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Abstract

We consider the problem of minimax estimation of the entropy of a density over Lipschitz
balls. Dropping the usual assumption that the density is bounded away from zero, we obtain
the minimax rates (n1nn)=%/+4 £ n=1/2 for 0 < s < 2 for densities supported on [0, 1]¢, where
s is the smoothness parameter and n is the number of independent samples. We generalize the
results to densities with unbounded support: given an Orlicz functions ¥ of rapid growth (such
as the sub-exponential and sub-Gaussian classes), the minimax rates for densities with bounded
U-Orlicz norm increase to (nlnn)=/(s+d) (§=1(p))d1=d/p(s+d) 1 n=1/2 wwhere p is the norm
parameter in the Lipschitz ball. We also show that the integral-form plug-in estimators with
kernel density estimates fail to achieve the minimax rates, and characterize their worst case
performances over the Lipschitz ball.

One of the key steps in analyzing the bias relies on a novel application of the Hardy-
Littlewood maximal inequality, which also leads to a new inequality on the Fisher information
that may be of independent interest.
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1 Introduction

Estimation of functionals of data generating distributions is a fundamental problem in statistics.
While this problem is relatively well-understood in finite dimensional parametric models [BKBT93,
VdV00], the corresponding nonparametric counterparts are often much more challenging and have
attracted tremendous interest over the last two decades. Initial efforts have focused on inference
of linear, quadratic, and cubic functionals in Gaussian white noise and density models and have
laid the foundation for the ensuing research. We do not attempt to survey the extensive literature
in this area, but instead refer to the interested reader to, e.g., [HM87, BR88, DN90, Fan91, BM95,
KP96, Lau96, Nem00, CL03, CL05, TLRvdV08] and the references therein.

The monograph by [Nem00] provides a general treatment of estimating smooth functionals
and discusses cases where efficient parametric rate of estimation is possible. Recently, there
has been progress toward the understanding of more complex nonparametric functionals over



substantially more general observational models. These include causal effect functionals in ob-
servational studies and mean functionals in missing data models. For more details, we refer
to [RLTvdV08,RLM 17, MNR17], which considers a general recipe to yield minimax estimation of a
large class of nonparametric functionals common in statistical literature. However, among the class
of nonparametric functionals considered in literature, most of the research endeavors, at least from
the point of view of minimax optimality, have focused on “smooth functionals” (see [RLTvdV08§]
for a discussion on general classes of “smooth functionals”).

In contrast, the results on optimal estimation of non-smooth functionals have been less com-
prehensive [HI80, Don97, KT12]. Notably, the seminal papers of [LNS99] and [CL11] considered
the estimating of L,-norms in Gaussian mean models. Subsequently, significant progress has been
made on testing and estimation of non-smooth functionals, such as the Shannon entropy, sup-
port size, total variation and Kullback-Leibler (KL) divergence, for discrete distributions on large
domains (see, e.g., [Pan04,VV11,JVHW15, WY16, HJW16, JHW18, BZLV18, WY19)).

An important non-smooth functional of probability density function is the entropy, which has
been the subject of extensive studies. The main goal of this paper is to resolve the minimax rates of
entropy estimation in the density model under smoothness constraints, specifically, over Lipschitz
classes. To this end, consider the following i.i.d. sampling model:

Xl)"' 7Xn 1'1\51 f
where f is a probability density function on R?. The goal is to estimate the entropy (also known
as the differential entropy in the information theory literature) of the density f:

1) 2 [ ~f@m fe)da.

This problem has extensive applications in various fields such as information theory, neuroscience,
time series, and machine learning (c.f. [KSG04, CH04, HSPVBO07] and the survey [BDGVdAM97,
WKV09]).

A prevalent assumption in nonparametric entropy estimation is that f(z) > ¢ everywhere for
some constant ¢ > 0 [Hal84, Joe89, VE92, SRH12, KKPW15], while others impose various assump-
tions quantifying on average how close the density is to zero [HM93, Lev78, TVAM96, EHHGO9,
GOV16,SP16,DF17, GOV18]. Assuming the density is bounded away from zero makes entropy
a smooth functional, consequently, the general technique for estimating smooth nonparametric
functionals [RLTvdV08, RLM 17, MNR17] can be directly applied to achieve the minimax rate
@(n—4s/(4s+d) +n—1/2)'

It is well-known that smoothness conditions or shape restrictions are often necessary for non-
parametric problems. We allow the density to be arbitrarily close to zero and adopt Lipschitz
ball Lip , 4(L) smoothness assumptions. Assume smoothness parameter s > 0, norm parameter

p € [2,00) and dimensionality d € N = {1,2,---}. The Lipschitz ball is defined as

Lip, , a(L) £ {f : | flluip, . < L} N {f : supp(f) < [0,1]%}, (1)
where with 7 £ [s], the Lipschitz norm || - [|Lip, , , is defined as
115, .0 2 11l + S0 (£,1) @
wr(ft)p = sup ALl (3)
e€RY |e|<1
r () 2 kz_o(_w—'f <Z>f <x n <I<: - g) h) . heR< (4)



Here || denotes the Euclidean norm of a vector € R? and |- ||,, denotes the L, norm of measurable
functions on R?. Note that the L, norm in (3) is taken over the whole space R to ensure that the
density f vanishes smoothly at the boundary. For example, any density whose derivatives up to
order [s] — 1 all vanish at the boundary of [0, 1]¢ suffices.

We characterize the minimax rates of estimating H(f) over the Lipschitz ball Lip; , 4(L) in the
following theorem.

Theorem 1 (Compactly supported densities). For any d € N,0 < s < 2 and 2 < p < oo, there
exist constants Lo > 1 and ¢,C > 0 depending on s,p,d, such that for any Lo < L < (nln n)s/d
and any n € N,

2
c((nlnn)_fﬁ%dlﬁ%d +nz InL) < <ir}f sup Ef(ﬁ - H(f))2> (5)
H feLips,p,d(L)

<C((n lnn)_ﬁLs%d +n72 InL).
Moreover, the lower bound part of (5) holds for any s > 0,1 < p < co.

Remark 1. A careful inspection of the proof of Theorem 1 reveals that, for s € (0,2], p > 2 and
Ly<L<L <(nlkn n)s/d, the minimax Lo Tisk for entropy estimation over densities supported on
[0,1] with || f||, < L and sup;qtSws) (f,t)p < L is

© ((nlnn)_s%d(ﬂ)sid e lnL> . (6)

Hence, by scaling,' if the density is supported on [0, R]? with R > 1 and satisfies [ fllvip, ,q < L
with RYMA=YP) L > Lo and R¥T4OVP) [ < (nlnn)*/¢, the minimazx Lo risk is

d
C] ((n In n)_s%d (Rs"'d(l_l/p)L) oty n=3 In (Rd(l_l/p)L>> . (7)

Remark 2. A direct consequence of Theorem 1 is that, for fixred parameters s > 0,p € [2,00) and
L > Ly, when d = 1,2, the parametric rate @(n_l/z) 1s attainable for entropy estimation over the
Lipschitz ball Lipy ,, 4(L) if and only if s > d. Moreover, when d > 3, the parametric rate cannot be
attained for all s < d.

To the best of our knowledge, Theorem 1 is the first characterization of the minimax rate for
nonparametric entropy estimation in arbitrary dimensions over Lipschitz balls (or even the simpler
Holder balls) without assuming the density is bounded away from zero. One observes that the
exponents of n or L in the minimax rates (5) and (6) do not depend on the norm parameter p
under the assumption that 2 < p < co. Another observation from Remark 2 is that the level of
smoothness required for the parametric rate is s > d, which is more than s > d/4 that suffices for
densities bounded away from zero on the support [0, 1]¢ [Lau96], and also more than s > d/2 that
suffices for densities satisfying a relative version of Holder smoothness [BSY19].

We construct the minimax rate-optimal estimator by first approximating the density f by fp
(a locally smoothed version of f), and then designing estimators to estimate H(fp). The key
advantage of estimating H (f;,) over estimating H (f) is that for each x € [0, 1]% and positive integer
k < 1Inn, the k-th power of f;(x) admits an unbiased estimator using a U-statistic, which enables

'Indeed, let f(z) 2 RYf(Rx) denote the density of X;/R. Then H(f) = H(f) — dlogR, ||fll, = R**YP)||f|l,,
Apf(z) = R*Aly, f(Rz) and hence sup, ot *wr(f,t), = RAG=1/p)+s sup,ot~ “wr(f,t)p.



us to employ the techniques of best polynomial approximation and Taylor expansion to reduce
the bias in estimating H(f;,). Moreover, our estimator is directly constructed and proved for the
density model rather than the Poissonized model, unlike most prior work based on polynomial
approximation [JVHW15, WY16].

We improve the best known minimax lower bound for estimating non-smooth nonparametric
functionals. The well-known lower bound ©(n~4%/(4s+d) 1 5=1/2) [BM95], which is optimal for
smooth functionals such as quadratic functionals, is loose for entropy estimation. Instead, we
reduce the nonparametric problem into a parametric submodel, and construct lower bound via the
duality between moment matching and best approximation using rational functions.

In addition to compactly supported densities, Theorem 1 can be extended to densities supported
on R? with general tail conditions. Let W : [0, 00] — [0, 0] be an Orlicz function, i.e., a continuous,
increasing and convex function ¥ satisfying ¥(0) = 0, ¥(u) > 0 for any v > 0 and lim,_,o, ¥(u) =
0o. Moreover, we say V¥ is of rapid growth if there is a constant k = k(V¥) > 1 such that U(ku) >
W (u)? holds for all u > 0. Examples of rapidly growing Orlicz functions include W (u) = exp(u?)—1
for any ¢ > 1, with x(¥,) = 21/4: in particular, the cases of ¢ = 1 and ¢ = 2 correspond to the
sub-exponential and sub-Gaussian class, respectively. Consider the following class of densities:

Livky D) 2 {F  Uflhin,p < 230 {7+ [ 0l flolao < 2. (%)

where || |[Lip, , , is the Lipschitz norm defined in (2). Note that the second constraint of (8) implies
that the ¥-Orlicz norm of the random variable | X| with X ~ f is upper bounded by L.
The following theorem presents the minimax rate for entropy estimation over Lipg”p’d(L).

Theorem 2 (Densities with unbounded support). Let ¥ be an Orlicz function of rapid growth and
U1 jts inverse function. For any d € N,0 < s < 2,2 < p < 00, there exist constants c,C, Ly > 0
depending on s,p,d, k(V), (1) such that if ¥~1(n) > 1 and L > Lg, then

N

stz y ()| (75) 4 b i ] 2
c| (nlnn)”5F ¥~ (n)] +n72) < mﬁf sup ( )Ef(H_H(f))
feLip?, 4(L

<C <(nlnn)_ﬁ[\ﬂ_1(n)]d<l_m) +n_;> )

Moreover, the minimaz lower bound works for any s > 0,1 < p < 0.

Comparing Theorem 2 with Remark 1, we see that for general Orlicz function ¥ with rapid
growth, any density in Lipgfnd(L) is effectively supported on [~¥~1(n), ¥~!(n)]%. There is also a
subtle difference: the hidden constant in the parametric rate ©(n~/2) does not involve ¥~1(n),
thanks to the Orlicz norm constraint. Note that for simplicity we assume that L is a constant and
omit the dependence on L in Theorem 2.

The estimator that achieves the minimax rates in Theorems 1 and 2 relies on polynomial
approximation. It is a natural question to ask whether an integral-form? plug-in estimator using
kernel density estimate can achieve the minimax rates. Recall that the kernel density estimator
takes the form

fula) = nLhd;K (=) )

2@Given a density estimate f7 an integral-form plug-in estimator for the entropy is f —f(m) In f(m)dam as opposed
to % > log fA(XZ)




where K (-) is a kernel function, and h is the bandwidth. The next result shows that the answer
is negative for any sliding window kernel density estimator with a spatially invariant bandwidth
(that is, the bandwidth h can depend on the sample size n but not on the location x):

Theorem 3 (Suboptimality of integral-form plug-in estimators). For s € (0,2],p > 2, let fu(z) be
given in (9) and define the integral-form plug-in estimator as H(f) = f[o 14 —frn(z)In fr(z)dx. If
the kernel K (-) satisfies Assumption 1 and h =< (Ln)~Y/ 4 then for L < n®/4,

[ sup By (H(fh)—H(f))2 ’ gc(n—ﬁLﬁ +n—%1nL),

f€Lipg , q(L)

where C' > 0 is a constant independent of n, L.
Conversely, for any kernel K (-) satisfying Assumption 1 and any bandwidth h > 0, there exist
constants Lo > 0,c > 0 independent of n, L, h, such that for any L > Ly,

“ 2 2 _ s d 1
sup Ef (H(fh)—H(f)> 2c<n s+d [s+d —|—n_§1nL).
feLips,p,d(L)

Theorem 3 presents a tight characterization of the integral-form plug-in approach, and shows
that the plug-in idea applied to the integral is strictly sub-optimal: the bias of the kernel-based plug-
in estimator is O(n~%/(s+d) [4/(s+d)) "while for the optimal estimator it is O((n Inn)=/(s+d) [d/(s+d)),

Next we elaborate on the various assumptions in Theorem 1:

The Lipschitz ball Lip, , 4(L): For s = r + a with r integer and a € (0, 1], the Holder ball Hg(L)
with smoothness s and radius L consists of functions f with sup,_, | f ) (z) — M (y)|/|z — y|* < L.
The Lipschitz ball is a generalization of the Holder ball by imposing the smoothness constraint on
average through the norm parameter p; for example, for p = oo the Lipschitz ball coincides with
the Holder Lip, ., 4(L) = Hj(L) for any non-integer s > 0.?

Radius of the Lipschitz ball: The assumption L < (nln n)s/ 4 ensures that the minimax rate in
Theorem 1 is O(1), and L > Ly is not superfluous as well. Indeed, if sp > d, then by standard
embedding results of Lipschitz (or Besov) spaces [Jaw77], there exists L; = Lq(s,p,d) > 0 such
that any f € Lipy , 4(L1) is bounded from below by a positive constant almost everywhere?, which,
in view of the previous results [RLTvdV08, RLM ™17, MNR17], implies that the entropy can be
estimated at a faster rate ©(n~4/(45¥4) 1 n=1/2) than that in Theorem 1.

The smoothness condition s € (0,2]: Capturing high-order smoothness s > 2 of a function is often
challenging in nonparametric statistics, especially for density models. For example, if one would
like to apply a kernel density estimator, for s > 2 there does not exist a non-negative kernel to keep
all polynomials with degree at most |s|. We will discuss this phenomenon in details in Section
4.2. We note that the minimax lower bound Q((nlnn)=/(+4) [d/(s+d) 4 n=1/2]n ) only requires
0<s<oo,1<p<oo.

