
-hop neighborhood of i in graph G ∼ G(n, p). There
are at most

(m
2

)

pairs of two distinct vertices in the 
-hop neighborhood of i . Hence, the
number of undiscovered edges is stochastically dominated by Binom(

(m
2

)

, p). Thus,
conditional on the size of the 
-hop neighborhood of i being m, the probability ofHc

i ,
by a union bound, is at most

P {Binom(m(m − 1)/2, p) ≥ 2} ≤ 1

8
m4 p2,

Moreover, since np ≥ C log n for a large constant C , the maximum degree in G is
at most 2np with probability at least 1 − n−2. Thus, m ≤ (2np)
 with probability at
least 1− n−2. Therefore, the unconditional probability

P
{Hc

i

} ≤ 1

8
(2np)4
 p2 + n−2 ≤ (2np)4
 p2 + n−2.

The proof is complete by applying a union bound over i ∈ [n] to the last display. ��
Recall that ˜NA(i) (resp. ˜NB(i)) denote the set of vertices in the 2-hop neighborhood

of i in graph A (resp. B). Let ˜GA(i) (resp. ˜GB(i)) denote the 2-hop neighborhood of i
in graph A (resp. B), i.e., the subgraph induced by ˜NA(i) (resp. ˜NB(i)). For notational
simplicity, we use the same notation a(i)

j and b(i)
j as (21) and (22) for unnormalized

outdegrees |NA( j) \ NA[i]| and |NB( j) \ NB[i]|, respectively. Similar to the high-
probability events defined in the beginning of Sect. 4, we also need to condition on a
number of events regarding the 2-hop neighborhoods of i in A and k in B in analyzing
the W statistic.

First, for each i ∈ [n], define the event ΓA(i) such that the following statements
hold simultaneously:

nq

2
≤ ai ≤ 2nq

nq

2
≤ a(i)

j ≤ 2nq, ∀ j ∈ NA(i)

ãi ≤ (2nq)2.
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Similarly, define the event ΓB(i) such that the following statements hold simultane-
ously:

nq

2
≤ bi ≤ 2nq

nq

2
≤ b(i)

j ≤ 2nq, ∀ j ∈ NB(i)

˜bi ≤ (2nq)2.

Define the event Γi i such that the following statements hold simultaneously:

cii ≥ nq

2

c(i)
j ≥

nq

2
, ∀ j ∈ NA(i) ∩ NB(i)

√
ai − cii ,

√

bi − cii ≤
√

nq(1− s)+√2 log n,

where

c(i)
j � |(NA( j) \ NA[i]) ∩ (NB( j) \ NB[i])| . (145)

Under the assumptions that nq ≥ C log n for some sufficiently large constant C ,
and σ ≤ σ0 for sufficiently small constants σ0, using Chernoff bounds for binomial
distributions (165) and the union bound, we have P

{

Γ c
A(i)

}

,P
{

Γ c
B(i)

}

,P
{

Γ c
ii

} ≤
O(n−2).

Second, for each pair of i, k ∈ [n] with i �= k, define the event Γik such that the
following statement holds:

|NA(i) ∩ NB(k)| ≤ 2

|NA( j) ∩ ˜NB(k)| ≤ 2, ∀ j ∈ NA(i) \ NB[k]
|NB( j) ∩ ˜NA(i)| ≤ 2, ∀ j ∈ NB(k) \ NA[i].

Lemma 14 If 1 ≤ nq ≤ n1−ε for ε > 9/10, we have P
{

Γ c
ik

} ≤ O
(

n7q10
) =

O
(

n7−10ε
)

for all i �= k.

Proof Fix i �= k. Note that

P {|NA(i) ∩ NB(k)| ≥ 3}
= P {∃a, b, c ∈ [n] : Aia = Aib = Aic = 1, Bka = Bkb = Bkc = 1}
≤

∑

a,b,c∈[n]

∏

j∈{a,b,c}
P
{

Ai j = 1
}

P
{

Bkj = 1
} ≤ n3q6 ≤ n7q10.

Next, suppose we are given any j ∈ NA(i) \ NB[k] such that |NA( j) ∩ ˜NB(k)| ≥ 3.
Let a, b, c denote three distinct vertices in NA( j) ∩ ˜NB(k). For each j ′ ∈ {a, b, c},
let p( j ′) denote a vertex in NB(k) ∩ NB[ j ′] (which is non-empty since j ′ ∈
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˜NB(k)). Consider the subgraph S of the union graph A ∪ B induced by vertices
in {i, j, k, a, b, c, p(a), p(b), p(c)}. Let V (S) denote the set of distinct vertices in S
and v(S) = |V (S)|. Let e(S) denote the number of edges in S. Note that v(S) ≤ 9.
Also, if we delete the two edges ( j, a) and ( j, b), the graph S is still connected; thus
e(S)−v(S) ≥ 1. Therefore, by lettingKn denote the complete graph on [n] and noting
that A ∪ B ∼ G (n, q(2− s)),

P
{∃ j ∈ NA(i) \ NB[k] : |NA( j) ∩ ˜NB(k)| ≥ 3

}

≤ P {∃S ⊂ A ∪ B : v(S) ≤ 9, e(S)− v(S) ≥ 1}
≤
∑

v≤9

∑

S⊂Kn :v(S)=v

1{(i,k)∈V (S)}1{e(S)−v(S)≥1}P {S ⊂ A ∪ B}

≤
∑

v≤9
2(

v
2)nv−2(2q)v+1 ≤ O

(

n7q10
)

.

Similarly, we have P
{∃ j ∈ NB(k) \ NA[i] : |NB( j) ∩ ˜NA(i)| ≥ 3

} ≤ O
(

n7q10
)

and hence P
{

Γ c
ik

} ≤ O
(

n7q10
)

. ��
Third, let A ∪ B denote the union graph of A and B. Define

Hi i =
{

˜GA∪B(i) is tangle-free
}

and

Hik =
{

˜GA(i) and ˜GB(k) are both tangle-free
}

.

The next two lemmas are the counterparts of Lemma 1 and Lemma 2, which estab-
lish the desired separation of the W statistic for true pairs and fake pairs.

Lemma 15 (True pairs) Assume that nq ≥ C max{log n, L2}, L ≥ L0 for some suf-
ficiently large constants C and L0, σ ≤ σ0/L for some sufficiently small constant
σ0 > 0, and n2q3

√
L ≤ c0 for some sufficiently small constant c0 > 0. Then

P
{

Wii ≤ nq/4 | ˜GA(i), ˜GB(i), ˜GA∪B(i)
}

1{Hi i∩ΓA(i)∩ΓB (i)∩Γi i } ≤ e−Ω(nq). (146)

Proof Throughout the proof, we condition on the 2-hop neighborhoods of i in A, B,
and A ∪ B such that event Hi i ∩ ΓA(i) ∩ ΓB(i) ∩ Γi i holds.

On the event Hi i , there is at most one cycle in the 2-hop neighborhood of i in
the union graph A ∪ B. Hence, there is at most one pair of vertices j0 ∈ NA(i) and
j ′0 ∈ NB(i) with j0 �= j ′0 such that in the union graph A ∪ B,

(a) either j0 and j ′0 are adjacent;
(b) or there exist a neighbor 
 �= i of j0 and a neighbor 
′ �= i of j ′0, where either


 = 
′ or 
 and 
′ are adjacent.

