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Abstract

Random graph matching refers to recovering the underlying vertex correspondence
between two random graphs with correlated edges; a prominent example is when the
two random graphs are given by Erd8s-Rényi graphs G (n, %). This can be viewed as an
average-case and noisy version of the graph isomorphism problem. Under this model,
the maximum likelihood estimator is equivalent to solving the intractable quadratic
assignment problem. This work develops an 0 (nd? + n?)-time algorithm which per-
fectly recovers the true vertex correspondence with high probability, provided that
the average degree is at least d = £2(log? n) and the two graphs differ by at most
8 = O(log™2(n)) fraction of edges. For dense graphs and sparse graphs, this can be
improved to § = 0(10g72/ 3(n)) and § = O(log’z(d)) respectively, both in polyno-
mial time. The methodology is based on appropriately chosen distance statistics of
the degree profiles (empirical distribution of the degrees of neighbors). Before this
work, the best known result achieves § = O(1) and n°VY < d < n® for some con-
stant ¢ with an n©1°2" _time algorithm and § = O((d/n)*) and d = £ (n*/3) with a
polynomial-time algorithm.
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1 Introduction

Graph matching [12,32], also known as network alignment [20], aims at finding a
bijective mapping between the vertex sets of two networks so that the number of
adjacency disagreements between the two networks is minimized. It reduces to the
graph isomorphism problem in the noiseless setting where the two networks can be
matched perfectly.

The paradigm of graph matching has found numerous applications across a variety
of diverse fields, such as network privacy, computational biology, computer vision, and
natural language processing. For instance, it was convincingly demonstrated [41,42]
that hidden vertex identities in a network can nevertheless be recovered by matching
the anonymized network (such as Netflix) to a secondary network with known vertex
identities (such as the Internet Movie Database). In system biology, graph matching is
used in discovering protein functions by matching protein-protein interaction networks
across different species [27,53]. In computer vision, using graphs to represent images,
where vertices are regions in the images and edges encode the adjacency relation-
ships between different regions, graph matching is widely applied in finding similar
images [12,50]. In natural language processing, using graphs to represent sentences,
where vertices are phrases and edges represent syntactic and semantic relationships,
graph matching is used in question answering, machine translation, and information
retrieval [24].

Given two graphs with adjacency matrices A and B, the graph matching problem
can be viewed as a special case of the quadratic assignment problem (QAP) [11,45]:
namely,

max(A, nBMa'y, 1)

where IT ranges over all n X n permutation matrices, and (-, -) denotes the matrix inner
product. QAP is NP-hard in the worst case. Moreover, approximating QAP within a
factor of 21°¢' ™ for ¢ > 0 is also NP-hard [36].

These hardness results, however, are applicable in the worst case, where the
observed networks are designed by an adversary. In contrast, the networks in many
aforementioned applications can be modeled by random graphs with latent structures;
as such, our focus is not in the worst-case instances, but rather in recovering the under-
lying vertex permutation with high probability in order to reveal the hidden structures.

1.1 Correlated Erdos-Rényi graphs model

Driven by applications in social networks and biology, a recent line of work [4,13—
15,17,20,28,30,33,35,46,55] initiated the statistical analysis of graph matching by
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assuming that A and B are generated randomly. The simplest such model is the fol-
lowing correlated Erd6s-Rényi graph model:

Definition 1 (Correlated ErdGs-Rényimodel G(n, q; s)) Given an integer n and ¢, s €
[0, 1], let A and B denote the adjacency matrix of two Erd6s-Rényi random graphs
G(n, q) on the same vertex set [n]. Let 7* : [n] — [n] denote a latent permutation. We
assume that conditional on A, foralli < j, By+(j)z+(;) are independent and distributed
as

. Bern(s) if A;j =1 2
O ™~ | Bemn (qg‘T;S)) ifA; =0 @)

where Bern(s) denotes a Bernoulli distribution with mean s.

Equivalently, the two graphs can be viewed as edge-subsampled subgraphs of a
parent Erd6s-Rényi graph G ~ G(n, p) with p = ¢q/s. Let A be the adjacency
matrix of a graph obtained by keeping or deleting each edge of G independently with
probability s and 8 £ 1 — s respectively. Repeat the sampling process independently
and relabel the vertices according to the latent permutation 7* to obtain B.! Note
that by (2), the parameter s can be viewed as a measure of the edge correlations.
Alternatively, § = 1 — s can be interpreted as the fraction of edges in A that are
substituted in B on average.

Upon observing A and B, the goal is to exactly recover the latent vertex corre-
spondence 7* with probability converging to 1 as n — oo. For instance, in network
de-anonymization, the parent Erd6s-Rényi graph G corresponds to the underlying
friendship network of a group of people, A corresponds to a Facebook friendship net-
work of the same group of people with known identities, and B is the Twitter network
of the same set of users with identities removed; the task is to de-anonymize the vertex
identities in the Twitter network by finding the underlying mapping between the vertex
sets of A and B.

In the noiseless case of s = 1, graph matching under the G(n, ¢; 1) model reduces
to the problem of random graph isomorphism for Erds-Rényi graph G(n, g). In this
case, a celebrated result [54] (see also [8, Chap. 9]) shows that exact recovery of
the underlying permutation is information-theoretically possible if and only if ng >
log n+w(1) forg < 1/2:;in other words, the symmetry (i.e., the automorphism group)
of the graph s trivial with high probability. Recent work [13,14] has extended this result
to the noisy case where s < 1, showing that exact recovery is information-theoretically
possible if and only if ngs > logn + (1), under the additional assumption that
g < 0(og™'n)and g(1 — 5)?/s < O(log—3(n)).>

I To ensure the Bernoulli parameter in (2) is well-defined, we need to assume g(1 —s) < 1 — g, or
equivalently s > 2 — 1/qg. Similarly, to ensure the edge probability in the parent graph p = g/s < 1, we
need to assume s > ¢.

2 Throughout the paper, we use standard big O notation, e.g., for any sequences {ay } and {b,,}, a, = O (by)
(orap < by)if 1/c < an/by, < c holds for all n for some absolute constant ¢ > 0; a, = $2(b,) and
by = O(ay) (oray 2 by and by, < ay) if a, /by > c. We use big O notation to hide logarithmic factors.

3 Achievability and converse bounds for more general correlated Erd6s-Rényi random graph models are
also available in [13,14].
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32 J.Ding et al.

From a computational perspective, in the noiseless case of s = 1, linear-time
algorithms have been found to attain the recovery threshold of ng = logn +
w(1) [7,16]. However, in the noisy case, very little is known about the performance
guarantees of graph matching algorithms that run in polynomial time. Recently a
quasi-polynomial-time (n?1°¢)) algorithm is proposed in [4] which succeeds when
ngs € [n"(l), /131U [n2/3, nl_g] and s > (log n)_"(l). Another recent work [17]
adapts the classical degree-matching algorithms in [3] and [8, Section 3.5] from the
noiseless case to the noisy case, and shows that it exactly recovers 7 * with high proba-
bility, provided that ¢ >> log”/>(n)/n'/3 and 1 —s <« g*/1og®(n). This result requires
1 —s, the fraction of edges differed in the two observed graphs, to decay polynomially
in ¢ and is thus far from being optimal.

1.2 Main results

In this work, we significantly improve the state of the art of efficient graph matching
algorithms in terms of time complexity, noise tolerance, and sparsity. In particular,
we give an O (nd® + n®)-time algorithm for exactly recovering the true permutation
* with high probability under the correlated ErdGs-Rényi graph model, when the
fraction of differed edges § = 1 — s can be as large as 1/log?(n) and the average
degree d can be as low as log? n. Furthermore, we obtain two improved polynomial-
time algorithms that aim for dense and sparse graphs respectively. These results are
summarized as below:

Theorem 1 Consider the correlated Erdds-Rényi model G(n, q; 1 — 8) with g < qo
for some sufficiently small constant qq. If

1

- 3
(logn)? ®

ng >log’n and 8 <

then there exists an O (nd2 + nz)-time algorithm (cf. Algorithm 1) that recovers *
with probability 1 — O(1/n).
Furthermore,

- if

_ ,—0O((logn)'/3) < !
g=e and § < Togm?" 4)

then there exists a polynomial-time algorithm (cf. Algorithm 2) that recovers w*
with probability 1 — O(q/logn);
- if
logn 1

<g<n€ d §< —— 3)
= q =n an =~ .
n (log(ng))?

for some constant € > 9/10, then there exists a polynomial-time algorithm
(cf. Algorithm 4) that recovers w* with probability 1 — O (n9—10€).
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1.3 Key algorithmic ideas and techniques for analysis

Many existing matching algorithms for random graph isomorphism are signature-
based: first attach some appropriately chosen signature u; to vertex i in A and v to
vertex k in B, then match each pair based on their similarity, or equivalently, some
distance between the signatures. For example, degree matching simply uses the vertex
degree as the signature. In addition, spectral method can be viewed as assigning the
ith entry in the leading eigenvector(s) of the matrix A (resp. B) as the signature u;
(resp. v;). However, these signatures are highly sensitive to noise. Indeed, it can be
shown that (cf. Remark 1 in Sect. 2) for degree sorting to yield the exact matching,
the minimum spacing between the ordered degrees needs to overcome the effective
noise, which entails § = 3(¢g?). For spectral methods, due to the lack of low-rank
structure and the vanishing spectral gap of Erdés-Rényi graphs, the eigenstructure is
extremely fragile. Indeed, it can be shown via perturbation bounds that even for dense
graphs, matching via top eigenvectors requires § = O(n~°) for some constant ¢ to
succeed, which agrees with the numerical experiments in Sect. 5. Therefore, to deal
with sparser graphs and smaller edge correlation, we need to find better signatures that
are more robust to random perturbation.

Note that in the absence of any label information, we can only compute signatures
that are permutation-invariant. The main finding of this work is that degree profiles,
that is, empirical distribution of the degrees of neighbors, can be used as a signature
which is significantly more noise-resilient than degrees or eigenvectors. Using a suit-
able distance between distributions to construct the matching (see the forthcoming
Algorithm 1), this allows us to correctly match graphs that differ by almost linear
number of edges. Specifically, for each vertex i in A, its degree profile u; is defined as
the empirical distribution of the degrees of i’s neighbors. Similarly, for each vertex k
in B, let v denote its degree profile. Then we match vertex i to vertex £ which mini-
mizes the total variation (L 1-distance) between the appropriately discretized versions
of u; and v (into polylog(n) bins). The intuitive explanation for why this works is
the following:

— ifk = 7*(i), which we call a “true pair”, then they have a large number of common
neighbors, whose degrees, thanks to the edge correlations between A and B, are
correlated random variables, which tend to lie in the same bin. This leads to a small
distance between the degree profiles ©; and vi;

— ifk # 7*(i), which we call a “fake pair”, then y; and vy are empirical distributions
consisting mainly independent samples, and their distance is typically large.

Clearly, in reality the situation is significantly more complicated due to various depen-
dencies and the possibility that fake pairs can still have a non-negligible number of
common neighbors. Furthermore, since for each vertex there exists a unique match but
many more (n — 1) potential mismatches, one needs to carefully control the total varia-
tion distance between degree profiles for true pairs and fake pairs as well as their large
deviation behavior (their distance being atypically small). Nevertheless, our analysis
rigorously justifies the above intuition and shows the distance statistic for true pairs
and fake pairs are indeed separated with high probability under the condition (3).
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34 J.Ding et al.

Ideas related to degree profiles have been used for the random graph isomorphism
problem. In particular, it is shown in [16,38] that degree neighborhood (i.e., the mul-
tiset of the degrees of neighbors of each vertex) constitutes a canonical labeling for

G (n, g) with high probability provided that g > @. In the absence of noise, it
suffices to prove that the degree neighborhoods of different vertices are distinct with
high probability. However, how to match vertices in the noisy case and by how many
edges the two graphs can differ is far less clear. In fact, although degree neighborhood
(multiset) contains the same amount of information as degree profile (empirical dis-
tribution), for the development of our matching algorithm as well as the analysis, it
is crucial to adopt the view of degree profiles as probability measures, which enables
us to construct a greedy matching based on natural distances between probability
distributions. The main observation is that although each degree profile is centered
around the same mean (binomial distribution), the stochastic fluctuations are nearly
independent for fake pairs and correlated for true pairs. This perspective allows us to
leverage insights from empirical process theory to study the large deviation behavior
of distances between degree profiles.

For relatively dense graphs with edge probability g = exp(—O(log'/~ n)), we
further relax the condition from § < log=2nto 8 < log™2/3 n by combining the degree
profile matching with vertex degrees in conjunction with the paradigm of seeded graph
matching (cf. Algorithm 2). In particular, we show that even if for some vertices the
distance statistics between degree profiles of fake pairs can be smaller than that of
the true match, with high probability this does not occur for vertices of sufficiently
high degrees. Although the matched high-degree vertices occupy only a vanishing
fraction of the vertex set, they provide enough initial “seeds” (correctly matched
pairs) to match the remaining vertices with high probability under the condition (4).
A key challenge in the analysis is to carefully control the dependency between vertex
degrees and degree profiles, and to characterize the statistical correlation among vertex
degrees. Furthermore, we provide an efficient seeded graph matching subroutine via
maximum bipartite matching, which is guaranteed to succeed with .Q(loﬂ) seeds,
even if the seed set is chosen adversarially. A different seeded matching algorithm
was previously proposed in [4] allowing possibly incorrect seeds and assuming a
relaxed condition on the graph sparsity; however, the number of seeds needed in the
worst-case is .Q(max{log . gnlogn}) (see the condition in Lemma 3.21 and before
Lemma 3.26 in [4]), which cannot be afforded in the dense regime.

Note that degree profile matching is a local algorithm that uses only 2-hop neigh-
borhood information for each vertex. It turns out that for relatively sparse graphs with
edge probability ¢ < n~¢ for a fixed constant € > 9/10, we can further relax the
condition from 8 < log™2(n) to 8 < log~2(nq), using the 3-hop neighborhood infor-
mation. This is carried out in three steps: for each neighbor j of vertex i in A and each
neighbor ;' of vertex k in B, we first compute the total variation distance between the
degree profiles of j and ;" as before, and then threshold the distances to construct a
bipartite graph between the neighbors of vertex i and the neighbors of vertex k, and
finally define a similarity score W;y, as the size of the maximum matching of this bipar-
tite graph (cf. Algorithm 4). We show that these new similarity measures for true pairs
and fake pairs are separated with high probability under the condition (5). Finally,

1/3

@ Springer



Efficient random graph matching via degree profiles 35

we mention that in the noiseless case, the algorithm of [7] that achieves the optimal
threshold for sparse graphs (with average degree polylog(n)) uses as the signature the
distance sequence of each vertex, which consists of the number of £-hop neighbors
for ¢ from 1 up to O (5 0101%)”” ). This significantly improves the performance of degree
matching [3]. It remains open whether local algorithms that use larger neighborhood

information can further improve the graph matching performance in the noisy case.

1.4 Further related work

Convex relaxation There exists a large body of literature on convex relaxation of the
graph matching problem; for a comprehensive discussion we refer the reader to [19].
One popular approach is doubly stochastic relaxation, which entails replacing the
objective (1) by minimizing ||[AX — X B||%,, with || - ||r standing for the Frobenius
norm, and relaxing the decision variable X from the set of permutation matrices into
its convex hull, i.e., all doubly stochastic matrices [1,21]. This leads to a quadratic
programming problem which is solvable in polynomial time but still much slower
than the degree profile algorithm. Some initial statistical analysis for the correlated
Erd6s-Rényi graph model was carried out in [34]; however, its performance guarantees
remain far from being well-understood.

There exists a conceptual connection between the degree profile matching algo-
rithm and the doubly stochastic relaxation. In graph theory, two graphs are said to
be fractionally isomorphic if their adjacency matrices A and B satisfy AX = XB
for some doubly stochastic matrix X. A result due to Ramana, Scheinerman, and
Ullman (cf. [49, Theorem 6.5.1]) states that a necessary and sufficient condition for
fractional isomorphism is that two graphs have identical iterated degree sequences:;
see [49, Sec. 6.4] for a precise definition. In particular, the first term of the iterated
degree sequence corresponds to the degree distribution of the graph (i.e. the empirical
distribution of the vertex degrees), while the second term is precisely the empirical
distribution of degree profiles. In this perspective, our algorithm can be thought as
using the leading two terms in the iterated degree sequence to construct the matching.
Thus it is to be expected that degree profile matching algorithm outperforms degree
matching but not the doubly stochastic relaxation.

Another approach is the semidefinite programming (SDP) relaxation for QAP [56]
which is provably tighter than the doubly stochastic relaxation (cf. [29]). However, this
entails solving an SDP in the lifted domain of n% x n* matrices and the computational
cost becomes prohibitively high even for moderate n.

Seeded Graph Matching Another recent line of work [22,30,35,46,51,55] in graph
matching considers a relaxed version of the problem, where an initial seed set of
correctly matched vertex pairs is revealed. This is motivated by the fact that in many
practical applications, some side information on the vertex identities is available and
has been successfully utilized to match many real-world networks [41,42]. It is shown
in [55] that if ng = ©® (logn) and the number of seeds is .Q(n/(s2 log n)*/3), then a
percolation-based graph matching algorithm correctly matches all but o(n) vertices in
polynomial time with high probability. Another work [30] shows thatif g < 1/6, then
with at least 24 log n/(gs?) seeds, one can match all vertices correctly in polynomial
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time with high probability. More recently, it is shown in [39] that the information-
theoretic limit ngs > logn 4+ (1) in terms of the graph sparsity can be attained in
polynomial time, provided that s = @ (1) and the number of seeds is 2(n3¢) in the
sparse graph regime (ng < n€ fore < 1/6) and §2 (log n) in some dense graph regime.

1.5 Notation and organization

Denote the identity matrix by I. We let || X ||  denote the Frobenius norm of a matrix
X and ||x||> denote the £, norm of a vector x. For any positive integer n, let [rn] =
{1,...,n}. For any set T C [n], let |T| denote its cardinality and 7¢ denote its
complement. Let §, denote the Dirac measure (point mass) at x. We say a sequence of
events &, indexed by a positive integer n holds with high probability, if the probability
of &, converges to 1 as n — +o00. Without further specification, all the asymptotics
are taken with respect ton — oo. All logarithms are natural and we use the convention
0log 0 = 0. For two real numbers a and b, we use a V b = max{a, b} (resp.a Ab =
min{a, b}) to denote the maximum (resp. minimum) between a and b. We denote
by Bern(p) the Bernoulli distribution with mean p and Binom(n, p) the Binomial
distribution with » trials and success probability p.

The rest of the paper is organized as follows: In Sect. 2, we provide a self-contained
account of the problem of matching two Wigner random matrices. This part is intended
as a warm-up for Erd6s-Rényi graphs and serves to explain the main intuition behind
the degree profile algorithms and the connection to empirical process theory and
small ball probability. Section 3 describes the matching algorithms for the correlated
Erd6s-Rényi model and presents their theoretical guarantees. Specifically, Sect. 3.2
introduces the main algorithm for degree profile matching, with further improvements
given in Sects. 3.3 and 3.4 for dense and sparse graphs, respectively. Section 4 pro-
vides the proof of correctness, with some auxiliary lemmas deferred to Appendix
A. Appendix B contains our seeded graph matching result. Empirical evaluations of
various algorithms on both simulated and real graphs are given in Sect. 5.

2 Warm-up: matching Gaussian Wigner matrices

In this section we take a slight detour to consider the Gaussian version of the graph
matching problem, which can also be viewed as a statistical model for the QAP problem
(1) with correlated Gaussian weights. Although the proofs for correlated Erdés-Rényi
graphs do not exactly follow the same program, by studying this simpler model, we
aim to convey the main idea behind the degree profile algorithm and sketch how to
deduce the theoretical guarantees from results in empirical process theory and small
ball probability.

