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The Method of Moments [46] is one of the most widely used
methods in statistics for parameter estimation, by means of solving
the system of equations that match the population and estimated
moments. However, in practice and especially for the important case
of mixture models, one frequently needs to contend with the diffi-
culties of non-existence or non-uniqueness of statistically meaningful
solutions, as well as the high computational cost of solving large
polynomial systems. Moreover, theoretical analyses of the method of
moments are mainly confined to asymptotic normality style of results
established under strong assumptions.

This paper considers estimating a k-component Gaussian location
mixture with a common (possibly unknown) variance parameter. To
overcome the aforementioned theoretic and algorithmic hurdles, a
crucial step is to denoise the moment estimates by projecting to the
truncated moment space (via semidefinite programming) before solv-
ing the method of moments equations. Not only does this regulariza-
tion ensures existence and uniqueness of solutions, it also yields fast
solvers by means of Gauss quadrature. Furthermore, by proving new
moment comparison theorems in the Wasserstein distance via poly-
nomial interpolation and majorization techniques, we establish the
statistical guarantees and adaptive optimality of the proposed proce-
dure, as well as oracle inequality in misspecified models. These results
can also be viewed as provable algorithms for Generalized Method of
Moments [21] which involves non-convex optimization and lacks the-
oretical guarantees.

1. Introduction.

1.1. Gaussian mixture model. Consider a k-component Gaussian loca-
tion mixture model, where each observation is distributed as

k
(1) X~ wiN(ui,0?).
=1
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Here w; is the mixing weight such that w; > 0 and ), w; = 1, p; is the
mean (center) of the 7 component, and o is the common standard devia-
tion. Equivalently, we can write the distribution of an observation X as a
convolution

(2) X ~vxN(0,0%),

where v = Zle w;d,, denotes the mixing distribution. Thus, we can write
X =U + oZ, where U ~ v is referred to as the latent variable, and Z is
standard normal and independent of U.

Generally speaking, there are three formulations of learning mixture mod-
els:

e Parameter estimation: estimate the means p;’s and the weights w;’s
up to a global permutation, and possibly also o2.

e Density estimation: estimate the probability density function of the
Gaussian mixture under certain loss such as Ly or Hellinger distance.
This task is further divided into the cases of proper and improper
learning, depending on whether the estimator is required to be a k-
Gaussian mixture or not; in the latter case, there is more flexibility in
designing the estimator but less interpretability.

e Clustering: estimate the latent variable of each sample (i.e. U;, if the
ith sample is represented as X; = U; + 0Z;) with a small misclassifi-
cation rate.

It is clear that clustering necessarily relies on the separation between the
clusters; however, as far as estimation is concerned, both parametric and
non-parametric, no separation condition should be needed and one can ob-
tain accurate estimates of the parameters even when clustering is impossi-
ble. Furthermore, one should be able to learn from the data the order of the
mixture model, that is, the number of components. However, in the present
literature, most of the estimation procedures with finite sample guarantees
are either clustering-based, or rely on separation conditions in the analysis
(e.g. [4, 42, 24]). Bridging this conceptual divide is one of the main motiva-
tions of the present paper.

Existing methodologies for mixture models are largely divided into likelihood-
based and moment-based methods; see Section 1.5 for a detailed review.
Among likelihood-based methods, the Mazimum Likelihood Estimate (MLE)
is not efficiently computable due to the non-convexity of the likelihood func-
tion. The most popular heuristic procedure to approximate the MLE is
the Ezxpectation-Mazimization (EM) algorithm [11]; however, absent separa-
tion conditions, no theoretical guarantee is known in general. Moment-based
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methods include the classical method of moments [46] and many extensions
[21, 2]; however, the usual method of moments suffers from many issues
as elaborated in the next subsection. In the theoretical computer science
literature, [27, 44, 22] proposed moment-based polynomial-time algorithms
with provable guarantees; however, these methods are typically based on grid
search and far from being practical. Finding theoretically sound, numerically
stable, and computationally efficient version of the method of moments is a
major objective of this paper.

1.2. Failure of the classical method of moments. The method of mo-
ments, commonly attributed to Pearson [46], produces an estimator by
equating the population moments to the sample moments. While concep-
tually simple, this method suffers from the following problems, especially in
the context of mixture models:

e Solvability: the method of moments entails solving a multivariate poly-
nomial system, in which one frequently encounters non-existence or
non-uniqueness of statistically meaningful solutions.

o (Computation: solving moment equations can be computationally in-
tensive. For instance, for k-component Gaussian mixture models, the
system of moment equations consist of 2k — 1 polynomial equations
with 2k — 1 variables.

e Accuracy: existing statistical literature on the method of moments
[54, 21] either shows mere consistency under weak assumptions, or
proves asymptotic normality assuming very strong regularity condi-
tions (so that the delta method works), which generally do not hold in
mixture models since the convergence rates can be slower than para-
metric. Some results on nonparametric rates are known (cf. [54, The-
orem 5.52] and [34, Theorem 14.4]) but the conditions are extremely
hard to verify.

To explain the failure of the vanilla method of moments in Gaussian
mixture models, we analyze the following simple two-component example:

ExAMPLE 1. Consider a Gaussian mixture model with two unit variance
components: X ~ wyN(u1,1)+wsN(pg,1). Since there are three parameters
W1, to and w; = 1—ws, we use the first three moments and solve the following
system of equations:

E,[X] = E[X] = wyp1 + waps,
(3) E,[X?) = E[X?] = wypu} + wop3 + 1,
En[X?) = E[X?] = wipif + wap + 3(wip + waps),
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where E, [X'] £ % Z?:l X]i- denotes the i moment of the empirical distri-

bution from n i.i.d. samples. The right-hand sides of (3) are related to the
moments of the mixing distribution by a linear transformation, which allow
us to equivalently rewrite the moment equations (3) as:

E,[X] = E[U] = w1 + wapz,
(4) En[X? —1] = E[U?) = wipf + w3,
E,[X? — 3X] = E[U%] = w3 + wop,

where U ~ w1, + w1dy,. It turns out that with finitely many samples,
there is always a non-zero chance that (4) has no solution; even with infinite
samples, it is possible that the solution does not exist with constant proba-
bility. To see this, note that, from the first two equations of (4), the solution
does not exist whenever

() En[X?] -1 < E2[X],

that is, the Cauchy-Schwarz inequality fails. Consider the case p; = o = 0,
i.e., X ~ N(0,1). Then (5) is equivalent to

n(En[X?] - EZ[X]) < n,

where the left-hand side follows the y2-distribution with n — 1 degrees of
freedom. Thus, (5) occurs with probability approaching % as n diverges,
according to the central limit theorem.

In view of the above example, we note that the main issue with the classi-
cal method of moments is the following: although individually each moment
estimate is accurate (y/n-consistent), jointly they do not correspond to the
moments of any distribution. Moment vectors satisfy many geometric con-
straints, e.g., the Cauchy-Schwarz and Holder inequalities, and lie in a con-
vex set known as the moment space. Thus for any model parameters, with
finitely many samples the method of moments fails with nonzero probability
whenever the noisy estimates escape the moment space; even with infinitely
many samples, it also provably happens with constant probability when the
order of the mixture model is strictly less than k, or equivalently, the pop-
ulation moments lie on the boundary of the moment space (see Lemma 39
of the supplement [57] for a justification).

1.3. Main results. In this paper, we propose the denoised method of mo-
ments (DMM), which consists of three main steps: (1) compute noisy es-
timates of moments, e.g., the unbiased estimates; (2) jointly denoise the
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moment estimates by projecting them onto the moment space; (3) execute
the usual method of moments. It turns out that the extra step of projection
resolves the three issues of the vanilla version of the method of moments
identified in Section 1.2 simultaneously:

e Solvability: a unique statistically meaningful solution is guaranteed to
exist by the classical theory of moments;

o (Computation: the solution can be found through an efficient algorithm
(Gauss quadrature) instead of invoking generic solvers of polynomial
Systems;

e Accuracy: the solution provably achieves the optimal rate of conver-
gence, and automatically adaptive to the clustering structure of the
population.

We emphasize that the denoising (projection) step is explicitly carried out
via a convex optimization in Section 4.1, and implicitly used in analyz-
ing Lindsay’s algorithm [40] in Section 4.2, when the variance parameter is
known and unknown, respectively.