Then we claim that ˜Z (i i)
j j are mutually independent across different j in NA(i) ∩

NB(i)\ { j0, j ′0}. Indeed, note that ˜Z (i i)
j j is a function of {̃a(i)


 : 
 ∈ NA( j)\ NA[i]} and
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{˜b(i)

 : 
 ∈ NB( j)\NB[i]}. Fix a pair of j �= j ′ ∈ NA(i)∩NB(i)\{ j0, j ′0} and any 
 ∈

(NA( j)\NA[i])∪(NB( j)\NB[i]) and any 
′ ∈ (NA( j ′)\NA[i])∪(NB( j ′)\NB[i]).
First, we claim 
 �= 
′, and 
, 
′ are non-adjacent in the union graph A∪ B; otherwise,
( j, j ′) is another pair in addition to ( j0, j ′0) satisfying either the condition (a) or (b)
mentioned above, violating the tangle-free property.Moreover, sincewe have excluded
i’s closed 2-hop neighborhoods in the definition of outdegree ã(i)


 and˜b(i)

 , it follows

that (̃a(i)

 ,˜b(i)


 ) is independent from (̃a(i)

′ ,˜b(i)


′ ). Thus, ˜Z (i i)
j j and ˜Z (i i)

j ′ j ′ are independent.
By the definition of W similarity in (52), we have

Wii ≥
∑

j∈NA(i)∩NB (i)\{ j0}
1{
˜Z (i i)
j j ≤η

},

where η = η0

√

L
nq as defined in (53). We claim that

P

{

˜Z (i i)
j j ≤ η

}

≥ 1− e−Ω(L) ≥ 3

4
, (147)

where the last inequality holds due to L ≥ L0. Also, on the event Γi i , cii = |NA(i)∩
NB(i)| ≥ nq/2. Then it follows from the independence of ˜Z (i i)

j j across different
j ∈ NA(i) ∩ NB(i) \ { j0} that

Wii
s.t .≥ Binom

(

nq

2
− 1,

3

4

)

.

Therefore, by Chernoff’s bound (165) for binomials, we get that

P {Wii ≤ nq/4} ≤ e−Ω(nq).

It remains to verify claim (147). The proof follows the similar argument as the

proof of Lemma 1. Specifically, recall that ˜Z (i i)
j j = d

(

μ̃
(i)
j , ν̃

(i)
j

)

, where

μ̃
(i)
j � 1

a(i)
j

∑


∈NA( j)\NA[i]
δ̃
a(i)



− Binom (n − ãi , q) ,

and

ν̃
(i)
j � 1

b(i)
j

∑


∈NB ( j)\NB [i]
δ
˜b(i)




− Binom
(

n −˜bi , q
)

.

Recall that ã(i)

 (resp.˜b(i)


 ) are the normalized “outdegree” of vertex 
 with the closed
2-hop neighborhood of i in A (resp. B) excluded; ãi (resp.˜bi ) are the size the 2-hop
neighborhood of i in graph A (resp. B).
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Note that for 
 ∈ NA( j) \ NA[i],

ã(i)

 = 1√

(n − ãi )q(1− q)

∑

k∈˜NA(i)c

(Ak
 − q)

= 1√
(n − ãi )q(1− q)

⎡

⎣

∑

k∈˜NA(i)c∩˜NB (i)c

Ak
 − (n − ãi ) q

⎤

⎦ ,

where the last equality holds because if k ∈ ˜NB(i), then Ak
 = 0; otherwise, ˜GA∪B(i)
is not tangle-free. Moreover, note that 
 /∈ NB(i); otherwise ˜GA∪B(i) is not tangle-
free. Therefore, for all k ∈ ˜NA(i)c ∩ ˜NB(i)c, Ak
 ∼ Bern(q). Hence,

ã(i)



i.i.d.∼ 1√
(n − ãi )q(1− q)

[

Binom
(∣

∣˜NA(i)c ∩ ˜NB(i)c
∣

∣ , q
)− (n − ãi ) q

]

� μ.

Similarly, for 
 ∈ NB( j) \ NB[i],

˜b(i)

 = 1

√

(n −˜bi )q(1− q)

∑

k∈˜NB (i)c

(Bk
 − q)

= 1
√

(n −˜bi )q(1− q)

⎡

⎣

∑

k∈˜NB (i)c∩˜NA(i)c

Bk
 −
(

n −˜bi
)

q

⎤

⎦ .

Thus,

˜b(i)



i.i.d.∼ 1
√

(n −˜bi )q(1− q)

[

Binom
(∣

∣˜NA(i)c ∩ ˜NB(i)c
∣

∣ , q
)− (n −˜bi

)

q
]

� μ′.

Analogous to (86) and (87), the centered empirical distribution can be rewritten as

μ̃
(i)
j = ρP + (1− ρ)P ′ + μ− ν

ν̃
(i)
j = ρ′Q + (1− ρ′)Q′ + μ′ − ν′,

where

ρ �
c(i)
j

a(i)
j

, ρ′ �
c(i i)
j j

b(i)
j

,

and

P � 1

c(i)
j

∑


∈(NA( j)\NA[i])∩(NB ( j)\NB [i])
δ̃
a(i)



− μ,
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P ′ � 1

a( j)
i − c(i)

j

∑


∈(NA( j)\NA[i])\(NB ( j)\NB [i])
δ̃
a(i)



− μ,

Q � 1

c(i)
j

∑


∈(NA( j)\NA[i])∩(NB ( j)\NB [i])
δ
˜b(i)




− μ′,

Q′ � 1

b(i)
j − c(i)

j

∑


∈(NB ( j)\NB [i])\(NA( j)\NA[i])
δ
˜b(i)




− μ′,

and ν = Binom (n − ãi , q) and ν′ = Binom
(

n −˜bi , q
)

. ��
Similar to (94), we have that

˜Z (i i)
j j ≤ ‖[μ− ν]L‖1 + ‖[μ′ − ν′]L‖1

︸ ︷︷ ︸

(I)

+ d(P, Q)
︸ ︷︷ ︸

(II)

+ (1− ρ)‖[P ′]L‖1 + (1− ρ′)‖[Q′]L‖1
︸ ︷︷ ︸

(III)

+ |ρ − ρ′| × ‖[Q]L‖1
︸ ︷︷ ︸

(IV)

. (148)

For (I), we need the following lemma to control the discrepancy between the dis-
tribution μ (resp. μ′) and the ideal standardized binomial distribution ν (resp. ν′).

Lemma 16 Let m, n ∈ N with m ≤ n and η1, . . . , ηm, q ∈ [0, 1]. Suppose

Xi
i.i.d.∼ Bern(q) for 1 ≤ i ≤ n and Yi ’s are independently distributed as Bern(ηi )

for 1 ≤ i ≤ m. Let S = ∑n
i=1 Xi and T = ∑m

i=1 Yi +
∑n

i=m+1 Xi . Let μ0 and

ν0 denote the law of S−nq√
nq(1−q)

and T−nq√
nq(1−q)

, respectively. Assume m ≤ n/2 and

nq = Ω(1). Then

d (μ0, ν0) =
∥

∥[μ0 − ν0]L
∥

∥

1 ≤ O

(

L

∑m
i=1 |ηi − q|√

nq

)

. (149)

Proof For 1 ≤ i ≤ m, we couple Xi and Yi as follows. When ηi ≤ q, generate
Yi ∼ Bern(ηi ), and let Xi = 1 if Yi = 1 and Xi ∼ Bern(q − ηi ) if Yi = 0. When
ηi > q, generate Xi ∼ Bern(q), and let Yi = 1 if Xi = 1 and Yi ∼ Bern(ηi − q) if
Xi = 0. Let X = ∑n

i=m+1 Xi , Y = ∑m
i=1 Yi , and Z = ∑m

i=1 Xi . Then S = X + Z
and T = X + Y . Let ξ = √nq(1− q). Then

d (μ0, ν0) =
L
∑


=1
|μ0(I
)− ν0(I
)|

=
L
∑


=1
|P {S ∈ ξ I
 + nq} − P {T ∈ ξ I
 + nq}|

≤
L
∑


=1
max {P {S ∈ ξ I
 + nq, T /∈ ξ I
 + nq} ,P {S /∈ ξ I
 + nq, T ∈ ξ I
 + nq}} .
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It remains to show P {S ∈ ξ I
 + nq, T /∈ ξ I
 + nq} ≤ O
(∑m

i=1 |ηi−q|√
nq

)

; the proof for

P {S ∈ ξ I
 + nq, T /∈ ξ I
 + nq} is analogous. Note that

P {S ∈ ξ I
 + nq, T /∈ ξ I
 + nq} = P {X ∈ ξ I
 + nq − Z , X /∈ ξ I
 + nq − Y }
≤ O