2.1 Correlated Wigner model

Consider two random symmetric matrices A and B’, whose entries {(4; s B; i) 1<
i < j < n} are iid correlated standard normal pairs with correlation coefficient p,
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ie., (Aij, Bl.’j)l'gj‘N(O, ([1)/1’)). In other words, A and B’ are two correlated Wigner
matrices. Let 7* € S(n) be a permutation on [r] and IT* be its corresponding n X n
permutation matrix. Let B = IT* B’ (IT )T, Observing the two matrices A and B, the
goal is to estimate the latent permutation 7 * correctly with high probability.

Without loss of generality, we assume p > 0 and let p = /1 — o2 for some 0 <
02 < 1, and, furthermore, IT* = I. Therefore, we can write B = /1 — 02A + 0 Z,
where A and Z are two independent Wigner matrices.

2.2 Matching via empirical distributions

Next we describe a procedure for matching Wigner matrices as well as an improved
version, which serve as the precursors to Algorithms 1 and 2 for Erd6s-Rényi graphs.

The main idea is to use the empirical distribution of each row as the signature,
and rely on appropriate distance between distributions to construct the matching.
Specifically, for each i, define

1 n
i = " 2:1 5Aij
j=

which is the empirical distribution of the ith row of A. Similarly, define

1 n
Ve = Z‘SBkj
Jj=1

for the B matrix. Marginally, for any i, k, both u; and vy are the empirical distributions
of n standard normal samples. The difference is that if i and k form a true pair, the
samples are correlated; otherwise, the samples are independent.* Therefore, assuming
the underlying permutation is the identity, (u;, v¢) behave in distribution as two n-
point empirical distributions

1 ¢ 1 ¢
p=— 8x, v=—) 3, ©)
j=1 j=1

according to two cases:

— For “true pairs” (i = k), the X and Y samples consist of independent correlated
pairs, namely,

X1V, O, Y S (0, 141]). )

4 To be precise, all but two elements (namely, A;x and By;) are independent. This can be easily dealt
with by excluding those two from the empirical distribution, which, by the triangle inequality, changes the
distance statistic by at most %
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— For “fake pairs” (i # k), the X and Y sample are independent, namely,

X1y oo X Vi, V) NGO, D). ®)

Therefore, although both empirical distributions have the same marginal distribution,
for true pairs the atoms are correlated and the two empirical distributions tend to be
closer than the typical distribution for fake pairs. This offers a test to distinguish true
and fake pairs.

Now we introduce our procedure. For two probability measures . and v, we define
their distance via the L ,-distance between their cumulative distribution function
(CDF) F and G:

1/p
dp(p,v) 2 |F =G| = (fRan(r)—G(r)V’) : )

where p € [1, oo] is some fixed constant. e.g.,

— p = 1: 1-Wasserstein distance,
— p = 2: Cramér-von Mises goodness of fit statistic,
— p = oo: Kolmogorov-Smirnov distance;

the asymptotic performance of the algorithm turns out to not depend on p. For each
vertex i, we match it to the vertex k that minimizes the distance statistic Zjz 2
dp (i, vi). Next we show that when o < lo"n for sufficiently small constant c, this
algorithm succeeds with high probability.

To this end, let us recall the central limit theorem of empirical processes (cf. [52]).
Let F,, and G,, denote the empirical CDF of X;’s and Y;’s, respectively, i.e.,

1 I
F.(t) = ;Zl{xift}v Gu(t) = ;ZI{YI‘ST}'
i=1 i=1

Let @ denote the standard normal CDF on the real line. Then it is well-known that, as
n — 00, \/n(F, — @) converges in distribution to a Gaussian process {B; : t € R},
with covariance function Cov(Bs, B;) = min{®(s), @ (¢)} — @ (s)P(t). In fact, B is
a time change of the standard Brownian bridge, which is the limiting process if the
samples are drawn from the uniform distribution on [0, 1]. Similarly, «/n(G, — @)
converges in distribution to another Gaussian process B’ with the same distribution as
B.

Next we analyze the behavior of true pairs. To get a sense of the order of magnitude
of the distance statistic, let us consider the special case of p = 2 for convenience, for
which direct calculation suffices. Define F(s,t) = P{X <s,Y < t}. Note that we

can write ¥ = /1 — 02X + 0 Z, where X, Zi'l@d'N(O, 1). Then
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E[| Fy — Gall3] = /R E[(Fy (1) — Gn(1))*1dt

@szm—F@mm
n Jr

2 0 +00
;(/ (F(l)—F(t,t))dl+/ ((I—F(I,l))—(l—F(t)))dZ)
oo 0

2 (B [max(X, )] - E[X])
n

~
o

= %E[max(X, Y)]

@21Ju-—f—ﬂ/ V1-0o2, (10)

O(0)

where (a) is due to E[(F,(t) — G,(t))?] = —E[(I{X<,} - 1{y<, Y] =P{X <t} +
P{Y <t} -2P{X <1t,Y <t};(b)follows because E [U] = 0 (1 — Fy(u)du—
/ i)oo Fy (u)du for any random variable U whenever at least one of the two integrals
is finite; (c) follows from directly differentiating the moment generating function of
max (X, Y), see e.g., [40, Eq. (9)]. In fact, one can show that for small o, for any

1 <p=oo
(o2
|Fw — Gullp = Op (\/;) (1D

Indeed, by the central limit theorem for bivariate empirical processes, as n — 00,
Jn(F, — @, G, — ®) converges in distribution to a Gaussian process (B, B’) indexed
by R, which satisfies Cov(B;, B)) = P{X <t,Y <t} —P{X <t}P{Y <t}, and
furthermore /n||F, — G,ll, — B — B'||,, in distribution. Since E|B, — B]|* =
2(@(t) — P{X <1t,Y <t}), following the same calculation that leads to (10), we
have E[||B — B’||%] = O (o), which corresponds to (11) for p = 2.

Next, we turn to the behavior of fake pairs. Since B and B’ are independent and
since B — B' 'Y /2B, we expect /n||F, — Gyll, = ||IB — B’||, (see [5, Theorem
1.1] for the precise statement). In particular, we have

1
”Fn_Gn”p:@P (ﬁ) (12)

Comparing (11) and (12), we see that the typical distance for true pairs is smaller than
that of fake pairs by a factor of 4/o. However, since there are n — 1 wrong matches for
a given vertex, we need to consider the large-deviation behavior of (12). Recall the
classical result from the literature of small ball probability; see [31] for an excellent
survey. Let B be some Gaussian process e.g. the Brownian bridge defined on R. Then
the probability for the process to be contained in a small ball of radius € behaves as
(cf. [31, Sec. 4 and 6.2])
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1
]P’{||B||p§6} §exp<—@ <6—2)> (13)

for some constant C. Indeed, one can show that

P{”Fn_Gn”pS\/g}fexp(_@ (g)) (14)

Setting this probability to o(n%) and applying a union bound, we conclude that the
matching algorithm succeeds with high probability if o < ; Ogn for sufficiently small
constant c.

2.3 Improvement with seeded matching

In this subsection we improve the previous matching algorithm with empirical distri-
butions to 0 = O((log n)~1/3). To this end, we turn to the idea of seeded matching.
Given a partial permutation that gives the correct matching for a subset of vertices,
which we call seeds, one can extend it to a full matching by various methods, e.g.,
by solving a bipartite matching (see Algorithm 3). It turns out for Wigner matrices, it
suffices to obtain §2 (log n) seeds, which can be found by combining both the distance-
based matching and degree thresholding. The same idea applies to Erdés-Rényi graphs,
except that for edge density p, the number of seeds needed is Q(l°§" ), a fact which
will be exploited in Sect. 4.2.

To explain the main idea, let a; = \/Lﬁ Z’;:l Ajj and by = \/LE Zl}:l Byj be the

standardized row sums, which are the counterparts of “degrees” for Gaussian matrices.
Consider the set of pairs (i, k) such that both a; and by exceed some threshold &.
Then for any fake pair i # k, by independence, we have

Pla; > &, b > £} =Pla; > £} P{bx > &} = Q(€)°,

where Q £ 1 — @ is the complementary CDF for the standard normal distribution.
For true pairs, since we have the representation

bi =v1—02%a; +oz, (15)

iid.
where q;, z,-lflv N(0, 1), we have

3 1 §
Pla; > &, b; ZE}ZP{aiZﬁ,Zi ZO} ZEQ(ﬁ>

> Q(§) exp(—0(0°E?)).
Now let us consider the seed set consisting of those high-degree pairs i and k whose

empirical distributions satisfy d,(u;, vk) < /% Thus to create enough seeds, we
need

@ Springer



Efficient random graph matching via degree profiles 41

n0© exp (~0(0%) = 2ogn), (16)
and to eliminate all fake pairs we need (in view of the small-ball estimate (14))
n20(&)? exp (—52 (a*l)) = o(1). (17)

Choosing &€ = ©(/logn) and substituting it into (16), we get that Q(§)
2 (log") exp(0 (o2 logn)). Substituting this back into (17), we conclude that o <

n

—(logfl)l 73 for some small constant ¢ suffices.

‘We end this section with a few remarks:

Remark 1 (Order statistics) As described in Sect. 1.3, degree matching fails unless the
fraction of differed edges is polynomially small. Similarly, for the Gaussian model
directly sorting the degrees (row sums) in both matrices fails to yield the correct match-
ing unless o < n~° for some constant c. Indeed, sort the row sums a;’s decreasingly
as a¢ly > ... > aq and similarly for by > ... > b(,). Thus, degree matching
amounts to match the vertices according to the sorted degrees. Since a;’s are iid stan-
dard normal, it is well-known from the extreme value theory [18] that, with high
probability, the order statistics behaves approximately as a() ~ @~ (i /n) which is

approximately ,/2log % fori < n/2 and — /2log # for i > n/2. In particular,

aqy = Amax ~ /2logn and a4,y = amin & —+/2logn. Furthermore, the ith spacing
of the order statistics is approximately

n n 1
2log — — /21 =0 18
\/ Ogi \/ Ogi+1 i/log’l (18)
l

Therefore, and intuitively so, for most of the samples the spacing is as small as & ( %).
In view of (15), we can write b; = a; + A;, where A; = (V1 —02 — Da; + oz;.
Thus degree matching succeeds if | A;| < min{|a;—1 — a;|, |a; — aj+1]} for all i. Since
|zil < O(y/logn)and |a;| < O(y/logn) for all i with high probability, this shows that
degree matching requires very small noise o = o(- llogn ), which is much worse than
degree profiles. Simulation shows that this condition is necessary up to logarithmic
factors.

Following the same idea in this subsection, an immediate improvement is to use
degree matching to produce enough seeds to initiate the seeded graph matching pro-
cess. Indeed, this is possible because the spacing of the first few order statistics is much
bigger and more robust to noise. More precisely, in order to produce £2 (logn) seeds,
it suffices to ensure that the minimum spacing of the first i order statistics, which is at
least 2 (%), far exceeds the noise which is O (o /logn). Withi = © (log n), this

translates to o = 0((10g;n)4)’ which is comparable to but still worse than the guarantee

of degree profiles of o = O(IOé —) as established in Sect. 2.2. More importantly, a

fundamental limitation of degree matching is that it fails for sparse graphs, because

@ Springer



42 J.Ding et al.

the number of seeds needed is .Q(log") where ¢ is the edge density of the observed

graphs (cf. Lemma 18 and [30, Theorem 1]). Following the similar analysis above
for binomial distribution, for the correlated Erdés-Rényi graph model G(n, ¢; 1 — 8),
it is well-known that (cf. [8, Theorem 3.15]) the minimum of the first i spacing of

sorted degrees is 2 (‘C;?q) with high probability and the degrees of a true pair differ by

at most O (/0nq). Thus, producing .Q(lofn) seeds requires the deletion probability

to be as small as § = 5(614). This explains the recent result of [17], which shows
that degree-matching algorithm with seeded improvement succeeds under some extra
conditions.

Remark 2 (From Gaussian matrices to Erd6s-Rényi graphs) To extend the matching
algorithm based on empirical distributions from Gaussian matrices to Erd&s-Rényi
graphs, the main difficulty is that Bernoulli random variables are zero-one valued
and hence directly implementing the same empirical distribution matching algorithm
using adjacency matrices does not work. As mentioned in Sect. 1.3, the idea is to
use the degree profile of each vertex, that is, the empirical distribution of the degrees
of the neighbors, each of which is binomially distributed and well-approximated by
Gaussians. Indeed, the ideas in Sects. 2.2 and 2.3 lead to Algorithms 1 and 2,
respectively, for Erd6s-Rényi graphs. However, the major technical difficulty is to
address the dependency in the degree profiles. In the Gaussian case, each pair of
degree profiles follows the simple dichotomy in (7)—(8), behaving as a pair of empirical
distributions of correlated (resp. independent) samples for true (resp. fake) pairs. This
is no longer the case for Erd6s-Rényi graphs. For this reason, the approach for Erd&s-
Rényi graphs deviates from the program for Gaussian matrices, in that the algorithms
in Sect. 4 are based on a quantized version of the total variation distance as opposed
to distances between empirical CDFs, and the analysis in Sect. 4 does not explicitly
resort to empirical process theory, although it is still guided by similar intuitions.

3 Matching algorithms for correlated Erd6s-Rényi graphs
3.1 Preliminary definitions

For each vertex i, define its open neighborhood N4 (i) (resp. Np(i)) in graph A
(resp. B) as the set of vertices connecting to i by an edge in A (resp. B); define
its closed neighborhood Ny4[i] (resp. Np[i]) in graph A (resp. B) as the union of its
open neighborhood in A (resp. B) and {i}.

Denote the degrees by

a; = INa(D)] = ) Ajj (19)
Jé€ln]

bi =|Ng(@)| =) Bij. (20)
J€ln]
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For each i and j, define

aV = : A 21

G T Jo—a-De(—9 WZ[,( =9 .
1

b = By — q), 22

N e T ‘Z>e¢NZBm( v 22

Note that aﬁ.’.) (resp. b;i)) can be viewed as the standardized version of the “outdegree”
of vertex j by excluding i’s closed neighborhood in A (resp. B).
To each vertex i in A, attach a distribution which is the empirical distribution of

the set {a;’-) 1 jeNs()}:

Z 8,01 (23)

L jeNat)

and the centered version (viewed as a signed measure)
fii = p; —Binom(n —a; — 1, q), (24)

where Binom(k, q) denotes the standardized binomial distribution, that is, the law of
X—

m for X ~ Binom(k, ¢q). The centering in (24) is due to the fact that conditioned

on the neighborhood N4 (i), each a(] )

Similarly, for B we define

is distributed as Binom (n —a; — 1, ¢) marginally.

Ly 8,0 (25)

bi JENEB(@)

and the centered version
v; £ v; —Binom(n — b; — 1, q). (26)

Intuitively, p; is the degree profile for the neighbors of i in A, if the summation in (21)
is over all [n]. We exclude edges within the neighborhood itself to reduce dependency
and simplify the analysis. Note that conditioned on Ny (i), {a(’) J € Ny(i)} are

iid as Binom(n — a; — 1, ¢); conditioned on Np (i), {b (l)

: j € Np(i)} are iid as
Binom(n — b; — 1, q).

Fix L € N to be specified later. Define Iy, ..., Ir as the uniform partition of
[—1/2,1/2] such that |I;| = 1/L. For each i and k, define the following distance

statistic:

Zix &Y lin () = (o). 27)

Lel[L]
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In other words,

Zik = d(i, o) = il — e, (28)
where [11] denotes the discretized version of u according to the partition Iy, ..., I1,
with

(WL (@) = u(le), €e€[L]. (29)

Throughout the rest of the paper, for simplicity we use the parameterization

s21-02, §242 (30)

to denote the sampling and deletion probability respectively, where o corresponds to
the magnitude of the “effective noise”.

3.2 Matching via degree profiles

We present our first algorithm which matches the vertices in A to vertices in B based
on the pairwise distance statistic {Z;x} in (27).

Algorithm 1 Graph matching via degree profiles

: Input: Graphs A and B on n vertices, an integer L.

: Output: A permutation 7 € Sj,.

: For each i, k € [n], compute Z;; in (27).

: Sort {Zjx : i,k € [n]} and let S be the set of indices of the smallest n elements.

. if S defines a perfect matching on [n], i.e., S = {(i, (i) : i € [n]} for some permutation 7 then
Output 7;

else
Output error.

: end if

The key intuition underlying Algorithm 1 is as follows:

— For true pairs k = 7*(i), we expect i and k to share many (about ngs) “common
neighbors” j, in the sense that j is i’s neighbor in A and 7*(j) is k’s neighbor
in B. For each such common neighbor j, its outdegree aﬁ.') in A is statistically
correlated with the outdegree bj(rk,z ) in B. As a consequence, the two empirical
distributions are strongly correlated, leading to a small distance Z;y.

— For wrong pairs k # 7*(i), we expecti and k share very few (about ng?) “common
neighbors”. Hence, the two empirical distributions w; and vy are weakly correlated,

leading to a large distance Z;y.

Remark 3 (Time complexity) Implementing Algorithm 1 entails three steps. First, we
precompute all outdegrees. Assuming the graph is represented as an adjacency list
and the list of degrees are given, for each i and each j € N4(i), we have a;’) =
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aj — 1 —|Na@@) N Na(j)l, where a; is the degree of j and [Na(i) N Na(j)] is
the number of common neighbors, which can be computed in O(a; + a;) time. Thus,
computing all outdegrees can be done in time that is Zi~j O(aj+aj) =0 (Zi aiz) =
O (| E||dmax|).> Next, we compute the discretized and centered degree profiles [ jz; |7, for
eachi in graph A and [V ], foreach k in graph B. These are identified as L-dimensional
vectors (where L = polylog(n)) and can be done in 0 (|E) time. Finally, we compute
the distance statistic Z; in (27) for all pairs i and k and implement greedy matching
via sorting. Since Z;y is the £ 1-clistance between two L-dimensional vectors, this step
can be computed in a total of O (n?) time. In summary, the total time complexity of
Algorithm 1 is at most O (| E||dmax| + |V |?), which, for Erds-Rényi graphs under the
assumption of Theorem 1, reduces 9] n3q* +n?).

The reason we use outdegrees instead of degrees in Algorithm 1 is a technical one,
which aims at reducing the dependency and facilitating the theoretical analysis. In
practice we can use degree profiles defined through the usual degrees and empirically
the algorithm performs equally well. In this case, the time complexity reduces to
0 (n?).

Theorem 2 (Performance guarantee of Algorithm 1) Let s = 1 — o2 and q < qq for
some sufficiently small positive constant qg. Assume that

00
o< ; (3D
logn
for some sufficiently small absolute constant oy. Set
L =Lylogn (32)
and assume that
ng > Colog’n (33)

for some large absolute constants L, Co. Then with probability 1 — O (1/n), Algo-
rithm 1 outputs T = m*.

3.3 Dense graphs: combining with high-degree vertices

For relatively dense graphs, Algorithm 1 can be improved as follows. Recall the
notion of seeded graph matching previously mentioned in Sect. 2.3, where a number
of correctly matched vertices are given, known as seeds, and the goal is to match the
remaining vertices. It turns out that for G (n, q), provided m = 2 (loﬂ) seeds, solving
a linear assignment problem (maximum bipartite matching) can successfully match
the rest of the vertices with high probability. Note that the condition ¢ = O ((logn)~!)
in Theorem 2 ensures Algorithm 1 succeeds in one shot, in the sense that with high

5 Alternatively, outdegrees can be computed via the number of common neighbors by squaring the adjacency
matrix using fast matrix multiplication.
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probability the distance statistics are below the threshold for all n true pairs and above
the threshold for all (g) wrong pairs. Thus, we can weaken this condition so that even
if the distance statistics for most of the pairs are not correctly separated, those high-
degree vertices can provide enough seeds that allow bipartite matching to succeed.
This idea leads to the improvement to ¢ = O((logn)~!/3) when the edge density
q = exp(—0((logn)'/3)).

Specifically, fix some thresholds 7 and &. Consider the collection of pairs of vertices
whose degrees are atypically high and the degree profiles are close:

S={G. k) ai =1, by =t +1, Zix < §}. (34)

We show that, with high probability,

1. S does not contain any fake pairs, i.e., (i, k) ¢ S for any k # 7*(7).
2. S contain enough true pairs, i.e., |S| = .Q(lof;”).

