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Background
The most demonstrated successful methods in the recent 13th and 14th Critical Assess-
ment of Protein Structure Prediction (CASP13 and CASP14) experiments, including 
AlphaFold [1], have unanimously agreed that accurate contact and distance prediction 
are the key to furthering progress in the field of protein structure prediction [2–4]. Since 
these predictions serve as input to the subsequent process of three-dimensional (3D) 
modeling, it is sensible to assess and evaluate predicted contacts and distances on their 
own. The quality of the predicted 3D model is dependent on the quality of the predicted 
contacts or distances, whichever is used as the input. To evaluate predicted contacts, 
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metrics such as Matthew’s correlation coefficient (MCC) and precision are commonly 
used [5, 6], and web servers such as EVAcon [7] and ConEva [8] have also been devel-
oped for this purpose. Distance prediction approaches, on the other hand, are very 
recent. In May 2020, the organizers of CASP14 introduced a new challenge category—
inter-residue distance prediction. Moreover, recent methods such as trRosetta [9] and 
AlphaFold [1] predict distograms, and others such as PDNET [10] and the Generative 
Adversarial Network-based methods [11] predict real-valued distances. Despite these 
advancements, methods for assessing and evaluating predicted distances remain poorly 
explored. To fill this void we developed DISTEVAL, a web server for assessing and evalu-
ating predicted contact and distances. In addition, a downloadable version of DISTEVAL 
can be used to perform evaluation through 3D modeling.

Implementation
Given user supplied contact or distance predictions, DISTEVAL performs both quali-
tative assessment as well as quantitative evaluation. Qualitative visual assessments are 
presented as (a) heatmaps, and (b) chord diagrams. When the corresponding true struc-
ture is provided, an interactive 3D model visualization complements the assessments. 
The design of our implementation allows a user to easily draw correlations between the 
heatmaps, chord diagrams, and the true structure, allowing for deeper insight into the 
predictions than simple quantitative metrics. For drawing the heatmaps and chord dia-
grams, users can choose from three coloring schemes - the default gradient based color-
ing, a coloring scheme that highlights distances around 8 and 12 Å, and a perceptually 
uniform coloring (easier for color-blind users).

Heatmaps

When generating heatmaps of distance predictions, we ignore all true and predicted 
distances higher than 20 Å and ceil all distances below 3.5 Å to 3.5 Å. This serves an 
important function. With such a standardization, heatmaps from different structures 
or predictions, including those from different proteins, can be readily compared as 
they will have the same numeric range and color mapping. This also allows for a clear 
visualization that focuses on interactions (shorter physical distances) which are more 
important than non-interactions [6]. When contact predictions are provided as input, 
the heatmap coloring corresponds to contact prediction confidence scores. Exploit-
ing the fact that distance and contact maps are symmetrical with respect to the main 
diagonal line, we reserved the upper triangle for the predicted distance/contact map 
and the lower triangle for a true distance map. Combining the heatmaps in this way 
eases comparison between the two. When a native structure is supplied, three-class 
secondary structure calculations, i.e., helix, strand, and coil, from the Define Second-
ary Structure of Proteins (DSSP)[12] program, are shown on the main diagonal line of 
the heatmap as red, green, and white bands. This allows the helix-helix, strand-strand, 
and helix-strand interactions to be easily studied in a heatmap (see Fig.  1c) when 
they would otherwise be non-apparent. In the absence of a true structure, the main 
diagonal is colored with a gradient, associating each residue with a unique color. This 
provides a correspondence with the chord diagram, allowing the user to synthesize 
information from the two. When a true structure is provided along with a distance 
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map, a second heatmap is generated showing the absolute error of the prediction for 
each residue pair (pixel). Since it is easier for the human eye to perform side-to-side 
(or top-down) comparison, we allow all heatmaps to be rotated 45◦ so the diagonal 
line is vertical. This further eases visual assessment as the main diagonal is now dis-
played vertically with its associated residue pair distances horizontally oriented.