Following the framework proposed in [7, 23], in this paper we consider the
estimation of the mixing distribution, rather than estimating the parame-
ters of each component. The main benefits of this formulation include the
following:

e Assumption-free: to recover individual components it is necessary to
impose certain assumptions to ensure identifiability, such as lower
bounds on the mixing weights and separations between components,
none of which is needed for estimating the mixing distribution. Fur-
thermore, under the usual assumption such as separation conditions,
statistical guarantees on estimating the mixing distribution can be nat-
urally translated to those for estimating the individual parameters.

e Inference on the number of components: this formulation allows us to
deal with misspecified models and estimate the order of the mixture
model.

Equivalently, estimating the mixing distribution can be viewed as a decon-
volution problem, where the goal is to recover the distribution v based on
observations drawn from the convolution (2).

In this framework, a meaningful and flexible loss function for estimating
the mixing distribution is the 1-Wasserstein distance (see Section 1.4 for a
justification in the context of mixture models), defined by

(6) Wiy, V) £ inf{E[| X - Y|]: X ~v,Y ~ '},
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where the infimum is taken over all couplings, i.e., joint distributions of X
and Y which are marginally distributed as v and ¢/ respectively. In one
dimension, the W7 distance coincides with the Li-distance between the cu-
mulative distribution functions (CDFs) [55].

Next we present the theoretical results, which can be classified into two
categories:

e To estimate the mixing distribution, our methodology produces moment-
based estimators that are optimal in both worst-case (Theorem 1) and
adaptive sense (Theorem 2), for both known and unknown o.

e To estimate the mixture density, the same procedure produces a proper
estimate that attains the optimal parametric rate (Theorem 3), de-
spite the fact that the mixing distribution can only be estimated at
a non-parametric rate. Moreover, the procedure is robust to model
misspecification (Theorem 4).

Throughout the paper, we assume that the number of components satisfies

B logn
(M) k_0<loglogn> '

If the order of mixture is large, namely, k > Q(—282

loglogn

), including continuous

mixtures, then one can approximate it by a finite mixture with O(kigolg0 gn)

components and estimate the mixing distribution using the DMM estimator.
Furthermore, this method is optimal (see Theorem 5 at the end of this
subsection). Our main result is the following theorem:

THEOREM 1 (Optimal rates). Suppose that |p;| < M for M > 1 and o
1s bounded by a constant, and both k and M are given.

o If o is known, then there exists an estimator U computable in O(kn)
time such that, with probability at least 1 — 9,

(8) Wi, 7) < O (Mk1'5 (@)”) .

o If o is unknown, then there exists an estimator (,6) computable in
O(kn) time such that, with probability at least 1 — 9,

b wenso(w(gin) )

and

(10) 02— 6% <0 <M2k (mﬁ/&))

|-
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For fixed for constant k, the above convergence rates are minimax optimal
as shown in Section 6 of the supplement [57]; in the case of known o, the
optimality of (8) has been previously shown in [23], while the matching lower
bounds for (9)—(10) are new.

Note that the results in Theorem 1 are proved under the worst-case sce-
nario where the centers can be arbitrarily close, e.g., components completely
overlap. It is reasonable to expect a faster convergence rate when the com-
ponents are better separated, and, in fact, a parametric rate in the best-case
scenario where the components are fully separated and weights are bounded
away from zero. To capture the clustering structure of the mixture model,
we introduce the following definition:

DEFINITION 1. The Gaussian mixture (1) has ko (y,w)-separated clus-
ters if there exists a partition Si,..., Sk, of [k] such that

o |u; — pir| > for any i € Sy and i’ € Sy such that £ # ¢/
® > ics, wi > w for each L.

In the absence of the minimal weight condition (i.e. w = 0), we say the
Gaussian mixture has kg «-separated clusters.

The next result shows that the DMM estimators attain the following
adaptive rates:

THEOREM 2 (Adaptive rate). Under the conditions of Theorem 1, sup-
pose there are ko (7v,w)-separated clusters such that yw > Ce for some ab-
solute constant C > 2, where € denotes the right-hand side of (8) and (9)
when o is known and unknown, respectively.

o If o is known, then, with probability at least 1 — 6,

S T
(11) Wi (v,0) < O Mfy_z(szoﬁ o\ AR '
T log(k/0)

e If o is unknown, then, with probability at least 1 — §,>
(12)

1
e e R N =y
V]oZ =62, Wi(v,0) < Op | My Fkovt [ — .

"Here O4(-) denotes a constant factor that depends on k only.

2Note that the estimation rate for the mean part v is the square root of the rate for
estimating the variance parameter o2. Intuitively, this phenomenon is due to the infinite
divisibility of the Gaussian distribution: note that for the location mixture model v *
N(0,02) with v ~ N(0,€?) and o = 1 has the same distribution as that of v ~ §o and
o2 =1+¢€.
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For fixed k, ko and +, the rate in (11) is minimax optimal in view of the
lower bounds in [23]; we also provide a simple proof in [57, Remark 4] by
extending the lower bound argument in Section 6 of the supplement [57]. If
o is unknown, we do not have a matching lower bound for (12). In fact, in
the fully-separated case (ko = k), (12) reduces to n~1 while the parametric
rate is clearly achievable. Let us emphasize that, for known o, the rates (8)
and (11) for fixed k, kg and - have been previously obtained in [23] by means
of the computationally expensive minimum distance estimator; for unknown
o, the results in (9), (10), and (12) are new.

Next we discuss the implication on density estimation (proper learning),
where the goal is to estimate the density function of the Gaussian mixture
by another k-Gaussian mixture density. Given that the estimated mixing
distribution 2 from Theorem 1, a natural density estimate is the convolution
f=0x N(0,02). Theorem 3 below shows that the density estimate fis

O(ﬁ)-close to the true density f in the total variation distance TV(f,g) =

sllf =gl

THEOREM 3 (Density estimation). Under the conditions of Theorem 1,
denote the density of the underlying model by f=v*N(0,0%). If o is given,
then there exists an estimate f such that

TV(f, f) < Ox(\/log(1/6)/n),

with probability 1 — §.

So far we have been focusing on well-specified models. In the case of
misspecified models, the data need not be generated from a k-Gaussian
mixture. In this case, the DMM procedure still reports a meaningful estimate
that is close to the best k-Gaussian mixture fit of the unknown distribution.
This is made precise by the next result of oracle inequality type. Analogous
results hold for y?-divergence, Kullback-Leibler divergence, and Hellinger
distance as well.

THEOREM 4 (Misspecified model).  Assume that X1, ..., X, is indepen-
dently drawn from a density f which is 1-subgaussian. Suppose there exists
a k-component Gaussian location mizture g with a given variance o such
that TV(f,g) < e. Then, there exists an estimate f such that

V(7. 1) < Ok (e/10g(1/€) + V/10g(1/8)/n)

with probability 1 — §.
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To conclude this subsection, we present a result for estimating mixtures
of an arbitrarily large order, including continuous mixtures, in the case of
known variance. In this situation we apply the DMM method to produce a
mixture of order min{k, O(log)lgo gn)} The convergence rate is minimax opti-
mal in view of the matching lower bound in Proposition 9 of the supplement

[57).

THEOREM 5 (Higher-order mixture). Suppose || < M for M > 1 and
o s a bounded constant, where M, o are given. Then there exists an estimate
U such that, with probability at least 1 — 6,

loglogn N log(1/4) >>

logn nl—c

Wi (v,0) < O <M (

for some constant ¢ < 1.

1.4. Why Wasserstein distance?. Throughout the paper we consider es-
timating the mixing distribution v with respect to the Wasserstein distance.
This is a natural criterion, which is not too stringent to yield trivial result
(such as the Kolmogorov-Smirnov (KS) distance®) and, at the same time,
strong enough to provide meaningful guarantees on the means and weights.
In fact, the commonly used criterion mingy ) _; | — firy;)| over all permuta-
tions IT is precisely (k times) the Wasserstein distance between two equally
weighted distributions [55].