Finally, we use the matched pairs in S as seeds to resolve the rest of the matching
by linear assignment; this is done in Algorithm 3. The full procedure is given in
Algorithm 2.

As for the time complexity, compared to Algorithms 1, 2 has an extra step of
computing the maximum matching on an n x n unweighted bipartite graph, which can
be done in either O (n?) time using Ford-Fulkerson algorithm [23] or O (n*?) time
using the Hopcroft—Karp algorithm [25].

Algorithm 2 Combining degree profiles and large-degree vertices

1: Input: Graph A and B on n vertices; thresholds 7, & > 0.
: Output: A permutation 7 € Sp,.
: Compute the distance statistic Z;j for each i, k € [n]. Let S be given in (34).
: if S defines a matching, i.e., there exists S C [r] and an injection 7o : S — [n], such that S =
{(i, mo(P)) : i € S}, then
Run Algorithm 3 using 7 as the seeds and output 7.
: else
output error;
. end if

W N

00~ N

Theorem 3 (Performance guarantee of Algorithm 2) Assume that g < qg and

. 1 1
o < opmin { Tog )7’ logk’qﬂ } , (36)

for some small absolute constants qq, oy. Define

(d=p)s

1 E
s <a0 Og”> ! (37)
nq
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Algorithm 3 Seeded graph matching

1: Input: Graphs A and B on n vertices; a bijection 7o : S — T, where S, T C [n];

2: Output: A permutation 7 € Sp,.

3: Foreachi € S¢ and each k € T, define n;; = Zjes Ajj By ()-

4: Define a bipartite graph with vertex set S x T¢ and adjacency matrix H given by H;; = 1 {nie=x) for

eachi € S and each k € TC, where k = %ISlqs. Find a maximum bipartite matching of H, i.e., a
perfect matching 77| between S¢ and T¢ such that 7| € argmaxy; w(w), where

w(m) £ Z Hixni)- (35)

ieS¢

Let 11 denote a perfect matching on [n] such that 7| = 7 and 7| |gc = 7.

5: For each i, k € [n], define w;; = Z';:l Aij B, (j)-

6: Sort {w;x : i,k € [n]} and let 7 be the set of indices of the largest n elements.

7: if T defines a perfect matching on [n], i.e., 7 = {(i, 7 (i)) : i € [n]} for some permutation 77 then
8 Output 7T;

9: else

10: Output error;

11: end if

and

1
L = Lomax {logm(n), log ogn } (38)
q

for some large absolute constants ag, Lg. Let

T2 min{0 <k <n:P{Binom(xn —1,q) >k} < a}, 39
and
L
E=C | = (40)
nq

for some absolute constant C. Assume that
nq2 > Cy logzn (41)

for some large absolute constant Cy. Then with probability 1 — O (@), Algorithm 2

outputs T = m*.

We briefly explain the choice of parameters and the condition (36) on . According
to (39), the threshold 7 is chosen to be the (1 —«)-quantile of a;, sothat P {a; > 7} =~ «.
The crucial observation is the following:

— For true pairs k = 7*(i), the degrees a; and by are both sampled from the same
vertex in the parent graph and are hence positively correlated. Indeed, we have

1—q

P {a; zt,bkzr—i—l}:Q(a(lP)S), k=m*@). (42)
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Here the exponent ( 5 1s slightly bigger than one:
1— 1— 2
—qzl—i——s:l—i—a—. (43)
(I =p)s (I =p)s (I =p)s

— For fake pairs k # 7*(i), the degrees a; and by, are almost independent, and indeed
we have

szumzz+u=0@ﬁ,k¢nmy (44)

Both (42) and (44) will be made precise in Lemma 3.

In order for Algorithm 2 to succeed, on the one hand, we need to ensure the seed
. Indeed, under
the condition L = O(1/0) and the choice of £ in (40), we will show that for any true
pair (i, k) the distance statistic Z;i is below & with high probability. Thus, we have in
expectation:

42) 1
E(S) S natm QD g 08

and we will show that this holds with high probability as well.

On the other hand, we need to ensure that no fake pair is included in S with high
probability. We will show that for any wrong pair (i, k), Z;x < & with probability
at most e =) (see Lemma 2). By the union bound, in view of (44), it suffices to
guarantee that

(d=p)s

n2a? exp (—2(L)) Y z(ao%) T exp(—2(L)

“3) lo

2 202
) exp (l i logn — .Q(L)) =o0(1). (45)

Also, recall that L = O(1/o). Thus, the desired (45) holds provided that o <

—(10g111)1/3 A —log %Og,, , and ¢ is bounded away from 1, by choosing L 2 (log /3 v

log g2

Finally, we mention that since the seed set obtained from Algorithm 1 and degree
thresholding depends on the entire graph, the analysis of Algorithm 2 entails a worst-
case analysis of the seeded matching subroutine. This is done in Lemma 19 in Appendix
B, which guarantees the correctness of Algorithm 3 even for an adversarially chosen
seed set.
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3.4 Sparse graphs: matching via neighbors’ degree profiles

For relatively sparse graphs, we can improve the condition from o = O(1/log(n)) to
o = 0(1/log(ng)) by comparing neighbors’ degree profiles. Next we describe our
improved local algorithm, which uses the information of 3-hop neighborhoods.

We start with some basic definitions. The £-hop neighborhood of i in graph G is the
subgraph of G induced by the vertices within distance £ from . Let N A (i) (resp. N g(0))
denote the set of vertices in the 2-hop neighborhood of i in graph A (resp. B). Denote
the size of the 2-hop neighborhood of i in graph A and B by respectively

@ =|NaG)], and b; = |Ng(i)|.

For each vertex i and each vertex ¢ at distance two from i in graph A (resp. B), define
Eié’) (resp. bé')) as

al = ! 46
a, Wk¢§:()( ke — (46)
by = Z (Bre = q). (47)

Analogous to (21) and (22), a(l) (resp. b(l)) can also be viewed as the normalized

“outdegree” of vertex ¢, this tlme with the closed 2-hop neighborhood of i in A
(resp. B) excluded.

To each vertex j € Ny(i), attach the centered empirical distribution of the set

(@ : €€ Na(j) \ Nalil):

1 _

~(@i) a 5 ~

w _ E d~@ — Binom (n —a;,q). (48)
J INa() \ Nalill N4 GONATI] ay l

Similarly, to each vertex j € Np(i), attach the centered empirical distribution of the
set (b : € € Np(i) \ Nplil}:

1 - ~
~() & -
v —_— E 8~y — Binom (n — b;, q) . (49)
7T INED AN, S (2= bi.4)

Analogous to (24) and (26), i1 j (resp. ’17]-) is the centered “outdegree” profile of j, this
time defined over only j’s neighbors which are at exactly distance two from i in A

(resp. B).
We now introduce a new distance statistic W based on aggregating the original Z
statistic in (27) over neighbors. Recall the uniform partition /1, ..., I of [—1/2,1/2]

such that |I;| = 1/L. For each j € Na(i) and j/ € Ng(k), define the following
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distance statistic:

2002 3 [ a0 =P ao|. (50)
te[L]

which is analogous to (27) except that the definition of the outdegrees are modified.

For each i, k € [n], construct a bipartite graph with vertex set N4 (i) x Np(k),
whose adjacency matrix ¥ @ is given by

(k) _ . . s
Vi = Vgl J € Na®. ' € Np(h). (51)

Here 7 is a threshold to be specified later. Define a similarity matrix W, where Wy is
the size of a maximum bipartite matching of ¥ /%):

Wi = max <Y(ik), M)

S.t. Zij/ <1,
J

> My <1,
J'
M;j € {0,1). (52)

Finally, we match vertices in A to vertices in B greedily by sorting the similarities
Wik’s. The entire algorithm is summarized in Algorithm 4 below.

Algorithm 4 Graph matching via neighbors’ degree profiles

1: Input: Graphs A and B on n vertices, an integer L, and a threshold n > 0.

2: Output: A permutation 7 € Sp,.

3: For each i, k € [n], compute W;j as in (52).

4: Sort {Wjy : i, k € [n]} and let S be the set of indices of the largest n elements.

5: if S defines a perfect matching on [n], i.e., S = {(i, T (i)) : i € [n]} for some permutation 7 then
6:  Output 7;

7: else

8:  Output error.

9: end if

The intuition behind Algorithm 4 is as follows. Even if the Z distance statistics
of degree profiles are not correctly separated for all pairs, the new W statistics are
guaranteed to be well separated. Indeed, by setting

n=no,|— (53)
ng

for some sufficiently small absolute constant 19, we expect that
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— for true pairs k = w*(i), i and k share many (about ngs) “common neighbors”(in
the sense that j € N4 (i) and w*(j) € Np(k)). Moreover, most of such common
neighbors have Z distance smaller than n. As a consequence, Wiy is at least nq /4
with high probability;

— for fake pairs k # 7*(i), i and k share very few (about ng?) “common neighbors”.
Moreover, most of the fake pair of vertices j € N4(i) and j' € Ng(k) have Z
distance larger than n. As a consequence, when ¢ is small, W;; is smaller than
nq /4 with high probability.

The performance guarantee of Algorithm 4 is as follows:

Theorem 4 Fix any constant € > 9/10. Suppose

00
log(ng)

1—e

Cologn <ng <n and o <

for some sufficiently large absolute constant Co and some sufficiently small absolute
constant 0. Set L = Ly log(ng) and n as in (53) for some sufficiently large absolute
constant Ly and some sufficiently small absolute constant no. Then with probability
at least 1 — O (ng’loe), Algorithm 4 outputs T = m*.

We briefly explain the condition on the graph sparsity in Theorem 4. On the one hand,
the analysis of Algorithm 4 requires the graphs to be sufficiently sparse (ng < n'~¢
for € > 9/10), so that all 2-hop neighborhoods are tangle-free, each containing at
most one cycle. On the other hand, Theorem 4 requires the graphs cannot be too
sparse (i.e., ng 2 logn) so that each vertex has enough neighbors; this lower bound
is information-theoretically necessary for exact recovery [13,14].
4 Analysis
Throughout this section, without loss of generality, we assume the true permutation
7* is the identity.

We introduce a number of events regarding the neighborhoods N4 (i) and Np (k).
Recall that a; = |N4(i)| and by = |Np (k)| denote the degrees. Put

cik = INa()) N Np(k)]|. (54)

First, for each i € [n], define the events
. 1 . 1
FA(1)={§nq§ai§2nq}, FB(l)={5nq§bi§2nq}, (55)
1
T = ycii > Sna - (56)
Second, for each pair of i, k € [n] with i # k, define the event

L = {Mfy/nqz—i-\/Zlogn}. (57)
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Note that a;, b; ~ Bin(n — 1, g¢). Moreover, ¢;; ~ Bin(n — 1, ¢s) which is stochasti-
cally larger than Bin(n — 1, 3¢ /4) under the assumption s = 1 — o> > 3/4; fori # k,
cir ~ Bin(n — 2, qz). Thus, it follows from the binomial tail bounds (165) and (168)
that

P{rsi} . P{rg} . P{rs} <e " <n™3, Vie[n), (58)
P{I%) <n™, Vi#keln], (59)

where we use the assumption that ng > C logn for a sufficiently large constant C.
Third, given any A > 0, for each pair of i, k € [n], define the event

O 2 {la; - bil < 4/nqa}. (60)
In view of the binomial tail bounds (167) and (168), we have that
P{vig - VA = ai = Jag + A} = 1-2e7
and similarly for b;. Thus it follows from the union bound that
P{Ou) = P{iig — VA = ai, b = Jnqg + VA = 1474 (61)

Lastly, for each i € [n], define the event

O; = {max{vai = cir, v/bi — e} = /ng(T =) + V4. (62)

Since both a; — ¢;; and b; — ¢;; are distributed as Binom(n — 1, g(1 — s)), it follows
from the binomial tail bound (168) and the union bound that

P{O;} > 1—2¢4. (63)

4.1 Proof of Theorem 2

The proof of Theorem 2 is structured as follows:

Theorem 2

Lemma 9

() —
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We start with the following results on separating the maximum distance among true
pairs max;ep,) Z;; and the minimum distance among wrong pairs min; xke(n] Zik:

Lemma 1 (True pairs) Assume that o < %, qg <qo < %, nqg > C max{logn, L2, A}

for some sufficiently large constant C, and

4L/ngA <n. (64)

There exist absolute constants t1, T such that for eachi € [n],

P{Zii > &wue | Na(@), Np(D)} Lir,i)nrsinrine;ne;) < 047, (65)

A 28 A L
e =L [—+ 1 |—+ 10 [ — (66)
nq nq nq
and

A 1 _ 1 . 1 n \/np
Iy / A _ —
ﬂ—t2<o+ n+ n_q+e )+LeXp< tlmm{o2L2’L2A’ 7 })
(67)

where

Lemma 2 (Fake pairs) Assume thato < 1 g < qofor some sufficiently small constant
q0, nqg > C max{logn, L?, A}, and L > L for some sufficiently large constant Ly.
Then there exist universal constants c1, c2, ¢3, such that for each distinct pair i # k
in [n],

P{Zix < &take | Na(@), Np(k)} 1{ryi)nrsnrixney) < O (E_A/2> . (68)

. L A
Efake = €1, — —C2, [ —. (69)
nq nq

Note that the conclusions of Lemma 1 and 2 are stated in a conditional form con-
ditioned on the neighborhoods N4 (i) and Np (k). This is for the purpose of analyzing
Algorithm 2, where we will need to apply these lemmas to high-degree vertices (see
proof of Theorem 3).

We now prove Theorem 2:

where

Proof 1t suffices to show that with probability 1 — O(1/n),

min Z;; > max Z;;.
i#ke[n] i€[n]
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Choose

2
4= (4max{c2, t2}> L 70

where c1, ¢; and 1, are the absolute constants given in Lemmas 2 and 1, respectively.
In view of the theorem assumptions ¢ < op/logn, L = Lglogn, and nq >
Co log2 n, we have that 8 in (67) satisfies

A 1
L<1nLy|oo+logn,| =+ — +e 2logn
B 20(0 g/ — NG g

n . 1 n Vv Co
€X —T7] min s s
P\ G202 L2 At0g?n” Lo

provided that ogLg is sufficiently small, and n and +/Cp/L¢ are sufficiently large.
Moreover, oo < 1/8 when oy is sufficiently small. Thus, in view of (66), (69), and

(70), we have
301 L 501 L
Efake = — .| — > — [ — > Epre- (71)
4 \ ng 8 \ ng

Also, since L = Lglogn, (64) is satisfied for sufficiently large n. Hence, all the
conditions of Lemmas 1 and 2 are fulfilled. Furthermore, for L sufficiently large, we
have e=4/2 < n—3,

Applying Lemma 1 and averaging over N4 (i) and Np (i) over both sides of (65),
we get that

P{{Zii = el N TaG) N To() N 1 N6 N 0} < 0 (¢7412).

By the union bound, we get that

P {max Zii > Etrue} < Z (]P{{Zii > e N Ta@) N TpE) N T NE; N O}
i€[n]

i€(n]
+P{r{i} +P{rsi} +P{rs} +Ploef} +Plog) >
<0 (n_2> o (ne_A/z) <0 (n_z) . 72)
where the second-to-the-last inequality holds due to (58), (61) and (63).
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Similarly, for i # k, applying Lemma 2 and averaging over N4 (i) and Np (k) over
both hand sides of (68), we get that

P{Zik < Epake) N Ta) N k) N T N O} < O (e—A/Z).

By the union bound, we get that

P{ min Z;; < éfake}
i#keln]
<Y (PUZix < Eraked N Tali) N T (k) N Tk N O}
ik
+P{ri} +P{rgk} + P{r3} +P{og})
<0 <n2> x (e*A/z +n*3) <0 (n*l), (73)

where the second-to-the-last inequality holds due to (58), (59), and (61).
Finally, combining (72) and (73), we conclude that, with probability at least 1 —
O(1/n),

. min Zix > &fake > Etrue > max Zii,
i#ke[n] i€ln]

and hence Algorithm 1 succeeds. O

4.2 Proof of Theorem 3

The proof of Theorem 3 is structured as follows:

Theorem 3

Lemma 3,4, 5 —————

Lemma 1 and 2 }

Lemma 18
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We start with a few intermediate lemmas, whose proofs are postponed till Sect. 4.4.
Recall that « is defined in (37) as

d=p)s

N ( logn) =g
o = |
ng

T2 min{0 <k <n:P{Binom(n —1,q) >k} < a}.

and 7 is defined in (39) as

Note that 02 = 1 — s and p = ¢/s.
The first lemma bounds the correlations between the degree of vertex i in graph A
and the degree of vertex k in graph B.

Lemma 3 Suppose g < %, ng — 4oo, 1/(ng) < a < 1/4, and o> loglog(nq) =
o(1). Then

v

1—q
2 <a) ifi = k

(12 O.W.

Pla; > 1,bpy > 1+ 1} (74)

IA

We also need the following two auxiliary lemmas.

Lemma4 Suppose g < 1/8, 1/(nq) < o < oy for a sufficiently small constant
a1 > 0, ng > CoA? and A > Cy for a sufficiently large constant Cy > 0. Let event
Oj be given in (60) as Ojy, £ {|a,- —by| < 4«/nqA} . Then

Pl{a > 7,bx > T+ 1}N 65} < 0 <a1+1h‘#k>e—A/2) . (75)
Lemma5 Let the event ©; be defined in (62). Then
P{{a; > 7,b; > T+ 1} N OF} < 2ae™ /% 4 2e74/27), (76)

Proof (Proof of Theorem 3) Recall that L is given in (38) as L = Lpmax
2
{10g1/3(n),log log"}. Choose A as per (70): A = (‘—') L and set & =

q 4 max{c, 12}

% ﬁ, where ¢y, ¢y are from Lemma 2 and 1 are from Lemma 1. Then &gy,

in (69) satisfies &e 2 1./ Aq - /% > £. Under the condition (36): o <
op min {W, log+gn}’ we have o L < opLg. Moreover, under the assumption
q

41): nq2 > Cp logzn for some large absolute constant Cy, we have ng > CL?
for a sufficiently large constant C. Thus, § in (67) satisfies BL < c% /32. Moreover,
7o < % provided that oy is a sufficiently small constant. Hence, & in (66) satisfies

2
EtrueéL £+T2U %"“Q,/%Sg-
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For ease of notation, for each pair of i, k € [n], denote the event that D;; = {a; >
T, by > 7 + 1}. Then, for wrong pairs i # k,

Pla; > t,bp > T+ 1, Zix < &}
=E[P{Z <& | Na(i). Np(K)} 1D, ]
<E[P{Zi <& | Na(i), Na(k)} Ly, nry)nrs0nrienO) )

+ P {Dix N (I'a() N Tpk) N Tig N O)°}
20 (¢ 2) P{Du N ) 0 Fpk) 0 T 1 O3t) + B { D 0 50
+P{Dy N T5K)) +P (D 0 15} + P (D 1 0]

< 0 (¢72) P (D) + P{I5()} + P {5k} + P (I} + P {Dyx N 05}
(%) 0] (azefA/z) + O <n73) ,

where (a) is due to Lemma 2 and &g > &; (b) is due to Lemma 3, Lemma 4, (58),
and (59). Therefore, it follows from the union bound that

P{RG, k) €S:i £k} <Y Pla; > t,bp =T+ 1, Zyy <&}
ik
(0] <n2> o? exp(—A/2)+ O (n_1>

(@) logn 2 202 1

< 0| exp logn — £2(L) +0<n )
q l—gq

(

O 0] (ef‘Q(L)) + 0 (nil) ,

where (a) was previously explained in (45); (b) is due to the condition (36) on ¢ and
the choice of L in (38).
For true pairs, let

IA

&

=5

T = Z V= obi=r+1.2:<8)-

ien]

To show that T = £2(xg 10%) with high probability, we compute its first and second
moment. Since Z;; and the degrees a;, b; are dependent, one needs to be careful with
respect to conditioning. Note that

Pla; > t,b; >t +1,Z; <&}
=E[P{Zi <& | Na(). Np(D}1{p,]
> E[P{Zii <& | NaG), Ne()} L(Dy;nr, () )nin@inds) ]
= (1= 0 (¢72))PDu N Ta() N T N TN O, N O}, (T7)
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where the last inequality holds due to Lemma 1 and &yye < €.
By Lemma 3,

1
APl >t b > T4+ 1)=P(Dy} > 2 (a“ mv> D g <aoﬂ> . (78)
nq
Combining Lemma 4 and Lemma 5 together with the union bound, we get that
P{Dii N(O N )} = 0 (ae™/2 4 e7/07") (79)

Combining the last two displayed equations yields that

P{D;i N I'a() N I'p@) N 15 N O; N O}
> P{Dii} —P{Dii N (©: N )} —P{Ii@)} —P{Ig@)} —P{l}
>1—0 ( —-A/2 +e—A/(202)) —3n73,
where in the last inequality we used P {I"5 ()}, P {5 ()} . P{I};} < 1/n by (58).
In view of the definition of @ given in (37), we get that

(=p)s

lo -
w2 — (Olo gn) T an
nq

@ logn < o? A)
< exp logn — —
n 1—¢ 2

1 2
© aoﬂ exp ( “ logn — .Q(L))
nq l—gq

where (a) is by (43); (b) is due to A = §2(L) by our choice of A; (c) holds because
of (78) and the facts that o < o9/ log'/3(n) in view of condition (36) and L >
Lo log]/3 (n) in view of (38).