Chord diagrams

Chord diagram visualizations can distinctly highlight long-range interactions (short 
physical distances between long-range residue pairs). By arranging the amino acid 
sequence in a circle, the sequence length separating two interacting residues is pro-
portional to the chord length representing their interaction. Unlike the heatmaps, 
however, distance is represented not by color but by the thickness of the chord, i.e. 
shorter physical distances are thicker (see Fig. 1a). In the case of contacts, the thick-
ness represents prediction confidence. The border arc of the chord diagram is colored 
similar to the corresponding heatmap’s main diagonal line which allows the user to 
draw a correspondence between the heatmap and the chord diagram. When a true 
structure is provided, the secondary structural classes appear. In the absence of true 
structure, the same color gradient, as in the heatmap’s diagonal line, is applied. For 
each residue pair i–j, the corresponding chord is colored according to the residue 
with lower sequence index. This assists the user in finding “interaction hubs” [6], 
regions where residues commonly interact with residues in another region (as the 
chords are all similarly colored). More generally this allows the user to see how resi-
dues in a particular region interact with the rest of the sequence. The chord coloring 
remains when the true structure is provided, making it especially useful when paired 
with 3D models. Two separate chord diagrams are drawn for the prediction and the 

Fig. 1  a Chord diagram of input PDB structure. The arch of the chord diagram shows the secondary 
structure labels by DSSP [12] (helix in red, coil in white, and strand in green). Chord widths and transparency 
correspond to the actual physical distances (smaller distances have larger widths and lesser transparency) 
and chord colors are based on the residue index number—red through green to blue. b The structure of the 
corresponding PDB file. c The heatmap diagram with the predicted contact map shown in the upper triangle 
with the PDB distance map in the lower triangle. The colors in the diagonal line of the heatmap show the 
DSSP assigned secondary structures (helix in red, coil in white, and strand in green). d Chord diagram of the 
predicted contact map; Chord widths correspond to the predicted contact confidence. The chord diagram 
(in d) and the heatmap (in c) clearly highlight the patterns such as strand-strand interaction
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true structure, which allows a side-by-side comparison of the true and predicted dis-
tances/contacts. Missing long-range predictions are especially easy to detect with 
chord diagram visualizations.

3D models

These complementary heatmaps and chord diagrams also enable comparisons of pre-
dicted distances or contacts with the true 3D structure. When the native PDB struc-
ture is supplied, DISTEVAL also visualizes the structure using JSmol [13] allowing the 
3D models, chord diagrams and heatmaps to be studied together. By default, the same 
gradient is used for coloring heatmaps, chords, and the 3D model. This allows the user 
to visually connect all produced visualizations, enabling a better understanding of each. 
Details of a prediction that may be hard to discern in one visualization can easily be 
traced to the 3D model, while the complexities of the 3D model are unpacked by 2D 
visualizations. This allows the user to extract information about a prediction’s structural 
details, which is often missed by quantitative metrics. The user can thus develop a better 
understanding of the predictions, their relationship to the true structure, and, by exten-
sion, the strengths and limitations of the methods that produced them.

Quantitative evaluation

To quantitatively evaluate predicted distances and contacts, when a true struc-
ture is available, DISTEVAL provides numerous metrics including mean absolute 
error (MAE) of the long-range distances, root mean squared error (RMSE), local 
distance difference test (LDDT) score [14], and precision of medium and long-
range contacts. Following the widely-adopted standard in the field of protein struc-
ture prediction [5, 6], we define local, short-range, medium-range, and long-range 
distances between residue pairs by the sequence separation length interval they fall 
into: dlocal < 6 ≤ dshort < 12 ≤ dmedium < 24 ≤ dlong . We also define the top L/5 and 
top L as the most confident top L/5 or top L predictions where L is the length of the 
protein sequence or the number of the valid residues in the corresponding native struc-
ture, whichever is smallest. Previous studies have shown that long-range contacts, i.e., 
short distances between pairs separated by at least 23 residues in the sequence, are the 
most informative pairs for accurate reconstruction [5, 6]. In order to calculate the preci-
sion for predicted distances, we translate distance predictions into contacts and evaluate 
precision for: (a) long-range contacts, and (b) medium and long-range contacts. For a 
more rigorous assessment of predicted distances, we extended the CONFOLD method 
[15], so a user can build 3D models from the predicted distances, and compare these 
reconstructed models with the true structure to obtain TM-score [16] of the top or 
best model. This TM-score serves as a ‘utility score’ of the predicted distance map. It 
is important to note that CONFOLD is an appropriate choice for building 3D models 
because of its speed and non-reliance on any information other than the predicted dis-
tance information. Since it typically takes a few minutes to a few hours to execute this 
distance-guided 3D modeling process, this script is available as a separate tool that can 
be downloaded and run locally.
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Technologies used