(

E [|Y − Z |]√
nq

)

,

where the last inequality follows analogous to Lemma 9. The conclusion follows since
E [|Y − Z |] ≤∑m

i=1 E [|Xi − Yi |] = (1−min{ηi , q})∑m
i=1 |ηi − q| by definition. ��

Applying Lemma 16 (with ηi ≡ 0 andm ≤ ãi+˜bi ) and noting that ãi ,˜bi ≤ (2nq)2,
we get that

‖[μ− ν]L‖1 + ‖[μ′ − ν′]L‖1 ≤ O

(

L(nq)2q√
nq

)

. (150)

Analogous to Lemma9, under the assumptions thatσ ≤ σ0/L and nq ≥ CL2, we have
that for any 
 ∈ (NA( j) \ NA[i])∩(NB( j) \ NB[i]) and any interval I ⊂ [−1/2, 1/2]
with |I | = 1/L , conditional on the 2-hop neighborhoods of i in both A and B,

P

{

ã(i)

 ∈ I ,˜b(i)


 /∈ I
}

+ P

{

ã(i)

 /∈ I ,˜b(i)


 ∈ I
}

≤ c1
L

for a sufficiently small constant c1.
For (II), applying Lemma 7 with

{X j }mj=1 = {̃a(i)

 }
∈(NA( j)\NA[i])∩(NB ( j)\NB [i]),

{Y j }mj=1 = {˜b(i)

 }
∈(NA( j)\NA[i])∩(NB ( j)\NB [i]),

and m = c(i)
j ≥ nq

2 on the event Γi i , we get that with probability at least 1− e−Ω(L),

d(P, Q) ≤ c2

√

L

nq
, (151)

for a sufficiently small constant c2.

For (III), applying Lemma 8 with k = L implies that ‖[P ′]L‖1 ≤ 2
√

L
a(i)
j −c(i)

j

and

‖[Q′]L‖1 ≤ 2
√

L
b(i)
j −c(i)

j

, each with probability at least 1 − e−L/2. Therefore, by the

union bound, with probability at least 1− e−Ω(L),
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(1− ρ)‖[P ′]L‖1 + (1− ρ′)‖[Q′]L‖1 ≤ 2

a(i)
j

√
L
√

a(i)
j − c(i)

j +
2

b(i)
j

√
L
√

b(i)
j − c(i)

j

≤ 8

nq

√
L

(
√

nqσ 2 +√2 log n

)

, (152)

where the last inequality holds because on the event ΓA(i) ∩ ΓB(i) ∩ Γi i , a
(i)
j , b(i)

j ≥
nq/2,

√

a(i)
j − c(i i)

j j ≤
√

a j − c j + bi − ci ≤
√

a j − c j +
√

bi − ci

≤ 2
(

√

nq(1− s)+√2 log n
)

and similarly for
√

b(i)
j − c(i)

j .
Finally, for (IV), applying Lemma 8 with k = L implies that with probability at

least 1− e−L/2,

‖[Q]L‖1 ≤ 2

√

L

c(i)
j

≤ 2
√
2

√

L

nq
,

where the last inequality holds due to c(i)
j ≥ nq/2 on event Γi i . Moreover,

|ρ − ρ′| ≤ max{1− ρ, 1− ρ′} ≤ 2

nq

(

√

nq(1− s)+√2 log n
)2

≤ 4σ 2 + 8
log n

nq
.

Therefore,

|ρ − ρ′| × ‖[Q]L‖1 ≤ 8
√
2

√

L

nq

(

σ 2 + 2
log n

nq

)

. (153)

Assembling (148) with (151), (152), (153), we get that with probability at least
1− e−Ω(L),

˜Z (i i)
j j ≤ c2

√

L

nq
+ 8

nq

√
L

(
√

nqσ 2 +√2 log n

)

+ 8
√
2

√

L

nq

(

σ 2 + 2
log n

nq

)

+ O

(

L(nq)2q√
nq

)

≤ η0

√

L

nq
= η

123



96 J. Ding et al.

for some sufficiently small absolute constant η0 > 0, where the last inequality holds
due to the assumptions thatnq ≥ CL for some sufficiently large constantC ,σ ≤ σ0/L ,
and n2q3

√
L ≤ c0 for some sufficiently small constant c0 > 0. Thus we arrive at the

desired (147). ��
Lemma 17 (Fake pairs) Suppose L ≥ C log(nq), nq ≥ C max{log n, L2} for some
sufficiently large constant C, and q ≤ n−ε for ε > 9/10. Fix i �= k. Then

P
{

Wik ≥ nq/4 | ˜GA(i), ˜GB(k)
}

1{Hik∩ΓA(i)∩ΓB (k)∩Γik } ≤ e−Ω(nq). (154)

Proof Fix a pair of vertices i �= k and condition on the 2-hop neighborhoods of i in A
and k in B such that the event Hik ∩ΓA(i)∩ΓB(k)∩Γik holds. Fix a feasible solution
M in (52); in other words, M is a bipartite matching (possibly imperfect) between the
neighborhoods NA(i) and NB(k).

For the ease of notation, let J = NA(i) \ NB[k] and J ′ = NB(k) \ NA[i]. Recall
the matrix Y (ik) defined in (51). Since M is a matching, it follows that

〈

Y (ik), M
〉

≤ 2|NA[i] ∩ NB[k]| +
∑

j∈J , j ′∈J ′
Y (ik)
j j ′ Mj j ′ ≤ nq

8
+

∑

j∈J , j ′∈J ′
Y (ik)
j j ′ Mj j ′,

where the last inequality holds because |NA[i] ∩ NB[k]| ≤ 4 ≤ nq/16 on the event
Γik under the assumption that nq ≥ C log n.

Note that on the eventHik , there is at most one cycle in the 2-hop neighborhood of
i in A, and at most one cycle in the 2-hop neighborhood of k in B.

We next bound
∑

j∈J , j ′∈J ′ Y
(ik)
j j ′ Mj j ′ usingMcDiarmid’s inequality, where Y (ik)

j j ′ =
1{
˜Z (ik)
j j ′ ≤η

} and η = η0

√

L
nq as defined in (53). To circumvent the discontinuity of the

indicator function, define a piecewise linear function F which decreases linearly from
1 to 0 from η to 2η, so that 1{x≤η} ≤ F(x) for all x . Furthermore, F is Lipschitz with
constant 1/η. Define

W ′ �
∑

j∈J , j ′∈J ′
F
(

˜Z (ik)
j j ′
)

Mj j ′ . (155)

Then we have
〈

Y (ik), M
〉

≤ nq

8
+W ′. (156)

Let L = ∪ j∈J (NA( j) \ NA[i]) and L′ = ∪ j ′∈J ′
(

NB( j ′) \ NB[k]
)

. Next we claim

that, on the eventHik ∩ΓA(i)∩ΓB(k),W ′, as a function of {(̃a(i)

 ,˜b(k)


 ) : 
 ∈ L∩L′},
{̃a(i)


 : 
 ∈ L \ L′}, and {˜b(k)

′ : 
′ ∈ L′ \ L}, satisfies the bounded difference property

with constant O( 1
nqη

). This is verified by the following reasoning:

– Fix 
 ∈ L\L′. We consider the impact of modifying the value of ã(i)

 on that ofW ′.

On the tangle-free eventHik , there are at most two distinct choices of j such that
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 ∈ NA( j) \ NA[i]. Therefore ã(i)

 appears in the empirical distribution μ̃

(i)
j for

at most two different j ∈ NA(i). Furthermore, since 
 /∈ L′, ã(i)

 does not appear

in any ν̃
(k)
j . Recall that any m-observation empirical distribution as a function of

each observation satisfies the bounded difference property (with respect to the
total variation distance) with constant O( 1

m ) (cf. (106)). On the event ΓA(i), we

have a(i)
j ≥ nq/4. Thus modifying ã(i)


 can change μ̃
(i)
j in total variation by at

most O( 1
nq ). Furthermore, crucially, since M is a matching, for each j there exists

at most one j ′ such that Mj j ′ �= 0 in the double sum (155). Finally, since F is

(1/η)-Lipschitz continuous by design, we conclude that ã(i)

 �→ W ′ has the desired

bounded difference property with constant O( 1
nqη

).