Furthermore, by our choice of A and the theorem assumptions, A /02 > 6logn
by letting L /002 sufficiently large. Combining this fact with the last two displayed
equations, we get that

P{D;; N ()N ()N T NO; NOyY >t (1 —0 (e_Q(L))) —4n73. (80)

By (77) and (80), we get that

BT = n (1- 0 (e722)) (1- 0 (e2®)) - 0w

— nt (1 —0 <e—9<L>>) — 0w, 81)
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where the last equality holds because A = ©(L).
Next we estimate the second moment of 7':
E[TZ] < ZIP’{a,- >t,bj>zt+1l,a;>1,b;j >1+ l}
i,j
=nt+ZP{ai >t,b>t+1la;>t,b; >1+1}.
i#]
We will show that fori # j,
Pla>1.b; > 1+ 1,a; > 1.b; > 7+ 1} <12 (1+e‘9(”). (82)
It then follows that
E [TZ] < nt +n*? (1 + e*m”) . (83)

Combining (81) and (83), we get that
var() = E[T?] = (B[T)? < O (n*2e™2®) 4 n

and hence by Chebyshev’s inequality,

P{T > ln,} < L)z 0 (e—n(m n i)
2 (E[T] — nt/2) nt

_ofemmy 4 Yo,
logn logn

where the last two equalities holds because nt = £2(logn/q) and L > Lglog 10% in

view of (38). Therefore, the set S defines a partial matching with |S| =

T > nt)2

with probability 1 — O(gq/logn). Finally, the success of Algorithm 2 follows from
applying the seeded graph matching result Lemma 18 given in Appendix B.

It remains to prove (82). Fix i # j. Recall that D;; is the event that @; > 7 and
b; > v + 1. Also, let g; denote the degree of vertex i in the parent graph. Abusing
notation slightly, we let k denote the realization of g; in the remainder of the proof.

Then

P{DiNDy}=> Plgi=kg =K}P{Di|g=kP{Dj|g
k., k'

and

=K'}

]P’{g,- =k gj= k/} =p -P{Binom(n — 2, p) =k — I}P{Binom(n -2, p) =k — 1}
+ (1 — p)P {Binom(n — 2, p) = k} P {Binom(n — 2, p) = k'}.
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For ease of notation, we write ¢ = P {Binom(n — 2, p) = k}. Then

Plgi =k gj =k} —-Plg =k}P{g; =k}
= pcr—ick—1 + (1 = p)ekew — (pek—1 + (1 — p)ex) (pew—1 + (1 = p)ew)
= p(1 — p) (ck—1 — cr) (cw—1 — cw) .

By definition,

Ch—1 = Ck _ (1_ (n—k—l)p>:k—(n—1)p
Ck—1 k(1 — p) k(1 — p)

and

Ck—l—Ck_< k(1 —p) _1>_k—(n—1)l’
Ck “\m—k—-1Dp  m—k—1p’

We let

A \/glog(”P)
Vnp

and I £ [(1 —n)(n — 1)p, (1 +n)(n — 1)p]. Then for all k € I, we have

n

lek—1 — ekl _ n __2n
min{cy—1, ¢k} ~ min{(1 —n)(1 —-p), 1 =A+n)p} ~ 1—1n

)

where the last equality holds due to p < 1/2. Thus, for all k, kX’ € I, we have

2

Ui
(1—mn)?

P{gi:k,gjzk’}5<1+ )P{g,:km{g,-:k/}.

Moreover, by Chernoff’s bound given in (165),

Pfgi ¢ I} < 2exp (—nznp/3) =2exp (— logz(np)> :
Therefore,
P{Dii ﬂ'Djj}
<Pla¢ N+P{g; ¢ 1} + D Plai=k g =K}
kel
P{Dii | gi =K}P{D); | g; =K'}
2

< 4exp (— logz(np)) + (1 + (14—#>
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x> Plgi=klP{g; =K} P{Dii | & =K'} P{Dj; | g; =K'}
k,k’
4772 B
= 4exp (_ 10g2(nl7)) + (1 + —(1 — 7])2> P{Dlz}P{DJJ} = <1 +e Q(L)> t2,

where the last equality holds due to P{D;;} = t = £2(log(n)/(nq)) and n> +
%2 exp (— log2 (np)) = exp(—4£2(L)) under the assumptions of Theorem 3.

4.3 Proof of Lemma 1 and Lemma 2

Note that for both the case of i = k and i # k, the empirical distribution p; and vy
will both involve correlated samples arising from common neighbors. So we start by
decomposing the empirical distribution according to the common neighbors. Fix i, k.
Recall that ¢;p = [N4(i) N Np(k)|. Then

Cik 1 Cik 1
== — 8 1- = s o,
= O R (e | e IR

E\ G jenanNg o ’ Ik G eNAD\N5H)
(34)
o Cik 1 8 1 Cik 1 8
Gl D SIS VL) Rl Gt | Pyt D SIL)
JENANNE (k) JENB(K)\N4 ()
(85)
As a consequence, the centered empirical distribution can be rewritten as
i =pP+1—p)P (86)
=p'0+0-p)0 87
where
A Cik ; A Cik
p=— p = —-—
a; by
and
Péi Z S @ —v P A ! Z S @ —vV
Cik . . 4 aj ' ai —cik . & aj ’
JENANNE (k) JENAW\Np (k)
1 N 1
Q& — s,mw—V, Q0 £ S,m —,
Cik | Z bj by — cik | Z by
JENANNp (k) JENBK)\Na ()

and v = Binom(n —a; — 1, ¢) and v/ = Binom(n — by — 1, q). Note that if ¢;;z = 0,
we set P = Q = Bin(n — 1, ¢g) by default.
The following lemmas are the key ingredients of the proof:
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Lemma 6 (Independent two samples) Let X1, ..., X,, and Y1, ..., Y, be two inde-
pendent sequence of real-valued random variables, where X;’s are independently
distributed as v; and Y;'s are independently distributed as v;. Assume that for some
my,

for some absolute constants k1, ko > 0.
Suppose the partition 11, . .., I is chosen so that there exists a set Jo C [m] with
|Jo| = m/4 such that for all i € Jy and for all £ € [L],

1 c
— <vil) < — 88)
2 i 7 (
for some absolute constants cy, c2 € (0, 1].
Given any two distributions v and V' on the real line, define 1 = n% YL dx, —v

and ' = % Zi’il 8y, — V. Assume that mo > CL and L > L for some sufficiently
large constants C, Lg. Then for any A > 0,

[ L | A
dm,7') > oy Y (89)

with probability at least 1 — e=4, where d is the pseudo-distance defined in (28) with
respect to the partition Iy, . .., I1, and o1, ay are absolute constants.

Lemma 7 (Correlated two samples) Let (X1, Y1), ..., (X, Yi) be iid so that X; ~ v
and Y; ~ V. Letw = LS 5y —vandn' = L3S 8y — 1. Assume that for
any £ € [L],

P{X1el, Y1 ¢ L} +P{X1 ¢ 1,1 €Iy} <B. (90)

/ B [A
dm, ') < L/ — 4¢3,/ — ©n
m m

with probability at least 1 — e™2, where B is defined in (67) and c3 is an absolute
constant.

Then for any A > 0,

Remark 4 In Lemma 6, the samples X;’s and Y;’s need not be identically distributed,
and v and v’ can be arbitrary so that 77 and 7’ need not be centered (which is the case
when we apply Lemma 6 for proving Lemmas 2 and 17). This is because Lemma 6
aims to lower bound the distance and centering tends to make the distance smaller.
However, in Lemma 7 which bounds the distance from above, the samples are required
to be iid and the empirical distributions must be correctly centered.
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Lemma 8 (Concentration of total variation) Let X1, ..., X,, be drawn independently
from a discrete distribution v supported on k elements. Then the empirical distribution
Ls~m | 8y, satisfies that for any A > 0,

m
k A
P{||v—vm||1 z,/—+\/—} <e 42,
m m

In order to apply Lemma 7, we need to quantify the correlation and upper bound
the probability B in (90). This is given by the following (elementary but extremely
tedious) lemma:

Um =

Lemma 9 Assume thato < 1/2, g < %, ng > Cmax{Lz, A}, and (64) holds, i.e.,
4L/nqA < n. Then for any j € Na(i) N Np(i) and any interval I C [—1/2,1/2]
with |I| =1/L,
@) (@) . , () (i) . .
P a; el,bj ¢l | Ns(i), Npg()){ + P aj; gél,bj el | Na(i), Ng(i)
L inrsinrinene;)

[A 1 1 . 1 n np —A
<o+ ;+Tq+zeXp(_Q(mm{ozL2’LZA’ I }>>+e .
(92)

Remark 5 Note that for the right hand side of (92) to be much smaller than 1/L, it
suffices to have L <« min{l /o, «/n/A, /nq}and A > log L.

4.3.1 Proof of Lemma 1

Proof (Proof of Lemma 1) Fix i € [n]. Throughout the proof, we condition on the
neighborhoods N4 (i) and Np (i) such that I'4 (i) N I'p(@) N [3; N ©; N O;; holds.
Recall the pseudo-distance d defined in (28), namely,

d(u,v) = [[[rle = [vILih 93)

where [1t]7, is the discretized version of u, defined in (29), according to the uniform
partition Iy, ..., I} of [—1/2,1/2] such that |I;] = 1/L. Using the decomposition
in (86)—(87) and the triangle inequality for the total variation distance, we have

Zij=d(pP+ (1= p)P' . pQ+1=p)Q"+ ("= p)Q)
<dP. Q)+ A= pIP Il + (4 = DIl +]o = p'l,  (94)
e —’ N —’
D (I (I10)

where p = % and p’ =
1

(3}

i

S

]
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For (I), in view of the assumption (64): 4L/nqgA < n, Lemma 9 yields that for
any j € Ng(i) N Np(i) and any interval I C [—1/2, 1/2] with |[I| = 1/L,

Plal e 1,6 ¢ 1|Na@). No)} +P{a? ¢ 1,61 € 1|Na). No )

A A 1 . 1 n  Jnp
0(0)+0<\/;+e >+ZGXP<_Q<mm{02L2’L2A’ 7 }))

We apply Lemma 7 with {Xj}’]’,’:1 given by {aj.i)}jeNA(i)mNB(i), {Yj};”:1 given by

lI>

=B

(6} jena@rvg @ and m = c;; = [NaG) N Np(i)|. Recall that a'" is a function of
{A/’g}geN};[i] and b;.’,) is a function Of{Bj’z/}z/eNg[i}FOf any j # j' € Na(i))NNpg (i),

it holds that {j, £} # {j’, £'}. Hence, (a;i) , b;i))’s are independently and identically

distributed across different j € N4 (i) N Np(i). Therefore, Lemma 7 yields that with

probability at least 1 — e ™4,

| B [ A [28 24
dP,Q)<L|—+c | —=<L[|—+c /| —, 95)
Cii Cii ngq nq

where c3 > 0 is some absolute constant given in Lemma 7, and the last inequality
holds due to ¢;; > nq/2 by (56).

For (1), applying Lemma 8 with k = L implies that ||[P'].|l1 <

a;—Cij a;j—Cij
and [[Q'1Llh < ./+——+ ,each with probability at least 1 —e~4/2. Therefore,

o
by the union bound, with probablhty at least 1 — 2¢=4/2,

- ,O)II[P’]Llll + (1 - P/)”[Q/]L”l

< L (VE4vE) Vi + L (VI +vE) e
< e («/Z+\/Z) (Wwa2 +~/Z), (96)

where the last inequality holds due to a;, b; > nq/2 and /a; — cij, v/bi — cii <

Vngo? + /A on the event (55) and (62), respectively.
Finally, for (III),

ciilai — b;| - la; — b;]

A
=8 /—, o7)

=
lo—p'| = b - a ng

where the last inequality holds due to |a; — b;| < 44/nq A by (60).
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I AR S 77 = Na(B)\NaG)

Fig. 1 Conditioned on the edge set E4(J, J') and Eg(J, J'), the outdegrees are independent

Combining (94) with (95), (96), (97), we get that with probability at least 1 —3¢~4/2,

128 [2A 4 5 | A

Zii <L E+C3 E-l-a(ﬁ-i-«/A)(ﬁnqd +VA)+8 E
28 L A
<L |—+1no,|—+1|—
nq ng nq

for some absolute constant 7, > 0, where the last inequality holds due to the assump-
tion that ng > C max{L?, A} for some sufficiently large constant C. Thus we arrive
at the desired (65). ]

4.3.2 Proof of Lemma 2

Proof (Proof of Lemma 2) Fix i # k. We proceed as in the proof of Lemma 1 and
condition on the neighborhoods N4 (i) and Np (k) such that I'4 (i) NI (k) N [ N Oj
holds.

By the triangle inequality for the total variation distance, we have

Zix=d(pP+ 1 =p)P,pQ+1—p)0 + (p—p)NQ — Q)
> (1—p)d(P', Q") —pd(P,Q)—2|p—p'l. (98)
—_— | ——— — —
@ an (10D)

where p = 2k and p’ = %k

For (1), note that a;, by > nq/2 by (55), and c;x < ng/4 forall i # k by (57) and
the assumptions that ng > Clogn and g < gg. Thus

p,p <1/2. (99)
Let

J = Na@\Np(k), J' = Np(k)\Na().

@ Springer



66 J.Ding etal.

To analyze d(P’, Q’),. we aim to apply Lemma 6 withm = |J|, m’ = |J'|, my = nq,
{X; }’}1:1 given by {a;l)}jej, and {Y; }’j’.il given by {bj»k)}jej/. However, Lemma 6 is
not directly applicable because the outdegrees are not independent due to the edges

between nodes in J and J’ (cf. Fig. 1). Indeed, note that a;i)’s are independent across

Jj,and b;lf)’s are independent across j', but a;i) and b;lf) are dependent, because A

contributes to the outdegree a;'), Bjj: contributes to the outdegree by,c), and A are
correlated with B ;. To deal with this dependency issue, define E4(J, J ") as the set of
edges between vertices in J and vertices in J' in A and letes(J, J) = |Ea(J, J')|.
Similarly, define Eg(J, J’) and eg(J, J'). Conditioned on the edge sets E4(J, J')
and Eg(J, J’), the outdegrees {a;l) :j € J}and {b(/]f) : j € J'} are mutually
independent (although not identically distributed as binomials). Indeed, let £ = |J\{k}|
and ¢/ = |J'\{i}|. Then

a? = !
J Vi —a; — gl —q)
+ea (j. J'\{i}) — 'q]

[ea (j, NSINS') — (n —a; — 1 — £)gq

and

1 ‘
b = N eI TER T e [es (j/, NSIKINT) — (n — by — 1 — £)q

+ep (j', J\{k}) — €q]

Note that {e4 (j, N§[i1\J')}jes are independent from {eg (j', N§[kI\J)};7e;.
For each j € J\{k}, define the indicator random variable

XU = Yiep . min-ql<g@=a72)-
Let
Jo={j € J\lk}: X(j) =1} (100)
Define the event
H = {lJol = m/4}).

Note that for each j € J\{k}, ea (j, J/\{i}) ~ Binom(¢’, ¢). Hence, by Chebyshev’s
inequality,

/

. 20
PX()=1)=1-"—>1/2,
n

where the last inequality holds because ¢’ < 2ng on the event I'g(k) and ¢ < 1/8.
Moreover, ez (j, J’\{i}) are independent across j € J\{k}. Hence, Zje] Xa(j) is
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stochastically lower bounded by Binom(m — 1, 1/2). It follows from the binomial tail
bound (165) that

P{H} =P{|Jo| = m/4} > 1 —e "/

We first condition on (E4(J, J'), Eg(J, J)) such that the event H holds and then
apply Lemma 6. In view of (99), m > a;/2 and m’ > by /2 and thus

l
=

<2.

=
gls
e

Moreover, ng > CL and L > L by assumption. It remains to check the condition
(88) in Lemma 6.
Let I denote any subinterval of [—1/2, 1/2] with length 1/L. Let

1

Jo—a-1-00-0 [ea (j, NSLNS') — (n —a; — 1 — £))q]

and

1
Vi —ai — g1 —q)

vj =

[ea (j. '\i}) — €q].

Let

Then aj»i) = aju; + v;. It follows that

. I —v:
]P’{aﬁ’)el}z]P’{uje v,}.
o

Nextwe fix j € Jo.Notethatonevent I'y (i)NIg(k),a;, £’ < 2nq.By the assumptions

g <1/8andn > 4,
1>a > n—4nq—1 /
n—2nq—l

and, by the definition of Jy,

Vng(I—q)/2
T J(n—=2ng — g1 —q) ~

|U]|
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Hence, (I —v;)/a; C [-3, 3]. It follows that

L s <P{N(o e I_Uf} <
NCTA e N7

Note thatu; ~ Binom(n —a; —1— ¢, q). By the Berry-Esseen theorem [47, Theorem
5.5], we have

1 e o) I—v; 1 o)
= e <Py € < + :
V2rL Vg —¢q) o JEL  ng(I—¢q)

In view of the assumption ng > CL? for a sufficiently large constant C, we have for
all j € Joand all £ € [L],

for two absolute constants cq, ¢ € [0, 1]. Finally, recall that we have conditioned
on E(J, J’) such that event H holds. Hence, |Jo| > m/4. Thus, condition (88) in
Lemma 6 is satisfied.

In conclusions, the assumptions of Lemma 6 are all satisfied. Then it follows from
Lemma 6 that

i / L A / / —A
Pid(P', Q") = o ng " g | EAU D BT > (1—e )1y,

(101)

where a1 and o, are absolute constants given in Lemma 6. Taking the expectation of
(Eo(J,J), Eg(J, J)) over the both hand sides of the last display, we get that

{d(P Q)>a1\/:—a2\/;} l—e IP’{H}
1

—e?) (1 m/32) > 1274,
(102)

where the last inequality holds due to m > ng/4 > CA/4 for a sufficiently large
constant C.

For (IT), Lemma 8 implies that ||[P].]|; < i + ﬁ holds with probability
at least 1 — e~4/2; similarly for ||[Q] 1. Thus, by the triangle inequality and union
bound, with probability at least 1 — 2¢=4/2,

L A
d(P, Q) = I[PILlh + QI = 2,/@ +2,/—.