DISTEVAL was developed using Flask (https​://flask​.palle​tspro​jects​.com), a micro-
framework for web application development in Python. Flask uses the Werkzeug 
WSGI toolkit (https​://werkz​eug.palle​tspro​jects​.com/en/1.0.x/) and the Jinja2 web 
templating engine (https​://jinja​.palle​tspro​jects​.com/en/2.11.x/) for Python which 
helps to render dynamic web pages. The routing, debugging, and web server from 
Werkzeug, together with the templating from Jinja, make Flask a lightweight and 
easy to use full-stack web application framework. This enabled us to quickly develop 
and iterate upon DISTEVAL development and set the stage for future improvements 
to meet the needs of the protein structure prediction community. A Python server 
was created to host the application. HTTP requests and responses are handled by 
the WSGI layer which interfaces with several Python scripts we wrote to process cli-
ent requests and generate the visualizations. When a true structure is provided, the 
scripts use DSSP to determine secondary structure classes and JSmol to render the 
3D models. The outputs from these scripts are returned to the client as an HTTP 
response, which is shown in the output HTML page.

Fig. 2  A screenshot of DISTEVAL’s homepage. It accepts contact/distance files and/or a PDB file as input. 
Input files can be: a uploaded, b copy-pasted into the textarea, or c referenced using a hyperlink

https://flask.palletsprojects.com
https://werkzeug.palletsprojects.com/en/1.0.x/
https://jinja.palletsprojects.com/en/2.11.x/
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Results
As shown in Fig.  2, DISTEVAL accepts predicted contacts and distances in various 
formats including the CASP13 RR format1 and the new CASP14 RR format2. Protein 
structures are accepted as the standard protein data bank (PDB) files. Also accepted are 
predicted Cβ (carbon-beta) distance maps as Numpy array files, i.e. in ‘.npy’ file format, 
and trRosetta[9] predictions in ‘.npz’ file format. A CASP14 zip file contains predictions 
from all participating groups. DISTEVAL visualizes all these predictions in a single place 
enabling users to compare the different submissions. DISTEVAL accepts contact predic-
tions (RR files) in all three formats: a) CASP13, i.e., the old CASP format, b) CASP14 
format with RMODE set to 1, and c) CASP14 format with RMODE set to 2. The follow-
ing use cases are supported: 

1.	 Distance/contact prediction without a 3D structure 

(a)	 Contacts/distance-bins in CASP’s ‘.RR’ formats
(b)	 Real-valued distance map as a Numpy 2D array in ‘.npy’ format
(c)	 Distance predictions by the trRosetta method in ‘.tgz’ format
(d)	 An RR-zip-file from the CASP14 download area3

2.	 A 3D structure ‘.pdb’ file as the only input
3.	 Distance/contact predictions along with a 3D structure 

(a)	 Contacts/distance-bins in CASP’s ‘.RR’ formats
(b)	 Real-valued distance map as a Numpy 2D array in the ‘.npy’ format
(c)	 Distance predictions by the trRosetta method in the ‘.tgz’ format

Since CASP has now standardized distance bin definitions, ‘RMODE 2’ will most likely 
remain the standard format for distogram-type predictors. In the case of RMODE 2, 
predicted contacts are extracted in the usual way. Distance bins, however, require special 
handling. These are translated to distance maps by using the midpoint of the bin with the 
highest confidence score. This flattening of distogram-type predictions does lose some 
information (distograms can have multiple peaks) but no method can precisely project 
the predicted probability information onto a 2D heatmap. This method is particularly 
useful as it allows a direct comparison with contact maps and real-valued distance maps. 
Since distance and contact maps are symmetrical about the main diagonal, we only con-
sider the upper triangle of the matrix for all purposes—visualization as well as quantita-
tive evaluation. Users can provide file input in three ways: (a) a file upload from a client’s 
local computer, (b) raw text content pasted into the text area, and (c) a uniform resource 
locator (URL) of the files.