Furthermore, we can obtain statistical guarantees on the support sets and
weights of the estimated mixing distribution under the usual assumptions in
literature [8, 27, 22] that include separation between the means and lower
bound on the weights. See Section 2.2 for a detailed discussion. We highlight
the following result, phrased in terms of the parameter estimation error up
to a permutation:

LEMMA 1. Letv = Zle w;idy, and U = 2?21 W;0,. Suppose that Wi (v, D) <
€. Let ep = min{|p; — pj], | — f15] : 1 < i < j <k} and eo = min{w;, w; :
i € [k]}. If € < e1€2/4, then, there exists a permutation I1 such that
I = Tiilloo < €/€2, fw —Tli]loo < 2€/en,

where = (p1,...,pux), w = (wi,...,wg) denote the atoms and weights of
v, respectively, and i, denote those of U,

3Consider two mixing distributions §p and é. with arbitrarily small €, whose KS distance
is always one.
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1.5. Related work. There exist a vast literature on mixture models, in
particular Gaussian mixtures, and the method of moments. For a compre-
hensive review see [41, 15]. Below we highlight a few existing results that
are related to the present paper.

Likelihood-based methods. Maximum likelihood estimation (MLE) is one of
the most useful method for parameter estimation. Under strong separation
assumptions, MLE is consistent and asymptotically normal [48]; however,
those assumptions are difficult to verify, and it is computationally hard to
obtain the global maximizer due to the non-convexity of the likelihood func-
tion in the location parameters.

Expectation-Maximization (EM) [11] is an iterative algorithm that aims
to approximate the MLE. It has been widely applied in Gaussian mixture
models [48, 59] and more recently in high-dimensional settings [4]. In gen-
eral, this method is only guaranteed to converge to a local maximizer of the
likelihood function rather than the global MLE. In practice we need to em-
ploy heuristic choices of the initialization [29] and stopping criteria [50], as
well as possibly data augmentation techniques [43, 47]. Furthermore, its slow
convergence rate is widely observed in practice [48, 29]. Global convergence
of the EM algorithm is recently analyzed by [58, 9] but only in the special
case of two equally weighted components. Additionally, the EM algorithm
accesses the entire data set in each iteration, which is particularly expensive
for large sample size and high dimensions.

Lastly, we mention the nonparametric maximum likelihood estimation
(NPMLE) in mixture models proposed by [30], where the maximization is
taken over all mixing distributions which need not be k-atomic. This is an
infinite-dimensional convex optimization problem, which has been studied
in [36, 39, 41] and more recently in [32] on its computation based on dis-
cretization. One of the drawbacks of NPMLE is its lack of interpretability
since the solution is a discrete distribution with at most n atoms cf. [32,
Theorem 2]. Furthermore, few statistical guarantees in terms of convergence
rate are available.

Moment-based methods. The simplest moment-based method is the method
of moments (MM) introduced by Pearson [46]. The failure of the vanilla MM
described in Section 1.2 has motivated various modifications including, no-
tably, the Generalized Method of Moments (GMM) introduced by Hansen
[21]. GMM is a widely used methodology for analyzing economic and finan-
cial data (cf. [20] for a thorough review). Instead of exactly solving the MM
equations, GMM aims to minimize the sum of squared differences between
the sample moments and the fitted moments. Despite its nice asymptotic
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properties [21], GMM involves a non-convex optimization problem which is
computationally challenging to solve. In practice, heuristics such as gradient
descent are used [6] which converge slowly and lack theoretical guarantees.

For Gaussian mixture models (and more generally finite mixture models),
our results can be viewed as a solver for GMM which is provably exact and
computationally efficient, improving over existing heuristic methods in terms
of both speed and accuracy significantly; this is another algorithmic contri-
bution of the present paper. The key is to switch the view from optimizing
over k-atomic mixing distributions (which is non-convex) to moment space
(which is convex and efficiently optimizable via SDP). We also note that
minimizing the sum of squares in GMM is not crucial and minimizing any
distance yields the same theoretical guarantee. We discuss the connections
to GMM in details in Section 4.1.

There are a number of recent work in the theoretical computer science lit-
erature on provable results for moment-based estimators in Gaussian location-
scale mixture models, see, e.g., [44, 27, 5, 22, 38]. For instance, the algorithm
[44] is based on exhaustive search over the discretized parameter space such
that the population moments is close to the empirical moments. In addition
to being computationally expensive, this method achieves the estimation
accuracy n~°/¥ for some constant C, which is suboptimal in view of Theo-
rem 1. By carefully analyzing Pearson’s method of moments equations [46],
[22] showed that the optimal rate for two-component location-scale mixtures
is ©(n~1/12); however, this approach is difficult to generalize to higher order
mixtures. Finally, for moment-based methods in multiple dimensions, such
as spectral and tensor decomposition, we defer the discussion to Section 9.2
of the supplement [57].

Minimum distance estimators. In the case of known variance, the minimum
distance estimator is studied by [10, 7, 23]. Specifically, the estimator is a
k-atomic distribution # such that 7% N(0,02) is the closest to the empirical
distribution of the samples in certain distance. The minimax optimal rate

O(nfﬁ) for estimating the mixing distribution under the Wasserstein dis-
tance is shown in [23] (which corrects the previous result in [7]), by bounding
the W7 distance between the mixing distributions in terms of the KS dis-
tance of the Gaussian mixtures [23, Lemma 4.5]. However, the minimum
distance estimator is in general computationally expensive and suffers from
the same non-convexity issue of the MLE. In contrast, denoised method of
moments is efficiently computable and adaptively achieves the optimal rate
of accuracy as given in Theorem 2. For arbitrary Gaussian location mixtures
in one dimension, the minimum distance estimator was considered in [14]
in the context of empirical Bayes. Under the assumptions of bounded first
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moment, it is shown in [14, Corollary 2| that the mixing distribution can be
estimated at rate O((logn)~/*) under the Lo-distance between the CDFs;
this loss is, however, weaker than the Wi-distance (i.e. L; distance between

the CDFs).

Density estimation. If the estimator is allowed to be any density (improper
learning), it is known that as long as the mixing distribution has a bounded
support, the rate of convergence is close to parametric regardless of the num-
ber of components. Specifically, the optimal squared Ls-risk is found to be
@(@) [31], achieved by the kernel density estimator designed for ana-
lytic densities [26]. As mentioned before, proper density estimate (which is
required to be a k-Gaussian mixture) is more desirable for the sake of inter-
pretability; however, finding the k-Gaussian mixture that best approximates
a given function such as a kernel density estimate can be computationally
challenging due to, again, the non-convexity in the location parameters. In
this regard, another contribution of Theorems 3 and 4 is the observation that
proper and near optimal estimates/approximates can be found efficiently via
the method of moments. Finally, we note that MLE for estimating the den-
sity of general Gaussian mixtures has been studied in [17, 18].

1.6. Notations. A discrete distribution supported on k atoms is called a
k-atomic distribution. The expectation of a given function f under a distri-
bution p is denoted by E,, f = E,[f(X)] = [ f(z)u(dz), and the subscript u
may be omitted if it is specified from the context. The empirical mean of f
from n samples is denoted as E,[f(X)] = L 37 | f(X;), where X1,..., X,
are i.i.d. copies of X. The r*" moment of a distribution x is denoted by
my(p) 2 E,X". The moment matrix associated with mg,m1,...,mo, is a

Hankel matrix of order r + 1:

mo ml e mr

mi ma o Myt
(13) M, =

My Mpy1 -0 M2y

For matrices A > B stands for A— B being positive semidefinite. The interval
[z —a, x+a] is abbreviated as [z +a]. For any z,y € R, zAy = min{z, y} and
(z)y = max{x,y}. For two vectors z = (x1,...,2,) and ¥y = (Y1,...,Yn),
let (z,y) = >, z;y;. A distribution 7 is called o-subgaussian if E[e!*] <
exp(t?0?/2) for all t € R. We use standard big-O notations, e.g., for two
positive sequence {ay} and {b,}, a, = O(by) if a,, < Cb,, for some constant
C > 0; ap, = Qby) if b, = O(ay); ap = O(by) if a, = O(b,) and a,, = Q(by,).
We write a, = Og(by,) if C' depends on another parameter /3.
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1.7. Organization. The paper is organized as follows. In Section 2 we
provide some basic results of the theory of moments and the Wasserstein
distance. In Section 3 we introduce the moment comparison theorems, which
bound the Wasserstein distance between two discrete distributions in terms
of the discrepancy of their moments. These are key results to prove the main
theorems. In Section 4, we propose estimation algorithms and provide their
statistical guarantees. We provide a proof of the moment comparison theo-
rems in Section 5 (with two alternative proofs given in [57, Section 10]); in
particular, Section 5.1 contains a brief discussion on polynomial interpola-
tion and majorization, which play a crucial role in the proof. Matching mini-
max lower bounds, numerical experiments and comparison with other meth-
ods such as the EM algorithm, and extensions and open problems including
location-scale mixtures, the multivariate case, and general finite mixtures
are given in the supplemental article [57]. Auxiliary results are collected in
[57, Appendix B].