Cik
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Therefore,

vz (fEAf)

where the last inequality holds due to a; > %nq and . /cix < v/ng?+ /2logn on the
event (55) and (57) respectively.
For (I1I),

IA

iq (\/Z‘l‘\/Z) ( ng? + 2logn>

(103)

g ciklai —bel _Jai —bil o [ A (104)
a; by aj nq

lo—

where the last inequality holds due to (60).
Combining (98) with (99)—(104), we have that with probability at least 1 — 3e4/2,

lk>_\/:_a\/%__ «/_—f-\/_)( ng? + 210gn)—8\/j
oz
1 E—Cz E,

for some absolute constants c1, c2 > 0, where the last inequality holds by the assump-
tions that ¢ < go and ng > Clogn for some sufficiently small constant go and
sufficiently large constant C. O

4.3.3 Proof of Lemma 6, 7, 8,and 9

Proof (Proof of Lemma 6) Recall from (28) that

dim, 7'y = ) |w(le) — 7' (Tl

le[L]

We first show that it suffices to establish

L
Ed(m, ') > co, | —. (105)
mo

To prove the concentration inequality (89), note that d(m, '), as a function of the
independent random variables (X1, ..., X, Y1, ..., Y,»), satisfies the bounded dif-
ference property. Indeed, let

d(nﬂn/):f(X]a"'axm’Y]""5Ynl/)
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for some function f. Then for any i and any x;, xlf , we have, for some £, ¢’ € [L],
|,f(-x15'-'axia"'7-xm7y15"'7ym/)_.f('x17"'a-xl'/a"'a-xm7yla"'7ym/)|
1 1
< |l + — = 7' U + |ny) — — — 7' (Up)]
m m

—|me) — 7' Ue)| = (L) — 7' (o)

2
<= —. (106)
m
Thus, f satisfies the bounded difference property with parameter ;—=. By McDi-
armid’s inequality, we have
/ l A —A
d(JT,JT)SEd(T[,T[)—C] - Se )
mo
where c¢; depends only on «1 and k3.
It remains to show (105). For any ¢ € [L],
m/
E[|x(le) — 7' ()] = Z Lixen) = — Z Lyery —v o) +v' (o)
i=1
>—me Z1X6M—x , 107)

m xeR
iedy

where the last inequality holds because X;’s and Y;’s are independent.
Fori € Jy, definea; = P{X; € I;} and £ 1/L. It follows from assumption (88)
that cja < o; < cpa for two absolute constants ¢y, ¢ € (0, 1]. Therefore, we can

write 1x,es,) = W;Z;, where Zilflv Bern(«) and W;’s are independently distributed
as Bern(n;) where c1 < n; < cp.LetT = {i € Jo : W; = 1}. Then for any x € R,
conditional on 7',

D lixer) —x [ZZ —x

i€y

} > E[|Binom(|T'|, @) — xoll,
(108)
where x is the median of Binom(|T|, ), which satisfies |xo — |T|«| < 1[26]. Using

the estimate for the mean absolute deviation of binomial distribution (e.g. [6, Theorem
1]), we have

. T 1— 1 1
E(|Binom(|T|, ) — |Tlaf) = @0 =) - L L
7 7| 7]
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By assumption, L > L for some large constant L. Thusif |T| > 16L, then |T o (1 —
«) > 8. Hence, by triangle inequality,

. VT a(l — a) ) VTa(l — a)
E[|B T|, a) — >| —— — 1) 1y7> > —— 107>
[IBinom(|T|, &) — xol] > ( 7 (T|=16L} = Wi (IT|>16L)

Therefore, combining the last displayed equation with (108), we get that forany x € R,

ITTa(d —a)
Y lixeny —x| 1T | = Tl{mzmu.
ieJy 2V2

Taking expectation over 7" and then infimum over x € R on both hand sides of the
last displayed equation yields that

. Jo(l —
inf E Z Lixery — x| | =2 ——— [\/ |T| 1{|T|>16L}]
xeR iedo 2\/_

It remains to bound E [/[TT1{7|=161)] from the below. By assumption, it holds that
|Jo| = m /4. Further, recall that W;’s are independently distributed as Bern(n;) where
c1 < n; < cp. Hence |T| is stochastically lower bounded by U ~ Binom(m /4, c1)
and thus

E [\/ml{mzlsu] >E [«/ﬁl{Usz}] =K [\/U] —-E [«/EI{U<16L}] .

Note that forany y > 0, /y > 1+ (y —1)/2 - (y — 1)2/2. Plugging y = U /E [U]
and taking expectation, we get that

var(U) _ _ 1—r¢
E [«/ﬁ] > JE[U] <1 SETITE [U])2> = Vmer /4 — —— —

Moreover,
E [ﬁl{U<]6L}] < 4JIP{U < 161} < 4J/Te= 2,

where the last inequality follows from the Chernoff bound (165) and the fact that
m > k1mo > k1 CL for some large constant C. Combining the last four displays, we
have that

m
inf E 1y, —x| | >c3,/—,
e |[% tens | 20

ieJy
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for some absolute constant c¢3. Combining the last display with (107), we get that

1
E[|7(e) — 7' 0)]] = e3y/ —

Summing over ¢ € [L] and noting that m > k1mg yields (105). O
Proof (Proof of Lemma 7) Similar to the proof of Lemma 6, observe that d(w, ')
is a function of the independent randomness (X1, Y1), ..., (X, Yi) satisfying the
bounded difference property with parameter %. Thus, by McDiarmid’s inequality, to
show (91), it suffices to show
/ B
Ed(r,n") < L,/ —. (109)
m
Note that
L
E[dGr.n")] =Y E[|x() —x'(0)]]
=1
and

m

1
7)) = ') = — 3 [(Vxiery = L)) — PXi € Ie) = P{Y; € D]

i=1

For each i,
1 wp.P{X; e, Y; ¢ I}
Lixieny — Lyvery = =1 wp.P{X; ¢ I, Y; € I}
0 0.W.
Hence,

E[|w ) — 7' ()]

< VE[@(p) — 7' (11))*]
m 2
E |:<Z (Mxieny — Yvrery —P{Xi e L} +P{Y; € 14})> :|

i=1

1
m

1
m

m
Y E [(l(x,vez,) —Lyyery —P{Xi e e} + P{Yi € Iz})z]
i=1

1
= ﬁ\/P{XI €I, Vi ¢ I} +P{X1 ¢ Ip, Y1 € Iy — (P{Xy1 € I, V1 ¢ Ie} —P{X) ¢ Lo, V1 € Ie})?

< ﬁ\/ﬁn{xl el i ¢ L} +P{X1 ¢ 1, Y1 €} < \/é
Summing over £ € [L] gives the desired (109). O
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Proof (Proof of Lemma 8) Let v be supported on the set {ay, . .., ar} withv; = v({a;}).
Then by Cauchy-Schwarz inequality,

1 k m
Ellv —¥ll; = ;Z X_:(l{x._a, —vi)

1 k m 2

< (tpxy=01 =)

i=1 j=1

. V;

Z,;Z vl<1—v,><Z,/ ’ ,/

where the last inequality follows from Jensen’s inequality. Note that (X1, ..., X,;)

lv —7D]|; satisfies the bounded difference property with parameter % Thus, by McDi-
armid’s inequality, we have

L A __2A/m
P{uv—ﬂh z,/—+,/—] <e mem? =42,
m m

[m}
Proof (Proof of Lemma 9) Let us suppress i and j, and abbreviate aj.i) and b\ as a and
b. Throughout the proof, we condition on N4[i] = S and Np[i] = T such that event
TCA(i)NT'g(i) N T;; NE; N O;; holds, and aim to show that

Plael,b¢l}
<o —i—\/Z—i— \/% + %exp( 2 <min{021L2, LZA’ \/Z_p})> +e 4.
(110)
The second probability in (92) follows from the same bound.
Define
¢=yVn—18Dg(l—q) and n=y(—|The(l—q). (111
Recall that on the event ®,
ISUT| < |SI+IT| < 4nq < n/2, (112)
where the last inequality holds due to ¢ < 1/8. Hence,
Vng/2 <¢,n < nq. (113)
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Then we can rewrite a and b as

1
a= EZ(akgk —q), (114)
k¢S
1
b= (Brsk — ). (115)
n keT

where g;’s are iid as Bern(p) and «x, Bi’s are iid as Bern(s). Recall that cl=1-3s
and p = g/s.
Define
E={ké¢S:ar=1} and F={k¢T:pB =1}

Then we can decompose a and b as
1 1
a= E(c+x) and b=—-(c+Yy),
n

where

c= > (&—p)

keENF

x= Y (e—p +plEl—(n—]|Shg and
keE\F

y= Y (&= p)+plFl—(@—IT)q. (116)
keF\E

Conditional on {E, F}, ¢, x, y are mutually independent.

We pause to give some intuition behind the remaining argument. Loosely speaking,
the quantity c captures the correlation between the outdegrees a and b, while x and
y correspond to the fluctuations. A key step of the proof is to relate the event {a €
1, b ¢ I}tothe event that c belongs to an interval of length roughly |x — y|. We further
show that |x — y| is typically O(,/npo). Coupled with the anti-concentration of c (the
maximum probability mass of which is at most O (1/,/np)), this shows that ¢ belongs
to an interval of length |x — y| with probability at most O (o), giving rise to the first
(main) term in the upper bound (110). The complication comes from the fact that we
also need to control the large deviation behavior of |x — y|, the mismatches between
the normalization factors ¢ and 7, as well as the atypical behavior of E, F.

Returning to the main proof, note that

ENF={keSNT :ap=p=1}
E\F=1{keS\T o4 =1}UlkeSNT:ap =1, B =0}
FN\E={keT\S :B=11UlkeSNT :ap =0, B =1}.
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Therefore,

|EN F| ~ Bin <|S°' nTel, s2>
|E\F| ~ Bin (|S°\T*“|, s) + Bin (|S° N T], s(1 — 5))
|F\E| ~ Bin (IT°\S°|, s) + Bin (|S° N T|, s(1 —5)).

Recall that on event I'4 (i) N I'g(i) N Oy,

1SCNT =n—|SUT| >n/2
ST = 17\8] < (Va(T = 5) +¢Z)2
T\ = I\T| < (Va(l =) +¢Z)2.

Define

2
T = (\/n(l —s)+2\/Z)2 + (\/n(l —5) +«/Z)2 and 1T = ( ns2/2— «/Z)
and the event
E={IENF| =z} N{|E\F| = u}lN{|F\E| <7}

Then by binomial tail bounds (167) and (168), we have P{£¢} < ™4 + 4724 <
5¢=4. Moreover, we have that

71 < 4n(l —s) + 10A. (117)

Also, in view of the assumption o < 1/2 so that s > 3/4, we have that

2
7 > (f—‘ﬁ/n/z - JZ) > n/4, (118)

where the last inequality holds for sufficiently large n due to ng > C A.
Note that

Plaecl,b¢l)
=FEprlPlacl,b¢l|E,F}
=FEpr[Placl,b¢l|E F)lgl+Epp[Placl,b¢l|E,F}lg]
<Eprp[Placl,b¢l|E, Flg]l+P{&}
<Eprp[Placl,bg¢l|E, Fylg]l+5¢ 4. (119)
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Hence, it remains to bound Eg r [P{a € I,b ¢ I | E, F} 1¢]. Note that

Placl,b¢l | E, F}lg=P{cet¢tl—x,c¢nl—y|E,F}lg
=Eyy[Plce GI—x)\(nIl —y) | E, F,x, y}1¢]
Next consider the following two cases by assuming I = [/, r] with —1/2 <[ <
r<1/2.

— Case 1: Either ¢r —x < nl — yor nr —y < ¢l — x. In this case, we have
&I —x)N(mI —y)=0. Thus, we have

@ 1 e 1
P = I— T,E,F < Z41)< =
{ce@l —x)\(nl —y)|S,T,E, ,x,y}Nm(L+ )NL,

where (a) holds because the maximum probability mass of cis @ (1/+/[E N F|p),
and the number of integral points in ¢ I — x is at most { /L + 1; the last inequality
holds because 72 > n/4 in view of (118), { < ./ng in view of (113), and
ng > CL? for a sufficiently large constant C.

— Case2: ¢r —x = nl —yand nr —y > ¢l — x. In this case, we have ({1 — x) N
(nl — y) # (. Moreover,

Gl =)\l —y) C &l —x,nl = ylU[nr —y,¢r —x].

Hence,

[GI =)\ = <|lx—=y+@—=Ol+|y—x+ & —nr|
<2x—yl+In-¢l,

where the last inequality follows from the triangle inequality and the assumption
that —1/2 <! <r < 1/2. Thus,

P{CE(CI—X)\(nl—y)IS,T,E,F,x,y}S\/Ln_p(le—lerln—ClJrl),

where the last step holds because the maximum probability mass of ¢ is
OA/JIENF|p), |[ENF| > 1 > n/4 in view of (118), and the number of
integral points in (¢ — x)\(nl — y) isatmost 2|x — y| + |n — ¢| + 1.

Combining the above two cases, we get that

Pice (I —x)\(nl = y)IE, F,x, y}1g

1
<[ _—(x— _
N<W(|x yi+In—=¢l+1)

1
+zl{x—ye[tr—nl,-i-oo)u(—oo,{l—nr]}) 1e.

@ Springer



Efficient random graph matching via degree profiles 77

Taking expectation of x, y over both hand sides of the last displayed equation, we get
that

1
<(_=_ _ _
P{ael,bWIE,F}lsN(W(E[Ix YITE, Fl+1In—=¢l+1)
1
+ZIP’{x—y€[U—nl,+00)U(—oo,§l—nr]IE,F}>15-

Further taking expectation of E, F over both hand sides of the last displayed equation,
we get that

Eer[Placl, b¢ll|E, F}lg] (120)
1
S ﬁEE,F [Ellx =yl | E, F11¢] (121)
In—¢l+1 122)
Vnp

+ %EE,F [Plx —y € [¢r — nl, +00) U (—00, &l — nr] | E. F)1g]. (123)

Next we upper bound the three terms (121), (122), and (123) separately.
Upper bound (121):

Ellx| | E.F]lg <E| > (g —p) | E.F | 1¢ + plE| — (n — S]]
keE\F

<VIE\F|p(1 — p)lg + ‘plEl —(n— ISI)q‘
<vupl-p)+ ‘plEI —(n— ISI)q‘

S Vap( —S)+\/PA+P‘IEI —(n—1SDs

’

where the last inequality holds due to 71 < n(l —s) + A in (117). It follows that

Eg r[E[lx| | E, F11g] S vVnp(1 —5) +/pA+ py/(n —[S)s(1 =)
< Vnp(l —s)++/pA,

where the first inequality uses the fact that |E| ~ Binom(n — |S|, s) and hence

E[|IEI— —1SDs]] < VE[IEI— (n—1SD9)*] = v/ —ISDs(T —5). Simi-

larly,

Ee.r[ElyI | E, Fl1g] S Vnp(1 —s) +/pA.
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Therefore, by triangle inequality,

Ee.r[Ellx =yl | E, F11g] S Vnp(1 —5) +/ pA. (124)

Upper bound (122): In view of definitions of ¢ and 1 in (111),

In—¢l=Val = |n=15I = Vn=1T]|

171 - 18]]
=V =S S =TT

< gVA, (125)

where the last inequality holds because on event I'4(() N I'p(i) N O;;, |[SUT| < n/2

and ||T]| — |S|| < 4/nqgA.
Upper bound (123): It follows from the last displayed equation that

| TSI IS\TI_ 4yrgA 1
¢ ~ 2n—-|SUT]|) — n - L

where the last inequality holds by the assumption (64), i.e, 4L/ngA < n. As a
consequence,

1
Cr—nlzf(r—l)+(€—n)lz§(z——‘ﬁ—lb:i.

Similarly, nr — ¢I > 5. Therefore,

P{x—yE[{r—nl,—i—oo)u(—oo,g“l—nr] E,F}
<]P’{|x|>i‘E F}~I—P{|y|>i|E F}. (126)
- ~ 4L ’ ~ 4L ’

Recall the definition of x in (116),

¢ ¢
P > — |E, F;leg <P — > _— | EF
{IXI_4L’ }5_ E (8k p)_SL
keE\F

1e + 1) p|E|—(n—ISD)g=¢/BL)}-
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By Bernstein’s inequality,

2
T i son(-o (on i )

. n NG
fexp(_g (mm{(nm—s)w)m’ L }>>

where the last inequality holds because ¢ > ,/ng/2 in (113), s > 3/4, and |E\F| <
71 S n(l —s) + A on the event £ in view of (117). By Bernstein’s inequality again,

2
P{IplE| - (n - |SDq = ¢/(BL)} < exp (—9 (mi“ {m Lip}))

<exp (—9 (mi“ { (1— ;)sz’ L{/ﬁﬁ})) ’

where the last inequality holds because ¢ > ,/ng/2in (113) and s > 3/4. Combining
the last three displayed equations yields that

¢ . 1 n_/np
EE,F[P{|X|ZE‘EfF}15:|SexP<_Q(mln{62Lz’L2A’ 7 )

where we used 62 = 1 — 5. Similarly,

¢ . 1 n J/np
Ee r |:IP’{|y| > il ‘ E,F}15i| < exp (—.Q (mln{osz, 24 L }>>

Combining the last two displayed equation with (126), we get that

Eg r[P{x —y € [¢r —nl, +o0) U (=00, ¢l —nr] | E, F}1¢]
. 1 no Jnp
< exp <—.Q <m1n { 317 I2A L })) . (127)

Assembling (119), (120), (124), (125), and (127), we arrive at the desired bound
(110):

Egr[Placlbgl|E, F}lg]

A 1 1 . 1 n o /np —A
So+,/— +T—|—Zexp< Q<mm{02L2’L2A’ 2 }))—i—e .

]
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4.4 Proof of Lemma 3, 4,and 5
To prove Lemma 3 and Lemma 4, we need a few auxiliary lemmas.
First, we need the following tight Gaussian approximation results for the binomial

distributions [57, Theorem 1]: Let D(p||q) £ p logg + (1 - p)log i_TZ denote the
Kullback-Leibler divergence between Bern(p) and Bern(q).

Lemma 10 Assume that k > nq + 1. Then
h(k) < P{Binom(n, g) > k} < h(k —1). (128)

where

hk) 2 0 < 2nD (ﬂ\q)) ,
n

and Q(t) = ftoo ﬁe‘xz/zdx is the standard normal tail probability.

Also, we need the following bounds on the Kullback-Leibler divergence:

Lemma 11 It holds that

N2
Dirllg) = 29 yocg<x<1, (129)
21— q)
(x —q)?
Dxlg) < ——T vo<g<x<1/2. (130)
2q(1 —q)
Proof Note that
d x(1—gq) d? 1
Epalp ==L Zpulg)=—,
I (xllg) 70— I (xllg) 0 —n
@ D(xl|lq) = :
do SN = T T

The second-order Taylor expansion of D(x||q) atx = g gives (129) and the third-order
Taylor expansion at x = ¢ gives (130). O

Finally, we need the following inequalities relating Q(¢r) to Q(¢)" ® Note that if
we use the approximation Q(¢) ~ e’ 22

below makes this approximation precise:

, these two quantities are equal. The lemma

Lemma 12 Foranyt > 0 andr > 0, we have

2
tr oy o\l Qr) —14+2\ 2
T(zr)Zt ( 2”) = o) S( 2 t ) rt2
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Proof For the lower bound, using 7 Ji‘ngo(x) < 0(x) < %(p(x), where ¢(x) =
e’xz/z/«/ 27, we have

or) > %(r”)zw(m
and
1
Q)" < tr—zw)ﬂ

Combining the last two displayed equations, we get that

2

Q(tr) tr 2er) tr P21
O = 1+(tr)2t o) 1+(tr)2t (ﬂ) :

The upper bound follows similarly from combining Q(tr) < i(,0(tr) and Q(t) >

— tr

e O

Now we are ready to prove Lemma 3. Recall that t £ min{0 < k < n :
P {Binom(n — 1, g) > k} < «} as defined in (39).