– Entirely analogously, since b(k)
j ≥ nq/4 on the event ΓB(k), the mappings˜b(k)


′ �→
W ′ for any 
′ ∈ L′\L and (̃a(i)


 ,˜b(k)

 ) �→ W ′ for any 
 ∈ L ∩ L all satisfy the

bounded difference property with constant O( 1
nqη

) on the event Hik ∩ ΓA(i) ∩
ΓB(k).

Recall that in the definition of outdegree ã(i)

 , we have excluded the 2-hop neigh-

borhood of i in A; similarly, in the definition of outdegree˜b(k)

′ , we have excluded the

2-hop neighborhood of k in B. Therefore, we have that

– {(̃a(i)

 ,˜b(k)


 )} are independent across different 
 ∈ L ∩ L′;
– {̃a(i)


 } are independent across different 
 ∈ L \ L′;
– {˜b(k)


′ } are independent across different 
′ ∈ L′ \ L;
– {(̃a(i)


 ,˜b(k)

′ ) : 
 ∈ L∩L′} are independent of {̃a(i)


 : 
 ∈ L \L′, ˜b(k)

′ : 
 ∈ L′ \L}.

However, ã(i)

 for 
 ∈ L \L′ and˜b(k)


′ for 
′ ∈ L′ \L may be dependent, because A

′

may contribute to the outdegree ã(i)

 , and B

′ may contribute to the outdegree ˜b(k)


′ .
Fortunately, similar to the reasoning in Fig. 1, conditioned on the edge sets EA(L,L′)
and EB(L,L′), the outdegrees {̃a(i)


 : 
 ∈ L \ L′} and {˜b(k)

′ : 
′ ∈ L′ \ L} are

independent, since the definition of the outdegree in (46)–(47) excludes the two-hop
neighborhood.

In particular, write E(L,L′) = (EA(L,L′), EB(L,L′)) for simplicity, and let Fik

denote an event (to be specified later) that is measurable with respect to E(L,L′) and
holdswith highprobability:P {Fik} ≥ 1−exp (Ω(nq)). Conditionedon E(L,L′) such
that the event Fik holds, applying McDiarmid’s inequality and noting that |L|, |L′| ≤
(2nq)2 on the event ΓA(i) ∩ ΓB(k), we get that

P

{

W ′ − E
[

W ′ | E(L,L′)] ≥ nq

16

∣

∣

∣ E(L,L′)
}

≤ exp
(

−c1(nqη)2
)

, (157)

where c1 is an absolute constant.
We next compute E

[

W ′ | E(L,L′)]. We first claim that for all j ∈ J and j ′ ∈ J ′,

P

{

Z (ik)
j j ′ ≤ 2η

∣

∣

∣ E(L,L′)
}

≤ e−Ω(L). (158)
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By definition of W ′, we have

E

[

W ′
∣

∣

∣ E(L,L′)
]

=
∑

j∈J , j ′∈J ′
E

[

F
(

˜Z (ik)
j j ′
) ∣

∣

∣ E(L,L′)
]

Mj j ′

≤
∑

j∈J , j ′∈J ′
P

{

Z (ik)
j j ′ ≤ 2η

∣

∣

∣ E(L,L′)
}

≤ O
(

e−Ω(L)
)

∑

j∈J , j ′∈J ′
Mj j ′

≤ O(e−Ω(L)nq) ≤ nq

16
,

where the first inequality follows by the definition of F ; the second inequality holds
due to (158); the third inequality is due to |J | ≤ 2nq on the event ΓA(i) and that
M is a matching; the last inequality holds due to L ≥ L0 log n. Combining the last
displayed equation with (157), we obtain

P
{

W ′ ≥ nq/8 | E(L,L′)} 1{Fik } ≤ exp
(

−c1(nqη)2
)

.

Averaging over the last displayed equation yields that

P
{{

W ′ ≥ nq/8
} ∩ Fik

} ≤ exp
(

−c1(nqη)2
)

.

Combining the last displayed equation with (156), we obtain

P

{{

〈Y (ik), M〉 ≥ nq/4
}

∩ Fik

}

≤ P
{{

W ′ ≥ nq/8
} ∩ Fik

} ≤ exp
(

−c1(nqη)2
)

.

Finally, applying a union bound over the set of all possible matching M and recalling
the definition of similarity Wik in (52), we get that

P {{Wik ≥ nq/4} ∩ Fik} ≤ (2nq)! × e−c1(nqη)2 ≤ e−Ω(nq log(nq)),

where the last inequality holds due to the choice of η in (53) and the assumption that
L ≥ L0 log(nq). Therefore, by a union bound,

P {Wik ≥ nq/4} ≤ P {{Wik ≥ nq/4} ∩ Fik} + P
{Fc

ik

} ≤ e−Ω(nq).

It remains to specify the event Fik and verify the claim (158) when conditioned on
E(L,L′) such that the eventFik holds. The proof follows a similar argument as in the

proof of Lemma 2. Specifically, recall that ˜Z (ik)
j j ′ = d

(

μ̃
(i)
j , ν̃

(k)
j ′
)

, where

μ̃
(i)
j � 1

a(i)
j

∑


∈NA( j)\NA[i]
δ̃
a(i)



− Binom (n − ãi , q) ,

123



Efficient random graph matching via degree profiles 99

and

ν̃
(k)
j ′ � 1

b(k)
j ′

∑


∈NB ( j ′)\NB [k]
δ
˜b(k)




− Binom
(

n −˜bk, q
)

.

Let ν = Binom (n − ãi , q) and ν′ = Binom
(

n −˜bk, q
)

. Observe that for 
 ∈
˜NB(k), ã(i)


 is no longer distributed as ν after conditioning on the 2-hop neighborhood
˜NB(k), and likewise for˜b(k)


 for 
 ∈ ˜NA(i). Therefore, we decompose μ̃
(i)
j and ν̃

(k)
j ′ as

μ̃
(i)
j = κ̂P + (1− κ)˜P

ν̃
(k)
j ′ = κ ′̂Q + (1− κ ′)˜Q,

where

κ � |̂S|
a(i)
j

, κ ′ � |̂T |
b(k)
j ′

,

and

˜S = (NA( j) \ NA[i]) ∩ ˜NB(k)c, ̂S = (NA( j) \ NA[i]) ∩ ˜NB(k)

˜T = (NB( j ′) \ NB[k]
) ∩ ˜NA(i)c, ̂T = (NB( j ′) \ NB[k]

) ∩ ˜NA(i),

and

˜P � 1

|˜S|
∑


∈˜S
δ̃
a(i)



− ν, ̂P � 1

|̂S|
∑


∈̂S
δ̃
a(i)



− ν,

˜Q � 1

|˜T |
∑


∈˜T
δ
˜b(k)




− ν′, ̂Q � 1

|̂T |
∑


∈̂T
δ
˜b(k)




− ν′.

Therefore, we have

˜Z (ik)
j j ′ ≥ (1− κ)d(˜P, ˜Q)− κ‖[̂P]L‖1 − κ ′‖[̂Q]L‖1 − |κ − κ ′| × ‖[˜Q]L‖1. (159)

On the event ΓA(i) ∩ ΓB(k) ∩ Γik , we have a(i)
j , b(k)

j ′ ≥ nq/2, and |̂S|, |̂T | ≤ 2.