2. Preliminaries.

2.1. Moment space, SDP characterization, and Gauss quadrature. The
theory of moments plays a key role in the developments of analysis, prob-
ability, statistics, and optimization. See the classics [51, 28] and the recent
monographs [37, 49] for a detailed treatment. Below, we briefly review a few
basic facts that are related to this paper.

The 7" moment vector of a distribution  is a 7-tuple m,.(7) = (my (), ..., m.(7)).
The r*" moment space on K C R is defined as

M, (K) = {m,(r) : 7w is supported on K},

which is the convex hull of {(x,z?%,...,2") : # € K}. A valid moment vector
satisfies many geometric constraints such as the Cauchy-Schwarz and Holder
inequalities. When K = [a, b] is a compact interval, M, ([a,b]) is completely
described by (see [51, Theorem 3.1], and also [28, 37]) the following condi-
tion:

(14) My, =0, (a+b)Mi, 1= abMq, 2+ Ms,, r even,
bMo 1 = My, = aMo,_1, r odd,
where M, ; denotes the Hankel matrix with entries m;, m;y1,...,m;:
m; mMi+1 s m%
Myl Mit2 - Mty g
M;,; = :

Mit; MMitj
2 2 +1

m;



14 WU AND YANG

EXAMPLE 2 (Moment spaces on [0, 1]).  For the first two moments, Ms([0, 1])
is simply described by m; > mo > 0 and mgy > m% For r = 3, according to
(14), M3([0,1]) is described by

|: 1 m1:| - |:m1 m2:| - 0.
mi1 Mo mo g
Using Sylvester’s criterion (see [25, Theorem 7.2.5]), they are equivalent to

0<m; <1, mg>m3 >0,

mims > mg, (1 —mq)(mg —mg) > (m1 — m2)2.

The necessity of the above inequalities is apparent: the first two follow from
the support being [0, 1], and the last two follow from the Cauchy-Schwarz
inequality. It turns out that they are also sufficient.

Moment matrices of discrete distributions satisfy more structural prop-
erties. For instances, the moment matrix of a k-atomic distribution of any
order is of rank at most k, and is a deterministic function of myy_1; the
number of atoms can be characterized using the determinants of moment
matrices (see [53, p. 362] or [40, Theorem 2A]) as follows:

THEOREM 6. (ma,...,ma,) are the first 2r moments of a distribution
with exactly v points of support if and only if det(M,_1) > 0 and det(M,.) =
0.

Next we discuss the closely related notion of Gauss quadrature, which is
a discrete approximation for a given distribution in the sense of moments
and plays an important role in the execution of the DMM estimator. Given
7 supported on an interval [a,b] C R, a k-point Gauss quadrature is a k-
atomic distribution 7, = ) ;" | w;d,,, also supported on [a, b], such that, for
any polynomial P of degree at most 2k — 1,

k
(15) ExP =Er, P =) wP(x;).
=1

Gauss quadrature is known to always exist and is uniquely determined by
myi_1 () (cf. e.g. [52, Section 3.6]), which shows that any valid moment
vector of order 2k — 1 can be realized by a unique k-atomic distribution. A
basic algorithm to compute Gauss quadrature is Algorithm 1 [19] and many
algorithms with improved computational efficiency and numerical stability
have been proposed; cf. [16, Chapter 3].
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Algorithm 1 Quadrature rule

Input: a valid moment vector (m1,...,mak—1).

Output: nodes z = (z1,...,zx) and weights w = (w1, ..., wk).
Define the following degree-k polynomial P

1 mi - My
P(x) = det
mrg—1 M Tt mag—1
1 T . :Ck

Let the nodes (z1,...,xx) be the roots of the polynomial P.
Let the weights w = (w1, ..., wx) be

1 1 1 1
T1 T2 Tk m
w = . .
k=1 k-1 k-1
7 T ez Me_1

2.2. Wasserstein distance. A central quantity in the theory of optimal
transportation, the Wasserstein distance is the minimum cost of mapping
one distribution to another. In this paper, we will be mainly concerned
with the 1-Wasserstein distance defined in (6), which can be equivalently
expressed, through the Kantorovich duality [55], as

(16) Wi(v, ") = sup{E,[¢] — E,s[p] : ¢ is 1-Lipschitz}.

The optimal coupling in (6) has many equivalent characterization [55] but is
often difficult to compute analytically in general. Nevertheless, the situation
is especially simple for distributions on the real line, where the quantile
coupling is known to be optimal and hence

(17) Win/) = [ 1B,(0) - Futolat,

where F,, and F,, denote the CDF's of v and v/, respectively. Both (16) and
(17) provide convenient characterizations to bound the Wasserstein distance
in Section 3.

As previously mentioned in Section 1.4, two discrete distributions close
in the Wasserstein distance have similar support sets and weights. This is
made precise by Lemma 2 and 3 next:

LEMMA 2. Suppose v and V' are discrete distributions supported on S
and S, respectively. Let e = min{v(z) : x € S} Amin{/(z) : © € S'}. Then,

dH(S, S/) S Wl(l/, I//)/e,
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where dg denotes the Hausdorff distance defined as

(18) dg (S, S") = max {sup inf |2 — 7’|, sup ing |z — :c'|} .

zeS €S z'eS L€
LEMMA 3. For any 6 > 0,
v(z) =V ([x £ 8) < Wi(v,)/8, V(z) —v(z+68]) < Wi(y,/)/6.

3. Optimal transport and moment comparison theorems. A dis-
crete distribution with k atoms has 2k — 1 free parameters. Therefore it is
reasonable to expect that it can be uniquely determined by its first 2k — 1
moments. Indeed, we have the following simple identifiability results for dis-
crete distributions:

LEMMA 4. Letv and V' be distributions on the real line.

1. If v and V' are both k-atomic, then v = V' if and only if mop_1(v) =
mgk_l(V,).
2. If v is k-atomic, then v = V' if and only if mok(v) = mo (V).

In the context of statistical estimation, we only have access to samples
and noisy estimates of moments. To solve the inverse problems from mo-
ments to distributions, our theory relies on the following stable version of
the identifiability in Lemma 4, which show that closeness of moments implies
closeness of distributions in Wasserstein distance. In the sequel we refer to
Propositions 1 and 2 as moment comparison theorems.

PROPOSITION 1. Let v and V' be k-atomic distributions supported on
[—1,1). If [mi(v) = m;(V')| < 6 fori=1,...,2k — 1, then

Wi(v,v/) <O (kaﬁ) .

PROPOSITION 2. Let v be a k-atomic distribution supported on [—1,1].
If Im;(v) — m(V)| <& fori=1,...,2k, then

Wi(v,v') <O <k5i> )
REMARK 1. The exponents in Proposition 1 and 2 are optimal. To see

this, we first note that the number of moments needed for identifiability in
Lemma 4 cannot be reduced:
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1. Given any 2k distinct points, there exist two k-atomic distributions
with disjoint support sets but identical first 2k — 2 moments (see
Lemma 30 of the supplement [57]).

2. Given any continuous distribution, its k-point Gauss quadrature is
k-atomic and have identical first 2k — 1 moments (see Section 2.1).

By the first observation, there exist two k-atomic distributions v and v/ such
that

mi(v) =m;(V), i=1,...,2k=2, |mop_1(v)—mok_1(V)| = cx, Wi(v,V)

where ¢;, and dj, are strictly positive constants that depend on k. Let 7 and
v/ denote the distributions of €eX and eX’ such that X ~ v and X' ~ v/,
respectively. Then, we have

max \mz(ﬁ) — mz(ﬁ)| = 621{710]4, Wl(ﬂ, ﬁ,) = edy,.
i€[2k—1]

This concludes the tightness of the exponent in Proposition 1. Similarly, the

exponent in Proposition 2 is also tight using the second observation.