Proof (Proof of Lemma 3) We first prove (74) fori # k. Let b, = ) i Bk Then a;
and b, are independent. Since b; < by < b + 1, it follows that

Pla; =1, by =1+ 1} <Pfa; > 7, b > 7}
<Pfa; = 1} P{b; > 7}
<Pla; 2 1} P{by > 7}
= (P{Binom(n — 1, ¢9) > t})> < . (131)

Next we prove (74) for i = k. For notational convenience, we abbreviate a; and
b; as a and b, respectively. Let g denote the degree of vertex i in the parent graph.
Abusing notation slightly, we let k denote the realization of g in the remainder of the
proof. Then

Plazt.b>t+1}=) Plazt.b>1+1,¢g=k)
k>0
=) Plg=kPlazt|g=KPb=t+1]|g=4k}.

k=0
(132)

Let

2
1C(,=PJr W
S
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Since conditional on g = k, a ~ Binom(k, s) and b ~ Binom(k, s). It follows that
for all k > ko,

1
IP’{aZr|g=k}ZP{bZt+1|g=k}zIP’{Binom(k,s)st—l}zE,

(133)

where the last inequality holds because the median of Binom(k, s) is at least ks — 1.
Combining (132) and (133) yields that

1 1
Plazz.bz1+1} 2 /Plg =k} = P{Binom(n — 1. p) = ko}. ~ (134)

where the last equality holds due to g ~ Binom(n — 1, p) with p = g/s.
1—
It remains to prove that P {Binom(n — 1, p) > ko} > £2 oz“—l(’{)f . By assumption,

o < 1/4 and hence by the Berry-Esseen theorem, t > (n—1)g +2 for all n sufficiently
large. Thus kg > (tr 4+ 2)/s > np + 1. It follows from Lemma 10 that

P (Binom(n — 1, p) = ko} = @ (V201 = DD(ko/(n = DIIp)) . (135)

To proceed, we need to bound D (kg/(n — 1)|| p) from the above. We claim that

2
0=t—(—Dg+/i—Dal -0 '@ = (1 -9 (7' @) +2. (136)

where Q! denote the inverse function of Q function. We defer the proof of (136) to
the end. ,
Note that Q(x) < e*/2 for x > 0. Hence,

0 (@) < \/2logé < V2log(ng),

where the last inequality follows due to the assumption o« > 1/(ng). Thus it follows
from (136) thatkg < (t +3)/s < (n — 1)/2 for sufficiently large n . Hence, by (130),

ko= (n—1p
2(n — 1)D(k -1
V2 = DD/ = DlIp) < —Eeeee—s

_ 0 @V =D =)+ (1) (0 @)’ +5
N s3/(n =T)p(T = p) ’

where the last inequality holds due to kgs < T + 3 and (136).
Applying the lower bound in Lemma 12 with

V=gl —g)+ 1A —q)t+5/t
s/ (n =T)p(IT = p) ’

t20 ), r2
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we get that

tr 2 r’-1 2
0 (V20 =DDke/ = DIIP) = 1oyt (Var) 0w

Note that Q(¢) = Q(Q_l(cx)) = «. Moreover, in view of £2(1) <t < ,/2log(ng),

we have
1-— 1
r= | ——4 L of |28,
s(1—=p) nq

_ e 2
Recall from (43) that ﬁ =1+ (ll_ﬁ =1+ afT Therefore, we get that

s(I—p) nq
=1-o(l),

where the last inequality holds because by assumptions, o' loglog(ng) = o(1) and
ng — oo. Moreover,

1— logn —q 1—
o = o M) 2 it exp (—0 ( logng log(nq))) = (1 - o(1)a" 7,
\ ng

where the inequality holds by the assumption & > 1/(nq), and the last equality holds
due to ng — oo. Therefore, we get that

l—q
0 (V2 =1DDko/( = DIIp)) = (1 = o(1) 7. (137)
Combining (134), (135), and (137) yields that
P{azz,bzrﬂ}zg(au]_ﬁ»),

proving (74) fori = j.
Finally, we verify the claim (136). By the definition of 7 and Lemma 10, we have
that

0 (V2 =1)D(x/(n = Dlig)) < P (Binom(n — 1) = 7}
<o

< P{Binom(n —1,q9) > 1t — 1}
< 0(v20 = DD( =2/t = Dllg)).
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Thus,

V2 —1DD((x —2)/(n — Dlig) < 0" H@) <2 — )D(z/(n — Dllq) .
(138)

In view of (129), 2D(x]||q) < t for t > 0 implies
= Qq+1(1-9)x+q° <0,

which further implies

— _ 2(1 — )2
p <2t q>+\/4q2(1 DA _ T i — g,

where the last inequality holds due to /X + y < /x + ,/y. Therefore, it follows from
the lower inequality in (138) that

T2 0 '@  (A=q) (1 2
T SeHVal 0 ==+ = (0T @)

Since ¢ < 1/8 by assumption and Q~!(«) < \/21log(nq), it follows that for suffi-
ciently large n, 7/(n — 1) < 1/2. Thus, combining the upper inequality in (138) with
(130) gives that

T>n—1Dg+v/n— gl —q)0 ().

Combining the last two displayed equations yields the desired (136). O

Proof (Proof of Lemma 4) Recall that ©y = {|a; — br| < 4/ngA}. Thus,

{ai =1, by =T+ 1}NO;

C {ai >1,bp > r+4\/nqA} U {ai >t4+4/ngA+ 1, by > r+1}
C {a,- >1,by>1 +4,/nqA} U {a,- >t +4y/nqA, by > r}.

Hence, by the union bound and the symmetry between a; and by, it suffices to prove
P {ai >1,bp>1+ 4\/nqA} <0 (a”l("#")e_Aﬂ) .

If i # k, analogous to the proof of (131), we have that

Pla=vb= v +4/nga) <Pla = 0P [by = v +4y/nga - 1]
SaIP’{bkET+4\/nq7—l}.
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If i = k, then we have that

}P{ai > 7, by zr+4,/nqA} §]P’{bk > ¢4 4/ngA — 1}.

Hence, for both cases, it reduces to proving

P {bk > 7+ 4/ngA — 1} <0 (ae_A/z). (139)

In view of Lemma 10, we have that

P[bkzr+4,/nqA—1}§Q \/2(n—1)D<T+4anA g ))

In view of (136), we have 7 > (n — 1)q + wt, where w 2 /(n — Dg(I — q) and
t £ 0 Ya). Letn £ 4\/ngA — 2. Thus,
n
‘)

\/Z(n - 1D <HH(]) bt \/Z(n — 1D <q +
wt +1n
«/((n— Dg +wt+n) (1 =q)
wt +1n

Z —’
Vol +wt+1n

where the second inequality follows from (129). Combining the last two displayed
equations gives

wt +1
Piby >7v+4 A—-1¢ < — ] = Q(tr), 140
{br = 7 +4/nq }_Q<m> 0r),  (140)

where

N w—+n/t

Vol fot +1

By the assumption ng > CoAz, A > Cp,and t < /2log(ng), we have n < a)2/2,
n > 4¢2, 172 > 4wt3,and t < w/2. Thus, we get that

r

2 2.2 2,2 2
2. @A/ njtt - ot —n U

= —_— . 141
o’ 4+ ot +1n o4+ ot+n ~ +4a)2t2 (141)
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In view of the upper bound in Lemma 12, we have

2
-1

T 24
rt?

2
0(r) < (@1 tt > 0" < 1Dy, (142)

for a constant ¢; > 0, where the last inequality holds because r > 1 by (141) and
t = Q&) = Q7 '(a1) under the assumption @ < o for a sufficiently small constant
of.

Note that

c
r<l+-L<1+2Va
wt t
for a constant ¢; > 0. Therefore,

(107D < Qe A/HGANR) o A2 (143)

where the last inequality holds because > Q~!(«;) for sufficiently small constant
of.
Finally, it remains to bound «” g Using (141), we have

2 n> 1 n>
o <aexp (— WP log &> < aexp (—@> < aexp(—A4), (144)
where the second inequality holds due to > < 2 logé and the last inequality holds

because 772 > 8w? A.
In conclusion, by combining (140), (142), (143), and (144), we get the desired
(139). O

Proof (Proof of Lemma 5) Recall that

6 = {max(v/a; = e, v/bi — et} = /ng (1 =) + /4]
Thus,

{ai > t,b; >t +1}N6Of

¢ fai = . var—a > yag( —5) + V4]
b = o Vb —ci > Vng(T=s) + VAl

Hence, by the union bound and the symmetry between a; and b;, it suffices to prove
P {ai > 1,4a; —cij > /ng(l —s) + \/Z} <ae A7 4 e~/
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Define
X 2
Then
{a = v var=ci > Vng(U =) + 4}
clrsa =t va—ai > Vg =9 +va}Ua = 7)
and hence

{ T,4a; —cii > /nq(l —S)—i—\/z}
=Plr=a =7 Vai—a > VngU =) +Va} +Pla; = 7).

Since conditional on a; = k, a; — ¢;; ~ Binom(k, 1 — s), it follows that

Pl <a <7 va—ai > yag — ) + Va]
= Y Pla=kP [/Bmom(k 1—s)>\/nq(1—s)+\/_}

T<k<T

<P{r <q ST}IP’{\/Binom(?, 1—s5)>/ng(l —s)+«/Z}
<aewp (-2 (Vi =9+ VA= VRT=0) ) =ae "

where the last inequality holds because of the definition of t in (39) and the binomial
tail bound (168). Moreover, since a; ~ Binom(n — 1, g¢), it follows from the binomial
tail bound (168) that

2
Pfa; = T} < exp <_2 (‘/: — v - 1)‘1> ) < e T = oA/,

Combining the last three displayed equation completes the proof. O

4.5 Proof of Theorem 4

The following classical result about Erdés-Rényi graphs (cf. [9, Lemma 30]) gives
an upper bound on the probability that the 2-hop neighborhood of a given vertex i in
G ~ G(n, p) is tangle-free, i.e., containing at most one cycle. This result will be used
to control the dependency among outdegrees in analyzing the W similarity defined in
(52).
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Lemma 13 Consider graph G ~ G(n, p) with np > Clogn for a large constant C.
Let 'H denote the event that all 2-hop neighborhoods in G are tangle-free. Then

P{H} >1—n@np)®p?> —n~".
In particular, when Clogn < np <n'=€ fore > 9/10, P{H}>1— 0 (n9—105) .

Proof Let H; denote the event that the 2-hop neighborhood of the vertex i in G is
tangle-free and let H = N;¢[H;. Let £ = 2 throughout the proof. Consider the
classical graph branching process to explore the vertices in the £-hop neighborhood of
i.See, e.g., [2, Section 11.5] for a reference. Such a branching process discovers a set
of edges which form a spanning tree of the £-hop neighborhood of i. Then the £-hop
neighborhood of i is tangle-free, provided that the number of edges undiscovered by
the branching process is at most one.

Let m denote the size of the £-hop neighborhood of i in graph G ~ G(n, p). There
are at most (’;’) pairs of two distinct vertices in the £-hop neighborhood of i. Hence, the
number of undiscovered edges is stochastically dominated by Binom((';), p). Thus,
conditional on the size of the £-hop neighborhood of i being m, the probability of 7,
by a union bound, is at most

1
P {Binom(m(m — 1)/2, p) > 2} < gm“pz,

Moreover, since np > C logn for a large constant C, the maximum degree in G is
at most 2np with probability at least 1 — n~2. Thus, m < (2np)* with probability at
least 1 — n~2. Therefore, the unconditional probability

1
P{H{} < §(2”P)4EP2 +n72 < Qup)*p? +n2
The proof is complete by applying a union bound over i € [n] to the last display. O

Recall that N (1) (resp. N (i) denote the set of vertices in the 2-hop neighborhood
of i in graph A (resp. B). Let G (i) (resp. G g (i)) denote the 2-hop neighborhood of i
in graph A (resp. B), i.e., the subgraph induced by N4 (i) (resp. Np(i)). For notational
simplicity, we use the same notation a'? and b1 as (21) and (22) for unnormalized
outdegrees |[N4(j) \ Nalil|l and |[Np(j) \ Npli]|, respectively. Similar to the high-
probability events defined in the beginning of Sect. 4, we also need to condition on a
number of events regarding the 2-hop neighborhoods of i in A and k in B in analyzing
the W statistic.

First, for each i € [n], define the event "4 (i) such that the following statements
hold simultaneously:

% <a; <2nq
. .
?qfa;-”ﬁan, Vje NaG)

@ < (2ng)*.
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Similarly, define the event I'p (i) such that the following statements hold simultane-
ously:

nq
7 <b; <2nq
7 < b(’) <2ng, Vj e Ng()
bi < (2ng)”.
Define the event I; such that the following statements hold simultaneously:

nq
Cii27
O
J = 27

Vai — ¢ii, /bi — cii < /ng(1 —s) 4+ /2logn,

Vj € Na(i) N Np(i)

where

¢’ £ 1(NAG) \ NaLID 0 (N5 () \ N5LiDI. (145)

Under the assumptions that ng > Clogn for some sufficiently large constant C,
and o < oy for sufficiently small constants o, using Chernoff bounds for binomial
distributions (165) and the union bound, we have P {Fj(i)} P {F§ (i)} P {Flf} <
o(n2).

Second, for each pair of i, k € [n] with i # k, define the event [, such that the
following statement holds:

INa()) N Np(k)| <2
INA()) N Np(k)| <2, Vj € Na(i)\ Nglk]
IN8() N Na@)] <2, Vj e Ng(k)\ Nalil.

Lemmal14 If 1 < ng < n'"¢ for € > 9/10, we have P{I5} < 0 (n"q') =

O (n719%) for all i # k.

Proof Fix i # k. Note that

P{INa(i) N Np(k)| = 3}
=P {3a,b, ce[n]:AiazA,-h:Aiczl Bia = Bip = Bie = 1}

Z 1_[ 11—1 ]P’{Bkal}<nq <n7q10

a,b,ce[n] jela,b,c}
Next, suppose we are given any j € N4 (i) \ Np[k] such that [Na(j) N ]VB k)| = 3.

Let a, b, ¢ denote three distinct vertices in N4o(j) N N (k). For each j' € {a, b, c},
let p(j’) denote a vertex in Ng(k) N Np[j'] (which is non-empty since j' €
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Np(k)). Consider the subgraph S of the union graph A U B induced by vertices
in{i, j,k,a,b,c, p(a), p(b), p(c)}. Let V(S) denote the set of distinct vertices in S
and v(S) = |V (S)|. Let e(S) denote the number of edges in S. Note that v(S) < 9.
Also, if we delete the two edges (j, a) and (j, b), the graph § is still connected; thus
e(S)—v(S) > 1. Therefore, by letting /C,, denote the complete graph on [7] and noting
that AUB ~ G (n,q(2 —s)),

P{3j € Na() \ N[kl : INA()) N Np(k)| = 3}
<P{3SCAUB:v(S) <9,e(S) —v(S) =1}

<> Y Lewevsnle-us9=nP{S C AUB)
v<9 SCK,:v(S)=v

< Zz(g)nu—z(zq)vﬂ <0 (n7q10> .

v<9
Similarly, we have P {3j € Ng(k) \ Nalil : [INp(j) N Na(i)| >3} < O (n7¢"?)
and hence P {1} < 0 (n"¢'?).
Third, let A U B denote the union graph of A and B. Define
Hii = {GAUB (i) is tangle-free}
and

Hix = {5 A(i) and G g (k) are both tangle-free} .

The next two lemmas are the counterparts of Lemma 1 and Lemma 2, which estab-
lish the desired separation of the W statistic for true pairs and fake pairs.

Lemma 15 (True pairs) Assume that nq > C max{logn, L2}, L > Lg for some suf-
ficiently large constants C and Lo, 0 < oy/L for some sufficiently small constant
00 > 0, and n*q3~/'L < cq for some sufficiently small constant c¢o > 0. Then

P{Wii <nq/4| GaGi), Gpli), aAuB(i)} Lignr,nrsnn) < € 209, (146)

Proof Throughout the proof, we condition on the 2-hop neighborhoods of i in A, B,
and A U B such that event H;; N I"4(i) N I'g(i) N I;; holds.

On the event H;;, there is at most one cycle in the 2-hop neighborhood of i in
the union graph A U B. Hence, there is at most one pair of vertices jo € N4 (i) and
Jo € Np(i) with jo # j such that in the union graph A U B,

(a) either jo and j; are adjacent;
(b) or there exist a neighbor £ # i of jo and a neighbor £’ # i of jj, where either
£ ={ or ¢ and ¢ are adjacent.

Then we claim that 251]') are mutually independent across different j in Ng(i) N

Ng(i)\ {jo. jo}- Indeed, note that Z;iji) is a function of {Eg) :€ € Na(j)\ Nali]} and
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{Eg) : £ € Np(j)\Nplil}. Fixapairof j # j" € No(i)NNp(i)\{jo, jo} andany £ €
(Na(H\NaliDU(Ng(j)\ Npli]) and any £" € (Na(j)\ Nalil) U(Np(j") \ Nplil)
First, we claim £ # £/, and £, £’ are non-adjacent in the union graph A U B; otherwise,
(j, j') is another pair in addition to (jo, j(/)) satisfying either the condition (a) or (b)
mentioned above, violating the tangle-free property. Moreover, since we have excluded
i’s closed 2-hop neighborhoods in the definition of outdegree ?i(i) and ’l;g), it follows
that (~(’) b(l)) is independent from (~§i), bé’,)) Thus, Z 74D and Z (”) are independent.
By the definition of W similarity in (52), we have

Wiz 3 M)

JENANNB(H\{jo}
where n = 19, / 7 as defined in (53). We claim that

i 3
]P{ijj’) sn} >1—e 0>, (147)

where the last inequality holds due to L > L. Also, on the event I5;, ¢c;; = |[Nao(i) N

Np(i)| = nq/2. Then it follows from the independence of 25.;.[) across different
J € NaG@) NNp(@)\ {Jjo} that

st nq 3
Wi;; > Binom 7— I,Z .

Therefore, by Chernoff’s bound (165) for binomials, we get that
P{Wii < ngq/4} < e 900,

It remains to verify claim (147). The proof follows the similar argument as the
proof of Lemma 1. Specifically, recall that Z;'j') =d (ﬁ;’) P )) where

s L  _Binom (n— 3
ni = G Z SE{E’) Binom (n — aj, q) ,
J CeNA()\Nalil

and

~i) a1 B T
vj = W Z 5521) — Binom (I’l — b,, q) .
J teNp(H\Nglil

Recall that @ (’) (resp. b(l)) are the normalized “outdegree” of vertex ¢ with the closed
2-hop nelghborhood of i in A (resp. B) excluded; @; (resp. b;) are the size the 2-hop
neighborhood of i in graph A (resp. B).

@ Springer



92 J.Ding et al.

Note that for £ € Ns(j) \ Nalil,

1

~0) _

a (Ake —q)
C TV =aq(T=q) keNZ( .

1 ~
= o= | L Mm@

keNA (@) NNp (i)

where the last equality holds because if k € N (i), then Ay = O otherwise, G AuB (@)
is not tangle-free. Moreover note that ¢ ¢ Np(i); otherwise G Aup (i) is not tangle-
free. Therefore, for all k € NA @H°nN NB (i), Age ~ Bern(g). Hence,

~()idd. 1

Y =y AT =)

Similarly, for ¢ € Ng(j) \ Nglil,

[Binom (|ﬁA(i)C NNp@)|,

q)—(n—a)ql=u

B = Y Bu—9)
Wkeﬁg(i)f
. ~
:\/—.ﬁ Z Bkg—(i’l—bi)q
(n—=>bi)g(1 —q) keN () NN4 )
Thus,
OIS ! [Binom (|[Na()° N Np(i)|.q) — (n —bi)q] 2 1.

C Vi —bg(l—q)

Analogous to (86) and (87), the centered empirical distribution can be rewritten as

A =pP+(0—p)P +p—v
Y =p0+U-pH0 +p =,

where
(@) (i)
s ra S
P="% P =0
a. b
j J
and
A 1 k)
P = W Z 521') - M,

€j LeNA()\NALIDN(NE()\Npli])
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1
AN R
P =% > Sa0) = o
a; Cj" ee(Na()\NaLiD\(VE (D\Nali)
1
L !
2= 2 8o — 1,

€j LeNA)\NAliIDN(NE()\Nplil)

1 /
ST i
J J Le(Np(O\NBLID\(NA(D\Nali])

St
>

and v = Binom (n — @;, ¢) and v' = Binom (n —b;, q). O

Similar to (94), we have that

Z8D < i = VIl 4 M = Vel +d(P, @) + (1 = p)ILP Il + (1= p)HIIQ Tl
@ (1) (11D)
+1p—p'I x Q1L - (148)
aIv)

For (I), we need the following lemma to control the discrepancy between the dis-
tribution w (resp. ) and the ideal standardized binomial distribution v (resp. v’).