3 As opposed to the definition of the Lipschitz ball in (2), there is another slightly different definition using the
modified Lipschitz norm Lipj , ;, which coincides with a special case of the Besov ball B} . 4 [DL93]. These two
definitions are equivalent for non-integer s, while for integer s the latter is strictly bigger. In this paper we adopt the
former definition in (2) to avoid some technical subtleties.

“In fact, [Jaw77, Theorem 2.1] states that if sp > d, ||f(-) = f(- = t)|leo < C(s,p, )| f(-) = F(- — llLip, ., 4 for any
t € [0,1]%. Since there must be some zo € [0,1]% such that f(xo) > 1, we conclude that f(x) > 1 — 2C(s,p,d)L for
almost every = € [0,1]%, which is bounded from below by a constant if L is sufficiently small.



The norm condition p € [2,00): Our current upper bound requires p > 2, which ensures the
difference between the entropy of the true density and its kernel-smoothed version is at the right
order. For the lower bound, the case of p = oo imposes a too strict constraint on the density
(i.e., to be smooth everywhere), while p < oo only imposes an average-case smoothness constraint
which can be handled by the current construction. When p = oo we prove a lower bound of
Q(n=s/(s+d) (Inn)~(s+2d)/(s+d) [d/(s+d) 1 =1/2]n ) as shown in Theorem 7.

The support of f: For general nonparametric functional estimation problem, there are essentially
three factors contributing to the minimax rates: the tail behavior if f is supported on R%, the
boundary behavior if f is compactly supported, and the behavior of f in the interior of its domain.
In Theorem 1, we assume that f is compactly supported and smoothly vanishing at the boundary
so that sliding window kernel methods are applicable; this assumption is relaxed in Section 4.1
to the so-called “periodic boundary condition” [KIKKPW14]. The effect of the tail behavior on the
minimax rates is precisely quantified in Theorem 2 for densities with unbounded support.

1.1 Related work

The problem of estimating the entropy of a density has been investigated extensively in the lit-
erature. As discussed in the overview [BDGVdAMO97], there exist two main approaches, based on
either kernel density estimators, e.g. [Joe89, GVAM91, HM93,PY08, KKPW15] or nearest neighbor
methods, e.g. [TVAM96, SRH12, SP16, DF17, GOV18, BSY19]. Among these works, some focus
on the consistency [GVAM91, PY08], y/n-consistency [Joe89, TVAM96], or the asymptotic effi-
ciency [HM93,BSY19] of the proposed estimator, while others work on the minimax rate [SRH12,
KKPW15,SP16,DF17, GOV18|.

Similar estimator constructions have appeared in the literature. Asymptotic efficient estimators
are obtained in [INH87, Nem00] for smooth functionals by means of Taylor expansion; [LNS99]
and [CL11] estimated the L; norm of the mean in Gaussian white noise model using trigonometric
polynomial approximation. One related work [HJMW17] deserves special attention. Dealing with
the Gaussian white noise model, [HIMW17] analyzed the minimax rates of estimating the L,
norms (for all » € [1,00)) of the mean function over Besov spaces which was previously studied
in [LNS99]. Although both papers use the polynomial approximation technique for the upper and
lower bound construction (which trace back to earlier work of [LNS99, CL11, JVHW15, WY16]),
there exist significant distinctions between this work and [HJMW17]. First, here we analyze the
density model as opposed to the location model, and it is crucial to design estimators to adapt
to low-density regions. This specific problem has been investigated in [PR16] for estimating linear
functionals (density at a given point), where it was conjectured that the case of s > 2 exhibits
significantly different behavior from the case of 0 < s < 2; this is the underlying reason for the
assumption 0 < s < 2 for our upper bound, which is discussed in more details in Section 4.2.
In contract, in white noise models there is no need to adapt. Moreover, when d = 1 these two
models are asymptotically equivalent [Nus96] for s > 1/2 provided that the density is bounded
from below by a positive constant; however, they do not imply the minimax rates of a given
estimation problem for these two models must coincide, and for small densities the equivalence can
break down [RSH18]. In fact, in contrast to the conclusion of Remark 2, it is shown in [HIMW17]
that the parametric rate is never achievable for “entropy” estimation in the white noise model.
Second, the estimator construction in this paper requires more delicate analysis, and bounding the
approximation error H(f,) — H(f) relies on a novel application of the Hardy-Littlewood maximal
inequality in conjunction with the nonnegativity of the density function, which also leads to, as
a by-product, a new inequality upper bounding the Fisher information in terms of the L, norm
of the second derivative (Theorem 5). Third, in the minimax lower bound, this work carefully



chooses non-negative functions (not required in the Gaussian white noise model), and analyzes the
total variation bound instead of the y2-divergence bound which is simpler and more suitable for
Gaussian models.

1.2 Notation

For a finite set A, let |A| denote its cardinality. The norm |- | denotes the Euclidean norm of
vectors in RY, and || - ||, denotes the L, norm (with respect to the Lebesgue measure) of real-valued
functions defined on R?%. Let || - ||op denotes the operator norm of matrices, i.e., the largest singular
value. For z € R?, let @y; £ (z; : j # i) € R™L For n € N, let [n] £ {1,...,n}. Denote by
(") = {J C [n] : |J| = 1} the collection of all I-subsets of [n]. Throughout the paper, for non-
negative sequences {a,} and {b,}, we write a, < b, (or a, = O(by,)) if a, < Cb, for some positive
constant C' that does not depend on the sample size n, the bandwidth h, or the Lipschitz norm
L. We use ay 2 by (or a, = §(by)) to denote b, < a, and a, =< by (or ay, = O(b,)) to denote
both a, < b, and b S ay. We use ay < by (or ay = o(by)) to denote lim,, % =0, and ay > b,
(or ay = w(by)) to denote b, < a,. The support set of a probability measure ;1 is denoted by
supp(u). Let Px denote the distribution of a random Variable X. The KL (resp. x?) divergence
from distribution g to v is defined as D(p|lv) = [du log 9 E (resp. X2 (ullv) = [dv(E (48— 1)2) if
@ < v and +o0o otherwise.

1.3 Organization

The rest of this paper is organized as follows. Section 2 presents the construction of the minimax
rate-optimal estimator. Section 3 proves the upper bound. In particular, the analysis of the
bias incurred by the first-stage approximation relies on a novel application of the Hardy-Littlewood
maximal inequality, and the same argument also leads to an inequality on Fisher information, which
is presented at the end of Section 3.1 and might be of independent interest. Section 4 discusses
generalizations and open problems. In particular, Section 4.1 extends the results to a broader class
of densities that satisfy a periodic boundary conditions, and establishes the corresponding minimax
rates of entropy estimation. Remaining proofs are relegated to the appendices.

2 Construction of the estimator

Define the smoothed density

fu(@) 2 | Kp(z—y)f(y)dy,

Rd

where Kj,(-) is some kernel function with bandwidth & > 0. In the special case of Kj(z) = 27K (%)
for some kernel function K : R — R, we have

o) = [ (552 st (10)

which admits the following natural unbiased estimator (kernel density estimate)

2 %ZKh(x—Xi), (11)
=1



where X1, -+, X 1gif

The Optlmal estimator for the entropy H(f) is constructed in two steps: First, by choosing
a suitable (in particular, compactly-supported) kernel K, we approximate f by f; and bound
|H(fr) — H(f)| using functional-analytic properties of the density class. Next, we construct an
estimator for H(f3,) based on the kernel density estimator f,. The main insight is that { fu(z) iz e
[0,1]%} is essentially a finite-dimensional parametric model, in the sense that fj, () roughly follows
the binomial distribution nh%f, () ~ B(n, h%f,(x)) (cf. Lemma 5). As a result, we essentially obtain
a parametric binomial model with A~% parameters, so that the existing approximation-theoretic
techniques for entropy estimation in parametric models [WY16,JVHW15] can be applied.

We now describe the construction of the optimal entropy estimator for any s € (0,2] in any
dimension. For the first approximation stage, in order to find a suitable approximation f for f,
we recall the following property of Lipschitz spaces [HKPT12, Theorem 8.1]:

Lemma 1. Fiz any s > 0 and any kernel K : R — R which satisfies [ z|l*1| K (2)|dz < oo and

maps any polynomial q in d variables of degree at most [s] — 1 to themselves, i.e., [paq(y)K(z —
y)dy = q(x). Then for any f € Lipy, 4(L) and fy, defined in (10), we have

1/p
=1l = ([ o) = sopas) 5 oo

To apply Lemma 1, we choose a kernel K with the following properties:
Assumption 1. Suppose K : R? — R satisfies the following:

1. Non-negativity: K(t) >0 for any t € R%;

2. Unit total mass: [pq K(t)dt = 1;

3. Zero mean: [pq tK(t)dt = 0;

4. Finite second moment: [ |t|*K (t)dt < oo.

5. Compact support: sup{|t| : K(t) # 0} < o0.

There are several kernel functions which fulfill Assumption 1, e.g., the box kernel K (t) = 1(t €
[—1/2,1/2]%). Note that the second and the third requirements ensure that it keeps all polynomials
of degree at most one, ie., [po(a'z +b)K(z — y)dz = a'y + b, and the first requirement (non-
negativity) is crucial for proving the concentration result in Section 3. In fact, the non-negativity
requirement is the key reason why we need to impose the assumption s < 2, and relaxing this
requirement appears highly challenging (cf. Section 4.2).

Since the kernel K (-) has a compact support, the approximation f, is compactly supported as
well. By Lemma 1 and our assumption that s < 2, we have

If = fullp S L®. (12)

Later in Section 3.1 we will show that the entropy difference also satisfies |H(f) — H(fp)| < Lh®.
Fix an appropriate kernel K that fulfills Assumption 1 and define fy, f; as in (10) and (11). To
construct an estimator H for H (fn) = [ —fa(z)In fi(z)dz, we let H= i H )dx, where for each

x € [0,1]%, H(x) is an estimator for — f; () In fh( ) obtained as follows:

1. For notational convenience, let the sample size be 3n as opposed to n. Split the observations
into three parts XM, X@ X6 each consisting of n observations.



2. For each part of observations, construct the kernel density estimators fh,l(x), fh72(az) and
fn3(x) per (11). The estimator fp 1(x) will be used for classifying smooth versus non-smooth
regime, and the other two for estimation.

3. Regime classification and estimator construction:

e “Non-smooth” regime: fh,l(x) < Clnl%. Denote by @ the best degree-k polynomial
approximation of —tInt on [0, 24 12"]'
k
Q= Zaltl = arg min max | —tlnt — P(t)], (13)

PEPolyy. ye[o, 21 lnn

where Poly, denotes the collection of all polynomials of degree at most k. Define the
following unbiased estimator of Q(fx(z)) in terms of U-statistics:

k n -1
)= q (z) ST Enz - x| (14)
=0

e “Smooth” regime: ch(x) > Clnl%. Define the following bias-corrected plug-in estimator:

Ho(x) = 1(fa2(z) > W) : { — fra(@)In fio(x)

— (L+1In fro(@)(fas() — faz(z)) — % (fh,2(33) (15)
— 2fn3(2) ZKh (x—X Kh(!E—X())>}
( h72 z<]

e The final point estimate of H(z) = —f(z) In fx(z) is

H(zx) £ min {Jfll(x), ﬁ} 1 <fh1(a;) < c;l}r:dn>

+ Hy(2)1 < Faalz) > c;ﬁ") .

Finally, choose
1
h=cy(Lnlnn) s+, k= [calnn], (17)

where ¢g > 0 is any constant, 0 < 7coIn2 < e < ;7 and ¢; > 0 is sufficiently large (per Lemma 7-8)

and output the estimator

H= [ H(z)da. (18)
R4

Note that the integration only need to be taken over the support of fp, which is slightly larger than

the unit cube [0,1]%. This completes the construction of our estimator. A few remarks are in order:

10



Choice of the U-statistics The following U-statistic

Um:% > I 5k - X))

1< <t < <tm<n j=1

has appeared several times in the estimator construction, which is the natural unbiased estimator
for powers of fy(z):

EUnl = S J[E[Ku - X)) = fule)™

n
m) 1<t <ig < <im<n j=1

The reason why we average over all possible subsets of size m is to reduce the variance to the correct
order (cf. Lemma 12). In practice, to compute the k-th order U-statistics, note that it is simply the
(normalized) k-th elementary symmetric polynomial of Kj(z — X;). Hence, it suffices to compute
the power sum > 7" (Kp(z—X;))! foralll = 1,--- , k, and then invoke Newton’s identity to compute
elementary symmetric polynomials; this has overall time complexity O(nk + k?) = O(nlogn). For
the special case of the box kernel K (t) = 1(¢t € [~1/2,1/2]%), which can be used to achieve the
upper bound in Theorem 4, H 1(x) reduces to

\ Zp (Lp—1)-...- (Z, —1+1
Hl(x)zzal'hld-y(z-(n—)n-...(-(n—:u))’ (19)

where Z, = > 7| h4 Ky (x — XZ-(2)). Hence, the computational cost can be further reduced to O(n +
k%) = O(n) in this simple example.

Polynomial approximation in the non-smooth regime In the non-smooth regime (i.e.,
f;hl(x) < Clnl%) a suitable linear combination of the U-statistics is applied, where the coefficients
come from the best approximating polynomial of our target functional —xInxz. By the previous
property of the U-statistic, in the non-smooth regime we estimate Q(f(x)) without any bias, and
thus the bias in this regime becomes the polynomial approximation error. The coefficients of the
polynomial Q(-) can be efficiently computed via the Remez algorithm, which converges double
exponentially fast (see discussions in [JVHW15]). The coefficients can also be pre-computed and

stored so that there is no need to recompute the coefficients when applying the estimator.

Bias correction based on Taylor expansion in the smooth regime In the smooth regime
(i.e., foa(z) > aliny we use the idea in [HJW16] to correct the bias. Specifically, by Taylor

. nhd .
expansion we can write

D (f2(2))

o(fn(x)) 0 (fn(@) = fro(x))

2
M=

=0

(20)

I
M=

O (F () < o .
W Z <§> fr(@) (= fra(z)) .

i §=0

I
o

A natural idea to de-bias is to find an unbiased estimator of the right-hand side in (20). Indeed,
this can be done by sample splitting: we can split observations to obtain fh,g(az), an independent
copy of fh’g(iﬂ), and then apply the previous U-statistics to fh,g(IE) to obtain an unbiased estimator
fn(z)?. Our estimator construction uses this idea with ¢(z) = —zInz and R = 2 (which suffices
for our de-biasing purposes).
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Choice of bandwidth As will be clarified in Section 3 (cf. (36)), the bandwidth h < (nInn)~1/(s+4)
in (17) is chosen in order to balance between two types of biases of our estimator. Compared with the
optimal bandwidth h =< n~1/(25+4) in estimating the density under L, risk for p € [1,00) [Nem00],
our choice of the bandwidth results in an “undersmoothed” kernel estimator of the density, which
is consistent with the findings in [GM92,PY08] that an undersmoothed kernel estimator should be
used in estimating nonparametric functionals. However, our specific choice of h =< (nln n)_l/ (s+d)
is different from the optimal bandwidths for other problems, such as h < n~2/(45td) for estimating
quadratic, cubic, and general smooth functionals [BR88, KP96, RLTvdV08, MNR17], and the opti-
mal bandwidth h =< (nlnn)~1/(2s+d) for estimating the L, norm of the function in Gaussian white
noise in one dimension with r € [1,00) not an even integer [LNS99, HIMW17].