REMARK 2. Classical moments comparison theorems aim to show con-
vergence of distributions by comparing a growing number of moments. For
example, Chebyshev’s theorem (see [12, Theorem 2|) states if m,(m) =
m,(N(0,1)), then

sup [ Fr(a) — ()] < /5

zeR r
where F; and ® denote the CDFs of m and N(0,1), respectively. For two
compactly supported distributions, the above estimate can be sharpened
to O(lo%) [35]. In contrast, in the context of estimating finite mixtures
we are dealing with discrete mixing distributions, which can be identified
by a fized number of moments. However, with finitely many samples, it is
impossible to exactly determine the moments, and measuring the error in
the KS distance leads to triviality (see Section 1.4). It turns out that Wi-
distance is a suitable metric for this purpose, and the closeness of moments
does imply the closeness of distribution in the W7j distance, which is the
integrated difference (L;-distance) between CDFs as opposed the uniform
error (Leo-distance). An upper bound on the Wj distance is obtained in
[33] (see also Lemma 24 of the supplement [57]) involving the differences of
the first £k moments and a @(%) term that does not vanish for fixed k. The
discrepancy between parameters of two Gaussian mixtures is obtained by
comparing moments in [27, 44|, which is not applicable for estimating the
mixing distribution.

= dka
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4. Estimators and statistical guarantees. In this section we intro-
duce the DMM estimators and prove the statistical bounds announced in
Section 1. To keep the presentation simple, we focus on estimators with ex-
pected risk guarantees. To obtain a high-probability bound, one can employ
the usual technique of dividing the samples into batches, applying the un-
biased moment estimator to each batch and taking the median, then finally
executing the DMM method to estimate the mixing distribution.

The estimators considered in this section* are evaluated by numerical ex-
periments in comparison with the EM algorithm and a popular implemen-
tation of GMM [6]. Overall the performance of moment-based estimators is
on par with that of EM, but the running time of significantly shorter espe-
cially when the components are poorly separated. Compared to the existing
heuristic solver of GMM [6], the DMM estimator (which exactly solves the
GMM) is more accurate and achieves a speedup by orders of magnitude.
Furthermore, consistent with the theory in Theorem 2, better estimation
accuracy is achieved when the components are more separated. Due to page
limit, the details are reported in Section 8 of the supplement [57].

4.1. Known variance. The denoised method of moments for estimating
Gaussian location mixture models (2) with known variance parameter o>
consists of three main steps:

1. estimate moy_1(v) by m = (mq,...,mek_1) (using Hermite polyno-
mials);

2. denoise m by its projection i onto the moment space (semidefinite
programming);

3. find a k-atomic distribution 2 such that moy_1(2) = m (Gauss quadra-
ture).

The complete algorithm is summarized in Algorithm 2.

We estimate the moments of the mixing distribution in lines 1 to 4. The
unique unbiased estimators for the polynomials of the mean parameter in a
Gaussian location model are Hermite polynomials

(20) — ! L§J (=1/2) o,

r—2j

such that EH,(X) = u" when X ~ N(u,1). Thus, if we define

/2]
L2
(21) (@, 0) = o Hy(2/0) —r'z P Lt ]

4The implementations are available at https://github.com/Albuso0/mixture.
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Algorithm 2 Denoised method of moments (DMM) with known variance.

Input: n independent samples X1, ..., X,, order k, variance o2, interval I = [a, b].
Output: estimated mixing distribution.
1: forr=1to 2k —1do

2 A =LY, X

=T

4: end for

5: Let m be the optimal solution of the following:
(19) min{||m — M| : m satisfies (14)},
where m = (M, ..., Mak—1).

6: Report the outcome of the Gauss quadrature (Algorithm 1) with input 7.

then Ev,.(X,0) = u” when X ~ N(u,02). Hence, by linearity, m, is an
unbiased estimate of m,(v). The variance of m, is bounded by the following
lemma:

LEMMA 5. If Xq,... ,an'rzx'zd'y*N(O, 02) and v is supported on [~ M, M|,
then
(O(M + /)™

var[m,| <

S|

As observed in Section 1.2, the major reason for the failure of the usual
method of moments is that the unbiased estimate m needs not constitute a
legitimate moment sequence, despite the consistency of each individual m;.
To resolve this issue, we project m to the moment space using (19). As ex-
plained in Section 2.1, (14) consists of positive semidefinite constraints, and
thus the optimal solution of (19) can be obtained by semidefinite program-
ming (SDP).5 In fact, it suffices to solve a feasibility program and find any
valid moment vector m that is within the desired ﬁ statistical accuracy.

Now that m is indeed a valid moment sequence, we use the Gauss quadra-
ture introduced in Section 2.1 (see Algorithm 1 in Section 2.1) to find the
unique k-atomic distribution o such that moy_1(2) = 7. Using Algorithm 2,
m is computed in O(kn) time, the semidefinite programming is solvable
in O(k%®) time using the interior-point method (see [56]), and the Gauss
quadrature can be evaluated in O(k3) time [19]. In view of the global as-
sumption (7), Algorithm 2 can be executed in O(kn) time.

We now prove the statistical guarantee (8) for the DMM estimator pre-
viously announced in Theorem 1:

®The formulation (19) with Euclidean norm can already be implemented in popular
modeling languages for convex optimization problem such as CVXPY [13]. A standard
form of SDP is given in Appendix A of the supplement [57].
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PROOF. By scaling it suffices consider M = 1. We use Algorithm 2 with
Euclidean norm in (19). Using the variance of m in Lemma 5 and Chebyshev
inequality yield that, for each r = 1,...,2k — 1, with probability 1 — 2

Sk
(22) e —me (V)] < Vk/n(evr)",

for some absolute constant ¢. By the union bound, with probability 3/4,
(22) holds simultaneously for every r = 1,...,2k — 1, and thus

A (\/%)2164’1
S
Since myy_1(v) satisfies (14) and thus is one feasible solution for (19), we

have ||/ — 7|2 < e. Note that m = mo;_1 (7). Hence, by triangle inequality,
we obtain the following statistical accuracy:

I —map 1 (V)]l2 <€ €

(23) [mag—1(P) — mog—1(v)[|l2 <,

Applying Proposition 1 yields that, with probability 3/4,
Wi(0,v) < O (kl-f’n*ﬁ) .

The confidence 1 — ¢ in (8) can be obtained by the usual “median trick”:
divide the samples into T = log % batches, apply Algorithm 2 to each batch
of n/T samples, and take m, to be the median of these estimates. Then
Hoeffding’s inequality and the union bound imply that, with probability
1-9,

(24) [y — my(v)] < WTZ{/(S)(C\/;)T, Vr=1,...,2k -1,

and the desired (8) follows. O

To conclude this subsection, we discuss the connection to the General-
ized Method of Moments (GMM). Instead of solving the moment equations,
GMM aims to minimize the difference between estimated and fitted mo-
ments:

(25) Q(0) = (. — m(0)) "W (1 — m(6)),

where m is the estimated moment, 8 is the model parameter, and W is a
positive semidefinite weighting matrix. The minimizer of Q(6) serves as the
GMM estimate for the unknown model parameter 6y. In general the objective
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function @ is non-convex in #, notably under the Gaussian mixture model
with 6 corresponding to the unknown means and weights, which is hard to
optimize. Note that (19) with the Euclidean norm is equivalent to GMM
with the identity weighting matrix. Therefore Algorithm 2 is an exact solver
for GMM in the Gaussian location mixture model.

In theory, the optimal weighting matrix W* that minimizes the asymp-
totic variance is the inverse of lim,,_,~, cov[y/n(mm — m(6p))], which depends
the unknown model parameters 6y. Thus, a popular approach is a two-step
estimator [20]:

1. a suboptimal weighting matrix, e.g., identify matrix, is used in the
GMM to obtain a consistent estimate of 6y and hence a consistent
estimate W for W,

2. 6y is re-estimated using the weighting matrix w.

The above two-step approach can be similarly implemented in the denoised
method of moments.

4.2. Unknown wariance. When the variance parameter o2 is unknown,

unbiased estimator for the moments of the mixing distribution no longer
exists (see Lemma 31 of the supplement [57]). It is not difficult to consistently
estimate the variance,% then plug into the DMM estimator in Section 4.1
to obtain a consistent estimate of the mixing distribution v; however, the
convergence rate is far from optimal. In fact, to achieve the optimal rate in
Theorem 1, it is crucial to simultaneously estimate both the means and the
variance parameters. To this end, again we take a moment-based approach.
The following result provides a guarantee for any joint estimate of both the
mixing distribution and the variance parameter in terms of the moments
accuracy.