Therefore, κ, κ ′ ≤ 4
nq . Since ‖[̂P]L‖1, ‖[̂Q]L‖,‖[˜Q]L‖1 ≤ 2, it follows that

˜Z (ik)
j j ′ ≥

1

2
d(˜P, ˜Q)− O

(

1

nq

)

. (160)

It remains to lower bound d(˜P, ˜Q). Conditioning on E(L,L′), we aim to apply
Lemma 6 with m = |˜S|, m′ = |˜T |, m0 = nq, {X
}m
=1 = {̃a(i)


 }
∈˜S, and {Y
}m′
=1 =
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{˜b(k)

 }
∈˜T . Note that since κ, κ ′ ≤ 1/2 and nq/2 ≤ a(i)

j , b(k)
j ′ ≤ 2nq, it follows

that m,m′ = Θ(m0). Also, as previously argued, after conditioning on E(L,L′),
{̃a(i)


 }
∈˜S and {˜b(k)

 }
∈˜T are two independent sequence of real-valued random variables.

It remains to check the assumption (88) in Lemma 6, that is, there exists a set L0 ⊂ ˜S
with |L0| ≥ m/4 and constants c1, c2 ∈ (0, 1] such that c1

L ≤ P

{

ã(i)

 ∈ I

}

≤ c2
L for

all interval I ⊂ [−2, 2] of length 1/L .
To this end, recall that

ã(i)

 = 1√

(n − ãi )q(1− q)

∑

u∈˜NA(i)c

(Au
 − q) .

For 
 ∈ ˜S:
– If u ∈ NB[k], then Bu
 = 0; otherwise, 
 ∈ ˜NB(k), violating 
 ∈ ˜S. Thus,

Au
 ∼ Bern(q ′) with q ′ = P {Au
 = 1|Bu
 = 0} = q(1−s)
1−ps ≤ q;

– If u ∈ L′, then Au
 is deterministic when conditioning on EA(L,L′);
– If u /∈ ˜NB(k), then Au
 ∼ Bern(q).

Recall that eA(
, S) denotes the number of edges between vertex 
 and vertices in
S in graph A. Define φ = |L′ \ ˜NA(i)|, ψ = |NB[k] \ ˜NA(i)|, and

L0 =
{


 ∈ ˜S : ∣∣eA
(


,L′ \ ˜NA(i)
)− φq

∣

∣ ≤ √nq(1− q)/2
}

.

Define the event

Fik = {|L0| ≥ m/4} , (161)

which is measurable with respect to EA(L,L′) since˜S ⊂ L. Note that for each 
 ∈ L,
eA
(


,L′ \ ˜NA(i)
) ∼ Binom (φ, q). Hence, by Chebyshev’s inequality,

P {
 ∈ L0} ≥ 1− 2φ

n
≥ 1

2
,

where the last inequality holds because φ ≤ |L′| ≤ ˜bk ≤ (2nq)2 and q ≤ n−ε for
ε > 9/10. Moreover, eA

(


,L′ \ ˜NA(i)
)

are independent across 
 ∈ ˜S. Hence, |L0|
is stochastically lower bounded by Binom(m, 1/2). It follows from the binomial tail
bound (165) and the fact that m = Ω(nq) that

P {Fik} = P {|L0| ≥ m/4} ≥ 1− exp(Ω(nq)).

Let

u
 = 1
√

(n − ãi − φ − ψ)q(1− q)+ ψq ′(1− q ′)
[

eA
(


, ˜NA(i)c \ L ′)

−(n − ã − φ − ψ)q − ψq ′
]
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and

v
 = 1√
(n − ãi )q(1− q)

[

ψ(q ′ − q)+ eA
(


,L′ \ ˜NA(i)
)− φq.

]

Let

α
 =
√

(n − ãi − φ − ψ)q(1− q)+ ψq ′(1− q ′)
(n − ãi )q(1− q)

.

Then ã(i)

 = α
u
+v
.Note that on eventΓA(i)∩ΓB(k), ãi ≤ (2nq)2 andφ,ψ ≤ 2nq.

Sinceq ′ ≤ q ≤ n−ε , it follows that 1/
√
2 ≤ α
 ≤ 1.Moreover, |v
| ≤ 1 for all 
 ∈ L0.

By the Berry-Esseen theorem, we have

P

{

ã(i)

 ∈ I

}

= P

{

u
 ∈ I − v


α


}

= P

{

N (0, 1) ∈ I − v


α


}

±O (1)√
nq

= Θ(1)

L
± O (1)√

nq
= Θ(1)

L
,

where the last equality holds due to nq ≥ CL2.
Conditioning on E(L,L′) such that event Fik holds and applying Lemma 6, we

get that

P

{

d(˜P, ˜Q) ≤ α1

√

L

nq

∣

∣

∣

∣

E(L,L′)
}

1{Fik } ≤ e−Ω(L), (162)

where α1 is some absolute constant.
Combining (160) with (162), we have that conditioned on E(L,L′) such that event

Fik holds, with probability at least 1− e−Ω(L),

˜Z (ik)
j j ′ ≥

α1

2

√

L

nq
− O

(

1

nq

)

> 2η0

√

L

nq
= 2η

for some sufficiently small constant η0, where the last inequality holds due to nq ≥
C log n. Thus we arrive at the desired claim (158). ��

With Lemmas 15 and 17, we are ready to prove Theorem 4.

Proof (Proof of Theorem 4) LetH denote the event that all 2-hop neighborhoods in the
uniongraph A∪B are tangle-free.Under the assumption thatq ≤ n−ε for ε > 9/10 and
the fact that the union graph A∪ B ∼ G(n, ps(2− s)), it follows from Lemma 13 that
P {H} ≥ 1−O

(

n9−10ε
)

. Define the eventF = H∩(∩i (ΓA(i) ∩ ΓB(i)))∩(∩i,kΓik
)

.
It follows that

P
{Fc} ≤ P

{Hc}+
∑

i∈[n]

(

P
{

Γ c
A(i)

}+ P
{

Γ c
B(i)

})+
∑

i,k∈[n]
P
{

Γ c
ik

} ≤ O
(

n9−10ε
)

.
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Applying Lemma 15 with L = C log(nq) and averaging over the 2-hop neigh-
borhoods ˜NA(i) and ˜NB(i) and noting that nq ≥ C0 log n for a large constant C0,
q ≤ n−ε for ε > 9/10, and σ ≤ σ0/L for a sufficiently small constant σ0, we get that

P

{{

Wii ≤ nq

4

}

∩Hi i ∩ ΓA(i) ∩ ΓB(i) ∩ Γi i

}

≤ e−Ω(nq) ≤ n−2.

Similarly, for i �= k, applying Lemma 17 with L = C log(nq) and averaging over the
2-hop neighborhoods ˜NA(i) and ˜NB(k), we get that

P

{{

Wik ≥ nq

4

}

∩Hik ∩ ΓA(i) ∩ ΓB(k) ∩ Γik

}

≤ e−Ω(nq) ≤ n−3.

By the union bound and the fact that H ⊂ Hii , we have

P

{{

min
i∈[n]Wii ≤ nq

4

}

∩ F
}

≤
∑

i∈[n]
P

{{

Wii ≤ nq

4

}

∩ F
}

≤
∑

i∈[n]
P

{{

Wii ≤ nq

4

}

∩Hi i ∩ ΓA(i) ∩ ΓB(i) ∩ Γi i

}

≤ n−1.

Similarly, by the union bound and the fact that H ⊂ Hik , we have

P

{{

max
i �=k Wik ≥ nq

4

}

∩ F
}

≤
∑

i �=k
P

{{

Wik ≥ nq

4

}

∩ F
}

≤
∑

i �=k
P

{{

Wik ≥ nq

4

}

∩Hik ∩ ΓA(i) ∩ ΓB(k) ∩ Γik

}

≤ n−1.

In conclusion, by the union bound,

P

{

min
i∈[n]Wii ≤ max

i �=k Wik

}

≤ P
{Fc}+ P

{{

min
i∈[n]Wii ≤ nq

4

}

∩ F
}

+ P

{{

max
i �=k Wik ≥ nq

4

}

∩ F
}

≤ O
(

n9−10ε
)

.