Final integration The estimator H(z) in (16) provides the pointwise estimation of — f,(z) In fj ()
for all = € supp(fr), and an integration is required to produce the final entropy estimator. If the
box kernel is used, notice that n small cubes of equal size can partition the unit cube [0, 1]d into
O(n?) pieces, the mapping x — Z, in (19) is piecewise constant on O(n?) pieces. Hence, for exact
integration it suffices to evaluate H (z) at O(n?) points, which yields an overall O(n?*!logn) time
complexity of our estimator. For practical implementation with general kernels, numerical integra-
tion methods and quadrature formulas can be used to evaluate the integral, and then we only need
to evaluate H (x) at finitely many points.

In the next section we prove the following result, which completes the proof of the upper bound
in Theorem 1.

Theorem 4. For s € (0,2], p > 2 and L < (nlnn)¥¢, the following holds for the estimator H
defined in (18):

2
< sup  Ep(H — H(f))z) <C ((nlnn)_sidLsid 2 lnL) )
feLips,p,d(L)

where C' = C(s,p,d) > 0 is independent of n,L (we omit the dependence of C on the choice of
parameters ¢y, c1, 2, and the kernel K(-)).
3 Proof of upper bound

The error of our estimator H can be decomposed into three terms: the approximation error of
|H(fn) — H(f)|, the bias and the variance of the estimation error of H in estimating H(f3). Next
we deal with these terms separately.

3.1 First-stage approximation error

The approximation error between H(f) and H(f) is summarized in the following lemma, which is
one of the key results in this paper.

Lemma 2. Let s € (0,2], p > 2. For any f € Lipg, 4(L) and bandwidth h with 0 < Lh® < 1, let
fn be defined in (10). There exists a constant C > 0 independent of h, such that

()~ 1| =| [ f@m s = [ Ao faras| < o 1 (21)
whenever 0 < h < hg, where hg is a constant depending only on s.

12



In view of the fact that ||f — f3|[, S Lh® (cf. (12)), Lemma 2 essentially says that the entropy
functional H(-) is “Lipschitz” with respect to convolution. The proof of Lemma 2 consists of three
steps:

1. By the convolution property, we first express the entropy difference H(f,)— H(f) as a mutual
information term. Then using the variational representation of the mutual information and
x2-divergence, we reduce (21) to an inequality that no longer involves the kernel;

2. By the equivalence between the K-functional and the modulus of continuity [DL93], we
approximate f by a non-negative C2-function g and further reduce the goal to an estimate of

the form ,
[ v,
014 f(z) +h*

3. We invoke the Hardy-Littlewood maximal inequality to control the above integral using the
Lo-norm of the second-order derivative of g. This is the crux of the proof. The same proof
technology also leads to a new upper bound on Fisher information, which we summarize at
the end of this subsection.

3.1.1 Mutual information and y?-divergence

Recall the mutual information between random variables A and B is defined as the KL divergence
between the joint distribution and product of the marginal distributions:

dPsp ]

I1(A; B) = D(Pag|| P, Pp)=E |ln————
(4:B) = D(PagllPr® Pr) = B [ AL

Recall that, by Assumption 1, the kernel satisfies K > 0 and fRd K(z)der = 1. Let X and U be
independent random variables with density function f and K, respectively. Then by the convolution
property, the density of X + hU is fj, and, as a result,

0 < H(fy) — H(f) = I(U; X + hU). (22)

Note that by the compact support of the kernel K, the density fj is supported on a cube slightly
larger than [0,1]¢ (i.e., with edge size 1 + O(h)), and by a proper scaling we assume without loss
of generality that both f and f, are supported on [0, 1]%.

Next we reduce the desired inequality into a simpler one independent of the kernel K (-). Let w
be an arbitrary density supported on [0,1]¢. Then

HUX +h0) =By | | = h0)n %m
B flx—hnU)
— By /W flo = W) =5 | = D(flw)

(a) B N f(z—=hU)
< Ey [/[O’l]d o= )

Or [/ (f(z — hU) —w(a;))2d$]
0.1

(23)

w(z)
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where (a) follows from the non-negativity of the KL divergence, and (b) is due to the fact that the
KL divergence is upper bounded by the y2-divergence.

Since Lh® < 1, there exists another density w on [0, 1]¢ such that w(z) > max{f(x)/2, Lh®/4}
for all z € [0,1]¢ and [|w — f|loo < Lh*/4. Such an existence may be constructed by adding
Lh?/4 to f(zx) for all z with f(x) < Lh®/4, and then subtracting Lh*®/4 from f(x) for a subset of
{z €[0,1]%: f(x) > Lh*/2} to arrive at a density. As a result,

/[0,1]d (f(x— hu()](l)— w(@)? /[O’I]d (f(z — hU) — fiﬁl? f@) —w@)?
caf UCSHD, [ G,
<2 /W (f(z — leU('l : f@)?, 2 J; };ﬂgo
s [, L e "

Combining (22)—(24), we have

x — — f(x))?
0< H(fw)~ H(f) S Ev [/W e ST o 4 e

Recall that the finite second moment of the kernel K ensures that E|UJ?> < oo. Therefore, for
Lemma 2 to hold, it suffices to prove that for any u € R,

(f(z + hu) — f(x))? s 2
/{W At e S L1+ ). (25)

Note that (25) no longer involves the kernel K (-).

We provide some insights why (25) is expected to hold. When s < 1 and p = oo, the Lipschitz
ball condition ensures that |f(xz + hu) — f(z)| < Lh*|ul® < Lh*(1 4 |ul), and (25) clearly holds.
However, when 1 < s < 2, we will only have |f(x 4 hu) — f(z)| < Lh|u| in general, and (25) cannot
be derived by this simple approach. The crux of proving (25) for 1 < s < 2 is that, when f(x) is
close to zero, the difference |f(x + hu) — f(z)| also need to be small to maintain the non-negativity
of f(z—hu). In Section 3.1.3, we will essentially show that |f(x+hu)— f(z)| < L/ f(z)hs(1+|u|),
which leads to (25).

3.1.2 Approximation by C? functions

We need the following lemma to replace f with a smoother function g:

Lemma 3. Let f € Lipy, 4(L) be a non-negative function, with s € (0,2] and p > 1. Then there

exists C = C(s,p,d), such that for any h > 0, there exists a non-negative function g € C*(R?) such
that

If = gllp < CLR, (26)
V2g()llopll, < CLA* 2. (27)

14



Note that Lemma 3 is essentially the equivalence between the K-functional and the modulus of
smoothness (Lemma 14 in Appendix A), with an extra constraint that g being non-negative, which
turns out to be crucial in proving the inequality (29) below.

Let g be given by Lemma 3. Then

[ Ui f@r,
[0,1]¢ f(a:) + Lhs

< 3/ (f (z + hu) — g(z + hu))* + (f(z) — g(2))* + (9(x + hu) — g(x))?
— Joe f(z) + Lh®

< 3/ (f(z + hu) — gz + hu)* + (f(2) — g(x))?
-~ Jpae

dx

The dx
i / (hVg(x)"u)? + (g(x + uh) — g(z) — hVg(x) " u)?
[0,1]¢

F(0) + Lhe d

6”f—gH% 6 2 2 2/ \Vg(l’)’z
< . YIS
<SS gt ol | e

(28)
where
pn(z,u) 2 g(x + uh) — g(z) — hVg(z) wu.
We bound the three terms in (28) separately. By (26), the first term is upper bounded by

615 — gl _ I/ -
Lhs® - Lh

2
WMo s
S ~Y
For the second term, by the integral representation of the Taylor remainder term, we have

‘ph(‘rvu)’ =

/01(1 —t)u' V2g(z +t-hu)u - dt‘

1
gh%]?/ (1= 1)[V2g(x + £ - hu) |opdt
0

and hence

1
lon( w)llz < h2[ul? ’/0 (1= )IV2g(z +t - hu)lopdt

2

(a) 1
éh%ﬁ:ﬁﬂ—www%@+twm%ﬂﬂt

(b)
< h2|ul? - Lh*™2 = Lh®|ul?,

where (a) follows from the convexity of norms and (b) follows from (27). Thus the first two terms
in (28) are both upper bounded by O(Lh*|u|?). Hence, to show (25), it remains to prove that

L PP
/{W A ST vield (29)

g

where 0;g = R
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3.1.3 Application of the Hardy-Littlewood maximal inequality

Finally, we use the non-negativity of g and the Hardy-Littlewood maximal inequality [Ste79] to
prove (29). Fix any 7 > 0 to be optimized later. Since g is non-negative, we have

0 <g(x+Te;)
=g(z) + 7 0ig(x) + (9(z + 7e;) — g(x) — 7 - Dig(x))
and thus
—7-0ig(z) < g(z) + (9(z + 7e;) — g(x) — 7 - Oig(2)).
Replacing = + 7e; by = — 7e;, we also have
7 0ig(x) < g(z) + (9(z — 7e;) — g(x) + 7 - 9ig(x)).
Combining these two inequalities, we arrive at the following pointwise bound:

7 |0ig(x)| < 2g(z) + |g(z + Te;) — g(x) — 7 - Oig(z)]
+19(z — 7€) — g(z) + 7 - 0ig(7)]

1
<2g(x) + 72 / |0iig(x + t - Te;)|dt
1

where for the second inequality we have used the integral representation of the Taylor remainder
term again.

Since the previous inequality holds for any 7 > 0, we choose 7 = 7, = \/h2~5f(z)/L + h? to
obtain an upper bound on the derivative:

) < 29( )
~ /hE s f(x)/L + h?

Plugging this bound into (29) and using the triangle inequality, we have
, 2
/ Gig(2)I”
[071}d f(ZE) + Lhs
2

5—2 4g(x)° s—2y—1 '
< 2<Lh /[071}(1 Wdﬂf—i-(.[/h ) /[071}(1 </_1 ]a“g(x—l-the,)]dt) dZ’)

24, 24,

1
|0;g(x —I-Tx/ |0iig(x 4+t - T€;)|dt.
1

Next we upper bound A; and A, separately. For Aj, we use the triangle inequality again to
obtain

_ s—2 49(1')2
Ay =Lh ./[01]d —(f(a:) +Lh5)2dx

- (9(z) — f(@)* + f(x)?
< 8Lh*~? /[Ol]d foth) da

-2, — @) (F@)?
< 8Lh < 0,14 L2h2s BT r +/[071}d (f(ﬂi‘))2d )

lg — f||2 2
L2h2s <Lh

= 8Lh*2.
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Hence, it remains to upper bound Az, and it further suffices to prove that for any z\; € [0, 141,

1 1 2 1
/ </ |0iig(x 4+t - Txei)\dt> dx; < C'/ |059(2)|? dx; (30)
0 \J-1 0

for some constant C' > 0. In fact, if (30) holds, then integrating both sides over z\; € [0, 1]4-1
together with the fact ||9;gll2 < ||0:igllp, < Lh*=2 completes the proof of (29).

The proof of (30) requires the introduction of the maximal inequality. Fix any a; € [0,1]47!
and define h(y) £ |959(x\;,y)|, (30) is equivalent to

/01 <% /_+ h(y)dy>2d:1: < %/01 Ih(x)2da. (31)

For any function h on the real line, recall the Hardy—Littlewood maximal function MT[h] is
defined as

+t
M) 2 sup o " (2. (32)
Y

—t
Next we recall the maximal inequality on the real line [Ste79]:

Lemma 4. For any non-negative real-valued measurable function h on the real line R, the following
tail bound holds: for any t > 0, there exists a universal constant Cv > 0 such that for p > 1 we
have

b\l
Il < € (25 ) " Ial

Applying this lemma with p = 2 yields (31) (and thus (30)), as desired, completing the proof
of Lemma 2.

We finish this subsection by noting that the proof technology developed based on the maximal
inequality in fact leads to the following upper bound on Fisher information, which may be of
independent interest.

Theorem 5. Let f € C'(R?) be a density function supported on [0,1]% with an absolute continuous
gradient. Denote its Fisher information by

A Vi
ap= [ FL

Then for any p > 1, there exists a constant C, > 0, such that

d
T(f) < Cp Y 110 fllp-

1=1

The connection between this result and the previous proof of Lemma 2 is the well-known fact
that the local expansion of y2-divergence is given by the Fisher information. Indeed, by Taylor
expansion (assuming for simplicity that d = 1 and f = g), the LHS of the main estimate (25)
behaves as h2J(f). Thanks to Theorem 5, we can control the Fisher information by J(f) =
O(||f"||2), which, by the smoothness assumption, is O(Lh*2), and leads to the desired (25).
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3.2 Second-stage approximation error and variance

In this subsection we analyze the performance of our pointwise estimator H (z) in estimating
— fu(x)In fi,(z) for any 2 € RY. Recall that

fu(z) = y Kn(z —y)f(y)dy
is the smoothed density, and
fu@) = 13" Ko - x0)
h - n i h i

is our estimator of fy(z), and K,(t) £ h=@K(h~'t). In addition to the unbiasedness of fj(x) in
estimating fy,(z), it satisfies some more properties: the random variable k¢ fh(x) roughly follows a
binomial distribution B(n, h% f;(x)). This property confines to the one-dimensional simple example
that h?fy(x) can be viewed as the discrete probability in the bin containing x, and h? fh(x) is the
empirical frequency. Specifically, we prove the following lemma:

Lemma 5. If the kernel K is non-negative everywhere, then there exists a constant c; > 0 depending
on d and ||K||s only such that:

1. If fr(z) < Czlnlzf, we have

o (o)< L) 21

nhd

2. If fn(x) > C%;z;‘, we have

P (fhéx) < falz) < 2fh(x)> >1-—n5

Note that the concentration property of fy(z) in Lemma 5 behaves as if nfy(x) is distributed
binomially as B(n, h?fy,(z)). It shows that, based on our threshold to split the smooth and non-
smooth regimes in (16), the probability of making an error in classification is negligible.