PROPOSITION 3. Let
T =vx*N(0,0%), &=10xN(0,85%),

where v, are k-atomic distributions supported on [—M,M], and 0,6 are
bounded by a constant. If |m,(7) — m,(7)| < € forr =1,...,2k, then

0% — 62| < O(MZ%er), Wi(v,7) < O(Mk5ear).

To apply Proposition 3, we can solve the method of moments equations,
namely, find a k-atomic distribution 7 and 62 such that

(26) E,[X"] = E:[X"], r=1,...,2

. . . N e . N _1
SFor instance, the simple estimator 6 = 224Xi gatisfies |0 — &| = Op(logn) ™ 2.
\/2logn
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where 7 = 1 N (0, 52) is the fitted Gaussian mixture. Here both the number
of equations and the number of variables are equal to 2k. Suppose (26) has a
solution (fi, ). Then applying Proposition 3 with 6 = O( ﬁ) achieves the

rate Oy (n~1/4%)) in Theorem 1, which is minimax optimal (see Section 6 of
the supplement [57]). In sharp contrast to the case of known o, where we
have shown in Section 1.2 that the vanilla method of moments equation can
have no solution unless we denoise by projection to the moment space, here
with one extra scale parameter o, one can show that (26) has a solution with
probability one!” Furthermore, an efficient method of finding a solution to
(26) is due to Lindsay [40] and summarized in Algorithm 3. Here, the sample
moments can be computed in O(kn) time, and the smallest non-negative
root of the polynomial of degree k(k + 1) can be found in O(k?) time using
Newton’s method (see [3]). So overall Lindsay’s estimator can be evaluated
in O(kn) time.

Algorithm 3 Lindsay’s estimator for normal mixtures with an unknown
common variance
Input: n samples Xi,..., X,.
Output: estimated mixing distribution ©, and estimated variance 2.
1: for r =1 to 2k do
Y = % ZL X )
(o) = U0 S i
end for
Let di,(o) be the determinant of the matrix {ri4;(c)}F j—o.

Let & be the smallest positive root of dx(c) = 0.
for r =1 to 2k do
My = mr(6)
end for
: Let ¥ be the outcome of the Gauss quadrature (Algorithm 1) with input M1, ..., M2k—1

—_

—_
=

: Report © and &2.

In [40] the consistency of this estimator was proved under the extra con-
dition that ¢ (which is a random variable) as a root of dj has multiplicity
one. It is unclear whether this condition is guaranteed to hold. We will show
that, unconditionally, Lindsay’s estimator is not only consistent, but in fact
achieves the minimax optimal rate (9) and (10) previously announced in

"It is possible that the equation (26) has no solution, for instance, when k = 2,n = 7 and
the empirical distribution is 77 = %57ﬁ+%5ﬁ+ %50. The first four empirical moments are
mu(m7) = (0,2,0,14), which cannot be realized by any two-component Gaussian mixture
(1). Indeed, suppose # = w1 N (i1, 0%) + (1 —w1) N (uz, 0%) is a solution to (26). Eliminating
variables leads to the contradiction that 2uf 4+ 2 = 0. Assuringly, as we will show later in
Lemma 7, such cases occur with probability zero.
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Theorem 1. We start by proving that Lindsay’s algorithm produces an esti-
mator ¢ so that the corresponding the moment estimates lie in the moment
space with probability one. In this sense, although no explicit projection is
involved, the noisy estimates are implicitly denoised.

We first describe the intuition of the choice of & in Lindsay’s algorithm,
i.e., line 6 of Algorithm 3. Let X ~ v * N(0,02). For any o’ < o, we have

E[v;(X,0")] = m;(v = N(0, o? —a'?)).

Let dj(0”) denote the determinant of the moment matrix {E[v;1;(X, o’ )]}i’C =05
which is an even polynomial in ¢’ of degree k(k + 1). According to Theo-
rem 6, di(o’) > 0 when 0 < 0’ < ¢ and becomes zero at ¢’ = o, and thus
o is characterized by the smallest positive zero of di. In lines 5 — 6, d, is
estimated by d, using the empirical moments, and ¢ is estimated by the

smallest positive zero of di,. We first note that dk indeed has a positive zero:

LEMMA 6. Assume n > k and the mixture distribution has a density.
Then, almost surely, dy has a positive root within (0, s], where s> = % Yo (Xi—
E,[X])? denotes the sample variance.

The next result shows that, with the above choice of 6, the moment
estimates m; = E,[v;(X, )] for j = 1,...,2k given in line 8 are implicitly
denoised and lie in the moment space with probability one. Thus (26) has a
solution, and the estimated mixing distribution © can be found by the Gauss
quadrature. This result was previously shown in [40] assuming that ¢ is of
multiplicity one. In contrast, Lemma 7 only requires that n > 2k — 1 and
the mixture distribution has a density.

LEMMA 7. Assumen > 2k—1 and the mixture distribution has a density.
Then, almost surely, there exists a k-atomic distribution  such that m;(0) =
m; for j < 2k, where 1 is from Algorithm 3.

With the above analysis, we now prove the statistical guarantee (9) and
(10) for Lindsay’s algorithm announced in Theorem 1:

PRrOOF. It suffices to consider M = 1. Let # = 0 x N(0,6%) and 7 =
v*N(0,0?%) denote the estimated mixture distribution and the ground truth,
respectively. Let m, = E,,[X"] and m,, = m,.(7). The variance of 7, is upper
bounded by

1 1 2r
varlring] = Lvar[x7] < LE[x?] < T
n n n
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for some absolute constant c. Using Chebyshev inequality, for each r =
1,...,2k, with probability 1 — 8ik, we have,

(27) i, —my| < (Ver) k/n.

By the union bound, with probability 3/4, the above holds holds simultane-
ously for every r = 1,...,2k. It follows from Lemma 6 and 7 that (26) holds
with probability one. Therefore,

\m,(7) — me(m)| < (Ver)k/n, r=1,...,2k.

for some absolute constant c. In the following, the error of variance estimate
is denoted by 72 = |02 — 62|

e If 0 < 6, let v/ = 0« N(0,7%). Using E;[v.(X,0)] = m,(v) and
E:[v(X,0)] = my(v'), where ~, is the Hermite polynomial (21), we
obtain that (see Lemma 27 of the supplement [57])

(28)  [me(v) —m, ()] < (VERF R/, r=1,....2k,
for an absolute constant ¢’. Applying Proposition 3 yields that,
0% — 62| < O(kn" %), Wi(v, ) < O(k*n"1).
o If 0 > 6, let v/ = v+ N(0,72). Similar to (28), we have
Im,(0) —m, (V)] < (Vk)Pkn2e r=1,..., 2.

To apply Proposition 3, we also need to ensure that © has a bounded
support, which is not obvious. To circumvent this issue, we apply a
truncation argument thanks to the following tail probability bound
for  (see Lemma 16 of the supplement [57]):

(29) PlU| > Vcok] < e(v/e1k/t)?*, U ~ b,
for absolute constants ¢ and ¢. To this end, consider U = U1 {101 Vaok} ™

7. Note that U is k-atomic supported on [—V/cok, Vcok], we have
Wi(v,9) < %% and |m,.(¥) — m,(0)| < ke(c1k)* for r = 1,..., 2k.
Using the triangle inequality yields that

Imy (7)) — me (V)| < €+ ke(erk).

Now we apply Proposition 3 with # and v * N (0, 72) where both 7 and
v are k-atomic supported on [—+/cok, v/cok]. In the case v is discrete,
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the dependence on k in Proposition 3 can be improved (by improving
[57, (64)] in the proof) and we obtain that

02 — 62| < O(kn"2), Wi(v,7) < O(k*n~ ),

Using k < O(log)ign), we also obtain Wi (v,0) < O(k%fi) by the

triangle inequality.