Thus with probability at least 1− O
(

n9−10ε
)

, Algorithm 4 outputs π̂ = π∗. ��

5 Numerical experiments

In this section, we empirically evaluate the performance of degree profile matching
(DP), a quadratic programming relaxation of QAP based on doubly stochasticity (QP),
and a spectral relaxation (SP).

The performancemetric is defined as follows: for a given estimator π̂ of the ground-
truth permutation π∗, we define its accuracy rate as the fraction of correctly matched
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pairs:

acc(π̂) � 1

n

∑

i∈[n]
1{π∗(i)=π̂ (i)} . (163)

Recall that we use outdegrees instead of degrees in our degree profile matching
Algorithm 1 to reduce the dependency and facilitate the theoretical analysis. In all
numerical experiments, we simply use degree profiles defined through the usual vertex
degrees. Moreover, instead of using the Z distance (28) defined as the total variation
distance between discretized degree profiles, we directly use the 1-Wasserstein W1-
distance between degree profiles; see (9) with p = 1. Note that for two empirical
distributions with the same sample size, such as μ and ν in (6), one can compute their
W1-distance by sorting the samples:

W1(μ, ν) =
n
∑

i=1

∣

∣X(i) − Y(i)
∣

∣ ,

where X(1) ≥ · · · ≥ X(n) and Y(1) ≥ · · · ≥ Y(n). If the sample sizes are different, as
is the case for Erdős-Rényi graphs, it is more convenient to compute the W1-distance
using either the CDF characterization (6) or the original coupling definition.

For the QP method, note that the optimum solution of the quadratic programming
relaxation of QAP may not be a permutation matrix. Thus we round the optimal solu-
tion to Sn by projection: minΠ∈Sn ‖Π − ̂D‖2F , which is a linear assignment problem
and efficiently solvable via max-weighted bipartite matching.

For the SP method, we compute the eigenvectors u of A and v of B correspond-
ing to the largest eigenvalue. Then we align u and v, by finding the permutation
π that minimizes the Euclidean distance

∑

i∈[n] |ui − vπ(i)|2. This is equivalent to
minΠ∈Sn ‖Π−uv�‖2F , which again can be efficiently solved via max-weighted bipar-
tite matching.

For each method, we can potentially boost its accuracy using the iterative clean-up
procedure described in Algorithm 5.

Algorithm 5 Iterative clean-up procedure
1: Input: Graphs A and B on n vertices; a permutation π on [n]; and the maximum number of iterations

T ;
2: Output: A permutation π̂ on [n].
3: (Initialization) Initialize Π0 to be the permutation matrix corresponding to π

4: for t = 1, . . . , T do
5: Solve the linear assignment problem

Πt+1 ∈ arg max
Π∈Sn

〈Π, AΠt B〉 (164)

6: end for
7: Output π̂ to be the permutation corresponding to ΠT+1.
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Note that (AΠt B)ik in (164) can be viewed as the number of “common” neighbors
j between i and k under the permutation πt in the sense that j is i’s neighbor in A
and πt ( j) is k’s neighbor in B. Hence, (164) finds the matching which maximizes
the total sum of “common” neighbors under πt . This resembles the second stage of
Algorithm 3 for seeded graph matching. Alternatively, by rewriting the objective in
(164) as vec(Π)�(B ⊗ A)vec(Πt ), where B ⊗ A denotes the Kronecker product and
vec(Π) ∈ R

n2 denotes the vectorized version of the matrix Π , we can reduce (164)
to the projected power iteration discussed in [44].

For ease of notation, we denote by DP+ the degree profile matching algorithm
followed by the iterative clean-up procedure. Similarly, we define QP+ and SP+. We
run the iterative clean-up procedure up to T = 100 iterations. Also, for the sake
of computational efficiency, instead of using the max-weighted bipartite matching
algorithm to solve (164) exactly, we use the following standard greedy matching
algorithm to approximately solve (164) with input weight matrix being AΠt B.

Algorithm 6 Greedy Matching
1: Input: A bipartite graph with n × n symmetric edge weight matrix W ;
2: Output: A n × n permutation matrix Π .
3: (Initialization) Initialize M = ∅
4: for all (i, j) in decreasing order of Wi j do
5: Add (i, j) toM if M forms a matching
6: end for
7: Output Π , where Πi j = 1 if (i, j) ∈M and Πi j = 0 otherwise.

5.1 Wigner matrices

We evaluate the performance of all three algorithms as well as their cleaned-up version
on the correlated Wigner model given in Sect. 2. The results are shown in Fig. 2 as
a function of the noise magnitude σ with n = 1000 fixed. Clearly, QP dominates
DP, which, in turn, significantly outperforms SP in term of the matching accuracy.
Furthermore, the iterative clean-up procedure significantly boosts the accuracy rates
for all three methods. Computationally, QP needs to solve a quadratic program, where
the Hessian matrix in the objective function involves Kronecker product B ⊗ A and
thus is of dimension n2 × n2. Hence, QP is much more computationally expensive
and memory costly than either DP and SP. In our simulation of QP, we developed a
fast solver for QP based on the alternating direction method of multipliers (ADMM)
algorithm [10, Section 5.2] and that avoids computing B⊗ A; nevertheless, even with
this fast solver, to generate the simulation results in Fig. 2, QP takes around 85minutes,
while DP takes about 7 minutes, and SP takes about 23 seconds.

Next we simulate the performance of DP andDP+ for different matrix sizes ranging
from 100 up to 1600. The results are depicted in Fig. 3. Since our theory predicts that
DP succeeds in exact recovery when σ log n ≤ c for a small constant c, we rescale
the x-axis as σ log n. As we can see, the curves for different n align well with each
other. Moreover, the accuracy rate of DP gradually drops off from 1 to 0 when σ log n
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Fig. 2 Simulated correlated Wigner model with n = 1000 and varying σ . For each value of σ , the accurate
rate shown is the median of 10 independent runs
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(a) The degree-profile (DP) algorithm.
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(b) The degree profile followed by the iterative clean-up
procedure (DP+).

Fig. 3 Simulated correlated Wigner model with varying n and σ . For each value of σ , the accurate rate
shown is the median of 10 independent runs

is above 0.7, while that of DP+ sharply drops off from 1 to 0 when σ log n is above
3.3.

5.2 Erdos-Rényi graphs

We evaluate the performance of all three algorithms as well as their cleaned-up version
on the correlated Erdős-Rényi graph model G(n, q; s). We focus on sparse graphs
where the edge probability of the parent graph is fixed to be p � q/s = log2(n)/n.
The simulation results for dense graphs (such as p = 1/2) are similar and thus omitted.
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Fig. 4 Simulated correlated Erdős-Rényi graph model G(n, q; s) with n = 1000, p � q/s = log2(n)/n,
and varying

√
δ = √1− s. For each value of

√
δ, the accurate rate shown is the median of 10 independent

runs

The results are shown in Fig. 4 as a function of the edge deletion probability
δ � 1 − s with n = 1000 fixed. Analogous to the Wigner case, QP dominates
DP, which, in turn, significantly outperforms SP in term of the matching accuracy,
and the iterative clean-up procedure significantly boosts the accuracy rates for all
three methods. Computationally, to generate the simulation results in Fig. 4, QP takes
around 51 minutes, DP takes about 2 minutes, and SP takes about 12 seconds. Note
that each of these methods is run on the same architecture under the same conditions.

Next we simulate the performance of DP and DP+ for different graph sizes ranging
from 100 up to 1600. The results are depicted in Fig. 5. Since our theory predicts that
DP succeeds in exact recovery when

√
δ log n ≤ c for a small constant c, we rescale

the x-axis as
√

δ log n. As we can see, the curves for different n align well with each
other. Analogous to theWigner case, the accuracy rate of DP gradually drops off from
1 to 0 when

√
δ log n exceeds 0.5, while that of DP+ sharply drops off from 1 to 0

when
√

δ log n exceeds 2.

5.3 Subsampled real networks

In this section, we generate two graphs A and B by independently subsampling a real
parent graph G.