Now we prove that our estimators H; and Hy in (14)-(15) perform well in the corresponding
regimes. To bound the variance, we invoke the well-known Efron—Stein—Steele inequality:

Lemma 6 ( [Ste86]). Let X1, X, -+, X, be independent random variables, and for i =1,--- ,n,
let X! be an independent copy of X;. Then for any f,

1 n
Var(f(Xla"' 7Xn)) S §ZE(JC(X17 7Xn) - f(X17 7Xi—17X7{7Xi+17"' 7Xn))2'
i=1

To apply Lemma 6, we need to bound the difference between the original estimator and the
perturbed one where one observation is substituted by a fresh copy. Recall that H, depends only on
the second part of observations X, and H, depends on the last two parts X U X®). Hence, we
may define H 1s ﬁé to be the perturbed estimators where exactly one observation chosen uniformly
at random from X U X®) is replaced by its independent copy. The following lemmas summarize
the upper bounds of the bias and the second moment of the perturbations:
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Lemma 7 (Non-smooth regime). If fp(z) < %, 1 > 2||K||eoc2, 0 < Tealn2 < e and n >
4dco Inn, we have

[BE (2) + fu(@) o fu(o)] S
D - 1
E[(H1(z) — H{(x))2] S B—ep2d’

Lemma 8 (Smooth regime). If fp(z) > % with sufficiently large constant ¢c; > 0 (as in Lemma
5), h <1 and nhd > 1, we have

IEH, () + fr(z)In fi(z)] S nhdﬁ
E[(f(z) — ()2 < 220+ (U0 fu@)”)

n2hd
For the final pointwise estimator H(x) in (16), let H'(z) be its perturbed version where exactly
one observation chosen uniformly at random from X® U X () is replaced by its independent copy
(note that XV is excluded). The following guarantee for H(z) follows from Lemma 5-8:

Corollary 1. Under the assumptions of Lemma 5-8, we have

1

N 2
£ (B @)X O]+ i) (o)) S s (33)
~ ~ x n T 2

3.3 Overall performance

Now we are ready to analyze the overall performance of the integrated estimator H= fRd H (x)dz.
As argued in Section 3.1.1, we assume without loss of generality that f,(-) is supported on [0, 1]¢,
so that H = f[o 14 H(z)dz. By the triangle inequality, we have the following decomposition of the

mean squared error (recall that X(1) is the first part of observations for regime classification):

E(H — H(f))* <2 [(H(fi) = H()* +E(H ~ H(f)" (35)
=2[(H(f) = H())? + EEHIXD] = H(f))? + ENar(H]x V)]

We analyze different types of errors in (35) separately:

e First-stage approximation error: by Lemma 2 we know that

[H(f) = H(fn)| < L*.

e Conditional bias (second-stage approximation error): by Corollary 1 and Cauchy—Schwarz,
2
E(B[A|X Y] - H(fy))? =E ( | (BE@XO) 4 fife) o) d:c>
[0,1]

~ 2
< /WE (BE@IXO)+ fu@)in fu@) da

< 1
~ (nhdlnn)?’
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e Conditional variance: conditioned on X the estimator H is a deterministic function of
(X @, x (3)) consisting of mutually independent observations. We now apply Lemma 6 to
bound the variance. For ¢ = 1,2,---,2n, define ﬁ,(m) to be the pointwise estimator in
(16) with i-th observation in (X®, X®)) replaced by an independent copy, and let H; =
f[O,l]d H;(z)dz. Then by Lemma 6, we have

2n
& 1 1 & T \2 1
Var(H|xW) < 5 E'_l:E[(H — H)?xW]

x@

2n 2
_ % S E ( (H(z) - ﬁ,-(@)m)
=1

[0,1]¢

Since K has compact support (cf. Assumption 1), by our estimator construction we have
Leb({z € [0,1]% : H(x) # H;(z)}) < h?. Hence, by Cauchy-Schwarz, we have

Combining the previous two displays, the conditional variance can be upper bounded as (recall
the definition of H'(z) before Corollary 1)

E[Var(]X )] < nh /[0 l]dE(ﬁ(x) i (2))2da

34) 1 Fr(@)(1+ (In fo(x))?)
<L )

n2—¢pd + n
1 (InL)?
~ p2-epd n

where the last inequality follows from Lemma 10 and || f5|l, < | fll, + [If — frllp S L(1 + k%)
(cf. (12)).

Substituting all three types of error bounds into (35), we obtain

; 2\ 1 1 In L
sup Ef(H-H S LAY + + + . 36
(fELipS’pyd(L) ! ( (f)> ) nhdlnn = pl-c/2/}d Vn (36)

Finally, we choose h = (Lnln n)_s%d (note that the condition Lh® < 1 in Lemma 2 holds due to
the assumption L < (nlnn)*/4) and e < +1q in (36) to obtain

. 2 2 .
sup Ey (H—H(f)) S(nlnn)_mLﬁd +n_%lnL,
feLipg p q(L)

completing the proof of Theorem 4.
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4 Further discussions

4.1 Extensions to densities satisfying periodic boundary conditions

In this section, we relax the assumptions that the underlying density f is supported on [0, 1]d and
smoothly vanishing at the boundary, and establish the corresponding minimax rates in entropy
estimation.

Note that since the L, norm in (2) is taken in R?, the definition of the Lipschitz norm requires
that the density f connects to zero smoothly at the boundary of [0,1]¢, which may exclude some
well-known densities such as the uniform distribution. This assumption can be relaxed by consid-
ering the “periodic boundary condition”, which requires that the periodic extension of the density
f lies in the Lipschitz ball. Specifically, we define a new Lipschitz ball

Lip} (D) = {f « [1fllipz, , < LY {f : supp(f) € [0,1)7},

s,p,d T
where the Lipschitz norm || - HLipﬁpd is defined in the same way as (2) to (4), with the only

exceptions that the L, norm is taken over the unit cube [0, 1]¢ instead of R?, and f is periodically
extended to the entire space R? via f(z mod 1) £ f(xy — |x1], 22 — |22], - ,2q — |24]), for
r = (z1,---,24) € R% Note that in this case we may also identify the unit cube [0,1]% as the
d-dimensional torus T¢.

The periodic boundary condition is weaker than the previous Lipschitz ball condition, in the
sense of the norm comparison || f ”Lip’;,p,d < C||fllLip,,, , for some constant C' > 0.5 This assumption
has already appeared in the literature [KKPW14], and the special case s = 2,d = 1 corresponds to
f(0) = f(1), f/(0) = f'(1). The next theorem shows that, the minimax rate remains unchanged in
this weaker setting.

Theorem 6. For any d € N,0 < s < 2 and 2 < p < 0o, there exists Ly > 1 depending on s,p,d,
such that for any Ly < L < (n1lnn)*% and any n € N,

2
e((nlnn) #iL5+ +n "3 InL) < <inf sup Ej(H — H(f))2)
H feLip;,p,d(L)

s d
< C((nlnn) s+ L5+ 4 n"e InL)
where ¢, C > 0 are constants depending on s,p,d.

Theorem 6 is a straightforward extension of Theorem 1. Since || - ”Lip;pd is a weaker norm
than || - ”Lips,p, ,» the minimax lower bound in Theorem 1 continues to hold for the new Lipschitz
ball. As for the upper bound, we use the same estimator construction as in Section 2, with the
understanding that the kernel convolution is taken with respect to the periodic extension of f (or
equivalently, is taken on the torus T¢). For the analysis of this estimator, we apply a version of the
maximal inequality on the torus T? in Section 3.1, and the remaining arguments in Section 3 are
essentially the same. We postpone the detailed proof to Section C.3 in the appendix.

4.2 The case of s > 2

Note that the minimax lower bound in Theorem 7 holds for all smoothness parameters s > 0, but
our current proof techniques of upper bound only work for the smoothness regime of 0 < s < 2.
There are two main reasons:

d
®This can be shown by applying the triangle inequality to || Z?:l fillLip, ,, 4> Where fi(z) = f(z — z;) is the
translation of f with {z1, -, 34} = {—1,0,1}¢. Consequently, one can choose C' = 3.

21



1. Classifying smooth/nonsmooth regime (Lemma 5) fails when s > 2;

2. Bias correction based on Taylor expansion (Lemma 8) in the smooth regime does not extend
to s > 2.

The failures of Lemma 5 and 8 are intrinsically related to the fact that one has to use kernels
with negative parts to take advantage of smoothness s > 2 [Tsy09]. Concretely, Lemma 5 is closely
related to the problem of adapting to the lowest values of density in density estimation [PR16]. It
was conjectured in [PR16] that the case of s > 2 exhibit significantly different behavior from the
case of 0 < s < 2. Regarding bias correction, when the kernel is no longer non-negative, (71) can
fail even when fp,(x) > 0, which makes the proof of Lemma 8 break down. It is possible that bias
correction based on Jackknife may achieve better performances when s > 2. For the application of
this approach in entropy estimation, we refer to [MSGHI16,DF17].

Finally, we remark that the high smoothness regime of s > 2 may not pose significant challenge
for other problems of nonparametric statistics. For example, in the Gaussian white noise model,
since it is a location model, the concentration of kernel estimators can be directly guaranteed using
concentration inequality for sums of independent bounded random variables, which turn out to be
sufficient for non-smooth functional estimation [HIMW17]. Even in the density model, the case
of s > 2, which indeed calls for kernels with negative parts, can be easily handled. For example,
to estimate density itself under Lo risk, we can simply truncate the negative density estimates
to obtain a better performance [Tsy09]; in smooth functional estimation [BM95, TLRvdV08], the
case of s > 2 is also not special. It is mainly in estimating non-smooth functionals that designing
procedures that can adapt to low density regime becomes a crucial challenge [PR16].

4.3 Connections to discrete entropy estimation

Another intuitive idea for estimating the entropy of densities is to reduce it to a discrete entropy
estimation problem. The motivation is that for a continuous random variable X with density f, it
is well-known [Rén59] that the Shannon entropy of its quantized version [X]; £ |kX |/k satisfies
H([X]g) = dlogk + H(f) + o(1) as the quantization level k — oco. Thus, to estimate H(f), we
can choose an appropriate k, quantize all the observations, and apply the optimal Shannon entropy
estimator developed in [JVHW15, WY 16]. Below we show that this approach achieves the minimax
rate if s <1.

For the ease of exposition, we consider s € (0, 1] and p > 2, with general dimension d € N. We
split the unit cube [0,1]¢ into S = h™? sub-cubes I, ..., Ig of size h, where h is the “bandwidth”
we will choose later. For ¢ =1,--- ,.5, define

1 n
pi:/ftdt, ﬁi:— ]].X'E[i.
EC PRLLE

as the “probability” and the “empirical frequency” of the cube I;, respectively. Since the entropy
of the piecewise constant density f(x) = Ziszl pil(x € I;) is H(fp) = Zlepi 1npil_ +Inh?, the
problem of estimating H(f3) is reduced to a discrete Shannon entropy estimation problem. We can
then use the minimax rate-optimal estimators ﬁdiscrete [WY16,JVHW15] for the discrete entropy
Zle —p; Inp; to define the estimator H for the entropy of the density H (f) as

I:I = I:Idiscrete +1In hd- (37)

One can show that |H(f) — H(fy)| = O(Lh®). The optimal bandwidth is h =< (Lnlnn)~Y(s+d),
leading to the following risk bound, with an additional mild assumption that the density is bounded.
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Lemma 9. Ford € N,s € (0,1],p > 2, the performance of the estimator H in (37) is given by
A~ 2 s d 1
sup E(H — H(f))? gc((nlnn)—mLm —|—n_§1nL),
FeLips p a(L),[|flloo <L

where C' > 0 is a constant independent of n, L.

A Auxiliary lemmas
The first lemma upper bounds the quantity [ f(z)(In f(x))*dz for any density f € Lip, , 4(L).

Lemma 10. Let f be a density on [0,1]% with || f||, < L for some p>1 and L > 0. Then

2 4 14el/e-1) » 2 )
[, s o as < o S (L2 )

The following lemma presents the property of the best approximating polynomial of —x In x on
the interval [0, A], which follows from [Tim63, Section 7.5.4].

Lemma 11 (Best approximating polynomial [JVHW15, WY16]). Let A < 1. Denote by Q(t) =
Zf:o ait! the best approzimating polynomial of —tInt on [0, A] in the uniform norm, we have

CA
sup |Q(t) +tlnt| < e
te[0,A]

where C' is a universal constant. Moreover, the coefficients satisfy:

| < 2%FAL 1=0,2,3,...k
la;] < 2°) —In A.

Lemma 12 (Variance of second-order U-statistics). Let

2
Y § X X

1<i<j<n
where X1, ..., X, are i.i.d random variables with finite second moment. Then
4(n —2) 2 2 2(EX12)2
V < —(EX7)(EX —.
ar(UQ) = n(n—l)( 1)( 1) + n(n—l)

Lemma 13 (Bennett’s inequality [BLM13]). Let Xy,..., X, € [a,b] be independent random vari-
ables with

1n

2 4

2 25" Var(X;).
o n ar(X;)

Then we have

n n

%ZXi—%ZE[Xi]

1=1 1=1

g

n€2
> s) < 2exp <—2(02 + (- a)6/3)> '
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Finally, we need the equivalence between Peetre’s K-functional and modulus of smoothness
on R?. For a multi-index 8 = (B1,...,084), we define |3] £ Zle |Bi], and write the differential
operator Hle(a/(?xi)ﬁi as DP(-). Now for r € N, the differential operator D" is defined as

D"f £ sup |Df|.
|Bl=r

For p € [1,00] and r € N, the Peetre’s K-functional for f defined on R? is defined as

K.ty 2 nf £ = glly + 71079l

where the infimum is taken over all functions ¢ defined on R? such that DPg for any |3| = r — 1 is
locally absolutely continuous. Also recall the definition of the modulus of smoothness w,(f,t), in

(3)-

Lemma 14. For any p € [1,00] and r € N, there exist universal constants M = M(r,p) and
to = to(r,p) such that for any 0 < t <ty and f defined on RY,

MTE(f,1)p < wr(f )y < ME(f,17),. (38)
Furthermore,
wy(ft)p < ME"||D" fllp, 0<t<to (39)
and
wr(fst)p <27 fllp, >0, (40)

For a proof this lemma, see [DL.93, Chapter 6, Theorem 2.4] for the case of d = 1, and [JST77]
for the general R?. Finally, (39) follows from (38) by choosing ¢ = f, and (40) follows from the
definitions (3)—(4) and the triangle inequality.

B Proof of lower bound

In this section we prove the following lower bound for entropy estimation:

Theorem 7. Let s > 0 and p > 1. Then there exist constants Ly > 1 and ¢y > 0 depending on
s,p,d such that the following holds. For Lo < L < (nln n)s/d, let

N

R, & <inf sup Ey <ﬁ - H(f)>2>

H fe€Lip, , 4(L)

Then

o Foranyp € [l,0), R, > co((nlnn)_s%dLsid +nl InL).
__s_ _st2d __d_ 1
o forp=o00, R, > co(n s+td(lnn)” std Ls+d + n=21InL).