To obtain a confidence 1 — § in (9) and (10), we can replace the empirical
moments 1m, by the median of T' = log % independent estimates similar to
(24). O

4.3. Adaptive rates. In sections 4.1 and 4.2, we proved the statistical
guarantees of our estimators under the worst-case scenario where the means
can be arbitrarily close. Under separation conditions on the means (see Def-
inition 1), our estimators automatically achieve a strictly better accuracy
than the one claimed in Theorem 1. The goal in this subsection is to show
those adaptive results. The key is the following adaptive version of the mo-
ment comparison theorems (cf. Propositions 1 and 2):

PROPOSITION 4.  Suppose both v and V' are supported on a set of £ atoms
in [—1,1], and each atom is at least v away from all but at most ¢’ other
atoms. Let 6 = max;cfp_q] |m;i(v) —mi(v')]. Then,

1

4515\ 7

W]_(V, V/) S E (W)

PROPOSITION 5.  Suppose v is supported on k atoms in [—1,1] and any

t € R is at least v away from all but k' atoms. Let § = max;ecjop) [mi(v) —
m;(V')|. Then,

1

k4%ks N\ 2

/

Wi(v,v') < 8k (’W)

The adaptive result (11) in the known variance parameter case is obtained

using Proposition 4 in place of Proposition 1. To deal with unknown variance

parameter case, using Proposition 5, we first show the following adaptive

version of Proposition 3:

PROPOSITION 6. Under the conditions of Proposition 3, if both Gaussian
mixtures both have ko ~v-separated clusters in the sense of Definition 1, then,

73 . € m
\/ ‘0' — 0 ‘7 Wl(V,l/)SOk m .
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Using these propositions, we now prove the adaptive rate of the denoised
method of moments previously announced in Theorem 2:

PROOF OF THEOREM 2. By scaling it suffices to consider M = 1. Recall
that the Gaussian mixture is assumed to have kg (y,w)-separated clusters
in the sense of Definition 1, that is, there exists a partition Si,..., Sk, of
[k] such that |p; — | >~ for any i € Sy and @' € Sy such that ¢ # ¢/, and
Ziesf w; > w for each /.

Let © be the estimated mixing distribution which satisfies Wi (v, 7) < € by
Theorem 1. Since yw > Ce by assumption, for each Sy, there exists i € Sy
such that p; is within distance ¢y, where ¢ = 1/C, to some atom of .
Therefore, the estimated mixing distribution © has ko (1 — 2¢)7y-separated
clusters. Denote the union of the support sets of v and o by S.

e When o is known, each atom in § is () away from at least 2(ko — 1)
other atoms. Then (11) follows from Proposition 4 with ¢ = 2k and
0= 2k—1)—2(ko—1).

e When o is unknown, (12) follows from a similar proof of (9) and (10)
with Proposition 3 replaced by Proposition 6. ]

5. Proof of moments comparison theorems. We begin by briefly
reviewing some background on polynomial interpolation, which plays a key
role in the proofs.

5.1. Polynomial interpolation, majorization, and the Neville diagram. Given
a function f and a set of distinct points (commonly referred to as nodes)
{zg,...,x}, there exists a unique polynomial P of degree k that coincides
with f on every node. The interpolating polynomial P can be expressed in
the Lagrange form as

k
Hj;éi(x_xj)
30 P)=) flz)g"—F"
(30) @) = e =

)

and, alternatively, in the Newton form as
(31) P(z) =ap+ai(x —xo) + -+ ap(r —x0) -+ (x — 2p—1).

Let us pause to emphasize that, in numerical analysis, typically the Newton
form is introduced for computational considerations so that one does not
need to recompute all coefficients when an extra node is introduce [52]. Here
for our theoretical analysis the Newton form turns out to be crucial, which
offers better bound on the coefficients of the interpolating polynomials.
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The coefficients in (31) can be successively calculated using ag = f(zo),
ap + a1(z1 — x9) = f(x1), etc. In general, they coincide with the divided

differences a, = f[zo,...,z,] that are recursively defined as
LitlyeeyLijdr| — LijyeooyLitpr—
(32) flod = f@) Sl wigg] = Lt io] = o Biar]
Litr — T4

The above recursion can be calculated by the following Newille’s diagram
(cf. [52, Section 2.1.2]):

Zo

-”EO’-/L'INL‘Z]
1
"f[.’lj(], . ,Ik]

z2

Tg

flz]

In Neville’s diagram, the 7" order divided differences are computed in the
™ column, and are determined by the previous column and the nodes. The
coefficients in (31) are found in the top diagonal. In this paper Neville’s
diagram will be used to bound the coefficients in Newton formula (31);
cf. Lemma 25 of the supplement [57].

Interpolating polynomials are the main tool to prove moment comparison
theorems in Section 3. Specifically, we will interpolate step functions by
polynomials in order to bound the difference of two CDFs via their moment
difference. Therefore, it is crucial to have a good control over the coefficients
of the interpolating polynomial. To this end, it turns out the Newton form is
more convenient to use than the Lagrange form because the former takes into
account the cancellation between each term in the polynomial. Indeed, in the
Lagrange form (30), if two nodes are very close, then the individual terms
can be arbitrarily large, even if f itself is a smooth function. In contrast,
each term of (31) is stable when f is smooth since divided differences are
closely related to derivatives. The following example illustrates this point:

ExaMPLE 3 (Lagrange versus Newton form). Given three points x1 =
0,290 = e,23 = 1 with f(z1) = 1, f(z2) = 1+ ¢, f(x3) = 2, the interpolat-
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ing polynomial is P(z) = x + 1. The next equation gives the interpolating
polynomial in Lagrange’s and Newton’s form respectively.

eodem) =2 0
Newton: P(z) =1+ z + 0.

Lagrange: P(z) =

The coefficients in the Newton form are bounded, while those in the La-
grange form blow up as € — 0.

Polynomial interpolation can be generalized to interpolate the value of
derivatives, known as the Hermite interpolation. Formally, given a function f
and distinct nodes xg < x1 < ... < &y, there exists a unique polynomial P of
degree k satisfying PY)(z;) = f@)(z;) for i =0,...,mand j =0,...,k; —1,
where k41 = >"" k;. Analogous to the Lagrange formula (30), P can be
explicitly constructed with the help of the generalized Lagrange polynomials,
and an explicit formula is given in [52, pp. 52-53]. The Newton form (31)
can also be extended by using generalized divided differences, which, for
repeated nodes, is defined as the value of the derivative:

PEARCD,

a0 Ti =Tj41 = ... = Titr,

(33) f[xlv sy Ty

To this end, we define an expanded set of nodes by repeating each z; for k;
times:

(34) To=...=20<T1=...=21< ...< Ty = ...= Ty, -
—_———

ko k b
The Hermite interpolating polynomial is obtained by (31) using this new
set of nodes and generalized divided differences, which can also be calcu-
lated from the Neville’s diagram verbatim by replacing divided differences
by derivatives whenever encountering repeated nodes. Below we give an ex-
ample using Hermite interpolation to construct polynomial majorant, which
will be used to prove moment comparison theorems in Section 3.

EXAMPLE 4 (Hermite interpolation and polynomial majorization). Let
f(z) = 1{z<0y- We want to find a polynomial majorant P > f such that
P(xz) = f(x) on x = £1. To this end we interpolate the values of f on
{-1,0,1} with the following constraints:
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The resulting polynomial P has degree four and majorizes f [1, p. 65]. To
see this, we note that P'(§) = 0 for some ¢ € (—1,0) by Rolle’s theorem.
Since P/(—1) = P'(1) = 0, P has no other stationary point than —1,¢,1,
and thus decreases monotonically in (£,1). Hence, —1,1 are the only local
minimum points of P, and thus P > f everywhere. The polynomial P is
shown in Fig. 1(b).

To explicitly construct the polynomial, we expand the set of nodes to
—1,-1,0,1,1 according to (34). Applying Newton formula (31) with gen-
eralized divided differences from the Neville’s diagram Fig. 1(a), we obtain
that P(z) =1 — tz(z +1)% + Jz(z + 1)*(z — 1).

to=—1

(a) Neville’s diagram. (b) Hermite interpolation.

F1a 1. Neville’s diagram and Hermite interpolation. In (a), values are recursively calcu-
lated from left to right. For example, the red thick line shows that f[—1,—1,0,1] is obtained

—1/2-0 __
by =D = —1/4.

5.2. Proofs of Propositions 1 and 2. In this subsection we prove Proposi-
tions 1 and 2. As a warm-up, we start by proving Lemma 4, with the purpose
of introducing the apparatus of interpolating polynomials. Throughout this
section, we use

Fi(w) £ m((—oc, 2]).

to denote the CDF of a distribution 7.