Lemma16 Let m,n € N with m < n and n1,...,0m,q € [0, 1]. Suppose

i.i.d.

X,-l’lv Bern(q) for 1 < i < n and Y;’s are independently distributed as Bern(n;)
for1 <i <m. LetS =737 XiandT = Y ;" Yi+ >/, .1 Xi. Let j1o and
S—nq and T—ng
Vnq(1=q) Vnq(l=q)’

vo denote the law of
ng = §2(1). Then

respectively. Assume m < n/2 and

Sty Ini — 4l
d (o, vo) = | [o — vol |, < O <L17) . (149)

Proof For 1 < i < m, we couple X; and Y; as follows. When n; < ¢, generate
Y; ~ Bern(n;), and let X; = 1if ¥Y; = 1 and X; ~ Bern(g — n;) if ¥; = 0. When
n; > ¢q, generate X; ~ Bern(g), and let ¥; = 1if X; = 1 and ¥; ~ Bern(; — ¢q) if
X; =0.Let X = Z?:m—H Xi, Y= ,Y,andZ=3Y7 ,X;. Then S =X+ Z
and T = X +Y.Let& = /ng(1 — q). Then

Mh

d (jro, vo) = [o(Ie) — vo(Lp)|
¢=1
L
=Y IP{S € £ + ng} — P{T € &1, + nq}|
¢=1
L
< Zmax{]P{S ctly+nq, T ¢ElL+nq},P{S¢&l +nq, T €&l +nql}.

~
Il
-
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It remains to show P{S € €Iy +nq, T ¢ £EI; + ng} < O (%), the proof for
P{Seé&ly+nq,T ¢ &Iy + ng} is analogous. Note that

P{Seé&ly+nq, T ¢ély+nqy=P{Xecélly+nqg—2,X¢&Ely+nq—7Y}
B O(E[IY—ZI]>
— /\/W 9

where the last inequality follows analogous to Lemma 9. The conclusion follows since
ENY - Z) < XL ENX; = Yill = (I —min{n;, q}) 37, [ — q| by definition. 0

Applying Lemma 16 (withn; = 0andm < q; +b;)and noting that a;, b; < (2ng)?,
we get that

/ / L(nQ)2q
llee —viels + Il = v'Iclh SO(W>- (150)

Analogous to Lemma 9, under the assumptions that e < o¢/L andng > CL?, we have
thatforany £ € (NA(j) \ Nalil)N(Np(j) \ Npli]) and any interval I C [—1/2, 1/2]
with [/| = 1/L, conditional on the 2-hop neighborhoods of i in both A and B,

Plad e 1.5 g1} +plal ¢ 1.5 e} <<

for a sufficiently small constant c.
For (II), applying Lemma 7 with

~(i)
(X)) = @) Y eeva(D\NAlIDNNVE (D\NLiD
()
(V1Yo = 15y YeeWa(D\NAIDONE ()\N51iD)»

()

and m = ¢; -2,

> % on the event I7};, we get that with probability at least 1 — e

d(P. Q) < Cz‘/%, (151)

for a sufficiently small constant c;.
For (1IT), applying Lemma 8 with k = L implies that ||[[P']. |l < 2 /W and

J J

MOl <2 |—+2— (,) (,), each with probability at least 1 — e L/2 Therefore, by the

union bound, w1th probablhty atleast 1 — ¢—%(L),
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A

(l—p)||[P’]L||1+<1—p/)n[Q/]Lnl_—f V-4 f b — ¢

I/\

—f( ngo? + 2logn> (152)

where the last inequality holds because on the event I'4 (i) N I'p(i) N I7;, a(l) b(’)

nq/2,

aﬁ‘i) (”) < aj—cj+bi —ci < Jaj—cj+/bi —ci
§2<\/nq(1 —S)+\/210g”>

and similarly for
Finally, for (IV), applying Lemma 8 with k = L implies that with probability at

least 1 — e~ L/2,
QI <2 / < zf
J

where the last inequality holds due to c;i)

b0 0,

> nq/2 on event I;;. Moreover,

2 2
lo—p'| <max{l —p,1—p'} < na (\/nq(l —s) +\/210gn)

< 4o +81°g”

Therefore,

L 1
o — ol x 1Ozl < 82 /_<02+2—°g”). (153)
nq nq

Assembling (148) with (151), (152), (153), we get that with probability at least

| — e QW)
~(ii L 8
780 <0 [ 24 —«/Z( ngo? + 210gn>
Ji Vg ng
L 1 L(ng)?
82— (02 +2 Og”) +0 <—(”q) q)
nq nq g
L
=no,— =1
nq
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for some sufficiently small absolute constant ng > 0, where the last inequality holds
due to the assumptions thatng > C L for some sufficiently large constant C,o < o¢/L,
and n2q3 L < ¢ for some sufficiently small constant ¢y > 0. Thus we arrive at the
desired (147). O

Lemma 17 (Fake pairs) Suppose L > Clog(nq), nqg > C max{logn, L*} for some
sufficiently large constant C, and g < n=€ for € > 9/10. Fixi # k. Then

P{ Wi > nq/4 | Gali), 5B(k)} Lt nra N onry) < e 209, (154)

Proof Fix a pair of vertices i # k and condition on the 2-hop neighborhoods of i in A
and k in B such that the event H;; N I"4 (i) N I'g (k) N I}, holds. Fix a feasible solution
M in (52); in other words, M is a bipartite matching (possibly imperfect) between the
neighborhoods N4 (i) and Np (k).

For the ease of notation, let J = N4 (i) \ Ng[k] and J' = Npg(k) \ Na[i]. Recall
the matrix ¥ %) defined in (51). Since M is a matching, it follows that

(y@®, M) 2Nt O NgIKI+ Y VM < —+ > ovPum,
jel,j'ed’ jeld,j'ed’

where the last inequality holds because |[N4[i] N Np[k]| < 4 < nq/16 on the event
Ii under the assumption that ng > C logn.

Note that on the event H, there is at most one cycle in the 2-hop neighborhood of
i in A, and at most one cycle in the 2-hop neighborhood of k in B.

We next bound )

jel. j <’ Ygl.lf)M ;j using McDiarmid’s inequality, where Y(’Zlf) =

[ 70, and n = no,/ = as defined in (53). To circumvent the discontinuity of the
mdlcator function, deﬁne a piecewise linear function F which decreases linearly from

1 to O from 7 to 2, so that 1{y<,; < F(x) for all x. Furthermore, F is Lipschitz with
constant 1/n. Define

we S F(Z8) My (155)
jelJ,jel’
Then we have
<Y(ik), M) < % + W (156)

Let £ = Ujey (Na(j) \ Nali]) and L' = Ujeyr (NB(j/) \NB[k]). Next we claim
that, on the event H;; N 4 (i) N I'g(k), W', as a function of {(Eél), b(k)) e LNl
{N(’) £e L\ L'}, and {b(k) ¢ € L'\ L}, satisfies the bounded difference property
with constant O(nq—n). This is verified by the following reasoning:

— Fix £ € £\L'. We consider the impact of modifying the value of 52“ on that of W’.
On the tangle-free event H;y, there are at most two distinct choices of j such that
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~(i)

£ € No(j) \ Nali]. Therefore @ a appears in the empirical distribution & n; for

at most two different j € N4 (i). Furthermore, since ¢ ¢ £/, @, ( @ does not appear
in any 'ﬁ;k) . Recall that any m-observation empirical distribution as a function of
each observation satisfies the bounded difference property (with respect to the

total variation distance) with constant 0(l) (cf. (106)). On the event I'4(i), we

have a( 2 AR

> nq/4. Thus modifying Eé can change oy in total variation by at
most 0( nlq ). Furthermore, crucially, since M is a matchmg, for each j there exists
at most one j’ such that M;;; # 0 in the double sum (155). Finally, since F is
(1/n)-Lipschitz continuous by design, we conclude that Eéi) > W’ has the desired
bounded difference property with constant O (L)

— Entirely analogously, since b( ) > nq /4 on the event I'p(k), the mappings b(k)

W’ for any ¢’ € L'\L and (Ziél), b(k)) > W/ for any £ € £ N L all satisfy the
bounded difference property with constant O(nan) on the event H;x N I'4 (@) N
I's(k).

@\, we have excluded the 2- -hop neigh-

Recall that in the definition of outdegree a,
borhood of i in A; similarly, in the definition of outdegree 5% we have excluded the

g/ b
2-hop neighborhood of k in B. Therefore, we have that

{(~(’) bék))} are independent across different £ € £L N L/,
- {a el)} are independent across different £ € £\ £’;
- {E 0} are independent across different £’ € £\ L;
{(N(” b)) : ¢ € L L'} are independent of (@) : € € L\ L, BY 1 € € L'\ L}.

However, @, Dfore e £ \ £ and b(k) for £/ € £\ £ may be dependent, because A

may contribute to the outdegree a( D and By may contribute to the outdegree b(k).

Fortunately, similar to the reasoning in Fig. 1, conditioned on the edge sets E 4 (L, E )
and Eg(L, L), the outdegrees {a(') ¢ € L\ L'} and {b(k) ¢ e L'\ L} are
independent, since the definition of the outdegree in (46)— (47) excludes the two-hop
neighborhood.

In particular, write E(L, L") = (Ea(L, L"), Eg(L, L)) for simplicity, and let Fx
denote an event (to be specified later) that is measurable with respect to E(L, £') and
holds with high probability: P {F;x} > 1—exp (§2(nq)). Conditioned on E (L, £') such
that the event F; holds, applying McDiarmid’s inequality and noting that |£|, |£'| <
(2ng)? on the event I'y (i) N 'z (k), we get that

IP[W/ E[W | E(L, £)] =22 ‘ EL, D)] <exp< c1(ngn) ) (157)

where c; is an absolute constant.
We next compute E[W' | E(L, £)]. We first claim that for all j € J and j’ € J’,

P {zj.j.’? <2 ( E(L, z’)} <20 (158)
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By definition of W', we have

e[v]eeo)= 3 e[r(Ep) e o]my
< P{Z(’k) <2 ‘ E(L, E’)}
jeld,j'ed’
<0 (e*m“) > My

jeld,j'ed’
<02 Wyy <M
(e ng) < 6
where the first inequality follows by the definition of F'; the second inequality holds
due to (158); the third inequality is due to |J| < 2nqg on the event I'4(i) and that

M is a matching; the last inequality holds due to L > Lglogn. Combining the last
displayed equation with (157), we obtain

P{W' = nq/8 | E(L, L)} 115,y <exp <—c1(nqn)2) .
Averaging over the last displayed equation yields that
P{{W’' >nq/8} N Fix} <exp (—cl(nqn)z) .
Combining the last displayed equation with (156), we obtain
PU{r®, m) = ng/a} 0 7l < PUW' = ng/8} 0 Fu} < exp (—er(mam?)

Finally, applying a union bound over the set of all possible matching M and recalling
the definition of similarity Wj; in (52), we get that

P {{Wix > ng/4) N Fix) < 2ng)! x eﬂ'l(ﬂfﬂl)2 < e $2(ng log(ﬂq))’

where the last inequality holds due to the choice of 7 in (53) and the assumption that
L > Lolog(ng). Therefore, by a union bound,

P{Wix > ng/4} < P{{Wix > nq/4} N Fix} + P{F5} < e 20D,

It remains to specify the event F;; and verify the claim (158) when conditioned on
E(L, £') such that the event F;; holds. The proof follows a similar argument as in the

proof of Lemma 2. Specifically, recall that Z (’]f) =d ( (l) (k)> where

~(@i) a 1 _ _— ~
ni = a(i) Z 85?) — Binom (n — q;, q),
J LeENA(H\Nali]

@ Springer



Efficient random graph matching via degree profiles 99

and

1 - ~
~(k -
v}) 2 b(k) Z 85210 — Binom (n — by, q) )
J’ LeNp(j)\Nplk]
Let v = Binom (n — @;, g) and v/ = Binom (n — by, q). Observe that for £ €
Np(k), E D isno longer distributed as v after conditioning on the 2-hop neighborhood
N g (k), and likewise for b( )fort e N 4 (i). Therefore, we decompose u( D and v(,> as

ﬁ(.i) =«kP+(1—Kx)P

v =0+ (1«0,

where
B T
a?’ po’
J J
and
S=(Na()\ NaliD N Np(k)¢, S = (Na(j)\ Nalil) N Np(k)
T = (Ng(j) \ Ng[k) "\ Na(), T = (Np(j") \ Nplkl) N Na(i),
and
5 A 1 A 1
le—z (i) — :ngaéi)_v’
§ fée§
~ 1
A A /
0= Z b(k) = ﬁ Aﬁgék) —v
T LeT

Therefore, we have

78D = (1 —10d(P, 0) = kPILih — € I1Q1eli — Ik — ') x ([Q1el- (159)

On the event I'(i) N I'p(k) N I, we have a', b(’f) > ng/2, and |S|,|T| < 2.
Therefore, «, k' < <-. Since ||[P L, ||[Q]L|| || Q L||1 < 2, it follows that

l’l
ZU0 > ld(i)‘ 0)—0 € (160)
jj/ -2 ’ nq :

It remains to lower bound d(P, Q). Conditioning on E(L, L), we aim to apply
Lemma 6 with m = |S|, m" = |T|, mg = nq, {X¢}j., = {ael)}ees, and {Yg},Z =
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{5} ,.7. Note that since «, <’ < 1/2 and nq/2 < a(l) b(k)

that m, m’ = @(mo) Also, as previously argued, after condltloning on E(L, L)),

< 2ngq, it follows

{a(l)} 15 and {be )} 17 are two independent sequence of real-valued random variables.
It remains to check the assumption (88) in Lemma 6, that is, there exists a set Ly C S
with |£o| > m/4 and constants ¢1, ¢ € (0, 1] such that 7 < ]P’H ah e I} < ¢ for
all interval I C [—2, 2] of length 1/L.

To this end, recall that

~(i) _ 1
A e B DR

UEN A (i)°

Forl e S:
— If u € Npglk], then B,;, = 0; otherwise, £ € ﬁB(k) violating £ € S. Thus,

Aye ~ Bern(q') with ¢ = P{A,p = 1|By, = 0} = ql(lp:) <gq;

- Ifue é’, then A, is deterministic when conditioning on E (L, £');
— Ifu ¢ Np(k), then A,; ~ Bern(g).

Recall that e4 (¢, S) denotes the number of edges begyveen vertex £ and vertices in
S in graph A. Define ¢ = |£'\ Nao(i)|, ¥ = |Np[k]\ Na(i)|, and

Lo = {e €S:lea(t, L\ Na()) — ¢q| < /ng(1 — q)/2} :
Define the event
Fik = {ILol = m/4}, (161)

which is megsurable with respect to E4 (L, L) since S C L. Note that for each ¢ € L,
ea (E, L'\ Na(i )) ~ Binom (¢, ¢g). Hence, by Chebyshev’s inequality,

2
Pleeclo=1-2>
n

N =

where the last inequality holds because ¢ < |L'| < b < (2nq)* and g < n™¢ for
€ > 9/10. Moreover, e4 (( L'\ N A(z)) are independent across £ € S. Hence, [ Lol
is stochastically lower bounded by Binom(m, 1/2). It follows from the binomial tail
bound (165) and the fact that m = §2(nq) that

P{Fik} =P{ILol = m/4} = 1 — exp(£2(nq)).

Let

1
Vo —a;—¢—v)g(l —q) +v¥q'(1 —¢q')
—n—a—¢—v)q—vq']

Uy =

[ea (6, NaG)\ L))
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and
1 / NN )
V= s (V@' — @) +ea(t. L\NaG)) — ¢q.]
Let

= (n—a; —¢—9)qg(1 —q)+v¥q' (1 —q)
(n—a)q(1 —q)
Thenﬁéi) = apug+ve. Note thatonevent I’y ()N (k),d@; < (2ng)*and ¢, ¥ < 2ng.
Sinceq’ < g < n~¢, itfollowsthat 1/4/2 < ay < 1.Moreover, |v¢| < 1forall£ € L.
By the Berry-Esseen theorem, we have

P{Zig"’el}zp{uee I_w}:]P’{N(O,l)EI_—W}

oy oy
o) _ 1) 4 O (1) _ )
g L gmg L

where the last equality holds due to ng > CL>.
Conditioning on E(L, L) such that event F;; holds and applying Lemma 6, we

get that
~ ~ L
P {d(P, 0)<a|— ’ E(L, z/)} 15,y < e 90, (162)
ng

where «1 is some absolute constant.
Combining (160) with (162), we have that conditioned on E (L, L) such that event
Fix holds, with probability at least 1 — e =),

S(ik) o1 L 1 L
Z.,>=———=0|—)>2n,—=2n
7 2\ ng nq nq

for some sufficiently small constant 19, where the last inequality holds due to ng >
Clogn. Thus we arrive at the desired claim (158). O

With Lemmas 15 and 17, we are ready to prove Theorem 4.

Proof (Proof of Theorem 4) Let H denote the event that all 2-hop neighborhoods in the
union graph AU B are tangle-free. Under the assumption thatg < n~¢ fore > 9/10and
the fact that the union graph AU B ~ G(n, ps(2 —s)), it follows from Lemma 13 that
P{H} = 1— 0 (n°'%). Define the event F = HN(N; (Fa (i) N T ())) N (Ni x Tik).-
It follows that

P{Fe} <P{H}+ > (P{rsO}+P{rsi))) + Y P{rit <0 <n9—105>_

i€ln] i,keln]
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Applying Lemma 15 with L = Clog(ng) and averaging over the 2-hop neigh-
borhoods N4 (i) and Np(i) and noting that ng > Cglogn for a large constant Co,
g <n~€fore > 9/10,and o < og/L for a sufficiently small constant o, we get that

P{{Wu < Tq} N Hii mFA(l)mFB(l)ﬁth} < e—Q(nq) < n—2.

Similarly, for i # k, applying Lemma 17 with L = C log(ng) and averaging over the
2-hop neighborhoods N A(1) and N p(k), we get that

PUwa = T nran @ n s 0y = 200 <
By the union bound and the fact that H C H;;, we have

pl{mnwi <%0} < Sp{ (w207

i€[n]
} AH;; O Ca() N Tp(i) N F,,} <n !

= Y p{{wi <

i€[n]

I/\
P& P‘Q

Similarly, by the union bound and the fact that H C H;x, we have

vz o) gelime 107
fgp{{w Tq}mHtkﬂFA(l)ﬂFB(k)ﬂﬂk} .

In conclusion, by the union bound,

P {mm Wii < max Wlk}
ik

i€[n]
§IP’{.7-'C}+IP’”mmW”§T}ﬂ.7:} {{mﬁ;W,k>Tq}ﬁf}

i€[n]
<0 (n9—10€) .

Thus with probability at least 1 — O (n9_10€), Algorithm 4 outputs T = 7*. O

5 Numerical experiments

In this section, we empirically evaluate the performance of degree profile matching
(DP), a quadratic programming relaxation of QAP based on doubly stochasticity (QP),
and a spectral relaxation (SP).

The performance metric is defined as follows: for a given estimator 77 of the ground-
truth permutation 7 *, we define its accuracy rate as the fraction of correctly matched
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pairs:

oAl
acc(7) £ - D aeiy=r i) - (163)

i€[n]

Recall that we use outdegrees instead of degrees in our degree profile matching
Algorithm 1 to reduce the dependency and facilitate the theoretical analysis. In all
numerical experiments, we simply use degree profiles defined through the usual vertex
degrees. Moreover, instead of using the Z distance (28) defined as the total variation
distance between discretized degree profiles, we directly use the 1-Wasserstein Wj-
distance between degree profiles; see (9) with p = 1. Note that for two empirical
distributions with the same sample size, such as u and v in (6), one can compute their
W1 -distance by sorting the samples:

s

n
Wi, v) =Y |X@) — Yo
i=1

where X(1) > --- > Xy and Y1) > - -+ > Y. If the sample sizes are different, as
is the case for Erd6s-Rényi graphs, it is more convenient to compute the W1-distance
using either the CDF characterization (6) or the original coupling definition.