Note that Theorem 7 implies the lower bound part of Theorem 1, which in fact holds for any
s> 0 and any 1 < p < co. The second term Q(n_l/ 2In L) is essentially the parametric rate, where
the only non-trivial part is to establish the proportionality to In L. This is shown below by means
of a two-point argument provided that L is at most polynomial in n:
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Lemma 15. Let s > 0, p > 1. For any a > 0, there exist constants Lo, cg,ng > 0 depending on
s, p,a such that for any n > ng and Lo < L < n%,

R, > con_% InL.
Now our remaining goal is to show that for p € [1, 00),
R, > (nlun) =aLa, (41)

The outline for the proof of (41) is as follows: In Appendix B.1 we reduce the nonparametric
problem to a parametric subproblem in the Poissonized sampling model. The minimax risk in
the Poissonized sampling model is essentially no larger than® that in the original i.i.d. sampling
model (cf. Lemma 17), and the central advantage of the Poissonized sampling model is that the
sufficient statistics become independent (cf. (50)), which simplifies the lower bound construction.
The minimax lower bound for the parametric submodel is proved by a generalized version of Le
Cam’s method involving a pair of priors, also known as the method of two fuzzy hypotheses [Tsy09].
In Appendix B.2 we construct the priors using duality to best approximation and Appendix B.3
finishes the proof.

B.1 Reduction to a parametric submodel

Let dy, dq, d2, d3 be positive constants to be specified later. Set
h = (doLnlnn) 5+, S = (2h)~%. (42)

Without loss of generality we assume that S is an integer. Fix

o€ (0, %) . (43)

Let I1,...,Ig be the partition of the large cube [%, %]d into S smaller cubes of edge length h, and
t; denote the leftmost corner of sub-cube I;, ie., I; = t; + [O,h]d. Let ¢ and w be some fixed
smooth probability density functions on R? with finite entropy which vanish outside [0,1]% and
[0, 1]d\[%, %]d, respectively. The smoothness of g and w on R? implies that their derivatives of any
order vanish at their respective boundary.

0 dglnn]s

To each vector P = (py,...,ps) € [0, = , we associate a function

S .
o) 2 3 gaa () + 1 S) i) (44)

i=1

By the choice of «, fp is non-negative everywhere. Moreover, since w is smooth on R? and vanishes
outside [0,1]¢, the function fp connects to zero smoothly on the boundary. The next result is a
sufficient condition for fp to lie in the Lipschitz ball.

Lemma 16. If L > Ly for some constant Ly depending only on w,
S
1 207 \*
— D < 45
S ;pf - <nlnn> ’ (45)

and do > 0 is sufficiently small depending only on (g, Lo, C1, s,p,d), then fp € Lipy , 4(L).

SIn fact, the minimax risks of the i.i.d. sampling and Poissonized sampling models are closely related and it is
simpler to show that the estimator constructed in Section 2 satisfies the same risk bound in the Poisson model; see
a previous version of the current paper [HJWW17].
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Proof. Let

S
~ 1 t—t;
Pt)éE pi’ﬁg< n )
i=1

Then fp = fp+ (1 — Sa)w. Since || fp|Lip < | fpliLip + (1 — Sa)||lw|Lip and Sa < 1, after choosing
Lo = 2|lw||Lip, it suffices to show fp € Lip, , 4(L/2) for L > Lg. Observe that

s\ s\
el = '9””< > ) =h8||gup-doLnlnn<§pr> , (40

the condition (45) ensures that h=*|fp|l, is upper bounded by 2doC4|gl|,- L. By (39) in Lemma 14,
(46) implies that w,(fp,t) < Lt*/4 for any ¢ > h and dp small. For ¢ < h, further observe that for
r = [s], we have

1
S 5 S D
, Drg 1 D’g 1
1" ol = 1272l (5 Zﬁ) =129 gorninn <§ Zﬁ) (47)
=1

Hence, hi_SHDT’prp is upper bounded by 2dyC1|D"gl|, - L. By (40) in Lemma 14, (47) implies
that w,(fp,t) < Lt*/4 for any t < h and dj sufficiently small, completing the proof. O

Now we would like to reduce the original nonparametric model f € Lip, , 4(L) to some para-
metric submodel f € {fp : P € P}, with a properly chosen P, and impose an iid prior on the
coefficient vector P with mean «. However, fp need not be a valid density, since

/W Fr(t)dt =143 (i~ )

need not normalize to one. To resolve this issue, we show that the minimax rate remains unchanged
as long as || f||1 is sufficiently close to one. To this end, let us define a new model: instead of the
original sampling model with a fixed sample size n, we draw N ~ Poi(n| f]|1) i.i.d. observations
from the density W In the new model, the parameter set of f is a parametric one {fp : P € P},

where S

dslnn S 1

2P : i —a)| < ————
& { € [0’ n } ;(p a)' ~ nhi(lnn)? lnL}

S
1 2C1 \?
L= ip<
ﬂ{P S;|p| _<nlnn>}

with C7 given in (53). In view of Lemma 16, we have {fp : P € P} C Lipspd(L). We also
extend the definition of entropy to positive functions verbatim: H(fp) = f[o 14 —fp(t)In fp(t)dt

(48)

and denote the minimax risk restricted to the parametric submodel f € {fp : P € P} as

1

3

RP & <1nf sup EfP(H H(fp)) > .
H PeP

The following lemma relates the new minimax risk RY to the original risk R,, in Theorem 7.
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Lemma 17. There exists a constant Co > 0 depending on s,p only that

1
P < et —— .
By < Oy <R5 + nhd(In n)3>

1
n N nhdlnn’

Since our goal (41) is to show R by Lemma 17, it suffices to prove RY

Note that

n N nhdlnn’

S
H(fp) = Co+ H(P)+ (H(g) +dInh) Y p;
=1

where the constant Cy does not depend on P, and we denote, with a slight abuse of notation,
the discrete entropy H(P) = Zis:l —p; In p;. Hence, given the minimax optimal estimator H for
H(fp), the following estimator

H%2H-Cy— (H(g) +dlnh)-Sa
for H(P) satisfies

S

> i —a)

i=1

(E[(H — H(P)))"* < (E[(H — H(fp)])'/* + |H(9) +dlnh]|-

po 1 1
n

< - .-
R Inn nhldlnn’

~

Therefore, to show (41), it suffices to prove

1

. 2
. _ > L
inf sup Ep <H H(P)) R b )

H PeP

(49)

Finally, we note that by the factorization theorem, for the Poisson sampling model, to estimate
H(P) with P € P, the histograms

N
=> UX; €1L) j=1,...,8
i=1

constitute a sufficient statistic. As a result, we may further assume that our observation model is
ind . .
;"% Poi(n - p;), j=1...,8 (50)

and the estimator H in (49) is a function of (hi, ..., hs).

B.2 Construction of two priors

The minimax lower bound (49) follows from a generalized version of Le Cam’s method involving
two priors, also known as the method of two fuzzy hypotheses [Tsy09]. Given a collection of
clistriputions {Py : 8 € ©'}, suppose the observation Z is distributed as Py with § € © C ©’. Let
T = T(Z) be an arbitrary estimator of a function 7'(f) based on Z.
Denote the total variation distance between two probability measures P, Q by
1
V(P.Q) 2 sup P(4) - Q)| = 5 [ I~ .
AeA

where p = du ,q = ‘ég, and v is a dominating measure so that P < v, Q < v. The following general
minimax lower bound follows from the same proof as [Tsy09, Theorem 2.15]:
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Lemma 18. Let oy and oy be prior distributions on ©'. Suppose there exist ( € R,s > 0,0 <
Bo, b1 < 1 such that

000 €O :TO)<(—5)>1— P,
c1(0e®:TO)>(+s)>1—p.
Then

1 -V(F,Fy) = Bo—
2 M

inf sup Py (\T—T( )| > )
T 0€©

where F; = [ Pyo;(df) is the marginal distribution of Z under the prior o; for i = 0,1, respectively.
To apply Lemma 18 to © = [0, d:”l%]s and © = P, we first describe the construction of
the two priors. The following result is simply the duality between the problem of best uniform
approximation and moment matching.”

Lemma 19. Given a compact interval I = [a,b] with a > 0, integers ¢,k > 0 and a continuous
function ¢ on I, let

E, 11(¢;1) £ inf sup Z a;ix’ — (51)
{ai} xzel i=—q+1
denote the best uniform approximation error of ¢ by rational functions spanned by {x=9t1 =92 ,xk}.

Let Ey(¢;1) £ Ey1,(¢; 1) denote the best uniform approzimation error of ¢ by degree-k polyno-
mials. Then

2E4_1 k(95 1) = max /(;5 (t)vy(dt) — /(;5 (t)vp(dt)

(52)
s.t. /tlul(dt) = /tlyo(dt), l=—q+1,....k

where the mazximum is taken over pairs of probability measures vy and v1 supported on 1.
Here we apply this lemma to ¢,(t) £ t'=%Int and

dy
Inn)

TI:( 2 I:[Tlvl]? k:(thln-‘a q:(p-‘

with constants dy,ds > 0 to be specified later. The following lemma provides a lower bound for the
approximation error ¢,(t) £ t'=9Int:

Lemma 20. Fiz g € N. There exists constants c,c > 0 depending on q only such that

liminf k207D E, (4 [% 1]) =

Choosing d; = ¢/d3 with constant ¢ > 0 given in Lemma 20 and in view of the definitions of I
and k, we conclude that

Eq-1(¢g: 1) Z (Inn)*~2,

"The proof of Lemma 19 is identical to that of [WY16, Eqn. (34)], since {z~ %" 792 .. z*} forms a Haar
system [DL93, Section 3.3, Example 2] and hence the Chebyshev alternating theorem holds.
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Let vy and vq be the maximizer of (52). We define probability measures fig, i1 on I = [n, 1] by

fi;(dt) = <1 - / (g)qu,-(dt)> So(dt) + (g)qui(dt) i=0,1.

where §g is the delta measure at zero. It is straightforward to verify that fip and fi; are probability
measures, satisfying

1. [t(dt) = [tho(dt), for all 1 =0,1,...,q+ k;
2. [tintj(dt) — [tintfig(dt) = (Inn)~2;
3. [t;(dt) = n? = di(lnn) =29, for i = 0, 1.

Finally, let u; be the dilation of ji; by a factor of df’l%, that is, if Y; ~ [i;, then @I%Yi ~ .
Then supp(p;) C [0, d?’l%] and, furthermore,

1. [thui(dt) = [tuo(dt), for all 1 =0,1,...,q+ k;
2. [tlntui(dt) — [tIntp(dt) 2 (nlnn)~L;
3. [t9p(dt) = (18n1ya — (4, dy)9(nnn) =9, for i =0, 1.

In the next subsection we will impose the prior where the parameters (p1,...,ps) are iid as
either ug or p1. The utility of the above these properties are as follows: The first condition ensures
the priors p; and po have matching first ¢ + £ moments, and the induced Poisson mixtures are
exponentially close in total variation; this is exactly the distribution of the sufficient statistics
(h1,...,hs). The second property ensures the separation of the functional values, while the third
property ensures the smoothness of the functions fp. Indeed, since ¢ > p, Holder’s inequality yields

/ tug(dt) < < / tpm(dt)f’ < < / t‘{u,-(dt))é < n(l’;ln (53)

where (' is a constant depending on do, ds and p. It implies that controlling the gth moment of u;
for ¢ > p also controls all of its lower-order moments.

B.3 Minimax lower bound in the parametric submodel

In this subsection we invoke Lemma 18 to finish the proof of (49), thereby proving the lower bound
in Theorem 1. Consider the probability measures pug, ¢t1 constructed in Appendix B.2, and define

1

nlnn’

A2 /tlnt,ul(dt) - /tlnt,ug(dt) > (54)

Put a = [tug(dt) = [tpi(dt) and recall the parameter space P defined in (48). By (53) and the
assumption L < (nlnn)*/9, for large dy (and therefore small d;) we have

diS < dy

< <
0<Sas nlnn ~ nhdlnn —

which fulfills (43).
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Let uZ@S denote the S-fold product of p;. Consider the following event:
13 A
E;2{P:PcP}nNP: Eijlnpj—Emplnp SZ , 1=0,1.

We first show that uZ@S (E;) — 0 as n — oo for any ¢ = 0,1. Recall the definitions of S and h from
(42). By Chebyshev’s inequality and the fact that u; is supported on [0, w]

,u?s {P:

, we have

S

Z(pi - E,uipi)

i=1

1 d
— 3 < | | L -V E i
- nhd(lnn)3lnL} < (nh*(nn)’In Aups [ p]

d 3 2 dglnn 2
< (nh*(Inn)’InL)*- S| ——

n

< hi(lnn)®(In L)? — 0.

Similarly,
S
1 207 \?
S — P 1
{P' Szm‘ ~ <nlnn> }
(53) s c \?
< — _
lu’ { SZ:: ’pl’ Eﬂz‘pl ) <n1nn>
c1 \ 7% 1
< . _ |P
N (nlnn> Varu?s S;'m
1 /Inn\%
< (nl 2
< (nlnn) 5 < - )
= hi(Inn)? — 0
and

Hence, by the union bound, we have 3; £ ,uZ@S(Ef) — 0 fori=0,1.
Now we are ready to apply Lemma 18 to

S
T(0) = H(P) = " —pilup
=1
EM®SH(P) +EM®SH(P) SA
L
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Under the prior o; £ uZ@S, the sufficient statistics (h1,...,hg) are i.i.d. with distribution F; = ’y?s,

where v; £ [ Poi(nA)u;(d\) is a Poisson mixture, in view of (50). Note that uo and p; have
matching first ¢ + £ moments. By [WY16, Lemma 3|, we have

q+k d
2eds lnn> < pdelog 5%

<
V(WoﬂTl) > < gtk

provided that ds log 2‘;—33 > 2. Therefore V (Fy, F1) < S-V(mg,m1) — 0 by choosing constant dy > 0
large enough. Applying Lemma 18 together with Markov’s inequality yields

. 2 ; 1
. _ > 62 —-HP)|>5)2 ———
s B (# = HP)) 2 6% gt (1~ HP) 2 0) 2 o

which is (49), as desired.
Finally, the lower bound for p = oo follows from the same argument, except that we will set
q = 1, choose the bandwidth differently

1

Inn \ s+
h =
<d0Ln> ’

and replace the RHS of (53) by dfﬂ%.

C Proof of Theorems 2, 3 and 6

C.1 Proof of Theorem 2

We prove the upper and lower bounds separately.

C.1.1 Proof of upper bound

First we propose the entropy estimator H for the unbounded support case. We begin with a lemma
for the tail of density f € Lipg”p’d(L).