Inspired by previous work [28], we consider the Slashdot network. The Slashdot
network contains links between the users of Slashdot (a technology-related news web-
site). The network was obtained in February 2009 and is available on Stanford Large
Network Dataset Collection (SNAP) [48]. To generate the parent graph G, we first
focus on the subnetwork induced by the users whose ID is at most 750, and then

123



Efficient random graph matching via degree profiles 107

0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) The degree-profile (DP) algorithm.
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(b) The degree profile followed by the iterative clean-up
procedure (DP+).

Fig. 5 Simulated correlated Erdős-Rényi graph model with varying n and δ with edge probability in the
parent graph fixed to be log2(n)/n. For each value of δ, the accurate rate shown is the median of 10
independent runs

connect user i and user j if either i has a directed link to j or vice versa. This gives
rise to a graph G with 750 vertices and 3338 edges. The graph G is connected and has
a heavy-tailed degree distribution. In particular, there are 216 degree-1 vertices, 102
degree-2 vertices, and the average degree is around 9, while the maximum degree is
524 and there are 9 vertices whose degree is at least 100.

To obtain two correlated graphs A and B, we first independently subsample the
edges of G twice with probability s, and then relabel the vertices in B according to a
random permutation π∗.

We simulate the performance of the three algorithms (DP, QP, and SP) as well as
their cleaned-up version, with inputs A and B. The edge subsampling probability s
varies from 0.6 to 1, or equivalently δ varies from 0 to 0.4, and the results are shown
in Fig. 6.

Note that in the noiseless case of δ = 0, the accuracy rates of all three algorithms
as well as their cleaned-up version are about the same and around 0.62. However, in
the noisy case, QP dominates DP, which, in turn, significantly outperforms SP in term
of the matching accuracy; this is consistent with the observations in the previous two
subsections. In particular, as soon as δ becomes positive, the accuracy of SP drops off
sharply as expected because the leading eigenvectors of A and B are highly sensitive
to the perturbation. In contrast, the accuracy rates of DP and QP drop off gradually as
δ increases.

Analogous to our synthetic experiments, the iterative clean-up procedure signifi-
cantly improves the accuracy of all threemethods. In fact, the accuracy rates of all three
methods after clean-up (QP+, DP+, and SP+) are about the same for all δ ≤ 0.225.
At δ = 0.25, the accuracy rate of SP+ drops off sharply, while the accuracy rates of
QP+ and DP+ continue to decrease gradually and match each other until δ ≤ 0.3. At
δ = 0.325, the accuracy rate of DP+ drops off sharply, while the accuracy rate of QP+
continues to decrease gradually.

Computationally, to generate the simulation results in Fig. 6, QP takes about 290
minutes, DP takes about 2 minutes, and SP takes about 18 seconds.

123



108 J. Ding et al.

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 6 Slashdot network with n = 750 and varying δ = 1− s. For each value of δ, the accurate rate shown
is the median of 10 independent runs

Appendix A Auxiliary results

Recall the following tail bound for binomial random variable X ∼ Binom(n, p) [37,
Theorems 4.4, 4.5]

P {X ≥ (1+ t)np} ≤ e−
t2
3 np, 0 ≤ t ≤ 1

P {X ≤ (1− t)np} ≤ e−
t2
2 np, 0 ≤ t ≤ 1 (165)

and

P {X ≥ R} ≤ 2−R, R ≥ 6np. (166)

Theorem 5 ( [43]) Let X ∼ Bin(n, p). It holds that

P {X ≤ nt} ≤ exp

(

−n
(√

p −√t
)2
)

, ∀0 ≤ t ≤ p (167)

P {X ≥ nt} ≤ exp

(

−2n
(√

t −√p
)2
)

, ∀p ≤ t ≤ 1. (168)

Appendix B Analysis for seeded graphmatching

In this section we analyze Algorithm 3 for seeded graph matching. Note that when
Algorithm 3 is used as a subroutine in Algorithm 2, the seed set S is obtained from
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Algorithm 1 based on matching degree profiles, which can potentially depend on the
edges between the non-seeded vertices. To deal with this dependency, the following
lemma gives a sufficient condition for the seeded graph matching subroutine (Algo-
rithm 3) to succeed, even if the seed set is chosen adversarially:

Lemma 18 (Seeded graph matching) Assume n ≥ 4, s ≥ 30q, and

n(qs)2 ≥ 211 × 3 log2 n. (169)

If the number of seeds satisfies m ≥ 96 log n
qs , then with probability 1 − 5n−1, the

following holds: for any π0 : S → T that coincides with true permutation π∗ on the
seed set S, (i.e. π0 = π∗|S) with |S| = m, Algorithm 3 with π0 as the seed set and
threshold κ = 1

2mqs outputs π̂ = π .

We start by analyzing the first stage of Algorithm 3, which upgrades a partial (but
correct) permutation π0 : S → T to a full permutation π1 : [n] → [n] with at most
O(log n/q) errors, even if the seed set S is adversarially chosen.

Lemma 19 Assume n ≥ 2, mqs ≥ 96 log n, and s ≥ 12q. Recall the threshold
κ = 1

2mqs in Algorithm 3. Then with probability at least 1 − 2n−m, the following
holds in Algorithm 3: for any partial permutation π0 : S → T such that π0 = π∗|S
and |S| = m, π1 is guaranteed to have at most

192 log n
qs errors with respect to π∗, i.e.,

|{i ∈ [n] : π1(i) �= π∗(i)}| ≤ 192 log n
qs .

Proof (Proof of Lemma 19) Without loss of generality, we assume π∗ is the identity
permutation.

Fix a seed set S of cardinality m. Since π0 = π∗|S , it follows that

nik =
∑

j∈S
Ai j Bkπ0( j) =

∑

j∈S
Ai j Bkπ∗( j).

Recall that according to the definition of the weights in (35), we have

w(π∗) =
∑

i∈Sc
1{nii≥κ}.

First, we show that

P

{

w(π∗) ≤ n − m − 32 log n

qs

}

≤ exp (−2m log n) , (170)

Indeed, for i ∈ Sc we have nii
i.i.d.∼ Binom(m, qs). It follows from the Chernoff bound

(165) that

P {nii ≤ κ} = P

{

nii ≤ 1

2
mqs

}

≤ exp

(

−1

8
mqs

)

.

123



110 J. Ding et al.

Therefore,

(n − m)− w(π∗) =
∑

i∈Sc
1{nii<κ}

s.t .≤ Binom

(

n − m, exp

(

−1

8
mqs

))

.

Using the following fact (which follows from a simple union bound)

P {Binom (n, p) ≥ t} ≤
(

n

t

)

pt , (171)

we get that

P
{

(n − m)− w(π∗) ≥ t
} ≤

(

n − m

t

)

exp

(

− t

8
mqs

)

≤ nt exp

(

− t

8
mqs

)

≤ exp

(

− t

16
mqs

)

,

where the last inequality holds due to the assumption that mqs ≥ 16 log n. Setting
t = 32 log n

qs , we arrive at the desired (170).
Next, fix any permutation π such that π |S = π0 and it has 
 non-fixed points. Since

by assumption π0 = π∗|S and π∗ is the identity permutation, it follows that π(i) = i
for all i ∈ S. Let F = {i ∈ Sc : π(i) = i} denote the set of fixed points in Sc. Then
|F | = n − m − 
 and |Sc\F | = 
. Thus

w(π) =
∑

i∈F
1{nii≥κ} +

∑

i∈Sc\F
1{niπ(i)≥κ} ≤ n − m − 
+

∑

i∈Sc\F
1{niπ(i)≥κ}.

Note that for each i ∈ Sc\F , niπ(i) ∼ Binom(m, q2). Since by assumption s ≥ 12q,
it follows that κ = mqs/2 ≥ 6mq2. Hence, the Chernoff bound (166) yields that for
each i ∈ Sc\F ,

P
{

niπ(i) ≥ κ
} ≤ 2−mqs/2 ≤ exp

(

−1

4
mqs

)

.