We also performed experiments to obtain a measure of effectiveness for various dis-
tance evaluation metrics we implemented, including mean absolute error (MAE), root 

1  https​://predi​ction​cente​r.org/casp1​3/index​.cgi?page=forma​t#RR
2  https​://predi​ction​cente​r.org/casp1​4/index​.cgi?page=forma​t#RR
3  https​://predi​ction​cente​r.org/downl​oad_area/CASP1​4/serve​r_predi​ction​s/

https://predictioncenter.org/casp13/index.cgi?page=format#RR
https://predictioncenter.org/casp14/index.cgi?page=format#RR
https://predictioncenter.org/download_area/CASP14/server_predictions/
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mean squared error (RMSE), local distance difference test (LDDT) of C β atoms at stand-
ard sequence separation thresholds such a 6, 12, and 24. At first, with the help of the 
CONFOLD tool [15], we built three-dimensional models for 150 protein chains in the 
PSICOV dataset using the real-valued distances predicted by the PDNET-Distance 
method [10]. Next, we evaluated these distance maps using the various distance eval-
uation metrics and separately evaluated the top-one models using template-modeling 
score (TM-score) and global distance test total score (GDT-TS) [16]. Finally, we calcu-
lated the Pearson correlation coefficients between the 150 TM-score and 150 GDT-TS 
values with each of the various distance evaluation metrics. Table  1 lists eight of the 
top ranking metrics along with their Pearson correlation coefficient with TM-score and 
GDT-TS. Overall, we find that C β-based LDDT scores are the most effective metrics to 
evaluate predicted real-valued distances. These results align with the findings that the 
metrics pairwise distance test (PDT) and high-accuracy pairwise distance test (PHA), 
which are similar to C β-LDDT, are effective metrics to evaluate predicted distances [17].

Conclusions
The assessment of predicted contacts and distances using heatmaps, chord diagrams, 
and 3D models complement each other. They collectively serve as a powerful tool to 
compare and assess predicted contacts and distances even in the absence of a true 3D 
structure. DISTEVAL comes pre-loaded with many examples ready to run, allowing 
users to quickly and easily begin understanding protein distance and contact predictions 
in previously unavailable ways.

Availability and requirements
Project name: DISTEVAL

Project home page: http://deep.cs.umsl.edu/diste​val/
Open-source repository: https​://githu​b.com/ba-lab/diste​val
Operating system(s): Platform independent
Programming language: HTML, CSS, and Python
License: GNU GPL
Any restrictions to use by non-academics: None

Table 1  Pearson correlation coefficient of  metrics used for  evaluation of  predicted real-
valued distances with TM-score and  GDT-TS score, calculated on  the  PSICOV 150 protein 
dataset

*Pearson correlation coefficient

Real-valued distance evaluation metric PCC* with TM-score PCC* 
with GDT-TS

Cb-LDDT of all medium and long-range distances 0.83 0.86

Cb-LDDT of all short, medium, and long-range distances 0.82 0.87

Cb-LDDT of all long-range distances 0.81 0.82

PCC* of all medium and long-range distances below 20 Å 0.77 0.79

MAE of all medium and long-range distances below 20 Å − 0.72 − 0.78

MAE of all long-range distances below 20 Å − 0.71 − 0.74

RMSE of all medium and long-range distances below 20 Å − 0.60 − 0.67

RMSE of all long-range distances below 20 Å − 0.60 − 0.64

http://deep.cs.umsl.edu/disteval/
https://github.com/ba-lab/disteval
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Residue-residue contact mode in CASP RR format; PCC: Pearson correlation coefficient; PDT: Pairwise distance test; PHA: 
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