Lemma 21. Let f € Lipg”IJ,d(L) with p € [2,00) and Orlicz function ¥ of rapid growth. There exist
constants Cy, C1,Cy > 0 depending on p,d,x(¥),¥(1), L only, such that

1 Ch
flx)In —dzx| < —, 55
‘/|:E|ECO\II1(7L) (=) f(z) n (55)
f(z)1In? f(z)dz < Cs. (56)
Rd
Proof. We first prove the second inequality (56). Since tIn%¢ < t1/2 4 3/2 for all ¢t > 0,
f(2)In? f(z)da < / f(z)2dz + / f(z)2dz. (57)
Rd Rd R4
By Cauchy-Schwartz and ||f|l2 < || f]|, < L, we have
: :
fz)2de < < f(:z:)2dx> ( f(x)dm) <L (58)
R4 R4 Rd
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For the second integral, by the convexity of ¥ and ¥(0) = 0 we know that there is a constant a > 0
depending only on ¥(1) such that ¥(a) > 2. Then by Cauchy-Schwartz again,

z)3dr < Za% xz)dx E<a%. 59
[, s@hds < 20) </|m|gaf() ) < (59)

Since for any = € R?, we have

o0

§L+Z/ ! dx

b—o Y pFa<|z|<kF+1la \If(|3;‘|)

2 (2kkH1q)d
U(rka)

IN

L+ < o0, (60)

k=0

where the finiteness follows from ¥(xFa) > \If(a)2k > 22" by the rapid growth assumption with
parameter xk = (V). Combining (57)—(60) gives (56).
To establish the first inequality (55), let X ~ f. Then by Cauchy—Schwartz,

1
‘/ISC|>CO‘I/1(7L) f(x) 8 mdw

= [Em 7 1012 w1 )|

< VE[(In f(X))2] - P(X] > Co¥~1(n)). (61)

The probability P(|X| > Co¥~1(n)) can be upper bounded easily:

1 1 L
P(|X| > Co¥ ™" (n)) < T(CoU () /Rd V(|z]) f(z)dz < T(CoU1(n))

By the rapid growth property of ¥, choosing Cy = k% we have U(CoW~!(n)) > n®, and therefore

_ L
P(|X] > Co¥~'(n)) < —. (62)
Using the upper bound of E[(In f(X))?] in (56), a combination of (61) and (62) gives (55) and
completes the proof of the lemma. O

Let Cp be given in Lemma 21, and R £ Co¥~!(n) > 1. We define the entropy estimator H by

H= H(z)dz,
lz|<R

where the pointwise estimator H () is defined in (16), with the same parameters except that the
bandwidth h is chosen to be

h = co(nlnn)~ 5 . R7GFD, (63)
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To show the upper bound, first note that if the density f is indeed supported on [—R, R]?, then
the scaled density g(z) = f(R(2x — 1)) is supported on [0, 1], with g € Lips7p7d(L(2R)8+d(1_1/p))
and |\g||, < L(2R)™~1/P)_ Moreover, the rapid growth property of ¥ ensures that R = o(n?) for
any £ > 0, where the hidden constant depends on ¥(1),x(¥) and e. Following the same analysis
in Section 3, and noting that the scaled bandwidth becomes h/(2R), we have

@Nﬁ—mﬁYY<c<mW1W (h/R)* TW%WE+%9

for some C' > 0 depending on s,p, d, x(¥), ¥(1), L, where the hidden constant in the O(n~/2) term
is thanks to (56) in Lemma 21. Hence, plugging in the bandwidth in (63) gives the desired upper
bound. In the general case, we may simply truncate the density f onto the set {x : || < R} and
apply the same analysis®, with the additional error upper bounded in Lemma 21 which is negligible.

C.1.2 Proof of lower bound

The proof of the lower bound is similar to Section B, with a slightly different construction. Since
the parametric rate Q(n~/2) is trivial, we only need to show the first term. Set
__1 _1 _d -1 R —1
h=(nlnn) s+d - [U™"(n)]pG+d R =cy¥ ™" (n), S = —a (64)
where ¢y > 0 is a small numerical constant to be specified later, and without loss of generality we
assume that S is an integer. Fix a € (0,57'), and constants dy, da, d3 as in Section B.

Let Iy,. .., Is be the partition of [0, R]Y — [0,1]¢ into S smaller cubes of edge length h, and
denote the leftmost corner of sub-cube I;, i.e., I; = t; + [0, h]?. Let g and w be some fixed smooth
probability density functions on R? with finite entropy both of which vanish outside [0, 1]¢. Note
that the smoothness of g and w on R? implies that their derivatives of any order vanish at their
respective boundary.

To each vector P = (p1,...,ps) €

S
R 1 [t—t
=2 a0
i=1

By the choice of o, fp is non-negative everywhere. We show that with a proper choice of the vector
P, the density fp lies in the Lipschitz ball Lipgfpd(Lo) for a proper constant L.

[0, d:”l%]s , we associate a function (also appeared in (44))

i>+ﬂ—5®w@)

Lemma 22. Let p > 0. There exists a numerical constant ¢y > 0 depending on (V) such that if
1 » 201 \?
S Zpl - <nlnn ’

then fp € Lipgfpd(Lo) for some constant Lo > 0 independent of n.

Proof. We first verify the Lipschitz norm condition, whose proof is similar to Lemma 16. Define
fp as in Lemma 16, it suffices to show || fPHLlpsp , < Lo for some constant Lo independent of n.

8The density after truncation is approximately a density, which integrates to 1 4+ O(n~*) following the same line
of proofs in Lemma 21.
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Observe that

Al

S
9
1ol = 19l (hdZﬁ)
=1
d S P
lgll,R? (1
< P = . 65
T g
d 1
ch*|gll T ,)\"
_ 0 P

the condition ensures that h=*|| fp||, is upper bounded by a constant depending only on ¢, C; and
g- By (39) in Lemma 14, (65) implies that there exists a constant Lo independent of n such that
wr(fp,t) < Lot® for any t > h. For t < h, further observe that for » = [s], we have

1
S P
.
1D Felly = g (1S

1=1
1
d S P
[1D7gllp B (1§~ p
< g |52 (6

4 s v
_ o IID"gllp 1
= o= e | g 2

Hence, h"~*||D" fp||, is upper bounded by a constant depending on Cj,g. By (40) in Lemma 14,
(66) implies that w,(fp,t) < Lot® for any ¢t < h, completing the proof of HfPHLlps a < Lo

Next we show that fp satisfies the Orlicz norm condition. Note that the density fp is supported
on [0, R]¢, and

dzlnn
Fo@) < BT gl + fuwlle - 1ar € [0.1]%.
As a result, there exists a numerical constant C' depending on d, ds, U(1), ||¢||cc, ||w||ec such that
4]
/ U(|z|) fplx)ds < C <1 + 0 (U (n)) - %) . (67)
Rd

Since ¥ is of rapid growth, for ¢y = /{(\I’)_m with m € N we have ¥(co¥~1(n)) < n* ™. Hence,
choosing m large enough such that 27™ < ﬂ, the RHS of (67) is upper bounded by a numerical
constant Lg independent of n, completing the proof. O

By Lemma 22, the construction of two measures in Section B.2 still ensures that fp lies in
the Lipschitz ball Lipg”p’d(Lo). Consequently, the remaining arguments (reduction to parametric
submodel, fuzzy hypothesis testing, etc.) in Section B can be applied to obtain

inf sup Ef <ﬁ - H(f))é > = (nlnn)_s%d . [\I/—l(n)]d@_ﬁ)’

H fELip;I:p’d(Lo) ’I’LIHTL

as desired. Ol
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C.2 Proof of Theorem 3
C.2.1 Proof of upper bound

We first prove the achievability part of the plug-in approach. For kernel K(-) satisfying Assump-
tion 1 and f(z) given by (9), Lemma 2 shows that the first approximation error is at most

[H(f) = H(fn)| S L. (68)

Next we upper bound the bias [EH (fy) — H(f3)| of the plug-in estimator. Let ¢(z) £ zIna,
and g(x) be any twice continuously differentiable function on [0,00). By [Tot94, Eqn. (2.5)], for
any u,v > 0,

4(v — u)?

lg(v) = g(u) — ¢'(u)(v — u)| < [[wg” (w) || oo-

Choosing u = fy(x),v = fi(x) and taking expectation at both sides, and noting that

E(fu(x) — fu(w))? < 1E]o/n(@)

nhd
we have

[E(fa(x)) = ¢(fa())] < 2016 — glloo + [Eg(fa(2)) = g(fn(2))]

< 206 — gl + % E(fu(@) — fula))?

1 "
S ¢ = glloo + —75 - llwg" (w) oo
The previous inequality holds for any g, so we may take infimum over g and reduce the problem
to the following lemma:

Lemma 23 ( [DT87, Theorem 2.1.1]). For any real-valued function ¢ defined on [0,00) and t > 0,
there exists a universal constant C > 0 independent of ¢,t such that

: f _ oo t2 i . <C 2 7t o
Lt (19 gl + g (w)]) < Cu2(710)

where w2 (f,t)oo is the second-order modulus of smoothness defined in (99) with o(x) = \/x.
It follows from [DT87, Example 3.4.2] that for ¢(x) = zlnx, we have
wfp(gb,t)oo = 12

As a result, by the previous arguments and Lemma 23 we obtain

E6(u(x)) — 60| £

which integrates into

()~ H < [ B 6@ e 5

)

1

—. (69)

To upper bound the variance Var(H ( fh)), we apply the same arguments in Section 3.3 to obtain

Var(H(f)) < nhe- / E[(fu(2) I fo(2) — f(2) In £l (2))?]dz,

[0,1]¢

where f}’l(x) is the density estimate based on observations X1, Xo, ..., X, with X| being an inde-
pendent copy of X;. For any x € [0,1]%, we split into two cases:
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1. CaseL: f(z) < %, where ¢; > 0 is the constant appearing in Lemma 5. By Lemma 5 and

the union bound, with probability at least 1—2n~°% we have f),(x), f;’l (x) < %. Note that
for any € € (0, 1), there exists some constant C. > 0 such that |[zInz — ylny| < Cc|lz —y|' =
whenever z,y € [0, %] Hence,

E(fu(@) I fu() — fi (@) n f}(2))* < C2El () — fi (2) )

2
_5d Koo\ [[1K]loo
+ 2n . <2' o In o .

Note that for € (0, 1), we have

2(1—¢)

Elfu(@) — f(@)219) = (nh)=20-9) . ‘K ( _th> K <$ _hX1>
xTr — X1>

5 (nhd)—Z(l—E) . ]EKQ(l—E) <

S (k)2 nt fy (2) S =g

where the last inequality follows from fj,(z) < —szd",

2. CaseIl: fp(x) > Clnl%. By Lemma 5 and the union bound, with probability at least 1 —2n~%¢

we have fj,(z), f[L(x) € [f”T(x), 2fn(x)]. Then the mean value theorem gives

E(fu(z)In fu(x) = fi(z)n fi(@))* £ (L + (0 fu(@))?) - E(fa(2) = fi(@))?
- 1Ko 1Kl )*
+2n 5d.<2. I >
< In(@)(1+ (In fu(2))*)

~ n2 hd )

where in the last step we have used that

4 o [z — X 4| K| 0o

Combining the previous two cases, for any z € [0,1]% and ¢ € (0, %) we have

A A ~ ~ nn x n €T 2
E(fu(@)n fulz) — (o) n ff())? 5 - ity o DL LRI

Now by Lemma 10, an integration yields to

| 14+ (1 2
Igl;zd . (nhd)2e +/ fh(:E)( (nfh($)) )dl‘
n [071}11 n

Inn
n2hd

Var(H(fr)) <

(In L)? )

S - (nh)* + o
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In summary, combining (68), (69) and (70), we conclude that

1

[ sup By (H(f) - H(f)>2] s+l % (b

feLips,p,d(L)

Choosing h =< (Ln)_Fld and e > 0 sufficiently small, we arrive at the desired upper bound. O

C.2.2 Proof of lower bound

Next we establish the lower bound. The parametric rate Q(n~'/?InL) has been established in
Theorem 7, so we focus only on the Q(n_s/ (s+d) p.d/ (s+d)) part. Suppose that some plug-in approach
with kernel K(-) and bandwidth h attains a worst-case Ly risk o(n=%/ (T4 L4/(s+d)) We make the
following claims:

1. We must have h > (Ln)_s%d. Otherwise, consider f = 1, we have f;, = 1 and

Bfe) @) = 1 (g [ K0 -1) 2 o

_TL hd R4

By Lemma 5, fh(:p) < 2 with probability at least 1 — n~°¢, Taylor expansion with Lagrange
remainder term give

E[fn(x) 1n fr(2)] — fu(z) In fr(2)

2 575 E) — et - (P B 0y )
2

As a result, since h < (Ln)~/+4)  the overall bias is at least

Hp s = [

<th($) In fi,(z) — fr(z)In fh(il?)) dx

_ s d
2 n s+dLs+d

>
~y Y

nhd
a contradiction to the assumed performance of H ( fh)

2. We must have h < (Ln)~ Y+ Otherwise, h > (Ln)~/¢+9 and by (69) and triangle
inequality, for any f € Lip,, 4(L) we must have

\H(f) — H(fu)| < [H(f) — EH(fu)| + |EH(f) — H(f3)|
A 1
S\H(f)—EH(fh)\JFW
<<n_s+LdLs%d
SIS AL

In the sequel we will construct some f € Lipy, 4(L) such that |[H(f) — H(fx)| 2 Lh® A1,
establishing the desired contradiction. Let f be the density fp which was constructed in (44)
with P consisting of all identical elements (denoted by p), or specifically,

S R t—t; s A
70y =p- o0t () + (- b () £ 10+ ale)
1=1

37



We choose the parameter p = ©((Lh*)~1 A 1) so that f is a density, and choose the smooth
function g to satisfy H(g) # H(g1) for gi(x f[o 14 K(z —y)g(y)dy. Note that the density
f € Hj(L) lies in the Holder ball for small p. By the structure of the kernel-smoothed density,
we may write

=p- Zthgl < ) + fon(t) +&(t)

where fo,,(t) is the kernel-smoothed version of fs(t), and £(¢) can be non-zero only in cubes

which intersect the boundary of [ 4 4]d. Moreover, since f lies in the Holder ball, we have

lf — frlloo S Lh® and |le]|oo S Lh®. Noting that the total volume of all cubes which intersect
the boundary is O(h), we have

H(fn) = H(f) 2 (H(f2n) = H(f2)) +p- Lh*(H(g1) — H(g)) — Lh*In(1/h) - h

Finally, since convolution increases the entropy, we have H(fan) > H(f2),H(g1) > H(g).
Now our choice of p = O((Lh*)~! A 1) gives

H(fy) — H(f) Zp- Lh® — Lh**In(1/h) = Lh* A1,
as desired.