For the QP method, note that the optimum solution of the quadratic programming
relaxation of QAP may not be a permutation matrix. Thus we round the optimal solu-
tion to S, by projection: minges, |17 — l’)\||2 , which is a linear assignment problem
and efficiently solvable via max-weighted bipartite matching.

For the SP method, we compute the eigenvectors u of A and v of B correspond-
ing to the largest eigenvalue. Then we align u# and v, by finding the permutation
7 that minimizes the Euclidean distance Zi eln] lu; — v,,(i)|2. This is equivalent to
minres, |11 —uv'||;
tite matching.

For each method, we can potentially boost its accuracy using the iterative clean-up
procedure described in Algorithm 5.

, which again can be efficiently solved via max-weighted bipar-

Algorithm 5 Iterative clean-up procedure
1: Input: Graphs A and B on n vertices; a permutation 7 on [z]; and the maximum number of iterations
T;
: Output: A permutation 7 on [n].
: (Initialization) Initialize IT( to be the permutation matrix corresponding to
fort=1,...,T do
Solve the linear assignment problem

AW

Iy € arg max ([T, AIT;B) (164)
nesS,

6: end for
7: Output 7 to be the permutation corresponding to ITr 1.
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Note that (A1, B);j in (164) can be viewed as the number of “common” neighbors
Jj between i and k under the permutation ; in the sense that j is i’s neighbor in A
and m;(j) is k’s neighbor in B. Hence, (164) finds the matching which maximizes
the total sum of “common” neighbors under ;. This resembles the second stage of
Algorithm 3 for seeded graph matching. Alternatively, by rewriting the objective in
(164) as vec(IT) T (B ® A)vec(IT,), where B ® A denotes the Kronecker product and
vec(IT) € R" denotes the vectorized version of the matrix I , we can reduce (164)
to the projected power iteration discussed in [44].

For ease of notation, we denote by DP+ the degree profile matching algorithm
followed by the iterative clean-up procedure. Similarly, we define QP+ and SP+. We
run the iterative clean-up procedure up to 7 = 100 iterations. Also, for the sake
of computational efficiency, instead of using the max-weighted bipartite matching
algorithm to solve (164) exactly, we use the following standard greedy matching
algorithm to approximately solve (164) with input weight matrix being AT, B.

Algorithm 6 Greedy Matching

: Input: A bipartite graph with n x n symmetric edge weight matrix W;
: Output: A n x n permutation matrix /7.

: (Initialization) Initialize M =

: for all (i, j) in decreasing order of W;; do

Add (i, j) to M if M forms a matching

: end for

: Output [T, where IT;; = 1if (i, j) € M and I1;; = 0 otherwise.

5.1 Wigner matrices

We evaluate the performance of all three algorithms as well as their cleaned-up version
on the correlated Wigner model given in Sect. 2. The results are shown in Fig. 2 as
a function of the noise magnitude o with n = 1000 fixed. Clearly, QP dominates
DP, which, in turn, significantly outperforms SP in term of the matching accuracy.
Furthermore, the iterative clean-up procedure significantly boosts the accuracy rates
for all three methods. Computationally, QP needs to solve a quadratic program, where
the Hessian matrix in the objective function involves Kronecker product B ® A and
thus is of dimension n? x n?. Hence, QP is much more computationally expensive
and memory costly than either DP and SP. In our simulation of QP, we developed a
fast solver for QP based on the alternating direction method of multipliers (ADMM)
algorithm [10, Section 5.2] and that avoids computing B ® A; nevertheless, even with
this fast solver, to generate the simulation results in Fig. 2, QP takes around 85 minutes,
while DP takes about 7 minutes, and SP takes about 23 seconds.

Next we simulate the performance of DP and DP+ for different matrix sizes ranging
from 100 up to 1600. The results are depicted in Fig. 3. Since our theory predicts that
DP succeeds in exact recovery when o logn < ¢ for a small constant ¢, we rescale
the x-axis as o logn. As we can see, the curves for different n align well with each
other. Moreover, the accuracy rate of DP gradually drops off from 1 to O when o logn
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Fig.2 Simulated correlated Wigner model with n = 1000 and varying o . For each value of o, the accurate
rate shown is the median of 10 independent runs
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(a) The degree-profile (DP) algorithm. (b) The degree profile followed by the iterative clean-up

procedure (DP+).

Fig. 3 Simulated correlated Wigner model with varying n and o. For each value of o, the accurate rate
shown is the median of 10 independent runs

is above 0.7, while that of DP+ sharply drops off from 1 to O when o logn is above
3.3.

5.2 Erdos-Rényi graphs

We evaluate the performance of all three algorithms as well as their cleaned-up version
on the correlated Erd6s-Rényi graph model G(n, g; s). We focus on sparse graphs
where the edge probability of the parent graph is fixed to be p £ ¢/s = log?(n)/n.
The simulation results for dense graphs (such as p = 1/2) are similar and thus omitted.
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Fig. 4 Simulated correlated Erdés-Rényi graph model G(n, ¢; s) with n = 1000, p 2 g/s = log2 (n)/n,
and varying /8 = v/T — s. For each value of +/8, the accurate rate shown is the median of 10 independent
runs

The results are shown in Fig. 4 as a function of the edge deletion probability
§ £ 1 —s with n = 1000 fixed. Analogous to the Wigner case, QP dominates
DP, which, in turn, significantly outperforms SP in term of the matching accuracy,
and the iterative clean-up procedure significantly boosts the accuracy rates for all
three methods. Computationally, to generate the simulation results in Fig. 4, QP takes
around 51 minutes, DP takes about 2 minutes, and SP takes about 12 seconds. Note
that each of these methods is run on the same architecture under the same conditions.

Next we simulate the performance of DP and DP+ for different graph sizes ranging
from 100 up to 1600. The results are depicted in Fig. 5. Since our theory predicts that
DP succeeds in exact recovery when \/5 logn < c for a small constant ¢, we rescale
the x-axis as +/8 logn. As we can see, the curves for different n align well with each
other. Analogous to the Wigner case, the accuracy rate of DP gradually drops off from
1 to 0 when /8 logn exceeds 0.5, while that of DP+ sharply drops off from 1 to 0
when ﬁ log n exceeds 2.

5.3 Subsampled real networks

In this section, we generate two graphs A and B by independently subsampling a real
parent graph G.

Inspired by previous work [28], we consider the Slashdot network. The Slashdot
network contains links between the users of Slashdot (a technology-related news web-
site). The network was obtained in February 2009 and is available on Stanford Large
Network Dataset Collection (SNAP) [48]. To generate the parent graph G, we first
focus on the subnetwork induced by the users whose ID is at most 750, and then
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(a) The degree-profile (DP) algorithm. (b) The degree profile followed by the iterative clean-up
procedure (DP+).

Fig. 5 Simulated correlated Erd6s-Rényi graph model with varying n and § with edge probability in the
parent graph fixed to be log2 (n)/n. For each value of 8, the accurate rate shown is the median of 10
independent runs

connect user i and user j if either i has a directed link to j or vice versa. This gives
rise to a graph G with 750 vertices and 3338 edges. The graph G is connected and has
a heavy-tailed degree distribution. In particular, there are 216 degree-1 vertices, 102
degree-2 vertices, and the average degree is around 9, while the maximum degree is
524 and there are 9 vertices whose degree is at least 100.

To obtain two correlated graphs A and B, we first independently subsample the
edges of G twice with probability s, and then relabel the vertices in B according to a
random permutation 7 *.

We simulate the performance of the three algorithms (DP, QP, and SP) as well as
their cleaned-up version, with inputs A and B. The edge subsampling probability s
varies from 0.6 to 1, or equivalently § varies from 0 to 0.4, and the results are shown
in Fig. 6.

Note that in the noiseless case of § = 0, the accuracy rates of all three algorithms
as well as their cleaned-up version are about the same and around 0.62. However, in
the noisy case, QP dominates DP, which, in turn, significantly outperforms SP in term
of the matching accuracy; this is consistent with the observations in the previous two
subsections. In particular, as soon as § becomes positive, the accuracy of SP drops off
sharply as expected because the leading eigenvectors of A and B are highly sensitive
to the perturbation. In contrast, the accuracy rates of DP and QP drop off gradually as
d increases.

Analogous to our synthetic experiments, the iterative clean-up procedure signifi-
cantly improves the accuracy of all three methods. In fact, the accuracy rates of all three
methods after clean-up (QP+, DP+, and SP+) are about the same for all § < 0.225.
At § = 0.25, the accuracy rate of SP+ drops off sharply, while the accuracy rates of
QP+ and DP+ continue to decrease gradually and match each other until § < 0.3. At
8 = 0.325, the accuracy rate of DP+ drops off sharply, while the accuracy rate of QP+
continues to decrease gradually.

Computationally, to generate the simulation results in Fig. 6, QP takes about 290
minutes, DP takes about 2 minutes, and SP takes about 18 seconds.
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fraction of correctly matched pairs

0 F
0 0.0250.050.075 0.1 0.1250.150.175 0.2 0.2250.250.275 0.3 0.3250.350.375 0.4
0

Fig.6 Slashdot network with n = 750 and varying § = 1 — s. For each value of §, the accurate rate shown
is the median of 10 independent runs

Appendix A Auxiliary results

Recall the following tail bound for binomial random variable X ~ Binom(n, p) [37,
Theorems 4.4, 4.5]

P{X > (1 +tnp} < e_é"”, 0<r<l1
P{X <(-0tnp} < e_%"”, 0<r<l1 (165)
and
P{X >R} <2k R=>e6np. (166)

Theorem 5 ( [43]) Let X ~ Bin(n, p). It holds that

P{Xgnt}fexp(—n (ﬁ—\/?>2>, YOo<t<p (167)

P{X >nt} <exp|—2n (1 - p2 , Vp<t<l. (168)
JP

Appendix B Analysis for seeded graph matching

In this section we analyze Algorithm 3 for seeded graph matching. Note that when
Algorithm 3 is used as a subroutine in Algorithm 2, the seed set S is obtained from
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Algorithm 1 based on matching degree profiles, which can potentially depend on the
edges between the non-seeded vertices. To deal with this dependency, the following
lemma gives a sufficient condition for the seeded graph matching subroutine (Algo-
rithm 3) to succeed, even if the seed set is chosen adversarially:

Lemma 18 (Seeded graph matching) Assume n > 4, s > 30q, and

n(gs)® > 2" x 3log? n. (169)
If the number of seeds satisfies m > %, then with probability 1 — 5n~!, the

following holds: for any mg : S — T that coincides with true permutation * on the
seed set S, (i.e. Ty = 1w™*|g) with |S| = m, Algorithm 3 with 1 as the seed set and
threshold k = %mqs outputs T = 7.

We start by analyzing the first stage of Algorithm 3, which upgrades a partial (but
correct) permutation mo : S — T to a full permutation 71 : [#] — [n] with at most
O(logn/q) errors, even if the seed set S is adversarially chosen.

Lemma 19 Assume n > 2, mgs > 96logn, and s > 12q. Recall the threshold
K = %mqs in Algorithm 3. Then with probability at least 1 — 2n™™, the following
holds in Algorithm 3: for any partial permutation 7y : S — T such that Ty = 7*|g

and |S| = m, my is guaranteed to have at most % errors with respect to ¥, i.e.,

I{i € [n]:miG)#7*0)} < %-

Proof (Proof of Lemma 19) Without loss of generality, we assume 7* is the identity
permutation.
Fix a seed set S of cardinality m. Since 79 = 7*|g, it follows that

nik = Y AijBiay(y = ) AijBinr(j)-
jeSs jes

Recall that according to the definition of the weights in (35), we have

w(r™) = Z Lini=)-

ieS¢
First, we show that

32logn

P {w(rr*) <n—m— } < exp(—2mlogn), (170)

iid.
Indeed, for i € S¢ we have n ,-illv Binom(m, gs). It follows from the Chernoff bound
(165) that

1 1
P{n; <k} =P {nii < qus} < exp (—gmqs> .
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Therefore,
st 1
(n—m)—wE@*) = Z 1{n;; <} < Binom (n — m, exp (——mqs)) .
ieSe 8

Using the following fact (which follows from a simple union bound)

P (Binom (n, p) > 1} < ('tl)p’, (171)

we get that
— t t
P{(n—m)—w@*) =1} < (n . m) exp (—gmqs) <n'exp (—gmqs>

t
< exp (—qus) ,

where the last inequality holds due to the assumption that mgs > 16logn. Setting
t= 32(1;? " we arrive at the desired (170).

Next, fix any permutation 7 such that 7w |§ = 7 and it has £ non-fixed points. Since
by assumption 19 = 7r*|g and 7r* is the identity permutation, it follows that 77 (i) = i
foralli € S.Let F = {i € S°: w(i) = i} denote the set of fixed points in S¢. Then

|F|=n—m — £ and |S°\F| = £. Thus

w(r) = Zl{”iii"} + Z Lniryzey Sm—m — £+ Z Lniniyze}-

ieF i€Se\F i€Se\F

Note that for each i € S°\F, n;z(;) ~ Binom(m, qz). Since by assumption s > 12¢,
it follows that ¥ = mgs/2 > 6mq?. Hence, the Chernoff bound (166) yields that for
eachi € S°\F,

1
P{nize) =k} <27"/2 < exp (—qus> )

Note that {n;7¢y : i € S°\F} are not mutually independent. For instance, 7 ;)
and 1y 7(x@)) are dependent. To deal with this dependency issue, we construct a
subset Z C S\ F with |Z| > £/3 such that {n;(;) : i € Z} are mutually independent.
In particular, consider the canonical cycle decomposition of permutation 7 |se\ r. Let
Ci, ..., C, denote the cycles. Since 7 has no fixed point in S\ F, each cycle C; has
length ¢; > 2. Let I" denote the graph formed by the union of these cycles. Each cycle
C; has an independent set 7; of size |£;/2] > ¢;/3. Let T = U{_,Z;. Then 7 is an
independent set in I" and |Z| > Y"{_, ¢;/3 = £/3. Since 7 is an independent set, it
follows that {i, (i)} N {j, w(j)} = W foralli # j € 1. Therefore, {n;irq : i € I}
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are mutually independent. Therefore,
st 1
Zl{n. y=¢) < Binom | |Z],exp ( ——mgs ) ).
< in(i)= 4
ieZ
Note that

w(m) =n—m—~L+ Z L=y s —m —IZ] + Zl{"imwik}
ieSe\F ieT

Using (171) again, we have

3210gn}

P{w(n)zn—m—
qs

3210gn
<P {Z Lo} = 121 = }

iel

< |Z| 1 7| 32logn
exp | —-mgs —
1Z] — %2logn P 4mq 75
¢ 1 ¢  32logn ¢ 1
2%exp| —-mgs | - — ——— <2exp| —=—mgqst ),
4 3 qs 24

where the last inequality holds provided £gs > 192logn. Let I1, denote the set of

permutations 7w which has ¢ non-fixed points and satisfies 7 |s = m. Then |I1y| <
(",")¢! < n*. By the union bound, we have that for any £ > 192({%,

32logn ¢ 1 1
P{max w(mr) >n—m— < (2n) exp| ——mgstl | <exp|——mgst ],
qs 24 48

welly

where the last inequality holds due to the assumption that mgs > 96logn and n > 2.
Applying the union bound again over £, we get that

321 1
P max max w(r)>n—m — ogn < Z exp (—qusﬁ)

192logn mell, Ky
=== ¢ q > 19210gn
qs

exp (—4m logn)
~ 1 —exp(—4mlogn)

<exp(—2mlogn),

where the last inequality holds due to m logn > log 2.

Combining the last displayed equation with (170) we get that with probability at
least 1 — 272", 771 has at most 192 logn/(gs) errors with respect to 77*.

Finally, applying a simple union bound over all the () < n™ possible choices of
seed set S with |S| = m, we complete the proof. O
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The second stage of Algorithm 3 upgrades an almost exact full permutation  :
[n] — [n] to an exact full permutation 7 : [n] — [n]. The following lemma provides
a worst-case guarantee even if 1 is adversarially chosen.

Lemma20 Let 0 < ¢ < n. Assume that ({ — 1)gs > 12nq2 +2and (€ — 1)gs >
16 max{1, n — £} log n. Then with probability at least 1 —3n~", the following holds for
Algorithm 3: for any w1 with at most n — £ errors with respect to the true permutation
7*, we have T = 7*.

Proof Without loss of generality, we assume 7 * is the identity permutation.

We first fix a permutation 7r; which has at least £ fixed points. Let F C [n] denote
the set of fixed points of 1. Then |F| > £. Recall that

Wi = Z Aij B, (j)-
Jjé€ln]

Then fori =k,

st
wii = Y AjjBjj = Binom(|F| — 1. gs).
jeF\li)

Similarly, for i # k, note that A;j Bz () = 0if j = ior j = nfl(k). Thus,

iid. .
Wi = Zje[n]\{i,nl_](k)} Ajj By, (j)- Moreover, A;j Bz, (jy ~ Bern(qz) for all j €
[nI\{i, ;' (k), k}. Therefore,

S.I.
wik < Z AijBim (jy + 1 < Binom(n — 2, ¢*) + 1.
jelmN\i,my ).k}

It follows from the Chernoff bound (165) that
1 . 1
P {wii < 5(6 — l)qs} <P {Blnom (|Fl—1,gs) < E(E - l)qs}

< exp <—%(2 — l)qs) .

Thus, by the union bound,

1 1 1
P {,‘2[,?] wi; < 5(5 - l)qS} < nexp (—g(ﬂ - l)qS> < exp <_E(£ - l)qS> .

where the last inequality holds due to the assumption that (¢ — 1)gs > 16logn.

Moreover, since by assumption (£ — 1)gs/2 — 1 > 6ng?, it follows that the Chernoff
bound (166) that for any i # k,

@ Springer



Efficient random graph matching via degree profiles 113

1 1
P{wik > E(Z — l)qs} < P{Binom(n -2, qz) > E(E — gs — 1}
< 2~ (=Das/ 21 < 9oy (—%(Z _ l)qs> .

Thus, by the union bound again,

1 1 1
P {r}l;lz( wik = (0 = l)qs} < 2n’exp <—Z(z - 1)qs> <2exp <—§(z - 1)qs> )

In conclusion, for a fixed permutation 771 with at least £ fixed points, with probability
atleast 1 — 3exp (—(£ — 1)gs),

min w;; > max Wi,
ien] i#k

and hence T = 7*.

Finally, applying a simple union bound over all the ( nf l) (n — 0)! < n"~¢ possi-
ble choices of permutation 7r; with at least £ fixed points, we get that even if 7; is
adversarially chosen, 7 = 7* with probability at least

_ n—=~t _l _ _ _i _ _ -1
1 —3n"""exp 8(£ Dgs | >1—3exp 16“ Dgs|>1-3n"",

where the first inequality holds due to ({ — 1)gs > 16(n — €)logn and the last

inequality holds due to (£ — 1)gs > 16logn. O
We now prove Lemma 18:

Proof (Proof of Lemma 18) In view of Lemma 19, we get that with probability at least
1 —2n™"™, 1 is guaranteed to have at most 192 logn/(gs) errors with respect to 7 *,
even if g, or equivalently the seed set S, is adversarially chosen.

We next apply Lemma 20 with £ = n — 1921ogn/(gs). In view of the assumption
n(gs)? > 211 x 310g2n and n > 4, we have ({ — 1) > n/2. Thus (£ — l)gs >
ngs/2 > 16logn, and (£ — 1)gs > nqs/2 > 12nq* + 2 in view of s > 30g and
ngs > 20. Moreover, (£ — 1)gs > ngs/2 > 2'9 x 3log?n/(gs) = 16(n — £) logn.
Therefore, all assumptions of Lemma 20 are satisfied. It follows from Lemma 20 that
with probability at least 1 — 3n~!, 7 = 7*, even if 7 is adversarially chosen.

In conclusion, we get that with probability at least 1 — Sn—!, Algorithm 3 with
as the seed set outputs 7 = 7. o
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