Note that {niπ(i) : i ∈ Sc\F} are not mutually independent. For instance, niπ(i)

and nπ(i),π(π(i)) are dependent. To deal with this dependency issue, we construct a
subset I ⊂ Sc\F with |I| ≥ 
/3 such that {niπ(i) : i ∈ I} are mutually independent.
In particular, consider the canonical cycle decomposition of permutation π |Sc\F . Let
C1, . . . , Ca denote the cycles. Since π has no fixed point in Sc\F , each cycle Ci has
length 
i ≥ 2. Let Γ denote the graph formed by the union of these cycles. Each cycle
Ci has an independent set Ii of size "
i/2# ≥ 
i/3. Let I = ∪ai=1Ii . Then I is an
independent set in Γ and |I| ≥ ∑a

i=1 
i/3 = 
/3. Since I is an independent set, it
follows that {i, π(i)} ∩ { j, π( j)} = ∅ for all i �= j ∈ I. Therefore, {niπ(i) : i ∈ I}
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are mutually independent. Therefore,

∑

i∈I
1{niπ(i)≥κ}

s.t .≤ Binom

(

|I|, exp
(

−1

4
mqs

))

.

Note that

w(π) ≤ n − m − 
+
∑

i∈Sc\F
1{niπ(i)≥κ} ≤ n − m − |I| +

∑

i∈I
1{niπ(i)≥κ}

Using (171) again, we have

P

{

w(π) ≥ n − m − 32 log n

qs

}

≤ P

{

∑

i∈I
1{niπ(i)≥κ} ≥ |I| −

32 log n

qs

}

≤
( |I|
|I| − 32 log n

qs

)

exp

(

−1

4
mqs

(

|I| − 32 log n

qs

))

≤ 2
 exp

(

−1

4
mqs

(




3
− 32 log n

qs

))

≤ 2
 exp

(

− 1

24
mqs


)

,

where the last inequality holds provided 
qs ≥ 192 log n. Let Π
 denote the set of
permutations π which has 
 non-fixed points and satisfies π |S = π0. Then |Π
| ≤
(n−m




)


! ≤ n
. By the union bound, we have that for any 
 ≥ 192 log n
qs ,

P

{

max
π∈Π


w(π) ≥ n − m − 32 log n

qs

}

≤ (2n)
 exp

(

− 1

24
mqs


)

≤ exp

(

− 1

48
mqs


)

,

where the last inequality holds due to the assumption that mqs ≥ 96 log n and n ≥ 2.
Applying the union bound again over 
, we get that

P

⎧

⎨

⎩

max

≥ 192 log n

qs

max
π∈Π


w(π) ≥ n − m − 32 log n

qs

⎫

⎬

⎭

≤
∑


≥ 192 log n
qs

exp

(

− 1

48
mqs


)

≤ exp (−4m log n)

1− exp (−4m log n)

≤ exp (−2m log n) ,

where the last inequality holds due to m log n ≥ log 2.
Combining the last displayed equation with (170) we get that with probability at

least 1− 2n−2m , π1 has at most 192 log n/(qs) errors with respect to π∗.
Finally, applying a simple union bound over all the

(n
m

) ≤ nm possible choices of
seed set S with |S| = m, we complete the proof. ��
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The second stage of Algorithm 3 upgrades an almost exact full permutation π1 :
[n] → [n] to an exact full permutation π̂ : [n] → [n]. The following lemma provides
a worst-case guarantee even if π1 is adversarially chosen.

Lemma 20 Let 0 ≤ 
 ≤ n. Assume that (
 − 1)qs ≥ 12nq2 + 2 and (
 − 1)qs ≥
16max{1, n−
} log n. Then with probability at least 1−3n−1, the following holds for
Algorithm 3: for any π1 with at most n− 
 errors with respect to the true permutation
π∗, we have π̂ = π∗.

Proof Without loss of generality, we assume π∗ is the identity permutation.
We first fix a permutation π1 which has at least 
 fixed points. Let F ⊂ [n] denote

the set of fixed points of π1. Then |F | ≥ 
. Recall that

wik =
∑

j∈[n]
Ai j Bkπ1( j).

Then for i = k,

wi i ≥
∑

j∈F\{i}
Ai j Bi j

s.t .≥ Binom(|F | − 1, qs).

Similarly, for i �= k, note that Ai j Bkπ1( j) = 0 if j = i or j = π−11 (k). Thus,

wik = ∑

j∈[n]\{i,π−11 (k)} Ai j Bkπ1( j). Moreover, Ai j Bkπ1( j)
i.i.d.∼ Bern(q2) for all j ∈

[n]\{i, π−11 (k), k}. Therefore,

wik ≤
∑

j∈[n]\{i,π−11 (k),k}
Ai j Bkπ1( j) + 1

s.t .≤ Binom(n − 2, q2)+ 1.

It follows from the Chernoff bound (165) that

P

{

wi i ≤ 1

2
(
− 1)qs

}

≤ P

{

Binom (|F | − 1, qs) ≤ 1

2
(
− 1)qs

}

≤ exp

(

−1

8
(
− 1)qs

)

.

Thus, by the union bound,

P

{

min
i∈[n]wi i ≤ 1

2
(
− 1)qs

}

≤ n exp

(

−1

8
(
− 1)qs

)

≤ exp

(

− 1

16
(
− 1)qs

)

,

where the last inequality holds due to the assumption that (
 − 1)qs ≥ 16 log n.
Moreover, since by assumption (
− 1)qs/2− 1 ≥ 6nq2, it follows that the Chernoff
bound (166) that for any i �= k,
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P

{

wik ≥ 1

2
(
− 1)qs

}

≤ P

{

Binom(n − 2, q2) ≥ 1

2
(
− 1)qs − 1

}

≤ 2−(
−1)qs/2+1 ≤ 2 exp

(

−1

4
(
− 1)qs

)

.

Thus, by the union bound again,

P

{

max
i �=k wik ≥ 1

2
(
− 1)qs

}

≤ 2n2 exp

(

−1

4
(
− 1)qs

)

≤ 2 exp

(

−1

8
(
− 1)qs

)

.

In conclusion, for a fixed permutationπ1 with at least 
fixed points, with probability
at least 1− 3 exp

(− 1
8 (
− 1)qs

)

,

min
i∈[n]wi i > max

i �=k wik,

and hence π̂ = π∗.
Finally, applying a simple union bound over all the

( n
n−


)

(n − 
)! ≤ nn−
 possi-
ble choices of permutation π1 with at least 
 fixed points, we get that even if π1 is
adversarially chosen, π̂ = π∗ with probability at least

1− 3nn−
 exp

(

−1

8
(
− 1)qs

)

≥ 1− 3 exp

(

− 1

16
(
− 1)qs

)

≥ 1− 3n−1,

where the first inequality holds due to (
 − 1)qs ≥ 16(n − 
) log n and the last
inequality holds due to (
− 1)qs ≥ 16 log n. ��

We now prove Lemma 18:

Proof (Proof of Lemma 18) In view of Lemma 19, we get that with probability at least
1− 2n−m , π1 is guaranteed to have at most 192 log n/(qs) errors with respect to π∗,
even if π0, or equivalently the seed set S, is adversarially chosen.

We next apply Lemma 20 with 
 = n − 192 log n/(qs). In view of the assumption
n(qs)2 ≥ 211 × 3 log2 n and n ≥ 4, we have (
 − 1) ≥ n/2. Thus (
 − 1)qs ≥
nqs/2 ≥ 16 log n, and (
 − 1)qs ≥ nqs/2 ≥ 12nq2 + 2 in view of s ≥ 30q and
nqs ≥ 20. Moreover, (
 − 1)qs ≥ nqs/2 ≥ 210 × 3 log2 n/(qs) = 16(n − 
) log n.
Therefore, all assumptions of Lemma 20 are satisfied. It follows from Lemma 20 that
with probability at least 1− 3n−1, π̂ = π∗, even if π1 is adversarially chosen.

In conclusion, we get that with probability at least 1− 5n−1, Algorithm 3 with π0
as the seed set outputs π̂ = π . ��
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