The proof of the lower bound is complete noting that these two claims contradict each other. [

C.3 Proof of Theorem 6

The lower bound directly follows from Theorem 1 since we are considering a larger density class.
For the upper bound, we define the estimator H as in Section 2 except that the kernel convolution
(i.e., the definition of f, in (10)) is understood on the torus T¢. The analyses parallel those in
Section 3, where Lemmas 3 and 4 now need some caution when dealing with the torus T¢. For
Lemma 3, same result holds simply by changing R? into T¢ in the proof of Lemma 3. As for Lemma
4, we remark that the HardyLittlewood maximal inequality also holds on the torus®. O

D Proof of main lemmas

D.1 Proof of Lemma 3

Let K4 be the following non-negative kernel on R%:

d
H (1 —[zi]) r=(x1,...,2q)
i=1

where we note that [, Kq(z)dz = 1. Now define

1
hd h)

9For example, see [Taol5]; the proof follows from that of standard maximal inequality on Euclidean space via the
Vitali covering lemma [Ste79, Chapter 1, Theorem 1].

Kin(z) = Kl
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and
g(z) = y fy) Kan(z —y)dy.

Since both f and K, are non-negative, so is g. Also, by the symmetry of Ky(-),
f@) = 9(a) = [ (£(e) = 1) Kanla - v)dy
Rd
= [ (@) = o = b)) Kata)d

— %/ (2f(x) — f(x — hu) — f(x + hu))Kq4(u)du
R
As a result,
I =gl < /’mf Fo— ) — (a4 bl Kau)du
SIh 5 | Kg(u)du =< Lh*.
Rd

As for the Hessian of g, we have

[V2 ii

y)dy

f( ) Kd n(T —y)dy

’l

2
=g [ S =) Sy )
= % y fl@ = hu) - (6(u; +1) = 26(u;) + 0(u; — 1)) Ka—1(uy;)du

1
T2 /Rdl Afie, fani = hung, i) K (w)duy

where Aieif(a;) £ f(x + he;) — 2f(z) + f(x — he;), with e; being the i-th coordinate vector, and
d(+) is the delta function. As a result, we have

1
IV g(@)illy < 35 /Rd1 AT, f (s = hug, @) llp K a1 (wg)du

1
= ﬁ/Rdl ”Ahel ( )”pKd 1(U\Z)du\l

1
< Lhs - K, _ ' 'XL5_2‘
~ h? /Rdl h d 1(u\l)du\z h

Similarly, for i # j, we have

[ Nij = h2/f:17—hu

f(fl? = hu) - (Ly,e0,1) = Luse(-1,0)) (Luje,1) = Luje(-1,0)) Ka—2(w\,j))du

T R2 /Rd 2/ / Ae;Bne; f (2 = hu) Ka—z(uy ) duidujdun i j)

Ka(u)du
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where Ape, f(x) = f(z + he;) — f(z) denotes the forward difference. Note that

Ahe;Dne; f(x) = f(x + he; + hej) — f(x + he;) — f(z + hej) + f(x)
f(x + he; + hej) —2f(x + he;) + f(x — he; + hej)

2
N f(x + he; + hej) —2f(x + hej) + f(x — hej + he;)
2
[ —hei + hej) —2f(x) + f(z — hej + hey)
2
A%eif(az + he;) + A%ejf(az + hej) — Ai(ei+ej)f(:n)
B 2

we conclude that
1868, £l < 5 (1836, Fllp+ 1830, 7l + 183 0,40, 7)< LA
Then using the same technique, we also have
11V g(@))ijllp < Lh*~2.

Finally, note that [|Allop < /Tr(ATA) < 37, [Ayj], we conclude that

d
V2 gllopllp < || > ![V2g(w)]z'j\ < Z IIV2g(@)]isllp S L2,

,j=1 i,j=1

as desired. n

D.2 Proof of Lemma 5

Applying the Bennett inequality (Lemma 13) to independent random variables Y; = Kp(z — X;),
we obtain

P(|/a@) — fa@)| =€)

2
ne
<2 — .
= ( 2Var(Kn(e — X1)) + 2||Kuooe-:/3hd>
For the variance, by the non-negativity of the kernel K and the density f, we have

Var(Kp(z — X1)) < E[Kp(x — Xl) ]

/Kh x—y)° f(y)dy

Koo 71
< 1Kl /K s (1)
IIK Hoo
—fn(@).
Combining these two inequalities yields the desired result. O
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D.3 Proof of Lemma 7
Recall that E[H;(z)] = Q(fr(x)), where Q(t) defined in (13) is the best degree-k polynomial that

uniformly approximates —tInt on the interval [0, 2 ln"] Thus the bias is upper bounded by
[E[H ()] + fa(z)In fr(z M—Xhml '+ fu(@)In fu(z)

1 2c1Inn < 1
k2 nh?d ~ nhidlnn

S

provided that f;(z) < %.

To upper bound the second moment of the perturbation, first note that ﬁl(a:) does not de-
pend on observations from X®) and is symmetric in observations from X®. Consequently, we
may assume that the original estimator H 1(z) uses the observations X® = (X1,...,X,,) and the
perturbed estimator HY(z) uses observations (X, ..., X"), where Xi=Xjforj=1,...,n—1and
X is an independent copy of X,,. Then

k
i (2) — BL(z) = Zal% S ([T Ko = X5) = [ Knlx — x3)

Je(y \ieJ jed

S (,il) S ] K- x

()<

By the independence of (X, X]) and (X1,..., X, —1),
E[(F(a) — H{(2)*) = 5BI(Kn(r — X) — Ko — X3))%) - B ()] (72

y (71) and the assumption on fj(z), we have

E[(Kp(z — Xpn) — Kn(z — X),))?] = 2Var(Kp,(z — X,,))
2|[Klloofa(x) _ 4ci[|K]loo Inm (73)
B hd - nh2d ’

It remains to upper bound E[H;(z)?]. By Cauchy-Schwarz,

k—1

E[f ()2 < k-3 al“ ST S BT Enle - X5) Kn(x — X2) | - (74)

2
l:O( l |J|=l|T|=l JEJteT

Recall from 71 that

EKp(z — Xi) = fu(),

oo )

EKj(z — X;)° < ==
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Therefore, if |J NT| = r, we have

[T 11 En(z = X)) Kn(e — Xo) (H ”Oijfh( )> ()

jeJteT
= || |[5h™" fu(a)® .

(n—1)!

Moreover, the number of pairs of subsets J, T € ([”l_l]) such that |JNT| =ris
Hence, for 0 < <k —1,

(n;1>‘2 > BT & - X)) Kz - X,)

|J|=L,|T|=l jeJteT

(20 =1 =D 5~ [K]sh= i)
: 2.5

rI((—r)H)2(n—1-20+r)!"

(n—1)! — rl((l =) (n—1-=20+7)!
IR ISR IA K 5 h=" fi(w)
S -l -1-2) & <r> n—1-21+7)(n—2-2147r) - (n—2])

l
21 r dr 2l—r
<> (L) IR o)

r=0

< 92 r 2A—r

<Y () 1K)

<22l§l: 2[|K||occ2Inn " /2c;Inn 2=
N nhd nhd

r=0
_ (2c1Inn 21212 1K [|ooc2\"
N ’I’Lhd —0 C1

(75)

where we have used our assumptions that n > 4k = 4coInn, and ¢; > 2||K||ooc2. By Lemma 11,

we have the following coefficient bound:

2c1Inn -l nh? 3601
< 1 . 2 Cc2 1lnn
ar41] < < nhd > " <261 Inn

2ciInn - 3eo In 2
< 7 -n2 M nn.
n

Combining (74)—(76) yields

E[H 2 < g3 S 2ciInn - 3co ln21 2 2c1Inn 2
[ 1(x) ] < lzzg Y (n nn)”-2 o
— 2k/,4 ( 3021n21nn)2 < 7’L€7

provided that 7caIn2 < e. Now combining (72), (73) and (77) completes the proof.
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D.4 Proof of Lemma 8

Recall that by Lemma 5, with ¢; > 0 large enough we have

P (frate) ¢ (242 2000) ) <ot (78)

Moreover, since both f; and fh are convolutions of probability measures with K}, we have the
deterministic upper bound: for all x,

. . Ko
masc(Fu(@). (@), @)} < Kl = 1512 (79
Consequently, the following deterministic upper bound of |Hy(z)| (in (15)) holds for all z:
|Hy ()| < 1—|—nhd+mlnh (80)
Recall that throughout this proof we have by assumption
c1lnn
> . 1

For ¢(z) = —zInz and E3 denoting the partial expectation taken only with respect to the third
group of observations X (), we have

7(%( ) = fna(@)*

= (/@) = TR (@) ~ Fuz@))’
= (@) = T=E L (falw) — Frale))?

22 (fu(@) = Fro(@)® (fulz) — &),

where the last two steps follow from the Taylor expansion, with &; lying between f;,(x) and fhg(x),
and & lying between f;(z) and &;. The central moments of fj o(z) are computed as follows:

( ZKhx— — ful@ >>3

= SIE(Kn(x — X1) ~ fa(@))®

E(faz(x) = ful@))?| =

< 5 (BEw(r — X0 + fu(e)?)
K
< % (HhHOOEKh( — X1) + fu(x) >
) (1 K[ | o) T9) 253 (@) | K|,
h2d = n2h2d
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and

" 4
E(fn2(z) — fn(z))* =E <% > Knlw - X;) - fh(@)
i=1

%EQ[Kh(x - X1’ + %E[Kh(x — X1)"]

<3 (\\K|!oofh<x>>2+ RNLYES/AC)

<

— n? hd n3 h3d

-2

Consequently, since ¢ (z) = 272, we have

. [M 1 2@IKE
6

= 6fn(2)? n2h2d

(fu(z) — fh,2(x))3]

(83)
(8<1) 1
~ nhilnn’
Similarly, since ¢*(2) = —2273,& > fu(x)/2 and |fp,(z) — &1] < |fulz) — fh72(33)|, we have
) A
E [¢ ), (2) — @) () - m] ‘
_ CE(f o) — F ()

= 3ty hale) = 2@ -

. E<M>2+i.w]

= 3(fu(x)/2)3 | n? hd n3 1,3d

1 1 1

S + < .
~ n2h2dfh(a;) n3h3dfh(x)2 ~ nhldlnn

Then the desired bias bound is a direct consequence of (78)—(84).

Next we upper bound the second moment of the perturbation. First we consider the case where
one observation in X®), say X, is replaced by an independent copy X . In this case, by definition
(15), we have

() — () = 1 (fh,2<x> > iﬁf) [“1 D020 (3 0 — X1) — Ko — X))

n
_ Y’ _ - n—1
Kale = Xp) —Kae =X ¥ T -
n(n —1)fp2(x) 1
Note that (Xy, X,), (X1,...,Xp—1) and fh,2($) are mutually independent. Recall from (73) that
21| K || oo fr(x
E[(Kn(z — X;,) — Kn(z — X,))?] < %. (86)
Moreover,
1 n—1 2 1
_ X, _ 2 s
E [(n 1 ;Kh(x Xz)> fn(@)? 4 —— Var (Ky(z — X))
(71) Koo fn(z) (81)
< fh($)2 + M - fh(x)z. (87)

- (n —1)hd

44



To bound the remaining two expectations, let E be the event fyo(z) € (fu(2)/2,2fn(x)), which
satisfies P(E) > 1 — n™°¢ by (78). Then

I fo2(x)1(E) $ 1+ (In fi(2))?, (88)
Fra(@)?U(E) S fule) (89)
Therefore, by (85)—(89), we conclude that

Bllfa(o) - A3(@)PLEN S Dt |1+ (n (o)) + s (e + 2420

~ n?hd fn(2)? nhd
< a@) (A + (In fr(2))?) n 1

~ n2hd n3h2d

B fu(z)(1 + (In fr(2))?)

- n2hd ’

Moreover, by (78) and (80),

E[(fy(x) — Hy(x) L(E)] < (1 foht s L™

2
a1 ﬁ) P(E°) < n?754(Inn)?,

in view of the assumptions h < 1 and nh¢ > 1. Combining the previous two inequalities with (81)
gives

. N 2)(1 + (In fr(z))?
E[(f(x) — A(@))?) 5 20 E )] (90)
nh
pr we consider the case where one observation in X® is replaced by an independept copy,
and f ,(7) is the perturbed density estimate. Similar to the event £, let £’ be the event fj ,(z) €

(fn(x)/2,2fn(x)). Then on the event E N E’, by the assumption (81), we have fh,g(IE) > fr(x)/2 >

cilnn . 2y
i and similarly for fh72(33)7 and hence

- N 1 1
Hy(x) — Hy(x) = §D1 +C2 D3 + §C'3D37
where

Dy 2 fha(z) - fﬁg(l’)v
Dy 2 1n f,’lz(x —1In fhg(a:)), Cy 2 fh73(x)

; ; 2
Ds 2 frale) ™~ fua@)™ Oy & Zrmy 3 Kl = XKt = X7
1<j

(1>

By independence and the triangle inequality, it remains to upper bound the second moments of
D1, Dy, D3, Cy, C5 separately. By (86),

2| K| fa(z)
2
ED{] < — 57— (91)
By the mean value theorem,
dln¢l? 1
E[D?1(ENE')] < sup ‘ ‘E[D}] < ———, (92)
ce(fn(@)/2.2m (@) | dE n2hd fi,(x)
digh 1
E[D31(ENE")] < sup ‘ E[D?] < 93
Ditl ) celfn(@)/22fn(@)) | € 122l n2hd ()3 (93)
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Using E[X?] = (EX)? + Var(X), we also have

. (71)
E[C2] = fu(@)® + Var(fus(@) < fala)? + 12 &

BICH < (o) + 0 (@) (fu(o)? + %)

n(n—1
2 fh(x) 2
L (fh<x>2+ s > (95)
S oyt L D 8 e

where (95) is due to Lemma 12. Now combining (91)—(95), the triangle inequality gives

A~

E[(Hs(x) — Hy(x))*L(EN E')]

S E[D?] + E[C3IE[DIL(E N E')] + E[C3E[D31(E N E')]
< fn(x)

~ n2pd’

Moreover, by (78) and (80),

2
E[(Hy(z) — Hy(z))*1(E° U E*)] < 1+nhd+ﬁlnm> P(E°U E")

5 n2—5d(1n n)2’

in view of the assumptions h < 1 and nh¢ > 1. Combining the previous two inequalities with (81)
gives

: y fu(z
E[(fa(a) — A@)?] 5 100) (96)
The proof is then completed by combining (90) and (96). O
D.5 Proof of Lemma 9
To analyze the performance of H , we consider the following decomposition:
H—H(f)=H(fn) ~ H(f) + H — H(f»)
. S
= H(fh) - H(f) + | Hdiscrete + Zpi In p;
i=1 (97)
S . S
:hdZ(_—l — —l— —/ f lnf dt <Hdiscrete+zpi lnpi> .
i=1 i=1

The first term deals with the approximation error in the first approximation stage. Note that by
our Lipschitz ball assumption, we have

7 - fh||2—2/\f T

dt < L2h2s
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Now we deal with the difference H(f,) — H(f). For Z; ~ Unif(1;), Y = f(Z;) and ¢(z) = zInz,
we have

pz_ .
i [, F0m A0~ P = Bo(v) - 9(8Y)

which is the gap in the Jensen’s inequality. Using the equivalence between the K-functional and the
modulus of smoothness [JHW17] [DL93, Chapter 6, Theorem 2.4], we have the following lemma.