PRrROOF OF LEMMA 4. We only need to prove the “if” part.

1. Denote the union of the support sets of v and v/ by S. Here S is of
size at most 2k. For any t € R, there exists a polynomial P of degree
at most 2k — 1 to interpolate x — 1gz<;y on S. Since m;(v) = m;(v')
fori=1,...,2k — 1, we have

Fy(t) = Bu[1ix<p] = B [P(X)] = By [P(X)] = Ev[1ix <] = Fur(t).
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2. Denote the support set of v by S" = {x1,...,2x}. Let Q(z) =][,(x —

1
7;)%, a non-negative polynomial of degree 2k. Since m;(v) = m;(v') for
i=1,...,2k, we have

Therefore, v/ is also supported on S’ and thus is k-atomic. The con-
clusion follows from the first case of Lemma, 4. ]

Next we prove Proposition 7, which is slightly stronger than Proposition 1.

We provide three proofs: the first two are based on the primal (coupling) for-

mulation of W distance (17), and the third proof uses the dual formulation
(16). Specifically,

e The first proof uses polynomials to interpolate step functions, whose
expected values are the CDFs. The closeness of moments imply the
closeness of distribution functions and thus, by (17), a small Wasser-
stein distance. Similar idea applies to the proof of Proposition 2 later.

e The second proof finds a polynomial that preserves the sign of the
difference between two CDF's, and then relate the Wasserstein distance
to the integral of that polynomial. Related idea has been used in [44,
Lemma 20] which finds a polynomial that preserves the sign of the
difference between two Gaussian mixture densities.

e The third proof uses polynomials to approximate 1-Lipschitz functions,
whose expected values are related to the Wasserstein distance via the
dual formulation (16).

The first proof is presented below, and the other two proofs are given in
Section 10.1 of the supplement [57].

PROPOSITION 7. Let v and V' be discrete distributions supported on a

total of ¢ atoms in [—1,1]. If

(35) Imi(v) —mi(V)| <6, i=1,...,0—1,

then

Wi(v,v') < O (&sﬁ) .

FIRST PROOF OF PROPOSITION 7. Suppose v and v/ are supported on

(36) S={t1,....ts}, t1 <ta<-- <ty
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Then, using the integral representation (17), the W; distance reduces to

-1
(37) Wi, ) =Y |Eu(t) = Fur(ty)] - [trea —ty -

r=1

For each r, let f.(z) = 1(2<4,}, and P, be the unique polynomial of degree
£—1 to interpolate f, on S. In this way we have f,. = P, almost surely under
both v and v/, and thus

(38) |Fl/(tr) - FV’(tr)‘ = ’Eufr _Eu’fr‘ = ’Eupr - EV/P’V’|'

P, can expressed using Newton formula (31) as

(39) —1+me,... ilgi—1(x),

i=r+1
where g,(z) = H;Zl(:v —t;) and we used fy[ti,...,t;] =0fori=1,...,r
n (39), the absolute values of divided differences are obtained in Lemma 25
of the supplement [57]:

)

(40) ‘fr[t177tl]| SW

In the summation of (39), let g;—1(z) = Z; tajxj. Since |tj] < 1 for every j,
we have Z;;B laj| <2071 (see Lemma 26 of the supplement [57]). Applying
(35) yields that

i1 '
(41) [Eulgia1] = Eurlgima]l <D lagld < 2.

j=1

Then we obtain from (38) and (39) that
~ (D)2 s

(42) B (tr) = Fur(tr)] < i;l (tri1 — )70 = (trgr — )01

Also, |F,(t;) — F,s(t,)| < 1 trivially. Therefore,

13) Wi ) < ol fror — ] < de(0 — 16757,
(43) 1(v, V) Z (T a1 —te| < de(€—1)

O]

where we used max
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The proof of Proposition 2 uses a similar idea as the first proof of Proposi-
tion 7 to approximate step functions for all values of v and v/; however, this is
clearly impossible for non-discrete /. For this reason, we turn from interpo-
lation to majorization. A classical method to bound a distribution function
by moments is to construct two polynomials that majorizes and minorizes a
step function, respectively. Then the expectations of these two polynomials
provide a sandwich bound for the distribution function. This idea is used,
for example, in the proof of Chebyshev-Markov-Stieltjes inequality (cf. [1,
Theorem 2.5.4]).

PROOF OF PROPOSITION 2. Suppose v is supported on 1 < z9 < ... <
2g. Fix t € R and let fi(x) = 1(,<¢y- Suppose T, <t < Zy41. We construct
polynomial majorant and minorant using Hermite interpolation. To this end,
let P, and ); be the unique degree-2k polynomials to interpolate f; with
the following:

r1 ... Tm t Tm4+1 .. Tk
P11 1 0 0
PO 0 | any 0 0
Q|1 1 0 0 0
Q|0 0 | any 0 0

As a consequence of Rolle’s theorem, P, > f; > @y (cf. [1, p. 65], and an
illustration in Fig. 2): Using Lagrange formula of Hermite interpolation [52,

Polynoimal majorant

1.0

0.5F

Polynomial minorant

Fic 2. Polynomial majorant P, and minorant Q¢ that coincide with the step function on
6 red points. The polynomials are of degree 12, obtained by Hermite interpolation.

pp. 52-53], P, and @, differ by

Py(z) = Qu(z) = Ry(z) & H <QIj = xi>2

t—.%'i
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The sandwich bound for f; yields a sandwich bound for the CDF's:
By [Qi] < Fuy(t) < Ey[P] = Ey[Q] + Evr[Ry],
EV[Qt] < F,,(t) < EV[Pt] = Eu[Qt]-
Then the CDFs differ by
(44) [Fu(t) = Fr @) < (fF() +g(@) AL < )AL+ g(t) AL,
f(t) 2 [Ev[Qd] —Eu[Ql,  g(t) £ Eu[Ry].

The conclusion will be obtained from the integral of CDF difference using
(17). Since Ry is almost surely zero under v, we also have g(t) = |E,/[R:] —

E, [Ry]|. Similar to (41), we obtain that
22k §
t)=|Ey R —E | Ry]| £ =—F———.
9(t) = [Ey[Ri] nal T (=202

Hence,

22](:6 N
(45) /(g(t) A 1)dt S / (W A 1) dt S 161{25%,

where the last inequality is proved in Lemma 29 of the supplement [57].
Next we analyze f(t). The polynomial @; (and also P;) can be expressed
using Newton formula (31) as

2k+1
(46) Q) =1+ > fltr,- - tilgia(x),
i=2m+1
where t1,...,t2,+1 denotes the expanded sequence
L1521y s Tms Ty by Tont 15 Tt 1y - -+ 5 They T
obtained by (34), gr(z) = [[;=;( — t;), and we used fi[t1,...,t;] = 0 for
i=1,...,2m.In (46), the absolute values of divided differences are obtained

in Lemma 25 of the supplement [57]:

(om 1)

ft[tlv cee 7tl] S W

Using (46), and applying the upper bound for |E,[g;—1] — E,/[gi—1]| in (41),
we obtain that, for z,,, <t < xpy1,m > 1,

2k+1 i—2 i1
f(t) = ’Eyl [Qt] — Eu[Qt” < Z (2m—1)2 d k‘42k5

i) (t _ :Em)ifl — (t _ xm)% .
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If t < x1, then Q; = 0 and thus f(¢) = 0. Then, analogous to (45), we obtain
that

(47) /(f(t) A1)dt < 16k52% .

Using (45) and (47), the conclusion follows by applying (44) to the integral
representation of Wasserstein distance (17). O

Acknowledgment. We are grateful to Philippe Rigollet for bringing [23]
to our attention and Harry Zhou for pointing out [7]. We thank Roger
Koenker for discussions on NPMLE and sharing his experimental results.
We also thank Sivaraman Balakrishnan for helpful comments on [4, 45].

SUPPLEMENTARY MATERIAL

Supplementary material for “Optimal estimation of Gaussian
mixtures via denoised method of moments”
(; .pdf). Due to space constraints, additional results are given in the supple-
mentary document [57], which contains minimax lower bounds, extensions
to unbounded means, multiple dimensions, and Gaussian scale mixtures,
numerical experiments, discussion on open problems, and all proofs and
technical results omitted from the main article.
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