Lemma 24. [ST77] There exists a universal constant C > 0 such that for any real-valued function
¢ defined on an interval I C R and any random variable X supported on I with a finite variance,

[E¢(X) — (EX)| < Cwi(é, v/Var(X))
where w?(p,t) is the second-order modulus of smoothness defined in [DL93)].
To apply Lemma 24, we note that [DL93, Chapter 2.9, Example 1]

w]%h(—:nlnw,t) =t

and
1
Var(¥) = 5 | £ - 22| a.
As a result,
\H(fp) — Z |E¢(Y;) — p(EY;)| < S ZwR+ Var(Y;))
i=1 i=1
S 1 S
§§:\/ ar(Y;) < §§:VMO’
i=1 i=1
S
}:/Lf Lt < Lh,
As for the second term in (97), we have p; < 3 L for any i = 1,..., S since ||f||oc < L. Note that
the discrete entropy can be related to the KL dlvergence as
s s o
Z—pilnpi = —Zpilns—_ll +InS,
i=1 i=1

where the likelihood ratio between (p1,...,ps) and the uniform distribution is upper bounded by
L, the result in [HJW16] yields the following risk bound:

5 2\’ 1 InL
. n
Sljlrp Ef <Hdiscrete + ;Pi 111pz'> < hilon + %
Combining the previous inequalities together, we arrive at

. 2 1 In L
sup Ef(H - H(f)*| SLh*+ +—.
(feLips,p,d<L>,||f||mgL nhélnn — /n

Now choosing h =< (Lnln n)_s%d completes the proof. O

47



D.6 Proof of Lemma 10
Let X ~ f, then

/ £(@)(in f(2))2dz = E[(In £(X))?]
[0,1]4

= E[(In f(X))*1(f(X) < e"/7D)]
24,
+E[(In f(X))*1(f(X) > /@)

24,

Since maxyc (g 1/(p-1)] tIn?t = max{4e2,e/®=1 /(p — 1)?}, we have

= F@)n @) < 5+ S
- z)(In f(2))%de < 5 + ——3-
! z€[0,1]%: f(z)<ep—1 e2 (p _ 1)2

As for As, note that whenever ¢ > e,

d? 97 2—2Int
Hence, by conditional Jensen’s inequality, we have

Bl FX LX) > )

P(f(X)P~" >e)
= p—1)2

(
(fX)P ' >e) <1 Jio.aja f(@)Pdx )2
(

Ay =

2

(E[f(X)PTHF(X)PT > e])

]P n
p—1) P(fF(X)7T > e)
P(f(X)P ! >e) LP 2
=T o1y <1“ P(F(X)7 T > e>>
1+ p*(InL)?
- (p-12 7

where the last inequality follows from

2 ale ifl<a<e
maxt(lng> = / T 7 <1+ (lna)?
t€[0,1] t (Ina)? ifa>e

whenever a > 1. Combining the upper bounds of A; and As completes the proof.

D.7 Proof of Lemma 12
It is straightforward to see EU = (EX;)2. As a result,

4
Var(Uy) = ———— > E[X;X; Xy X;] — (EXp)%
n*(n —1) 1<i<j<n,1<i'<j'<n
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Denote by Iy, I1, Iy the set of indices (i, 7,4, j') where (i,7) and (¢, ;') have 0,1 and 2 elements in
common, respectively. Then

Il n! _ n(n —1)(n —2)(n — 3)
ol 2121(n — 4)! 4 ’
11 = e g5 = "l = Dl =2

As a result,
4
Var(l2) = S5y (ol - BX1)* + || - (EX?)(EX1)* + |I2] - (EXT)?) — (EX1)*
__A4n—-6 g, 4n—=2) oo 2, 2(EXP)?
- n(n—1) (BX1)"+ n(n—1) (BXT)(EX1)”+ n(n—1)
and the result follows. O

D.8 Proof of Corollary 1
Recall that

H(z) = min {ﬁl(l’)’ —125hd}
>

To establish (33), we first show that for fj,(z) < 2c1lnn

nhd

1

‘Emin {ﬁl(az), W} + frn(x)In fr(z) 1

S nhdlnn’ (98)

In fact, by Lemma 7 and the Efron—Stein inequality (cf. Lemma 6),

Var(H(x) < - B[ (@) — H}(2))?) S gy

Then by the bias bound in Lemma 7,

B[ (r)?] = (E[F (@)])? + Var(Ay (1)) £ .

Using E[X1(X > ¢)] < ¢ 'E[X?] for any random variable X and ¢ > 0, we have

0 < EH)(z) — Emin {Jfll(x) } < n'72pd CE[H (2)?] < !

) nl—2ahd ~ nl—i—ahd’

which together with the bias bound in Lemma 7 establishes (98).
By (98) and Lemma 8, we have

cilnn

BN+ (o) = 1ot (Fuate) < S ) + ot (fuate) < 7).
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where

79 1.1

. N 1
11 ()] = ‘Emln {Hl(x)v m} + fu(@) In fo(z)| < T T ﬁln 7

A (79).80) .
\Iy(z)] & [E[Ha(2)] + fr(z)In fu(z)] < 1+nhd+—

n
pa "
for all x € R Moreover, by (98) and Lemma 8, we also have |I1(z)] < (nh%Inn)~! whenever

frlx) < % and |Ir(z)| < (nh%lnn)~" whenever f,(z) > 621712(?. Note that

E[E[A (@) XV] + fu@)In fu(e)| = 1(x)? P <fhvl(l‘) < %)

+ I(z)? P <fh,1(x) > c1 lnn> .

nhd

Hence, by considering the three cases of fj(z) € (0, 621712;‘), [021;25‘, 22;2"], (20711}113",00) separately

and applying Lemma 5 in the first and third cases, we arrive at the desired bound (33).
The proof of the upper bound on the second moment of the perturbation is similar. If one
observation in X U X®) is perturbed, we have

E|H (z) — H'(2)]* = Ji(z)* - P (fh,1<:s> < Cﬁ”) + Jo(2)? - P <fh,1<:s> > cﬁ”) ’

where

2 1

~ (n1-2pd)2’

(- 1 (- 1
|Ji(z)] 2 E ‘mln {Hl(a:), m} — mm{H{(az), m}

()] 2 Elina(e) — @) < (14nnt st
olT)| = 2(x ol S +n —I—hdnhd

for all 2. Moreover, Lemma 7 and 8 give the improvement |J;(z)| < E|H;(z) — H|(z)]> < W

whenever fi,(z) < 2% and | Jy(z)| < f”(m)(lzgl;dfh(x)m whenever fi,(z) > <1 Again by

nhd 2nhd
considering the three regimes f;(z) € (0, 621;25‘), [021712;‘ ) 22}1’3"], (2%}11’2", o0) and applying Lemma 5

in the first and third cases, we arrive at the desired bound (34).

O

D.9 Proof of Lemma 15

We use the following two-point argument. Fix A > 0,e > 0 to be specified later. Let f € Lipy , 4(L)
be some fixed density supported on [1/4,3/4]% which is bounded from below by some constant, say
0.1. Let g be a dilation of f defined by g(x) = A?f(A(x — 1/2)) such that g is a density supported
on [1/2 —1/(4A),1/2 4+ 1/(4A)]%. We take A < LY/ (std) g6 that ¢ is an element of Lip; p, 4(L)-

Consider testing the hypothesis H : Xii'ri'vd'fo = % against Hy : Xi%i'fl = %f—i— %g. Then

X*(fillfo) = X2 (f;rgH 1;€f+ 1J2r€g>

< x2(Bern((1 + £)/2)||Bern(1/2)) = <2,
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where the inequality follows from the data processing inequality for y?-divergence. Thus, choosing
¢ = 1/4/n ensures the indistinguishability of the two hypotheses with n observations.

Finally, for the separation of entropy values, by the Taylor expansion of the function t — tInt
and that f(z) > 0.1 everywhere on its support, we have

O - 1= 5| [, | 06—t L2
0| z) —g(x))dz | .
+ ( [, = )

Using f(z) > 0.1 and || f]|eo + ||9llcc = O(A?), the above inequality further gives |H (fo) — H(f1)| =
O(eln A+£2A%). Finally, in view of € = 1/y/n, taking A = min{ LY/ (+®) pn1/(4)} yields the desired
lower bound n=/2In A < n~Y/21In L. O

D.10 Proof of Lemma 17
For any § > 0, suppose H, nearly attains the minimax risk in the usual sampling model with

sup  Ey(H, — H(f))* < Ry +56.
feLip, ,, a(Lo)

Now we use H,, to construct an estimator in the Poisson sampling model. Let N ~ Poi(n| f||1) be
the number of observations drawn in the Poisson sampling model, our estimator is just constructed
as H = Hx. Note that conditioned on the event that N = m, the Poisson sampling model is just
the usual sampling model with sample size m and density W As a result, for any P € P, we
have

Ejp(H — H(fp))?

<o (1 (g ) ) o2 (- (7))

ZQgEfP <g‘H<Hf§Hl>>2 N:m]'P(N:m)”<H(fP)‘H< z >>2

1 fPl
é2502(1%4_5)Ip>(]\7:n)+2(H(ﬁ?)—H( fp >>2

= 1Pl

2
< 2¢0 - P(N < n/2) +2R% - P(N > n/2) + 25 + 2 (H(fp) - <HJZZDH1>>
n

< 2¢q exp( 5) + 2Rzg +26 +4([| fpllt — 1)%co + 4(| £l In | fpl1)?

where ¢y = SUD feLip,  4(L) H(f)? < (InL)? in view of Lemma 10, and in the last step we have used
the Poisson tail bound. Note that by definition of P,

1
< —_—
’”fPH:L ‘ ~ nhd(lnn)3 lnL7
and thus we conclude that

1
5t nhi(lnn)? V.

The desired result follows by the arbitrariness of § > 0. O

RP <R
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D.11 Proof of Lemma 20

We introduce some necessary definitions and results from approximation theory first. For functions
defined on [0, 1], define the r-th order Ditzian-Totik modulus of smoothness by [DT87]

Wi (f,t)oo = sup || A} oy F(@)]o 99
O 2 50 ] )] (99)

where ¢(z) = \/z(1 — z). This quantity is related to the polynomial approximation error via the
following lemma.

Lemma 25 ( [DT87]). For any integer u > 0 and n > u, there exists some constant M, depending
only on u, such that for allt € (0,1) and f,

B, (f:0,1]) < Mywy(f,1/n)s

n
S U+ ) B [0.1]) > w1 /)

=0

Defining r = ¢ — 1 > 0, we will make use of the second inequality in Lemma 25 to prove
that E,,(z~"Inx;[en2,1]) 2 n?" for some proper constant c¢. The case r = 0 has been handled
in [WY16, Lemma 5], and we assume that r > 0. Note that by definition (51), for any function f
and interval I, the rational approximation error can be related to the polynomial approximation
error as

at,...,ar

E.o.(f;I)= inf E, <f(x) +Zr:ala:_l;l> .
=1

Thus it suffices to prove that for any coefficients ay,...,a, € R, g(z) £ 2" Inz + >, a;z~! and
g(z) £ g(en™2 + (1 — en™2)z), the inequality

En(g;10,1]) > ¢

holds with proper universal constants ¢, ¢’ independent of the choices of ay,...,a,. For the sake of
simplicity, in the sequel we use the following equivalent definition of g(z) (by a proper translation
of a,):

r
g(x) £ 7" In(c 'n?z) + Z apzt.
=1
Let u=1and m = ¢ 3n with ¢ < 1 in Lemma 25, we have

En(3;[0,1]) > % > E(5;0,1))

I=n
-1
1,1 13 _
> - I g FEi(g:10,1
- M1W¢(g,m)m ml_o 1(97 [07 ])
1 4 1 n
> 7, —)oo — —Ep(g;10,1]).
= lep(gym)oo m O(Qa [07 ])
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We distinguish into two cases. If Fy(g;[0,1]) < 2m?", by definition of the Ditzian-Totik modulus
of smoothness, there exists universal constants 0 < A < B (independent of ¢) such that

1/~ z+1\" z 241 5 N\l
ww(g,a)zzg&%} < - ) ln(z+1)—<m) 1nz+Zal<< > _<W>
2r l—r
A ZW |
= 5117H7br z€| A B] Z tha
where
h(z) £ (z+1)"In(z+1) — 2z "Inz
h(z) 2+ =27 =1,
It is clear that the functions h;,l =1,...,r and h are linearly independent over [A, B], and hence
inf max Z bihy(2)| > Oy

b17 7b7‘ ZG A B]

for some universal constant C7 > 0. Hence, in this case we have
_ C1 o
En(3;(0,1]) = M 2Vc ) m*. (100)
1

Now we consider the second case where Ey(g;[0,1]) > 2m?", which implies that

Eo(3;[0,1]) <
0(7:[0,1]) LA

T
" In(m?z) + Z ajz ™!

=1

<m* . max 2z "lnz+ E |ag|m?
z€[1,00)

I8
<m?¥ + Z |al|m21
=1

[

< ZFEy(g:10,1 . 2,
< =FEp(g;[0,1]) +r glaélazlm

[\)

As a result,

FEo(g;]0,1
max ’al‘mQI 2 0(97[ 9 ])
1<i<r 2r
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Suppose the maximum on the LHS is achieved by {*. Then we have

) > max <Zn—;1>_rln(z+ 1) - <%)_Tlnz+iaz <<Z;‘21>_l B <%>_l>‘

m z€[A,B]

wy (7,

2% m m aj

= |a;«|m* - max |h;(z) — z) — hi(z

| | z€[A,B] ( ) Qpx ; Qg+ ( )
> |agm? - inf  max |k (2) — bh(z bihu(
> Jag«| L ML l;zz
> Calap|m*”
> C2E0(§; [07 1])
- 2r

where, again by the linear independence,
Cy = f hi«(z) — bh(z bihi(2)] >0

is a universal constant. Hence
, 1 g; 10,1

> 2 (25\241 - ﬁ) m’. (101)

Combining (100) and (101), we conclude that

Epn(z™ " Ina; [en™21]) > min {% —2v¢c,2 < Ca _ \/E>} -m"

2r M
n
=min{ — — 2./c.2 c(—)T
i, =22 (g V) |
Now choosing ¢ > 0 small enough completes the proof of the lemma. O
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